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INEQUALITIES OF FEJER-RIESZ AND HARDY-LITTLEWOOD

NozomMUu MOCHIZUKI

(Received October 16, 1986)

Introduction. In this note, we shall derive some inequalities con-
cerning the growth of mean values of holomorphic functions which extend
classical results. Section 1 deals with the Fejér-Riesz inequality for H?
functions on the unit ball in C* and on the generalized half-plane, and
the results of [8] are extended. In Section 2, two types of Hardy-
Littlewood inequalities are obtained. Section 3 concerns the weighted

Bergman space on the unit ball which is closely related to the Hardy
space.

1. The Fejér-Riesz inequality. Let B denote the open unit ball in
C*, n=2, and D be the generalized half-plane defined by Imz, — |2'|*> 0,
(2, 2)eCxC*'. We shall write L;, = RIxXC**x{0}x .- x{0}cC", 1=
isn, 0sk=<n-—jJ, Ly, =C*>x{0}x---x{0}, 1<k=<mn, and Lj,, =
(AR X C*x{0}x -+ x{0}cC 1L j=<n,0=k=<mn—7j, where R means
the real line in C. dz will denote the Lebesgue measure on L;,.

If ¢=1 and 5 =1 in Theorems 1 and 2, the inequalities coincide
with those of [8], except in the case £k = » in (2) and (4). Here we note
that the method used in [8] does not work for the present situation.
Theorem 1 generalizes the Fejér-Riesz inequality given in [1]. It also

contains a recent result of Power’s [9, Corollary] as a special case ¢ =1
and n =35 = 2.

THEOREM 1. Let ¢ = 1. Then there is a constant C = C(n, j, k, ¢)

such that the following holds for anmy p, 0 < p < +o, and for any
f e H*B):

(1) SBM- klf(z) lo2(1 — |z [pyen—ttektrg, < clfFILye ,

l1=sj=n, 0sk=n—7j.
There is a constant C' = C'(n, k, ¢) such that

(2) Smo @I = [Pz < O FIL), 1Sksn,
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where ¢>1 for k=n. The exponents cn—2(5+2k+1) and ecn—k—1
are the best possible in all cases.

THEOREM 2. For the same constants C and C' as in Theorem 1,
the following hold for fe H?(D), 0 < p < + o, where each exponent is

unique:
+o0

3)  |Taw|, 5@+ i+ il s e eerdr < Gl
0 i—1,k

forany v,eR, 1<j=n,0=k=n—J.

@ (Ta e e e dede
<2CIfl,)?, 1<k<n,

where ¢ > 1 for k = n.

We shall denote by A?(Q2) the class of holomorphic functions on
2cC" which belong to L*»(Q, dz). It is obvious that H?(B)C A*(B),
0 < p < +oo. The relation between these classes will be made clear in
the following corollary. B, denotes the open unit ball in C*, 1<k < .
For a function g on B,, 1<k<n—1, E, ,g is defined by (&, ,9)(w, w’) = g(w),
(w, w') € B. The statement (5) is a generalization of [3, Theorem E].

COROLLARY. Let 0 < p < + oo,
(5) H?*(B)c A™™*~(B), and H*(B)Z A B) for ¢ > n"*(n + 1)p .
(6) H?(B,) is vmbedded in H"*'*(B), by the operator E,, ,
where k™'np s the best possible.
(7) H*(D)Cc A"?n(D), and H*(D)Z AYD) for q#n"*(n + L)p .
In (6) and (7), H? is properly contained in A™T1#/n,
PROOF OF THEOREM 1. For £€oB and » > 0, let K(¢, r) = {ze B||1—
{z, &)| < r?}. Let p be a positive finite measure on B. Suppose that,
for ¢ = 1, there are positive numbers A4, § such that
(8) (K, 7)) = Ar* "

