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Introduction. Let (M, &) be a closed, transversely orientable, C*-
foliated manifold of codimension one. Let O(% ) denote the family of
open, &« -saturated subsets of M. Let UeO(< ), and let L be a leaf
of & |U. Smoothness of class C* implies that there exists a compact,
transverse one-manifold Rc U such that every leaf of L N U meets int(R)
[C-C 1, (8.7)]. Consequently, L N U contains a minimal set of . |U [C-C 1,
(3.0)].

DEFINITION. An & -saturated subset X & M is a local minimal set
(LMS) of .z if there exists Ue O(% ) such that X is a minimal set of
= |U.

Every proper leaf is a LMS, with U = M\(L\L). If UeO(%") and
each leaf of & |U is dense in U, then U itself is a LMS. Finally, an
exceptional LMS is one of neither of these types. If X is exceptional,
then the transverse manifold RC U can be chosen so that C = XNR is
a Cantor set and misses oR.

These LMS play a key role in the structure theory of compact, C’-
foliated manifolds of codimension one [C-C 1]. Our very incomplete un-
derstanding of the exceptional type constitutes a major gap in the
theory.

Let X be an exceptional LMS, with U, R, and C as above. The
holonomy of & |U induces a C* pseudogroup I on R for which C is a
I'-minimal set. Let I'|C denote the induced pseudogroup on C. It
frequently happens that the choice of R can be made so that I'|C is
generated by the local restrictions of a single transformation 7: C— C
which, in a sense to be made precise in §1, is essentially a one-sided
subshift of finite type (also known as a topological Markov chain [Wa,
p. 119]).

_ DEFINITION. If there exists 7z: C — C as above, then C is a Markov
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I'-minimal set and X is called a Markov LMS.

While there exist examples of exceptional LMS that are not Markov
LMS (see §7), it is likely that the Markov ones are the fundamental
“building blocks” for the general case (in a sense that we cannot presently
make precise). At any rate, examples of Markov minimal sets abound
in the literature (cf. [Sa 1], [Ra], [He], [G-S], [In], [Ma]).

We will settle, for Markov LMS, a number of questions that have
been open for the general exceptional LMS.

Let LC X be a leaf, let xe LN R, and let I",C I be the subpseudogroup
fixing .

DEFINITION. The holonomy group of L relative to X is the group
H,(L, X) of germs at x of all ver,|C.

THEOREM 1. Let X be a Markov LMS and let LC X be a leaf. Then
H, (L, X) 1is either trivial or imfinite cyclic and generated by the germ
of a contraction that is umique in a suitable meighborhood of x in C.
Exactly a countadble infinity of leaves in X have H, (L, X) = Z and among
these are all of the semiproper leaves.

Recall that a leaf is semiproper if it is asymptotic to itself from at
most one side (hence proper leaves are also semiproper).

Dippolito [Di, §9] has asked whether, in an exceptional LMS, H,(L, X)
is always cyclic. For the Markov case, our result is stronger. Indeed,
whenever H,(L, X) is nontrivial, the generator is a unique contraction.

THEOREM 2. If X is a Markov LMS, then X contains only finitely
many semiproper leaves.

This theorem answers, for the Markov case, an open question of
Hector (proposed in [Sch, Problem 28.1]).

A special case of the following result was proven independently by
Matsumoto [Ma].

THEOREM 3. If X is a Markov LMS, then it has Lebesgue measure
| X| = 0.

By Duminy’s localization of the Godbillon-Vey class to an H*(M)-
valued measure gv(x, &) [Du], Theorem 3 implies that gv(X, &) =0
whenever X is a Markov LMS. We expect this to generalize to general
exceptional LMS, although we are less confident that Theorem 3 itself
will generalize.

Remark that the Denjoy example [De] violates the conclusions of
Theorem 1 and Theorem 3, but is only of class C!. Also, there are C°
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Markov examples, probably C!-smoothable, that violate the conclusions
of all three of our theorem.

1. Markov pseudogroups. Let &= ({l, -+, L.}, {hy -+, hn}, P),
where each I;CR is a compact, nondegenerate interval, each h; is a C?
diffeomorphism with range R(k;) and domain D(k;), both being open,
bounded intervals, and P = (p,;) is an m X m matrix with entries p,; € {0, 1}.
Assume that m = 2.

DEFINITION. If the following properties hold, then .&¥ is called a
Markov system and the pseudogroup I' = I',, generated by (h)™,, is
called a Markov pseudogroup.

(1) RMm)NRM) =@, ©1#].

(2) ILcR(h;), for all 5. Set X; = hj'(I;).

(3) p,; =1 implies that I, < X,.

(4) p,; =0 implies that ;N Dk, = Q.

ExampLE. Let h,:]1-1/2, 8/2[ — ]-—1/6, 1/2[ and h,:]1—1/2, 3/2[ —
11/2, 7/6[ be defined by h,(x) = «/3 and h,(x) = (x + 2)/3. Let I, =[0, 1/3],
I,=12/8,1], hence X, = X,=1[0,1] and p; =1, 1 =14, j <2

Let & be a Markov system. Then w = h,o---oh, €I is defined at
a point of X, if and only if p,,,, =1, 1=k=mn—1, in which case
X, cD(w) and we denote w(X,) by I, or by I,..,. Set |w|=n and

Z = Ni=(Up1=n(1))
Zy, = Z\int(Z) .

In the above example, Z = Z, is a Cantor set and a minimal set of
I'. It is not hard to modify the example so that int(Z) #+ @ and Z, is
still a I"-minimal Cantor set. This property of Z, is typical but is not
implied by the definitions. For example, if P is the identity matrix,
then Z, is a finite point set.

DEFINITION. If & is a Markov system and xz <€ R(h), set T(z) =
7x) € D(h,). This well defines

7: U R(h)— 0 D)
locally a C? diffeomorphism, such that 7(Z)=Z, Set = T|Z: Z,— Z,
a continuous map that is locally a homeomorphism.

DEFINITION. A sequence (4,);-, such that p,, =1, for all n =1,
is called P-admissible. The set of all such sequences is denoted by

T pe
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Let (4,)7-,€ %7 Letw,=idel andlet w,= w,,°h;,,. ThenlI, =
I,, and the set I,,,....,... = Na-.L,, is either a singleton or a nondegenerate,
compact interval. Remark that Z is the disjoint union of all of these
sets I, ;,...ip..e .

