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1. Introduction. A foliation &~ of a Riemannian manifold (M, g) is
said to be minimal if every leaf of _^~ is a minimal submanifold of (Af, g).
Sullivan [11], Rummler [9], and Harvey and Lawson [4] gave homological
characterizations of minimal foliations. In [7], the author studied a
Riemannian geometric aspect of minimal foliations and proved the follow-
ing: If (Af, _ 7̂ 9) is a codimension-one minimal foliation of a closed
Riemannian manifold with non-negative Ricci curvature, then (Af, g) is
locally a Riemannian product of a leaf of &~ and a one-dimensional mani-
fold perpendicular to ^ 7 In [2], Brito gave partial extension of this
result for codimension-two minimal foliations, and in [12], Takagi and
Yorozu gave many interesting examples of minimal foliations of codimen-
sion greater than one and studied related topics. In this paper, we prove
the following theorem which is an extension of Theorem in [7].

THEOREM 1. Let (Af, ^ 7 g) be a minimal foliation of a closed con-
nected Riemannian manifold with non-negative Ricci curvature. Assume
that the bundle Sίf orthogonally complement to &~ is integrable and its
normal connection is flat. Then (Af, g) is locally a Riemannian product
of a leaf of ^~ and a leaf of §4f.

The proof will be given in § 3. In § 4, we give some examples and
study related topics. In particular, we strengthen a result of Brito [2].

2. Notation and preliminary results. Let (Af, g) be a Riemannian
manifold. Denote by D the Riemannian connection of (Af, g) and by R
the curvature tensor of D. We also denote g(u, v) by ζu, v} for u, v 6
TxMy xeM. Let J " be a codimension-g foliation of Af. A foliation ^
of (Af, g) is said to be minimal (resp. totally geodesic) if every leaf of
^ is a minimal (resp. totally geodesic) submanifold of (Af, g). Hereafter
we shall identify a foliation ^ with its tangent bundle. Denote by J%f
the bundle orthogonally complement to ^ 7 that is, Sίf = {(a?, v) e T̂ Af;
#eAf, VLTX^}. The normal connection of §(f is said to be flat if the
bundle Sίf locally admits an orthonormal frame field {Xlf •••, Xg}, where



224 G. OSHIKIRI

q = dim Sίf = codim ^ 7 such that {DvXaJ Xb) = 0 for α, b = 1, , q and
V e <g?(M). Let U be an open subset of M. An orthonormal frame field
{Elf , Ep, Xίf , JfJ, where p = dim ^ 7 of ΓM| i7 is said to be adapted
if it satisfies the following properties:

{•Ê }i=i,».,p gives an orthonormal frame field of ^~\U,

{Xa}a=i,. ,q gives an orthonormal frame field of Sίf\U, and

{DvXa1 Xb) = 0 for α, 6 = 1, , q and Ve Jg?(U) .

Therefore, if the normal connection of έ%f is flat, then for any point x
of M there is an open neighborhood U of x and an adapted frame field
{Ei9 Xa} on U. Note that if the normal connection of £ff is flat and
£ίf is integrable, then the universal covering space of each leaf of £$f
is diίfeomorphic to Rg, where q = dim Sϊf.

Let (Mf ^) and (N9 έ%f) be two foliated manifolds and W be a mani-
fold. We denote by (M, ^ r ) x W the foliated manifold (Af x TΓ, ^ " )
whose leaves are of the form LxW ( L e ^ ) , and denote by (M, ^ * ) x
(ΛΓ, 3ίf) the foliated manifold (MxN, &"') whose leaves are of the form
LxH ( L e ^ and He<3έ?). We also use the notation (W, pt), when we
regard W as a foliated manifold with leaves consisting of points of W,
that is, the point foliation.