for every &€oB and 0<r<d. If g is a measure supported on
{zeC"|27' < |z| < 1}, then by the same argument as in [9], we can see
that, for f e L'@B) and \ > 0, u({|P[f]l > A\}) = (C\7Y| f1)°, where P[f]
denotes the Poisson integral of f. The Marcinkiewicz interpolation theorem
then shows that || P[f]|l.en = C'(n, &, ¢)|| fll.s f €L*0B). Let p be sup-
ported on B. Take fe H?(B), 0 <p < +. Then there is an h € L*(dB)
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such that b = 0, (|[2].)" = (| fll,)*, and |f]** < P[h]. It follows that

| ipmdp | Pipap+ | (PIR)ap s o, oI F 1)

1/25]z1<1

First, we shall prove (1). It suffices to see that the measure dp(z) =
(1 — |z*)*dz, z€ BN L;,, satisfies (8) for 0 < r <1, where a = ¢en — 27*
(J+2k+1). Put K= K(g r)and K’' = {z€ B|]1 — Re(z, &) < r*}. Clearly,
KcK'. Suppose that KNL;,+# @. Using real coordinates for C*, we
write £ = (a', V', a”, 0", a'”, b""), where (a’, b’) = (a,, by, ++, a;, b;,) € RY, 2, =
a, + b, 1 <1< 4. Similarly, (a¢”, d”) and (a’”, b'”") represent points of
C* and C* 7%, respectively. The inner product in R™ will be denoted by
[%, y], , ye R™. Now take ze K'NL;,. Then z= (2,0, 2", ¥", 0", 0"")
with |2'P+ 2" ?+ |y <1 and 1—Relz, & =1—[(, ", ¥"), (@, a”, b")] < 2.
Writing a = (a/, "', b"") and G = {&x = («/, 2", ¥") € B; ;|1 — [x, a] < r’}, where
B; , denotes the open unit ball in R**, we see that

‘NL

Luw)i= K S| (= Japrde= | (1~ Jofyds.

If we put |a] =1¢t, then 0 <t <1, since G=+* @. Take PcO(j + 2k) so
that Pe =t"'a, wheree=(1,0, .-+, 0) e R¥**., Let G' ={xe B; ,|1—tx,<r%}
and G" ={xeB;,|1 —r <2z <1}. Then P(G') =G and G'cG"”. Thus,
by integration over G” instead of G and by Fubini’s theorem in the case
J+2k =2, we get I (r) = C(n, 3, k, e)r*". To verify (2), let a =cen—k—1.
Note that @« > —1 in all cases. We shall show that g satisfies (8) for
0<r<2, We write &£ = (¢, ¢’) with & €C* and put |¢'| = ¢. Suppose
that KNL,,# @. Then 27' <t <1. Take Ue U(k) so that Ue = t'¢,
where ¢ = (1,0, ---,0)eC*. Let G ={weC*|w| <1, |1—<w, & < r}
and G’ = {weC¥|w| <1, |1 —tw,| <*}. Then UG) = G, and

L= ) = | (= Jwiydw.
Using Fubini’s theorem when 2 < k < n, we have

L) = b, (@ = lw, By dw,
where G’ = {w,eC||lw,| <1, |1 — tw,| < 7*}. Modifying the change of
variables made in [10, 5.1.4], we define ¢: w, = ¢(\) = t7' A — r\7Y),

x€C—{0}. Since s7(G")C{N|Rex>0, [n|>1} and 1—|g(\) [P <2t *r*]A|*Ren,
it is seen that

[,.4 = lwnymdw, < Con, ey
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Suppose that a < e¢n —27(j+2k+1). Then, for b = (2¢)'(2a + j + 2k + 1),
the function (1 — 2,)™® belongs to H*B) and it is easily seen that

11— 2,751 — |2[)°dz = + oo .

SBﬂLj,k

If -1<a<en—Fk—1, then just as in [8], the integral in (2) becomes
+oo for f(2) =1 — 2)™® with b = ¢ (a + k + 1).