The set-theoretic boundary I, ;... reduces to I, ;.. whenever this set
is a singleton and, otherwise, is the pair of endpoints. It is clear that
ZO = U jz ’

e s p
so denoting z € Z, by =, if z el leads to at most a countable infinity of
pairs of points with the same P-admissible index. We formalize this as
a surjection, h: Z,— %%, h(x,) =¢, that is two to one on at most a
countable subset of Z, and, elsewhere, is one to one.

It is customary to topologize 2% as a closed subset of the Cartesian
product %" ={1, 2, ---, m}", where N denotes the natural numbers. Then
2% is a Cantor set and, in the more interesting cases, so is %%7. In
any case, the surjection h: Z,— 227 is continuous.

DEFINITION. The (one-sided) shift g: % — .5 is defined by (4, 7.,
Js» )= (Jy» Js +++) and 0 = 0| . F»— %57 is called a subshift of finite
type or a topological Markov chain.

Evidently, goh = hor, so 7 is semiconjugate to ¢. It is also evident
that ¢ belongs locally to I'|Z, and that the one-one restrictions of z to
suitable open subsets of Z, generate I'|Z,. Let I", denote the pseudogroup
on 97 that is similarly generated by o.

(1.1) LEMMA. The set 5% is a Cantor set and I ,-minimal if and
only if there exists an exceptional I'-minimal set CZS Z, such that
h(C) = 2#%. In this case, Z,\C is a union of at most countably many
T-orbits, each of which accumulates exactly on C.

ProOF. Assume that 97 is a I',-minimal Cantor set. Let z =
By 1y *++) €. F 5 and let ye 9%. Then I',(y) clusters at x. This implies
that, for all n = 1, there exists g, € I" such that I,cD(g,), 9.(I,)CL,.... DI,
and I,Ng.(I,) = @. Therefore, at least one point of I, is a cluster point
of I'(a), for all acI,. It follows that, if be Z, is not a cluster point of
some [I'|Z;orbit, then there exists z€.97% such that I, is nondegenerate,
bel, and no I'| Z-orbit clusters on b. The set B of such beZ, is I'-
invariant and either empty or countable. The set C = Z,\ B is an ex-
ceptional I"-minimal set and #(C) = %%;. If be B, the above observations
imply that I"(b) clusters exactly on C.

The converse is trivial. O
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REMARK. A condition that guarantees the hypotheses in (1.1) is that,
for all (4, ) €{l, ---, m}?, there exists k = 1 such that the (7, j)-th entry
of P* (the k-th power of the matrix) is =2.

DEFINITION. Let I” be a pseudogroup on an open subset of R, YCR
a compact, totally disconnected, I"-invariant set. Let z: Y —Y be a trans-
formation belonging locally to I'|Y and generating that pseudogroup.
Let ¢:.%% — %% be a subshift of finite type and h: Y — .97 a continuous
surjection such that hor = goh. Suppose that, for all ye Y, r'(h(y)) is
either a singleton or is the pair of endpoints of the closure of a bounded
component of R\Y. Then 7 is said to be essentially conjugate to the
subshift ¢ (and, less precisely, r is said to be an essential subshift). If
there exists an exceptional I'-minimal set CZY such that n(C) = 95,
then C is called a Markov I'-minimal set.

For example, if I is a Markov pseudogroup, then 7: Z,— Z, is es-
sentially conjugate to o: %% — %%. For 7z:C—C as in (1.1), C is a
Markov I'-minimal set. The following lemma is essentially the converse.

(1.2) LEMMA. Let I’ be a C* pseudogroup on an open subset of R,
C a Markov I-minimal set. Then there exists an open neighborhood W
of C, & smooth imbedding ¢: W — R, and a C* Markov pseudogroup I' on
a neighborhood of C = ¢«(C) in R, such that ¢o(I'|C)oc™ = I'|C, I" defines
the essential subshift t: Z,— Z,, and C < Z, is a Markov I'-minimal set.

PROOF. By a segment Q < C, we mean a set of the form Q =
Cnla,b]=CnNla—¢c b+el, e>0and a<b. Clearly C decomposes in
many ways into disjoint segments C, ---, C, and, for = j, either every
point of C, precedes every point of C; (and we write C, < C,) or vice
versa. There is an open neighborhood W of € in R and a smooth im-
bedding ¢: W — R such that «C,) < ¢«(C;) whenever i < 7.

Let ¢: 577 — 9% be a subshift to which ¥ is essentially conjugate,
P= (D), 1=, ¢ <. Forl<\ < i, let ¢, be the branch of ¢! that
is defined by

q)l(iv 'izy . ) = (7\:1 ":17 7:27 i )

whenever p;;, = 1. Choose the numbering so that there is an integer
q = m with the property that 1 <\ < ¢ is the necessary and sufficient
condition that there exists ¢ with 5,, =1. Set %, = R(p), 1< M =Zgq.
Then 57 = U, <15, %, is a disjoint union of open, compact subsets, and
D(@3) = Uz, -1 % Set 23, = ¢i(%) whenever p,, = 1, s0 927 = U~
is a union of disjoint, open, compact subsets.

Via the essential conjugacy map h, transfer the above definitions to

in
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give $,eI'|C and C, and C,,. Let
:{(N,ﬂ)llél:é%léﬂém:ﬁzy:1}-

Under lexicographic order, A is order-isomorphic to {1, --., m}, where
m = card(4).

By decomposing each Cl,, into disjoint segments and proceedmg as in
the first paragraph, one obtains an open neighborhood W of C and an
1mbedd1ng ¢: W— R such that, whenever (A, £t,) < (\y ) in 4, then
z(C’h,,l) <z(C;2,,2) After conjugating I'|W by ¢, we can let CM, denote
z(C;,,), ete., for notational simplicity.

Thus, C;,, and C, are segments and we let I, and X; denote the
minimal compact intervals such that Cx,, =C NI, and C,=CnX, Also
write X;, = X, for (\, #p)e 4. Let h,, be a local C* diffeomorphism in R
which extends the map &,|P;* (C;,,) = cp1|C so that R(h,,) is an open in-
terval containing I,,. Make sure that the intervals R(k,,) are disjoint.
Clearly,

D(th)DXA;‘—thl(Izy)D Y ) -

Also, by choosing each R(h,,) slightly smaller, we assume that D(h,,)N
I, = @ whenever v # p. Finally, P = (P,,,,) is the m Xm matrix with
Dipwr = 1 and p,,,, = 0 if v # g, where all (A, ), (v, 7) e 4.