A geodesic c: 1? —• M is said to be a line if any segment of c is a
minimizing geodesic. A geodesic c: [0, <χ>) —> M is said to be a ray if any
segment of c is a minimizing geodesic. For the structure of a Riemannian
manifold with non-negative Ricci curvature, we have the following split-
ting theorem by Cheeger and Gromoll [3].

THEOREM A (Cheeger and Gromoll [3, Theorems 2 and 3]). Let M be
a closed Riemannian manifold with non-negative Ricci curvature. Then
the universal covering space M of M is the isometric product MxRk

where M is compact and Rk has its standard flat metric. Furthermore,
if c is a line of the universal covering space M, then M decomposes iso~
metrically into a cross product Mf x R, the second factor being represented
by c.

For the proof of our theorem, we need the following two theorems
concerning totally geodesic foliations. Note that a smooth map / : (Λf, g) —>
(N, h) between Riemannian manifolds is said to be a Riemannian submer-
sion if / is of maximal rank and /* preserves the length of horizontal
vectors, i.e., vectors orthogonal to the fiber f~\x) for xeN (cf. O'Neill
[6]).

THEOREM B (Blumenthal and Hebda [1]). Let (M, J>r, g) be a totally
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geodesic foliation of a connected complete Riemannian manifold. Assume
that the bundle £ff orthogonally complement to &~ is integrable. Then
the universal covering space M of M is topologically a product LxH,
where

(1) L (resp. H) is the universal covering space of the leaves of &~
(resp. £(f),

(2) the canonical lifting β~ (resp. Stf) of ^~ (resp. £(f) to M is
the foliation by leaves of the form Lx{h}, heH (resp. {l}xH, leL), and

(3) the projection P: M-+ L onto the first factor is a Riemannian
submersion.

THEOREM C (Oshikiri [8]). Let (M, g) be a connected complete Rieman-
nian manifold and ^~ be a totally geodesic foliation of (M, g). Assume
that the bundle orthogonally complement to ^~ is also integrable. Then
any Killing field Z on (M, g) with bounded length, i.e., g(Z, Z) tί const. <
oo on M, preserves

3. Proof of Theorem 1. Let (M, g) be a Riemannian manifold as in
Theorem 1. We continue to use the notation in § 2. For the proof, we
may assume that the ambient manifold M and the foliation &~ are
oriented.

LEMMA 1. Let (M, J?~, g) be a minimal foliation of a connected closed
Riemannian manifold with non-negative Ricci curvature. Assume that
the induced connection of Sίf is fiat. Then the foliation ^ is totally
geodesic.

PROOF. By assumption, for each point of M there is an adapted frame
field {Eif Xa} on a neighborhood of the point. Denote by Ric(X, X) the
Ricci curvature in the direction of X. Set X = X±. Note that div(DxX) =
Σί=i <DEίDxX, Et) + Σί-i <DXaDxX, Xa), where p = dim &~ and q = dim
and <X, ΣiU DEiEt} = 0 by the minimality of ^ 7 It follows that

Ric(X, X) = Σ « - D £ A * > E<> - <DχDE(X, E,) - (DίEi>xϊX, £?,»

+ t«DXaDxX, Xa> - <DxDXaX, Xa) - <DlXa,x}X, Xa))
α=2

= div(Dxx) + ± φXax, Dxxay + :
0=1

Ό

O/7Ί V T?\/Tί Ί? Ί? \ ^ / Tί V XT' \2

p^ g

=1 α = l
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= div(DxX) - Σ <DBtX, Eάy .

Thus we have άiv(DXaXa) = Ric(Xα, Xa) + Σ?,;=i <DB4Xa, Ej)2 for a = 1, , g.
As the normal connection is flat, the vector field W = ΣSUi DXaXa is
globally well-defined on M. Hence we have div(T7) = Σ<U Ric(Xα, Xα) +

ΣL=iΣLi <A?X, #;>2 ^ 0 on M. As S div(J7) = 0, it follows that
JM

(DEiXa, Ej) — 0 for a — 1, , q and i, j = 1, , p, which means that
^ is totally geodesic.

