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1. Introduction. A foliation & of a Riemannian manifold (M, g) is
said to be minimal if every leaf of . is a minimal submanifold of (M, g).
Sullivan [11], Rummler [9], and Harvey and Lawson [4] gave homological
characterizations of minimal foliations. In [7], the author studied a
Riemannian geometric aspect of minimal foliations and proved the follow-
ing: If (M, &,9) is a codimension-one minimal foliation of a closed
Riemannian manifold with non-negative Ricci curvature, then (M, g) is
locally a Riemannian product of a leaf of . and a one-dimensional mani-
fold perpendicular to . In [2], Brito gave partial extension of this
result for codimension-two minimal foliations, and in [12], Takagi and
Yorozu gave many interesting examples of minimal foliations of codimen-
sion greater than one and studied related topics. In this paper, we prove
the following theorem which is an extension of Theorem in [7].

THEOREM 1. Let (M, &, g) be a minimal foliation of a closed con-
nected Riemannian manifold with non-negative Ricet curvature. Assume
that the bundle 57 orthogonally complement to & 1s integrable and its
normal connection is flat. Then (M, g) 1s locally a Riemannian product
of a leaf of & and a leaf of S#

The proof will be given in §3. In §4, we give some examples and
study related topics. In particular, we strengthen a result of Brito [2].

2. Notation and preliminary results. Let (M, g) be a Riemannian
manifold. Denote by D the Riemannian connection of (M, g) and by R
the curvature tensor of D. We also denote g(u, v) by {u, v) for u,ve
T.M, xe M. Let & be a codimension-q foliation of M. A foliation &
of (M, g) is said to be minimal (resp. totally geodesic) if every leaf of
& is a minimal (resp. totally geodesic) submanifold of (M, g). Hereafter
we shall identify a foliation &~ with its tangent bundle. Denote by 5#
the bundle orthogonally complement to &, that is, 57 = {(«, v) € T.M;
xeM,v L T,%#}. The normal connection of 57 is said to be flat if the
bundle 57 locally admits an orthonormal frame field {X,, ---, X,}, where
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q = dim 57 = codim .&, such that (D, X,, X;) =0 for a,b=1, -+, ¢ and
Ve (M). Let U be an open subset of M. An orthonormal frame field
{E, +++, E,, X;, +++, X}, where p = dim &, of TM|U is said to be adapted
if it satisfies the following properties:

{E}i=1...., gives an orthonormal frame field of & |U,
{X.}ezr,...,, gives an orthonormal frame field of 5#|U, and
DyX,, Xp =0 for a,b=1,:-+-,q and Ve 2(U).

Therefore, if the normal connection of 5# is flat, then for any point «
of M there is an open neighborhood U of x and an adapted frame field
{E, X,} on U. Note that if the normal connection of 5# is flat and
S# is integrable, then the universal covering space of each leaf of 5#
is diffeomorphic to R?, where q = dim 5%,

Let (M, ) and (N, 5#) be two foliated manifolds and W be a mani-
fold. We denote by (M, & )x W the foliated manifold (M x W, &)
whose leaves are of the form Lx W (L e ), and denote by (M, &)X
(N, 5#) the foliated manifold (M x N, ') whose leaves are of the form
LxH (Le. and He 5#). We also use the notation (W, pt), when we
regard W as a foliated manifold with leaves consisting of points of W,
that is, the point foliation.

A geodesic ¢: R — M is said to be a line if any segment of ¢ is a
minimizing geodesic. A geodesic ¢: [0, ) — M 1is said to be a ray if any
segment of ¢ is a minimizing geodesic. For the structure of a Riemannian
manifold with non-negative Ricei curvature, we have the following split-
ting theorem by Cheeger and Gromoll [3].

THEOREM A (Cheeger and Gromoll [3, Theorems 2 and 3]). Let M be
a closed Riemannian manifold with mon-negative Ricci curvature. Then
the universal covering space M of M is the isometric product M x R*
where M is compact and R* has its standard flat metric. Furthermore,
if ¢ is a line of the universal covering space M, then M decomposes iso-
metrically into a cross product M’ X R, the second factor being represented
by c.

For the proof of our theorem, we need the following two theorems
concerning totally geodesic foliations. Note that a smooth map f: (M, g) —
(N, h) between Riemannian manifolds is said to be a Riemannian submer-
sion if f is of maximal rank and f, preserves the length of horizontal
vectors, i.e., vectors orthogonal to the fiber f~'(x) for x€ N (cf. O’'Neill

[6D.
THEOREM B (Blumenthal and Hebda [1]). Let (M, &, g) be a totally
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geodesic foliation of a conmected complete Riemannian manifold. Assume
that the bundle 57 orthogonally complement to & 1is integrable. Then
the universal covering space M of M 1is topologically a product Lx H,
where

(1) L (resp. H) is the universal covering space of the leaves of F
(resp. 57),

(2) the canonical lifting e (resp. a‘%) of F (resp. 57) to M 1is
the foliation by leaves of the form Lx{h}, he€ H (resp. {l{} xH, le L), and

(8) the projection P: M — L onto the first factor is a Riemannian
submersion.