It is clear that the pseudogroup I', generated by {h;}umes, is as
required. O

The precise meaning of the definition of Markov LMS for a foliated
manifold, as indicated in the introduction, should now be clear. By (1.2),
it will be sufficient to prove our theorems under the assumption that
the holonomy pseudogroup I on a neighborhood of C in int(R) is a
Markov pseudogroup and that C < Z, is a Markov ['-minimal set.

REMARKS. (1) Given a Markov pseudogroup I" as in (1.1), one can
realize I" as the holonomy in a neighborhood of an exceptional minimal
set X in a suitable C*foliated manifold. One method, that of “branched
staircases”, is due to Takamura [Ta] and Inaba [In]. Another produces
X in the nonsingular part of a singular foliation and then removes the
singularities. Sometime I" can be “completed” to a subgroup of Diff*(S")
[Sa 1], [G-S] and X can then be realized in a suitable foliated S'-bundle.

(2) Having realized I' as the holonomy of a Markov minimal set
X, one can turbulize along a closed transversal meeting X to produce a
Markov LMS at level one. Indeed, it is possible to realize I' as the
holonomy of a Markov LMS at any desired finite level.
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2. Some estimates on derivatives. Let I' be a C*® pseudogroup in
R, with generating set {h, ---, h,}. Let

g =hi@ohif=Yo - ohiy,
with all ¢(k) = +1 and D(g) maximal possible. Set
9 = hiB o o i
and, for u,€ D(g), set u, = g,(u,), 1 =k = p.

DEFINITION. If g as above is a reduced word in the generators
{hi'}i<ismy then g is called a chain of length |g| = p. If also u, %, -+, u,
are all distinct, then g is a simple chain at u,. If u,---, u, are distinct
and u, = %, then g is a simple loop at w,. If g =q™ "o foq, where q is
a simple chain at %, and f is a simple loop at q(u,), then g is a basic
loop at wu,.

Let Y U™, D(h,) be a compact, I'-invariant set. By passing to I"|W,
where W is a suitable bounded, open neighborhood of ¥ in R, we can
assume that there are positive constants ¢ and b such that (hf')’ > ¢ and
[(hEY)"| < b everywhere, 1 <1 < m. Set 6 =b/c and \ = exp(66|W|). Here,
|W| denotes the sum of the lengths of the components of W.

The following estimate will be found in [Sa 2].

(2.1) LEMMA. Let gel be a chain of length p and let w, v, € D(g).
Then '

9 (u0)/9' (v) = exp(ﬁ-gluz - vil) .

DEFINITION. A gap J of Y is a compact, nondegenerate interval such
that oJ = JNY.

If gerI is a chain of length p and K,CD(g) is a compact interval,
we set K;=¢;K,), 1<j<p. If J,is a gap of Y, u,coJ,, and if g is
a simple chain at w, with D(9)DJ,, then J,, J,, ---, J, have disjoint in-
teriors. If g is a simple or basic loop at u, with D(g)>J,, then each of
the intervals J, J, :+-, J, appears at most three times in this list and
int(J,) Nint(J,) # @ if and only if J, = J..

(2.2) LEMMA. Let J, be a gap of Y and let K, be a compact interval
such that J,N K, is a singleton {u,} and |K,|/|J,| = 1/n. If g€l is either
a simple chain, a simple loop, or a basic loop at w, and if J,U K,cD(g),
then |9(K,)| < |9(Jo)| and g'(w)/g'(v) <\, for all u, veJ,UK,.

Proor. Evidently |K,| < |J,|. Inductively, assume that | K| < |J;],
0 <7 < s. Then, by the definition of )\, together with the above remarks



172 J. CANTWELL AND L. CONLON

and (2.1), we have g;(w)/g.(v) <, for all u, veJ,UK, Furthermore,
there exists u € K, and v €J, such that

| K] = g:(w)| K, l/g:(w) | Jo] < 1. O

REMARK. In this paper, we will only need (2.2) for the case in
which ¢ is a simple chain. In this case, the factor 6 in the definition
of \ can be reduced to 2. But the general version of (2.2) will be useful
elsewhere.

3. The relative holonomy groups. Let &=({L,---, L.}, {hy, -, by},
P) and I' = I, be Markovian and assume that CZ Z, is a Markov I'-
minimal set.

Remark that chains must reduce to the form

g =hyo - ohyohgl o ohit=hy oo T D(g).
This is because the generators have disjoint images.

DErFINITION. If xz€C, then I', is the pseudogroup of all g|U, where g
is a chain as above, g(x) = x, and U is an open, connected neighborhood
of z in D(g).

DEFINITION. Let xe€C. Then the group of germs at x of all v =g|C,
where geI',, is denoted H,(I'(x), C) and is called the holonomy group at
2 relative to C or, more simply, the relative holonomy group at x.

Evidently, H,([I'(x), C) depends, as an abstract group, only on the
orbit I'(x) and not on the basepoint zx.

DEFINITION. A point y €C is said to be r-cyclic if z*(y) = y, some
k=1. If the integer k is minimal, then {c*'(y), 7**(%), + -+, (¥), ¥} is
called a z-cycle.

(8.1) LEMMA. Ezxactly a countable infinity of I'-orbits in C contain
z-cycles and there is exactly one t-cycle in each such orbit.

PRroOF. It is enough to prove the corresponding assertions for the
subshift o: 97 — .97 to which 7 is essentially conjugate. Since .5¢7 is
uncountable, this is an easy exercise in symbolic dynamics. O

(8.2) LEMMA. Let xe€C. If I'(x) does mot contain a z-cycle, then
H,(I'(x), C) = 0. If I'(x) contains a t-cycle, then there is a metghborhood
V,of x in C such that I',|V, contains a contraction f:V,—V, and each
element of I',|V, is the restriction of f* to a suitable neighborhood of x
m V,, some keZ.

PROOF. Since v generates I'|C, the first assertion is immediate. If
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I'(x) contains a z-cyclic point x,, we lose no generality in assuming that
x = x,. Since each h, is a single-valued branch of 77!, there is a simple
loop at «, of the form g = h;o---oh,,. Thus, h(x,) is the g-cyclic point
(8 =+ 2y py By *+*, Uy =+ +) € Fp, the neighborhood V, can be defined by
h(Vzo) = {(jk)l?=1e~%|j1 = 4} and hog =goh where G@iy Jo Jo *+*) =
(157 **) Tpy Ty Jo» Jsrv++). From this it is evident that f = g|V, is a con-
traction to x,. Itis also evident that the only chains that fix x, restrict,
in V,,, to the powers of f. |

(3.3) COROLLARY. For each x€C, H,(I'(x), C) is either trivial or
wnfinite cyclic, generated by a contraction that is unique in a suitable
neighborhood of x in C. Those x € C such that H,(I'(x), C)= Z lie on a
countable infinity of distinct orbits.