REMARK. Under the hypotheses of Theorem 1, the fact that the
foliation j ^ ~ is totally geodesic is a direct consequence of the main theorem
in Sawada [10].

Now assume that the bundle £{f is integrable. Let M be the uni-
versal covering space of M and J?~ (resp. £%?) be the canonical lifting of
^r (resp. <§ίf) to M. Then, by Theorem B, the projection P:M->L is
a Riemannian submersion.

LEMMA 2. If a leaf Lx{h}, heH, of J?' admits a line c, then (M, ^)
is the isometric product (ΛΓ, ^~')xR, where (ΛΓ, ^~f) is a totally geodesic
foliation satisfying the hypotheses in Theorem 1 except the compactness
of M', while R has its standard flat metric.

PROOF. First note that c is a line of M. Indeed, as P: M-+ L is a
Riemannian submersion, the curve P°c is a line of L. If c were not a
line of M, then there would be a geodesic segment c joining c(s) to c(t)
for some s, teR and len(c) < len(φ, t]), where len(c) is the length of c.
As P is the projection of the Riemannian submersion, it would follow
that len(Poc) <̂  len(c). Thus len(Poc) < len(Poφ, t]) which contradicts
the fact that P°c is a line of L. By Theorem A, there is a parallel
vector field l o n l with X\c = c\ By Theorem C, the vector field X
preserves j?' and &?. Thus X is tangent to L x {h} everywhere on L x {h}
and there is a vector field Y on L with P*X = Y, because the flow of
X preserves the fibers of P and can be projected to the flow on L gen-
erating Y. As \X\ is constant, \P+X\ ̂  \X\ and P* | T(Lx {h}) is an
isometry, it follows that X is tangent to j^~ everywhere on M. Now
Lemma 2 follows.

LEMMA 3. // a leaf L x {h} of 3" does not admit a line, then L x {h}
is compact.

PROOF. Note that all leaves of Jr are isometric to the manifold L
by the projection P:M->L. As 'jr< and <%f are canonical liftings of
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and 2ff on M, the action of π^M) preserves J?~ and j%f. Thus it pre-
serves the product structure LxH, and the induced action of πλ(M) to
L consists of isometries of L. Suppose that Lx{h) is not compact. Then
there is a ray c of Lx{h} starting from a point xeLx{h}. Let K be a
compact fundamental domain for πx(M) which exists by the compactness
of M. For each positive integer n, there is an element gneπι{M) such
that P(gn\c(n))) e P(K). By compactness, we find a subsequence gni such
that P(g^(c(nt))) ->ye P{K) and d{Pog-l){c\n%)) -> v e Γ,L as n< -> <~. If
c: (—oo, oo)—>L is the geodesic with c(0) = 2/ and c'(0) = v, then c is
easily seen to be a line of L, a contradiction.

By Lemmas 2 and 3, we may assume that the foliation j?~ consists
of compact and simply-connected leaves.

LEMMA 4. The foliated Riemannian manifold (fit, <β~) is isometric
to the foliated Riemannian product (M, ̂ )x(Rk, pt), where MxRk is as
in Theorem A.

PROOF. Let X be a parallel vector field of M and Y be the orthogonal
projection of X to a leaf L of J?7 Then Y is a parallel vector field on
L. As a leaf L is compact and simply-connected, L does not admit any
non-trivial parallel vector field. Thus Y = 0 and X is orthogonal to ^ 7
and the lemma follows.

Except in Lemma 1, we do not use the assumption that the normal
connection of £ff is flat. What we use below is the fact that the leaves
of ^? are diffeomorphic to Rq (see § 2).