PROOF OF THEOREM 2. This is very similar to the proof of [8,
Theorem 2]. Let w = ¥(z), where z = (1y,, -+, ©¥j, Zjs1»***» Zjzp» 0, ++, 0),
Yo > Y+ o + Y5+ |zinlf 4+ -+ + |25 Then ¥ transforms DN L}, onto
BNL;, and the Jacobian determinant is 2/*%*(y, + 1)~4*%*+ g0 that the
inequality (3) follows. Suppose that a = e¢n — 27 (5 + 2k + 1) and put
b= @c)"2a+75+2k+1). If a>cn—27(5+ 2k +1) then (2, + 1)* e H(D),
and if a<en—27'(5 42k + 1) then 272, + 1)t e HY(D). A simple com-
putation shows that the integrals in (3), with %%, become + o for these
functions. The inequality (4), as well as the uniqueness of the exponent,
can similarly be verified.

PrROOF OF COROLLARY. (5): By (2), the identity mapping of H?(B)
into A"*V?/*(B) is continuous. If ¢>n"*(n+1)p, then (1—z,)~ """ ¢ H?(B)
and ¢ AYB). (6): From the relation H?(B,)c A****(B,) and [10, 7.2.4,
(a)], it follows that H?(B,) is imbedded in H**"#?/%(B,.,) by the operator
E,.. ;. This procedure gives (6). (7): A?(B) is a complete, linear metric
space, as will be seen from (19) with ¢ = + o, k = n. Now assume that
H?(B) = AYB), q = n"(n + 1)p. The open mapping theorem would imply
that, if {f;} is a sequence of holomorphic functions on B, bounded in
L7, then it is also bounded in H?(B). Let g;z) =2¥,2€B, 7=1,2, «--.
Then

. vy — L] + 1)
Ji= lo@lrdz = ZELBIE R
Here, by Stirling’s formula, I; ~ j"*' and J;~j ™ as j— c. Putting
fi®) = 7*™9:(2), a(n) = ((n + 1)p)~'n*, we see that [fi|l, > o as j— o,
while ||f;llz« are bounded. Next, (4) implies that H?(D)cC A™*Y*~(D).
Put b=q'(n+1). If g<n'(n+1)p, then (2, +1)°c H?(D) and ¢ A D).
If ¢ > n'(n + 1)p, then z7%z, + 1)~®/?** e H?(D) and ¢ A%D). Now, with
g = n(n + 1)p, we define T* by (T*g)(2) = 2"9(¥(2))(z, + 1)~ **, ze D,
for ge AYB). Since the Jacobian determinant of ¥ is 2|z, + ¢|™**%, we
have ¥*gec AY(D). It is clear that ¥* is an isometric isomorphism of
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AYB) onto AYD). If ¥* is restricted to H?(B), then this induces the
isometric isomorphism of H?(B) onto H?(D), due to [13], up to a constant
multiple ([8], (8)). Thus, the rest of the assertion follows.

2. Hardy-Littlewood inequalities. (11) and (12) in the following
Theorem 3 generalize a theorem of Hardy and Littlewood ([5], [6]) and
are immediate consequences of Theorem 1, (2). The fact that these are
the best possible can be seen by reduction to the one variable case ([2],
[12]), where Corollary, (6) plays an essential role. Theorem 1, (2) will
again be used to complete the proof of Theorem 4. Related results are
contained in [4] and [7], in the case k = =.

For a continuous function f on B and for k, 1 <k < n, we define
means M (f, k;7), 0=r <1, 0<qg= +c, as follows:

M.(f, k;r) = max If(& 0N,

sl = (], 146 0rda@) ", 0<g <+,

where ¢, denotes the surface measure on 0B,. In the case ¢ = + o,
[10, 7.2.5] implies that, if fe H?(B), 0 < p < +, and 1 <k < n, then

(9) M.(f, k;r) =01 —7)""") as r—1,
(10) M.(f, k;r) < A, D) FI,A—7r)™", 0=r<1.