So far, nothing in this section has required smoothness of class C-2.
The following does.

(8.4) LEMMA. If C clusters at = from only one side, then I'(x)
contains a t-cycle, hence H,(I'(z), C) = Z.

PRrOOF. First suppose that I'(x) has an element z,€I; = [a, b] such
that either CN[a, b] = CN|x, b] or CN|a, b] = Cnla, x,]. For definiteness,
assume that the first is the case. Then X; = hj'[a, b] = [T(a), T(b)] and
CnX; = CNn[z(x,), T()]. Since z(x,) eCNI, some I, = [e, d], it follows
that {z"(x,)|r = 0} is a finite set, and we are done.

Alternatively, each yeI'(x) is an endpoint of a gap J, of C and
J,Cint(l;), some j. In this case, every chain defined at y is defined on
all of J,. Fix x,el'(x) and J,=J,, such that |J,| = |J,|, for every
yel(x).

Assume that I'(x) contains no z-cycle. It follows that every reduced
chain ¢, defined at x, is a simple chain at z, with J,CD(g9). We will
show that this leads to a contradiction.

Let K, be a compact, nondegenerate interval such that K,NJ, = {x,},
oK, = {x, ¥} I'(x), and |K,|/|J,] < 1/n, where ) is as in §2. By (2.2),
whenever ¢ is a chain such that K,CD(g) (hence g reduces to a simple
chain at z, and J,CD(g)), then |g(K,)| < |g(J,)|.

Let 6 > 0 be such that every point d-close to I, (respectively, to X))
lies in R(h,) (respectively, in D(h,)), 1 =k <m. Let r =1 be an integer
such that every chain g at x, with |g| > r satisfies |g(J,)| <. Let
Y, *++, 7, be the chains at x, with |v,| = and, without prejudice to
the properties of K, listed above, choose that interval so small that
K,cD(v,), 1 £1 < p. This guarantees, via (2.2), that K,UJ,cD(g), for
each chain g defined at x,. By induction on |g|, the same holds for every
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chain defined at v,.

For definiteness, let K, =[x, ¥,]. Since every chain defined at z,
is simple at z,, we obtain a well defined map ¢: I'(x) — I'(x) by setting
@(g(x,) = 9(¥,). Similarly, every chain at y,e I'(x) is simple and defined
at x,, so @ is bijective. Let z,eI'(x) be the point such that ¢(z,) = =,.
Then there is a chain g such that [z, x,] = 9(K;)DJ,. By (2.2) and the
maximality of |J,|, we obtain |J,| < |g(Ky)| < |9(J)| = |- |

PROOF OF THEOREM 1. Let XC Ue€ O(<") be a Markov LMS as defined
in the introduction. Let I', R, and C = XNint(R) also be as in the in-
troduction. If I' is a Markov pseudogroup on a neighborhood of C in R
and if C is a Markov I'-minimal set, then Theorem 1 is a consequence
of (3.2), (3.3), and (3.4). By (1.2), no generality is lost in making these
assumptions. |

REMARKS. (1) The leaves Lc X such that H, (L, X)= Z must be
resilient. That is, such a leaf L has an element of contracting holonomy
on at least one side and L itself meets the interior of the support of this
contraction. Resiliency figures in many important properties of foliated
manifolds. For example, the nonvanishing of the exotic characteristic
class gv(% ) implies the presence of a resilient leaf [Du]. Another example
is the entropy of (M, &), defined in [G-L-W] and proven there to be
nontrivial if and only if there is a resilient leaf.

(2) The exceptional minimal set constructed in [Sa 1] is a Markov
minimal set. Consequently, the assertion in [H-H, 3.9, p. 114], that this
set contains only two leaves with nontrivial holonomy, is erroneous.

4. Markov sub-pseudogroups. In the proofs of Theorem 2 and
Theorem 3, the most delicate step will involve passing to a Markov
sub-pseudogroup. It will be helpful to have discussed the salient features
of this process before getting into the proofs of the theorems.

Let & =({l, ---, L.}, {hy, +--, hn}, P) be a Markov system and let
I' =T,. Fixn = 2andlet W, = {w}!-, be the set of all words of length
n in positive powers of the generators &, ---, h,. For we W,, write
W = hyov, 1 = M(w) = m, and let h, be the restriction of 4,;,, to an open
neighborhood D(h,) of I,. Choosing all D(h,) small enough guarantees
that R(h,)NR(h,) = @, whenever w # w’. We denote the interval I, =
h;iI,) by X,. Let Q = (g;;) be the ¢ x ¢ matrix with entries {0, 1} such
that ¢; = 0 if and only if I,,ND(h,,) = @. Thus, ¢; =1 if and only if
I,;S X, Then & =({L,, -+, L}, {bu, -+~ .}, Q) is a Markov system.
Let I', = I'y, and, for uniformity, let I", = I'.

In discussions where more than one Markov pseudogroup, say {I”,
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Ir’, ... r¥j, are involved, we use the notation Z,(I"*) to denote the set
Z, determined by the Markov pseudogroup I"*® as in §1, 1<k 1.

(4.1) LEMMA. If I' is a Markov pseudogroup and n =1, then
Z(l',) = Z(I") = Z, and I',|Z, = I'| Z,

Tet 154, < ++- <% <m. Then we can define a Markov system
Ly 0y ) = (L= {hi}i-r, (i) and this gives rise to a sub-
pseudogroup I'(3, +++,%,) <& I

(4.2) LEMMA. Z,([(iy, -+, ,)) S Zy(I).

We combine these two constructions. The elements of W, ={w,,: -, w,}
serve as indices in &, so we define I'*=1",(w,,, - - -, w;,), 1=54,< - -+ <4,<q,
obtaining a Markov sub-pseudogroup of I'. By renumbering, we set
r* = Fn(wn ) wp)'

Let Z, = Z(I'), Z§ = Z(I'*), and let hf =h,;, 1=j=<p. By (4.1)
and (4.2), we see that Z}C Z,. The typical chain g*el'™* is of the
form

g*:hio..aoh;’c(h* )_lo-oao(h;;;)_l

Je+1

and has canonical extension to a chain
g = hz(il) O¢crro0 hxu‘,) °h2_<3's+1) o °hi—(;‘t) erl.
Finally, the essential subshift is ¢* = ¢|Z*"

(4.3) LEMMA. Let g*cI'™* be a chain, geI' the canonical extension,
and let e (Z,\Z;)ND(g). Then g(x) ¢ Zy.