We now finish the proof of Theorem 1. By Lemma 4, Mhas a totally
geodesic foliation such that the bundle orthogonally complement to it is
integrable. If M Φ L, then by Theorem B and the fact that M is closed
and simply-connected, M is topologically a product L'xH' of compact
simply-connected manifolds U and H' with dim Hr ^ 2. Thus H is homeo-
morphic to H'xRk which is not contractible, a contradiction.

4. Concluding remarks. In [2], Brito proved the following among
others.

THEOREM (Brito [2]). Let (M, ̂ Ί g) be a codimension-2 minimal foli-
ation of a closed connected Riemannian manifold with non-negative Ricci
curvature. If the bundle Sίf orthogonally complement to J?~ is integrable
and trivial, then J?~ is totally geodesic.

As a corollary to the proof of Theorem 1, we can strengthen the
above theorem and, consequently, we obtain a more natural extension of
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Theorem in [7] as follows.

THEOREM 2. Let (M, ̂ 7 g) be as in Brito's theorem. Then (M, g) is
locally a Riemannian product of a leaf of ^~ and a leaf of £ίf.

Furthermore, as a corollary to the proof of Theorem 1, we obtain
the following foliated splitting theorem for such totally geodesic foliations
as in Theorems 1 and 2.

THEOREM 3. Let (M, ̂ T g) be a totally geodesic foliation of a closed
connected Riemannian manifold with non-negative Ricci curvature. As-
sume that the bundle orthognally complement to ^~ is integrable. Then
the universal covering space (M, g) splits as a foliated Riemanninan
product (My Jr~) x (R8, pt) x R\ where MxiR'xR*) is as in Theorem A
and jβ~ is a totally geodesic foliation of M consisting of compact and
simply-connected leaves.

Finally we give a few examples.

EXAMPLE 1. Let Ez be the flat Euclidean space with coordinates
(x, y, z). Define ^~ to be the orbits of the vector field sin(2πz)d/dx +
cos(2πz)d/dy. Then &~ is a one-dimensional totally geodesic foliation of
Ez. As the natural action of Z + Z + Z on E% preserves ^ 7 we have
a one-dimensional totally geodesic foliation of the flat torus T3. Note
that the bundle έ%f orthogonally complement to J?~ is not integrable and
that the normal connection of Sϊf is flat.

EXAMPLE 2 (cf. Meyer [5]). Consider a warped product (S2xS\ gox
h2g0), where h is a non-constant positive smooth function on the first
factor and g0 is the standard metric of S2. If h is sufficiently near the
constant function 1, then the Ricci curvature is positive. Thus we get
a codimension-two totally geodesic foliation on an irreducible Riemannian
manifold with positive Ricci curvature. Note that the bundle orthogonally
complement to this foliation is integrable. If we replace the second fac-
tor S2 by S3, then we get a codimension-three totally geodesic foliation
on an irreducible Riemannian manifold with positive Ricci curvature.
Note that the bundle orthogonally complement to this foliation is inte-
grable and trivial. Thus, Theorem 2 cannot be extended to the cases of
codimension greater than two without further assumptions.

EXAMPLE 3. We give a metric on S2xS2, which satisfies: (1) Ric > 0,
(2) &~ = {S2 x (y)} is a minimal foliation, but not a totally geodesic foli-
ation, and (3) J ^ 1 = {(x) x S2}. Let x0 be a point of S2. Then, there
exist a neighborhood U of x0 and an isothermal coordinate (u, v) on U
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with ds2 = G(x)\du2 + dv2). Let V be a neighborhood of xQ with F c i 7
and / be a non-constant positive smooth function on S2 with f(x) = 1 for
xeS2 — V. Let h be a non-constant positive smooth function on S2.
Define a Riemannian metric for S2 x S2 by g0 x g0 on (S2 — F ) x S 2 and
G(x)\du2/k(x,y)2+ k(x,y)2dv2)xg0 on ί/xS2, where k(x, y) = 1 + (/(a?) -
l)Λ(l/). If we choose / and /ι sufficiently close to the constant function
1, then we have the desired metric.
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