In the case k=n, (11) and (12) follow from (9) and (10), since M, (f, n; r)* <
M. (f, m; r)°M,(f, m; r)*. Let (R, )w)= f(w,0), weB,,1=<k=n-—1,
for a function f on B. If R, .f e H"™B,) for fe H?(B), then (11) and
(12) would follow from the same argument. But this is not the case,
because H**'"(B,)% R, ,(H?(B)), which will be seen in Section 3.

THEOREM 3. Suppose f € H?(B), 0<p< +oco. Let p<q< + (p<q
when k=mn) and put a =p*n —q 'k, 1<k <n. Then

an M(f,k;r)=0Q -7 as r—1,
(12) M(f, k;r) S A, b, 0, QI FI,A =7, 0=r<1.

The exponent o canmnot be replaced by any smaller value. Moreover, (9),
(10), (11), and (12) are the best possible in the sense that for any function
é(r), 0 =r <1, such that ¢(r) >0 and #(r)—0 as r—1, there exists
f e H*(B) with M/(f, k;r)# O(g(r)YL —r) ) as r—1, 1 <k = n.

THEOREM 4. Suppose f e H?(B), 0<p<+oo. Let p<q< +o (p<q
when k=n) and put a=p"n—q %k, 1<k<n. Let p< A< +oo,
Then
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1 1/2
(13) (1,205, ks vyt = ryiar)” < 4l 11,
where A = A(n, k, p, ¢, \). The exponent «a is the best possible. If 0<
q < p, then (13) does mot hold.

Proor Oor THEOREM 3. We write M(r) for M,(f, k; r)?, temporarily.
Let c=p7'¢ and 8 =c¢n—k—1. Then, by integration in polar coordinates,

(2) becomes
[, M) = prdr < O F 1) -

Since M(r) is an increasing function, we can find a constant A(g, k),
depending only on @ and k, such that

| M = rpdr < A, B)] M)A = rrdr
Hence we have
(14) [ M, Je L = e < COLP )
Now, as in [3, (1.3)], we have
SiMq(f, ki (L — tPdt = (8 + V) MF, by vyl — rPP*, 0=r<1,

whence (11) and (12) follow. Next, we prove that (9) and (10) are the
best possible. Let U be the unit disc in C. Take an arbitrary function
#(r), 0 = r <1, with the property that 4(r) > 0 and ¢(r) >0 as r—1.
Then [12, Theorem 1'] shows that, for ¢(r)"?, there exists ge H**(U)
such that |g(r;)| = Co(r))"*(L —r;)™™?, 7 =1,2, ---, where C is a constant

and {r;} is a sequence: r, <71, < --+,r;—>1las j—c. Put f=FE,,g. Then
feH*B), by (6), and we see that M.(f, k; r;) = C(r;) " ¢(r;))(1 — ry)™?,
j=1,2,--+, 1 =k =mn. This means that M.(f, k; r) # O(s(r)1 — r)~"?)

as r—1. The case 0 < g < +c will be settled after [2], as follows.
Taking an f e H?(B), as above, for the function ¢(r'?), we see that
M.(f, k;r2) = Co(ry)A — r;)™?, §=1,2,---, 1<k=mn. The Cauchy
formula implies that, for 0 < r < 1,

filw, 0) = C(k)g k(l — (w, ) fAE 00don@) , weB,.

B,

Put w=1rg, £€0B,. If 1 < g < 4 o, then by Holder’s inequality,
1/q’
Frog, 00 < O, T (], 11 = <o, O da©)
k
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The above integral is ~ (1 — 7))~ %’-® Dby [10, 1.4.10], and hence
M.(f, k; ) < CM,(f, k; )1 — r)™®. It follows that M (f, k; r;) = Cg(r;)
Q—-r)= 5=1,2 ---. Similarly, this inequality is seen to hold for
g = 1. Finally, let 0 < g < 1. If we take fe H?(B), for ¢(r)!, so that
M(f, k; ri) =2 Cp(ry)"(L — ;)" "%, j =1,2, -+, then, since M,(f, k;7r)=
M(f, k; )" M(f, k; ) < CA — »)"v» O M (f, k; r)?, by (10), the desired
result follows.