ProOF. Write g* and g in the above forms and assume that g(x) € Z;.
By a finite induction, we readily obtain that y = z°(g(x)) = (z*)*(g(x)) is
an element of Z*. But y = hyj, ,° - ohyj, (@), so another finite induec-
tion shows that

r = h/l(ft) O ohl(i,+1)(y) = h;‘to e oh;:.;_l(y)
which is also an element of Z*, a contradiction. |

(4.4) LEMMA. Let g and g* be as in (4.3). Let int(J})C R\ Zy and
let K be a compact, nondegenerate interval such that J)NKS = {u,},
u, € Z&¥, and | K}|/|J¥| < 1/n. Let g* be a simple chain, a simple loop,
or a basic loop at w, such that JF¥UKFCD(g). Then |g(K¥)| < |g(J¥)
and g'(w)/g'(v) < N, for all points u, ve UK.

PrOOF. By (4.3), each of the intervals Jf, ---, J* (we are using
notation from §2) has interior missing ZF, while u,eZf, 0k < t.
Therefore, if u, # u,, then int(J}*) and int(J¥) lie in distinct components
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of R\ ZS. The fact that these open intervals are disjoint is all that is
needed in order to mimic the proof of (2.2). O

5. The measure of a Markov set. As usual, let &“={L}~,, {h;}~., P)
be a Markov system and set I'=1I"... We do not assume that Z, contains
a Cantor set since that property can be lost by passing to a subpseudo-
group.

For Y < R a measurable set, we denote by | Y| its Lebesgue measure.

(6.1) THEOREM. |Z,| = 0.

By (1.2), this result generalizes Theorem 3. The proof of (5.1) will
consist of a series of definitions and lemmas.

DEFINITION. If AC Z, and N is a nonnegative integer, then A, =
Unan? "(A) and A, = Ny, Ay.

(5.2) LEMMA. (AUA")., = A.UA..

(5.3) LEMMA. (z7'4). = A...

If gel', we adopt the notation gA for g(AND(g)). We also set

r,=uy, W, the set of nontrivial words in nonnegative powers of
h'u ] hm'

(6.4) LEMMA. (74). < A, for each veTl',.

(6.5) LEMMA. A, = (hA)U- U uAl)e-

PrROOF. Use the fact that z7'(4) = h, AU:--Uh,A, together with
(5.2) and (5.3). O

(5.6) LEMMA. (Z). = Z,.

(6.7 LEMMA. LetxeZ, Ifxis notc-cyclic, then {x}. = @. Other-
wise, {x}. = I'(x).

(5.8) LEMMA. Let X = {x, -+, «,} be a t-cycle. Let ¥, -+, Yy, be
the elements of I'(x,)\X such that t(y,)eX, 1=a=t. Let v, be
of minimal length such that v, (&) = Y., 1 S a <t. Let J be an interval,
let je{l, ---, m}, and let x, € V=JNI;NZ,. Then V.= FU(Uic,(7.V).),
where the set F' is at most countable.

Proor. (1) Let h;(x) = %y, 0S¢ = p, let «,,, =, and let v, =
hj,o+++oh;. By the dynamics of the subshift g: %% — 9%, it is clear
that

Yo IiNZy— ;N Z,

has either one fixed point z, or two such, z, and %,. In the second case,
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Z, lies in a z-cycle {Z,, ---, Z,}. Consider both cases at once by allowing
z; = Z,. Then the set {x, Z,} is exactly lim,..7v3(Z,NI;), and we let F
denote the set I'(z,) UI'(%,).

(2) By (5.4) and (5.7), V.2 FU(,V)oU - U, V).

(8) Let ye V., and let {n(k)};>, be the strictly increasing sequence
of positive integers such that "®(y)eV, for all k=1. Set V,=
hj,_,o+++oh;(V), for each 1 =1, and set V,=V. Since V=JnILNZ,
and J is an interval, we see that V,, SV, For a given k=1,
"®7i(y) e Tz (y)) € 7 7Y(V,) and this latter set is exactly V,U7,(V)U
«++U7,,(V), for suitable indices 1=, < -+ <a,=t. If "' (y)eV,
repeat this procedure to get z"*~*(y) € V,Uv,(V)U -+ U7,,(V), for suitable
1=p8,<:++<B,=t, etc. There are two cases.

Case 1. For all large values of 7, z"(y) € U?,V,. Thus, find N=0
such that z¥(y)e V and v;™(z"(y)) is defined and belongs to V, for each
n = 0. By the compactness of I; and step (1), we conclude that z¥(y) e
{x,, %,}, hence y € F.

Case 2. There is a strictly increasing sequence of integers {m(k)}r-,
such that z"®(y) e v (V)U -+ U7(V), for each k = 1. Thus ye(v,V).U
e U Ve O

DEFINITION. A point x € Z, is good if there is a neighborhood V of
x in Z, such that | V.| = 0. The set of good points is denoted G. The
bad set is B = Z,\G.

Remark that B is compact.
(5.9) LemMMA. B= @ if and only if | Z,| = 0.
Proor. If |Z,| =0, it is evident that B= @. If B= @, the com-

pactness of Z, allows us to find a finite cover V,, ---,V, of Z, by relatively
open subsets, each with [(V)).] = 0. Then (56.2) and (5.6) imply that
| Z,| = 0. |

(6.10) LEMMA. Let V< Z, be measurable. If 3 .-, [9V| converges,
then |V.| = 0.

ProOOF. Since 77"(V) = Uyew, 9V, we obtain, for each N =1, the
inequalities

Vel = [ uen(n)| =

k=1 nz

U ()| s = 1971 . O

(5.11) LEMMA. Let N =1 be an integer. Then x € Z, is a good point
if and only if g(x) € G, for each g€ Wy.

Proor. Use (56.5) and induction on N. O
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(5.12) LEMMA. Let zel;nNZ,. If z"(z)= @, some n =1, then
I;NZ)e = @, hence x€G.