THEOREM C (Oshikiri [8]). Let (M, g) be a connected complete Rieman-
nian manifold and & be a totally geodesic foliation of (M, g). Assume
that the bundle orthogonally complement to & 1is also integrable. Then
any Killing field Z on (M, g) with bounded length, i.e., 9(Z, Z) < const. <
o on M, preserves &F.

3. Proof of Theorem 1. Let (M, g) be a Riemannian manifold as in
Theorem 1. We continue to use the notation in §2. For the proof, we
may assume that the ambient manifold M and the foliation & are
oriented.

LEMMA 1. Let (M, &, g) be a minimal foliation of a connected closed
Riemannian manifold with non-negative Ricci curvature. Assume that
the induced conmection of 57 1is flat. Then the foliation & 1is totally
geodesic.

ProoF. By assumption, for each point of M there is an adapted frame
field {E,, X,} on a neighborhood of the point. Denote by Ric(X, X) the
Ricci curvature in the direction of X. Set X = X,. Note that div(D,X) =
S {Dp, DX, Ey + 3, {Dx Dy X, X,), where p = dim & and q = dim 57,
and (X, 3., Dy, E;) = 0 by the minimality of & It follows that

Rie(X, X) = 3\ (D, DX, E — D:Ds X, By = DzuiX, E)
+ 33Dz, DxX, Xy = (DsDx,X, X = Dz, X))
= div(D,X) + 3 <De X, DX + X(X, 31Dy )

?
+ 2.
1,5=1

?
2(DsX, E)(DsEy By — 3 (D5, X, By

q

+3, 3 (D;E, X.)(D; X, E

i=1 a=1
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= div(D:X) — 3 (Dp X, B .

Thus we have div(Dy X,) = Rie(X,, X,) + 337 ;= {Dp,X,, Ejp*fora=1, --+, q.

As the normal connection is flat, the vector field W= X!, Dy X, is

globally well-defined on M. Hence we have div(W) = 3%, Rie(X,, X,) +

D imiut=1 (Dg, X, E* 20 on M. As S div(W) = 0, it follows that
M

(DX, E;) =0 for a=1,---,q and 4,5 =1, --+, p, which means that

Z is totally geodesie.

REMARK. Under the hypotheses of Theorem 1, the fact that the
foliation & is totally geodesic is a direct consequence of the main theorem
in Sawada [10].

Now assume that the bundle 57 is integrable. Let I be the uni-
versal covering space of M and & (resp. 9?) be the canonical lifting of
F (resp. &) to M. Then, by Theorem B, the projection P: M — L is
a Riemannian submersion.

LEMMA 2. Ifaleaf Lx{h}, he H, of & admits a line ¢, then (8, &)
18 the isometric product (M', ') X R, where (M', Z') is a totally geodesic
foliation satisfying the hypotheses im Theorem 1 except the compactness
of M', while R has its standard flat metric.

ProOF. First note that ¢ is a line of M. Indeed, as P: M — L is a
Riemannian submersion, the curve Poc¢ is a line of L. If ¢ were not a
line of M, then there would be a geodesic segment ¢ joining ¢(s) to c(t)
for some s, t€ R and len(¢) < len(c[s, t]), where len(c) is the length of c.
As P is the projection of the Riemannian submersion, it would follow
that len(P-¢) < len(¢). Thus len(P-¢) < len(Poc[s, £]) which contradicts
the fact that Poc is a line of L. By Theorem A, there is a parallel
vector field X on M with X|, = ¢’. By Theorem C, the vector field X
preserves . and 5. Thus X is tangent to L x {h} everywhere on L X {h}
and there is a vector field Y on L with P, X = Y, because the flow of
X preserves the fibers of P and can be projected to the flow on L gen-
erating Y. As |X| is constant, |P.X|<|X| and P,|T(Lx{h}) is an
isometry, it follows that X is tangent to . everywhere on iI. Now
Lemma 2 follows.

LEMMA 3. If a leaf Lx{h} of 5 does not admit a line, then L x {h}
18 compact.

PROOF. Note that all leaves of & are isometric to the manifold L
by the projection P: if — L. As % and 57 are canonical liftings of &
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and 5 on M, the action of x,(M) preserves & and S~ 'Thus it pre-
serves the product structure L x H, and the induced action of x,(M) to
L consists of isometries of L. Suppose that L x{h} is not compact. Then
there is a ray ¢ of Lx{h} starting from a point xe€ Lx {h}. Let K be a
compact fundamental domain for =,(M) which exists by the compactness
of M. For each positive integer n, there is an element g, € 7, (M) such
that P(g;'(c(n))) € P(K). By compactness, we find a subsequence g,, such
that P(g;}(c(n)) — y € P(K) and d(Pg;))(c'(n,)) »veT,L as n,— . If
€:(— o0, 0)— L is the geodesic with ¢(0) =¥ and ¢’(0) = v, then ¢ is
easily seen to be a line of L, a contradiction.