PROOF OF THEOREM 4. Suppose first that 1<p < +<. If w= P[h],
h € L?(0B), then as in (10), we have

15)  M.(u, k;7r) < A, DI R|L,A =7, 0=r<1, 1<ks=mn.
We are going to show that, for p < q¢< +o, 1<k < n,

(16) M(w, k;r) = A(n, k, p, QIR ], — 7)™, 0=r<1.

By (15), we have

M, I 1 S (AR, = 72| o, 0)Pda(D)

Here, with z = (#¢, 0),

|, 0rS 0pdon@ = § (1np|, Pe, m)dou@) )doty)
where P(z, 1) denotes the Poisson kernel for B. Putting 7 = (g, &), £ C¥,
we see that

P((rC, 0'), (¢, &) = C(n)A — r)*|1 — (rg, &7
= C(n, k)X — r)™™* (L — [reP)I1 — {rg, O7HF.

Since [0B,|™ (A — [w»)|1 — Lw, O™, we By, { €dB,, is the Poisson kernel
for B,, we get

M(u, k; r)* < (A[[R||,(1 — r)7"?)2CQA — r) (|| k|,)" .

Next, following [3], we shall show that, for 1<p<q=< + o0, PN+ 0,
and v = P[h] with h € L*?(0B),

an <SM(u ks (1 — r)la—ldrf” <Clhl,, 1=k=mn,

where C = C(mn, k, p, 9, ). Suppose, for the moment, that 1<p<q=< + .
Fix k, 1=k<mn. We define a measure vy by dy(r)=1A—»r)"'dr, 0<r<1.
Let (Th)(r) = M(u, k; r)(1 — r)™*¢, he L?(0B). Then the operator T is
subadditive and, by (15) and (16), (Th)(r) < A||k|,Ad —7r)™?, 0 < r < 1.
Hence, for any s=A|k|,, G:= {re[0, 1)|(Th)(r)>s}C{r|1—(A|h],s7)*"" <
r<l1l}=:E. If 0<s < A|h|, then E=1]0,1). Thus
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w6) = | (1 = rydr < (Clhlsy

The Marcinkiewicz interpolation theorem shows that || Th| s, < C(n, k,
D, 9)||k||, for 1 < p < q. This means that (17) is valid in the case p = \.
Let p <. Then, since M (u, k; r)* < (A||k||,(1 — 7)) *M(u, k; r)* by (15)
and (16), we obtain (17). Now let fe H?(B), 0 < p < 4+, and take
h € L*oB) with the property that | f|** < P[R], (|IR|l.)* = (|| f1,)>- Let q,
be such that p<g=<+ oo, pSA<+oo. Then M/(f, k; r)*< My, ,,(u, k; )77,
where we put 2p~'q¢ = + o when ¢ = + . Taking 2, 2p~'¢, and 2p~*\
in place of p, q, and \ in (17), we can get (13). Finally, let p=¢SA< + o0,
1<k<mn-—1. Then, putting ¢ =1 in (14), we obtain (18) with » = \.
In the case p < A, (13) follows from (12). To see that « is the best
possible, let 0<B<a. Then f(2):= 1—z) %2 e H?(B), and M (f, k; r)~
(1—7)* as r—1. Thus, the integral in (13) becomes + o, if a is
replaced by B. Suppose 0<g<p. Itis enough to assume that 1<k=n-—1
and ¢'(n —1) <p'n. Putting g;(z) = 2%, as in the proof of the Corollary,

we have
1 1/2
I:= (S Mg, k; ry( — r)*"“dr)
0

_ (27zk1“(qj + 1)>W< I'2ng + HDI'0va) )‘“
I'(gj + k) renj +1+ )/ -

Also, |lg;|l, = @r"I'(pj + L)(I(PJ + m))™)"”. We can write Ii([[g;[l,)™ =
CA(5)j*¥?~4», where 4(j) —>1 as j — co.