Proor. Equivalently, x € D(g) for only finitely many geI",. That
is, for all but these finitely many ge ., I,ND(g) = @. O

(5.13) LEMMA. Let J, be a gap of Z, and assume that J,CI;, some
j. Let K,CI; be a compact, nondegenerate interval such the J,NK, =
{xo} and | Kol/| ] = 1/n. Then |(Z,N(J,U Ky))o| = 0.  In particular, z,€G.

PROOF. There are two cases.

Case 1. Assume that x, does not lie in a z-cycle. By (5.12), we can
also assume that x,e€ D(g) for infinitely many geI",, each of which must

be a simple chain at z, with J,UK,CD(g9). By (2.2), |gK,| <|gJ,| for all
such g. The intervals {gJ},.,, have disjoint interiors, so

Z 'g(JoUKo)] §2' Z IgJol < oo,
gery ger

Take V = Z,N(J,UK,) in (5.10).

Case 2. Assume that z, is r-cyclic. Then the neighborhood V =
Z,N(J,U K,) and the point z, satisfy the hypotheses of (5.8). Since 7, (x,)
does not lie in a r-cycle, 1 £ @ < t, we can apply the argument in Case
1 to all chains of the form gov,, gel',, to conclude that

S 9LUED] < = .
Then (5.10) implies that [(Z,N7.(J,UK)). =0, 1=a=t. By (5.8),
I(Zon(JOUKo))ml = 0. D

(5.14) LEMMA. Let x€Z, and assume that Z, accumulates on x from
at most one side. Then x€G.

Proor. By (5.12), we can assume that J, and K, are as in (5.13)
and that J,N K, = {x}, hence z€G. O

In the following lemma, let W,={w,, - -+, w,,} and I'’* =T (w,, * - -, w,),
as in §4. As usual, Z} = Z,(I'*) and ¢* = ¢|Z}. We will also use the
notation

Ver =0 U (@)(V),
N=0 n=2N

for all V € Z.

(6.15) LEMMA. Let A;=1,,,., 1=i=7r, and let VS Z,. Then
Ve © (Uimi(4)e) U (Uizoe T5(V'N Z5)on))-

PrROOF. Let x€ V. and consider two cases.
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Case 1. Assume that *(x) € Z}, some k = 0. Then one can find in-
finitely many » =k such that (¢*)"*(z*()) = " *(z*(x)) = z"(x) € V. There-
fore, (z*)"*(z*(x)) € ZF NV, 50 7%(x) € (ZF NV )es. That is, 2 € 77%((ZF NV )ox)-

Case 2. Assume that there is no # =0 as in Case 1. Then there
are infinitely many integers » = 0 such that z"(x)¢ U, I,,. For these
integers, t"(x) € A,U---UA,, hence rc(4).U- -+ U(4,)w. O

(5.16) PROPOSITION. B = (.

PrOOF. Let y € B and deduce a contradiction as follows.

(1) By (5.14), y €int(l;), for some j, and there is a gapJ, = [a, b]
of Z,, also in I;, such that b < y. Since B is compact and, by (5.14),
b¢ B, there is a point y,€1b, y] N B such that 1o, y| NB = &.

(2) By (5.14), Z, clusters on y, from both sides. Thus, for n suf-
ficiently large, there is we W, such that I, =[¢,d], b<c¢ < ¥, <d, and
| L1/ Jo| = 1/

(3) Enumerate W,={w, ---, w,.,} in such a way that I,.N la, ¢[ =@
exactly for j=1, .-+, p. Set A;,=1,,,, 1 =<i=r, and note that each
A, [b, ¢[. By the choice of y,, |(4).] =0, 1 =17 = 7.

(4) Let r*=r,(w, -+, w,), as in §4, and let b* be the minimal
element of Z¥N[c, d]. Then b* is maximal such that Z}N Ja, b*[ = 2.
Consider three cases.

Case 1. Let b* = d, hence Ja, d[ NZ = @. Take V=]a, d[ NZ, and
use (5.15) to conclude that V.. S Ui_,(4,).. By step (8), | V.| =0 and this
contradicts the fact that y, € B.

Case 2. Let b* <d, and (z*)"(b*) = @, some n=1. For V, we
take any neighborhood of ¥, in the set [¢, dINZ, = I,NZ, By (5.12),
(VNZFox = @, 80 the argument in Case 1 again yields a contradiction.

Case 3. Let b* < d and b* € D(¢g*) for infinitely many g*erl'*. Set

¥ =[a, b*], K = [b* d], and V = Z,N(JFUK). Then int(J})CR\ ZF,
but b* € Z¥, and |K}|/|J¥| = |L|/|J,] =< 1/A. We would like to use (5.13)
to conclude that [(VNZ).x] = 0. The difficulty is that J* &£ I, contrary
to what is required by the hypotheses of (5.13). This means that, if
g*erl'* and b* € D(g9*), then J* & D(9*). The solution to this difficulty
is to use the canonical extension ge ', of each such g*, to note that
J¥cI;cD(g), and to appeal to (4.4) in place of (2.2) in the proof of (5.13).
Then [(VNZ#)wx| = 0 and we use (5.15) to conclude that | V.| = 0, again
contradicting the fact that y,€ B. O

The proof of (5.1), hence of Theorem 3, is complete.

6. Counting the semiproper leaves. Our present goal is to prove
Theorem 2. Let & and I' = I, be as in the previous section.



180 J. CANTWELL AND L. CONLON

DEFINITION. Let AC R, xc€ A. Then zx is semi-isolated in A if there
is an open interval JCR\ A such that zcaJ.

DEFINITION. The I'-orbit of x € Z, is semiproper if there is a non-
empty, open interval JC R\ I(x) such that xcaJ.

(6.1) THEOREM. Only finitely many t-cyclic points are semi-isolated
Y/

(6.2) COROLLARY. Let CZ Z, be a Markov I'-minimal set. Then C
contains only finitely many semiproper I'-orbits.

ProOF. Every I'-orbit in C is dense in C, hence is semiproper if
and only if each of its points is semi-isolated in C. Apply (6.1) and
(3.4). O

In particular, (6.2) and (1.2) establish Theorem 2.
The proof of (6.1) will consist of a series of definitions and lemmas.

DEFINITION. A nondegenerate interval A is I',-uniform if there is
a number v = v(4) > 0 such that g¢'(u)/g’'(v) =y, for all gel', and u,
ve AN D(g).

(6.3) LEMMA. If A, and A, are I’ .-uniform intervals and A, N A, +#
@, then A,UA, is I' .-untiform.

(6.4) LEMMA. If gel', and A is a I -uniform interval, then gA
18 also I -uniform.