By Lemmas 2 and 3, we may assume that the foliation & consists
of compact and simply-connected leaves.

LEMMA 4. The foliated Riemannian manifold (M, F) is isometric
to the foliated Riemammian product (M, )% (R, pt), where Mx R* is as
in Theorem A.

PROOF. Let X be a parallel vector field of /7 and Y be the orthogonal
projection of X to a leaf L of &. Then Y is a parallel vector field on
L. As a leaf L is compact and simply-connected, L does not admit any
non-trivial parallel vector field. Thus Y = 0 and X is orthogonal to 3777
and the lemma follows.

Except in Lemma 1, we do not use the assumption that the normal
connection of 57 is flat. What we use below is the fact that the leaves
of 57 are diffeomorphic to R? (see §2).

We now finish the proof of Theorem 1. By Lemma 4, M has a totally
geodesic foliation such that the bundle orthogonally complement to it is
integrable. If M = L, then by Theorem B and the fact that M is closed
and simply-connected, M is topologically a product L’'x H' of compact
simply-connected manifolds L' and H' with dim H' = 2. Thus H is homeo-
morphic to H'x R* which is not contractible, a contradiction.

4, Concluding remarks. In [2], Brito proved the following among
others.

THEOREM (Brito [2]). Let (M, &, g) be a codimension-2 minimal foli-
ation of a closed connected Riemannian manifold with non-negative Ricci
curvature. If the bundle SZ orthogonally complement to Z is integrable
and trivial, then & s totally geodesic.

As a corollary to the proof of Theorem 1, we can strengthen the
above theorem and, consequently, we obtain a more natural extension of
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Theorem in [7] as follows.

THEOREM 2. Let (M, &, g) be as in Brito’s theorem. Then (M, g) is
locally a Riemannian product of a leaf of & and a leaf of 57.

Furthermore, as a corollary to the proof of Theorem 1, we obtain
the following foliated splitting theorem for such totally geodesic foliations
as in Theorems 1 and 2.

THEOREM 8. Let (M, &, g) be a totally geodesic foliation of a closed
connected Riemannian manifold with non-negative Ricct curvature. As-
sume that the bundle orthognally complement to & 1is integrable. Then
the universal covering space (M, §) splits as a foliated Riemanninan
product (M, )% (R®, pt) x R, where Mx(R*xR!) is as in Theorem A
and & 1is a totally geodesic foliation of M comsisting of compact and
simply-connected leaves.

Finally we give a few examples.

ExAMPLE 1. Let E® be the flat Euclidean space with coordinates
(x, 9, 2). Define & to be the orbits of the vector field sin(2zz)o/ox +
cos(2nz)d/oy. Then & is a one-dimensional totally geodesic foliation of
E®. As the natural action of Z + Z + Z on E°® preserves . &, we have
a one-dimensional totally geodesic foliation of the flat torus 7. Note
that the bundle 5# orthogonally complement to & is not integrable and
that the normal connection of 57 is flat.

EXAMPLE 2 (cf. Meyer [5]). Consider a warped product (S?xS? g,x
h'g,), where h is a non-constant positive smooth function on the first
factor and g, is the standard metric of S%. If h is sufficiently near the
constant function 1, then the Ricci curvature is positive. Thus we get
a codimension-two totally geodesic foliation. on an irreducible Riemannian
manifold with positive Ricei curvature. Note that the bundle orthogonally
complement to this foliation is integrable. If we replace the second fac-
tor S? by S% then we get a codimension-three totally geodesic foliation
on an irreducible Riemannian manifold with positive Ricci curvature.
Note that the bundle orthogonally complement to this foliation is inte-
grable and trivial. Thus, Theorem 2 cannot be extended to the cases of
codimension greater than two without further assumptions.

ExAMPLE 3. We give a metric on S?x S?, which satisfies: (1) Ric > 0,
(2) & = {S*x(y)} is a minimal foliation, but not a totally geodesic foli-
ation, and (8) &+ = {(x)xS?. Let x, be a point of S?.. Then, there
exist a neighborhood U of x, and an isothermal coordinate (u, v) on U
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with ds* = G(x)*(du® + dv*). Let V be a neighborhood of x, with VcU
and f be a non-constant positive smooth function on S? with f(x) = 1 for
xeS*— V. Let h be a non-constant positive smooth function on St
Define a Riemannian metric for S*xS® by g,xg, on (S* — V)xS* and
Gy (du’/k(x, ¥)* + k(x, y)*dv®) X g, on UxS? where k(x,y) =1+ (flx) —
Dh(y). If we choose f and h sufficiently close to the constant function
1, then we have the desired metric.
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