3. The weighted Bergman space. This is the class of holomorphic
functions f on B such that

1 £l i= (]| £ @A = 12lydz)” < +eo

where p > 0 and 6 > —1, and will be denoted by A??’(B). Note that (2)
implies H?(B)C A*»»"~%B) for ¢ > 1, with || f.p.cnn—s = Cl| fll,, f € H?(B).
We can see that this inclusion is proper, as in the proof of the Corollary,

(M.

THEOREM 5. Suppose feA**(B). Let p<q=< +o and put o=
pm+1+6)—qk,1=k=mn. Then

(18) M(f,kir)=00—-7)° as r—1,
(19) M(f ;7)< Aln, K, p, ¢, O (L —7)°, 0=r<1.
These are the best possible; mamely, for any ¢(r), 0 < r <1, such that
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¢(r) > 0 and ¢(r) >0 as r—1, there exists f € A (B) with M(f, k; r) #
Op(r) L —r)y ) as r—1, 1<k < n.

ProoF. Suppose first that f is a holomorphic function on B such
that M,(f, n;r) < C1 — r)%, 0 < r < 1, with constants 8, C > 0. Then,
for 1=sk=n, p=<qg= +oo,

(20) M/(f, k;r) = Kn, k, 0,9, CA —7r)*, 0=r<1,

where a = p™'n — ¢~'%. Indeed, since f, € H?(B) with ||f.|, < C1 — r)7%,
0<r<1, (10) implies that M.(f, k; 0) < A(n, p)CA — r)*1 — p)™™?,
0=<p0<1, hence, letting p=7, we have M..(f, k; r)<A(n, p, B)C(1—r*)~"/»~F,
proving the case ¢ = +o. The case ¢ < + oo is similar, by (12). Next,
we can derive (18) and (19) when » = g and k = =, following [11, Theorem
B]. Take f e A?? It is enough to assume that 27' < r < 1. From

U1 2 | M08 ms tp@ — epeniar
= C(n, O)M,(f, m; r)*(1 — r)**?
it follows that
@1) M(f, m;7) = o((1 — 7)~%) as r—1,
(22) M,(f, 13 7) S Cllf oL = 7y, 07 <1

Let 1=<k=<n and p < q=< +c. Then, combining (20) with (22), we
obtain (19). Finally, from (21), (10), and (12), we can see that
M,(fn k; 0) = Ae(r)(1 — r)""H"2(1 — )™, 0 < o <1, where ¢&(r)—0 as
r—1, whence we get (18). To see that (18) and (19) are the best
possible, take an arbitrary ¢(r). Then Theorem 3 shows that there is
f e Hr/r+0(By guch that M,(f, k; r) # O(¢(r)1 — r)™°) as r — 1. Since
H /1t BYC A7%(B), the proof is completed.

We have mainly been concerned with restrictions of H? functions
from B to B,. In this respect, H? and A?° are closely connected in the
following manner. The case k. = n — 1 is in [10, 7.2.4].

The operator E,, defines a linear isometry of A»"*(B,) into H*(B),
1<k=n-1, and R, , is a continuous operator of H*(B) onto A*"*"(B,).
The latter contains H**'"(B,) properly. Indeed, taking ge A»"*YB,), we
can see from [8, (7)] that

Loy (Zes) (€, )P0 (C, ©) = 10B,.41| | 10.0)P(L — [wly=du

= PB.dlr | |g@)P@ — e,
wl<r
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where the integral converges to (||g||,.—¢-1)? increasingly, as »r—1. On
the other hand, it follows that R, ., H?(B) — A»"**(B,) is continuous
and onto, from (2) and the relation R, ,oE, , = identity.
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