(6.5) LEMMA. Let N =1 be an integer and let A be an interval.
If gA is I'.-uniform, for all ge Wy, then A is I ,~uniform.

DEFINITION. The uniform set U, &£ R is the union of all open, I',-
uniform intervals. The non-uniform set is B, = R\ U,.

Since intervals not meeting the bounded set U™, D(h;) are I' ,-uniform
by default, B, is compact. Also, if G and B are as in §5, one easily
shows that Z,N U, £ G and that Z,N B, 2 B.

(6.6) LEMMA. Let J be a gap of Z, with an endpoint that is mnot
z-cyclic. Then, with at most finitely many exceptions, JC U,.

PROOF. Let x€0J be a point that is not r-eyclic. Since the endpoints
of X; = hj'(l;) are z-cyclic, 1 < j < m, provided they pertain to Z, we see
that ¢ €int(X;) and, with at most finitely many exceptions, JC X;, for
some j. It follows that J N D(g9)+ @ if and only if J<D(g), for each geI',.
Every such g is a simple chain at x, hence g is also a simple chain at
the other point ¥ €dJ and % is not r-cyclic. Therefore, JCint(X;). Let



FOLIATIONS AND SUBSHIFTS 181

K ang K be compact, nondegenerate subintervals of X; such that KnJ =
{«}, KnJ = {&}, and |K|/|J| £ 1/» = |K]|/|J|. By 2.2), KUJ and JcK
are I',-uniform, hence, by (6.3), so is KUJUK. O

(6.7 LEMMA. Let x€ Z, be t-cyclic and let ¥ €I, be the simple loop
at . If Y(x) =1 and v is not germinally the identity at x on at least
one side of x, then x € B,.

Proor. In any neighborhood of 2 in R, there is a <v-fixed point ¥
(perhaps x itself) at which v is either a (one-side) expansion or contrac-
tion. Thus, find a sequence {¥,},>, near y such that either (v*)'(y,) — <
or ("")'(y,) —0as n—o. Since (v")'(x) = 1, for each integer n, it is clear
that z € B,. O

DEFINITION. A gap J of Z, is r-cyelic if JS X, for some j€{1,---, m},
and oJ consists of z-cyclic points.

Equivalently, there exists ¥ eI, (nontrivial, by the definition of I',)
such that vJ = J.

(6.8) LEMMA. Let J be a gap of Z,, Then, with at most finitely
many exceptions, J is t-cyclic if and only if JNB, # Q.

Proor. (1) Assume that JNB, # @. With at most finitely many
exceptions, this implies that ¢J consists of z-cyclic points (6.6) and J & X,
for some j€{1, ---, m}.

(2) Suppose that J is z-cyclic and let vJ = J, for some veI',. We
consider three cases.

Case 1. 7|J #1id;. Find sequences {¥,}.s; and {z,},=, in J such that
'(y,) — 0 and (v*)'(z,) >  as n— . Thus, J is not I'.-uniform. By
(6.3) and compactness, JC U, would imply that J is I',-uniform.

Case 2. 7v|J =id;, but at least one x €0J is not isolated in Z,. An
elementary use of symbolic dynamics shows that v is a one-sided contraction
to . By (6.7), x€B,.

Case 3. 7|J = id; and both elements of dJ are isolated in Z,. In
this case, it might be that JC U,. We must show that at most finitely
many such gaps exist. Suppose, on the contrary, that {J,},, is an infinite
sequence of distinct such gaps, chosen so that J,—x€Z, as n— .
Write 2 = ,,,..., where (3,)i-, = k() € %%, as in §1. Theset V = {(j,) €
F7|J3, = 1} is a neighborhood of (¢,) in 7 and h(éJ,)C V, for all large
values of n. The points of oJ, = {x, #,} are r-cyclic, so one writes
h&E,) = h(x,) = a-a---a--- (juxtaposition), where a = (¢, Jy ***, J,). In
particular, the entry p;, =1in the matrix P. It follows that a-a---a-(¢,) €
%75, for all » = 1. This translates to the statement that either x, or &,
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“is not isolated in Z, contradicting the assumption. O

(6.9) LEMMA. Let x,€Z,NB, and assume that x, lies in a c-cycle
X = {wy, @, +++, 2,}. Let ¥y = hj,0---oh; be the simple loop at x, and
write Y = hj o+ oh;, 0=1=p—1. If I'(x)NB, S X, then there is
a mnetghborhood V, of x, in Z, such that ze V,NB, if and only if
.NB, = {V;o7®@)|n=0, 01 p— 1}

Proor. Let y, and 7, be asin (6.8), 1 <a<t. In particular, y,¢ B,,
1=a=t. Let U, be an open, I -uniform interval about ¥y, and set
V.= 2Z,n U, Choose the neighborhood V, of z, in Z, such that x,e D(v,)
implies that V,cD(v,) and 7,V, SV, 0=a =t. Ifze V,NB,, it follows
from this choice and from (6.4) that I', ()N B, S {Yp,c7(@)|n =0, 051
p — 1}. By (6.5) and induction, one obtains the reverse inclusion. |

DEFINITION. The set _# consists of all gaps J of Z, such that
JNB, # @. The set &Z, is _Z U(Z,NB,).

It makes sense to consider, in R, the cluster points of <&, each
element of #, being treated as a single “point”. These cluster points
are honest points, necessarily being elements of Z,NB,.

DEFINITION. The set B, < Z,N B, consists of those points x with a
half-open neighborhood Ja, x] or [, a[ meeting no element of <Z, except
x.

We are going to prove, in (6.15), that every x € B, is z-cyclic. For
the present we suppose that x is a counterexample.

(6.10) CLAIM. The non-z-cyclic point x € B, is not semi-isolated in Z,.

PrOOF. Suppose that x is semi-isolated in Z, and consider two cases.

Case 1. I',(x) is infinite. By (6.5), we assume, without loss of
generality, that x is an endpoint of a gap J of Z, and that JcCint(X,),
X, = h7(I), for some 2€{1, ---, m}. As in the proof of (6.6), it follows
that x e U,.

Case 2. I',(x) is finite. Then 2 has an open, connected neighborhood
that meets D(g) for only finitely many geI",. Such an interval is I",-
uniform, again contradicting the assumption that x € B,. O

For definiteness, assume that Ja, x] is as in the definition of the set
B,. By (6.10), we can assume that [a, z]Cint(X,), for some 7€{1,---, m},
and that J = [a, b] is a gap of Z, and b < x.

Choose 7 large and we W, such that I, =[¢,d], b<c¢ <2z <d, and
|L|/|J] = 1/n. Let W, = {w,, -+, w,,,}, so ordered that I,,C[b, c[ exactly
forj=p+14,1<i<r. Thenl,N]a,cf =0,1=<j=p. Set A, =1,

Wp+4?
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15157,
(6.11) Cram. Ui, A,cU,.

As in §4, let I'* = I'(w,, -+, w,) with generators A}, ---, h¥, and let
Zy = Z(I'*), t* = t|Z¥. By means of I'*, we define U* and B* = R\ U*
in exact analogy with U, and B,. Let D* = U?%_, D(h}).

(6.12) CLam. UrnD*cCU,.

ProOOF. Let ze U*rND*. Let ICU} be a compact interval with
zeint(I). We choose I so small that ze D(h}) implies that IcD(h}),
1=<j=<p. By the definition of a Markov system, it follows that g* eI}
and z € D(g*) implies that ICD(g*).

Let veI', be such that ze D(v) and write v|I = (voh,og*)|I, where
g*erl*, h(g*I)cUr_,A,, and vel',. By (6.11) and the fact that I is
I'f-uniform, it follows easily that I is I",-uniform. O

(6.13) CLAIM. z€ Zf.

Proor. Otherwise, z*(x)e Ui_,int(4,)c U, (6.11), for some k =1.
Let geI', be the branch of z7* such that xz e R(g). An application of
(6.4) to g gives the contradiction that x = g(z*(x)) € U,. O

By (6.13), there is a maximal element b* €[c, «] such that Z} N [c, b*[
=Q.

(6.14) CLAIM. b* is t*-cyclic and b* < x.

Proor. In (4.4), let Jf =[a, b*] and K = [b* d] be such that
| KX\ = | L]/|J] = 1/n. If b* 1s not z-cyclie, (4.4) implies that [c, d]
is I'*-uniform, hence x€ lc, d[ cUXND* < U, (6.12), contradicting the
fact that x e B,. O

(6.15) LEMMA. Ewvery element of B, is t-cyclic.

ProOF. Assume that x€ B, and that z is not z-cyclic. Choose all
data as in the above discussion and deduce a contradiction as follows.

(1) By (6.14), let v,€I't be the simple loop at b*. Since [¢, d] =
I,cD(v,), and since z is not t*-cyclic, elementary symbolic dynamics
shows that 73(x) —b* as n — c. In particular, 73(x) € U,, for each in-
teger n = 1.

(2) By (6.5), choose g¥erl%, |g¥| =k, such that gi(x) e B,, for all
k=1. By step (1) and (6.4), each gi is a simple chain at b*.

(3) By step (2), we can take N so large that g%(b*) does not lie
in the z*-cycle containing b*, hence is not z*-cyclic. That is, if g*el'*
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and g(b*) € D(g*), then ¢g* is a simple chain at g¢}(%*). By elementary
symbolic dynamics, this implies that g*og% is a simple chain at b*.

(4) By step (3) and (4.4), we proceed exactly as in the proof of
(6.14) to find (g*og})' (w)/(g* g% (v) £\, for each u, ve[e, d]. Therefore
g¥le, d] is I'*-uniform. By (6.12), it follows that g¥le, d[ C U,, contra-
dicting the fact that g}(x) € B,. O

DEFINITION. The set B, € Z,N B, consists of those points z having
a half-open neighborhood Ja, x] or [z, a[ that contains exactly a countable
infinity of elements of <#,, this subset of <&, clustering exactly at z.

(6.16) LEMMA. Ewvery element of B, is t-cyclic.

PrROOF. The idea is to mimic the proof of (6.15) exactly. However,
one needs (6.15) in order to set this up.
Let xe B,. Exactly as in the proof of (6.10), # is not semi-isolated

in Z,.
Assume that Ja, 2] is as in the above definition, that [a, z]Cint(X)),
for some 1€{l, ---, m}, and that J = [a, b] is a gap of Z,, b < x.

Choose n large, we W, as before, I, = [¢, d], b <c <z <d, |L|/|J]| <
1/n, ete. The problem is that (6.11) does not necessarily hold this time.
It may be that U]-, A, contains finitely many elements of <Z,, say
Yy ", Y €B, and Jy, -+, J, €_Z.

Choose g, €', [a, d|<D(g,), |9.| = k, such that g,(x) € B,U B,, for all
k= 1. These exist by (6.4) and (6.5). Also, by (6.4), {g.(y.)}=,U{g.(J)}i=
are the only possible elements of <, in g, (Ui, 4,).

By (6.6), y, is r-cyelic, 1 < ¢ <t. As in the proof of (6.15), k large
enough implies that g,(y,) is not r-cyclic, hence g,(¥,) € B,, hence g,(y,) ¢ .,
1<i=t. A similar use of (6.8) shows that ¢,(J)¢.Z., 1=i1<u and
all large values of k.

Take § = gy, N large enough. Then g(Uj-, AQC U,. Replace w by
W=gowe Wy, I, by I;=1[§(), §d)], J by J =[g(a), §b)], W, by
Wiy = {®,, -+, W,4,} (note that, generally, ¢ > p), 4, by §(4,) = I;.,,,,=
I,,1=ss=r, ete

At this point, the proof of (6.15) can be carried out with no change.

|

(6.17Y LEMMA. B, = Q.

Proor. Let z,€ B, and deduce a contradiction. By (6.4), g(x,) e
B,UB,UU,, for each geI',. By (6.15) and (6.16), g(x,) € B,U B, implies
that g(x,) lies in the z-cycle X = {x,, 2, -+, #,}. Thus, ', (x)N B, < X.
Let V, be the neighborhood of x, in Z, given by (6.9) and let v,e I, be
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the simple loop at x,. By the definition of B,, the set (V,\{z,}) N B, < B,
clusters at x,. Elementary symbolic dynamics implies that v, contracts
this set to w,, provided V, is small enough. If ze(V,\{x}))NB,, then
(6.15) and (6.4) imply that I'.(z) N B, is contained in a z-cycle and (6.9)
implies that I' . (2) N B, is not contained in a z-cycle. O

(6.18) COROLLARY. There is a finite, possibly empty set F such that
Z,NB, = F or FUC, where C is a Cantor set.

PrROOF. By the structure theory of compact, totally disconnected
subsets of R [Pi], this is an easy consequence of (6.17). O

(6.19) LEMMA. The set_Z, 1is finite.

Proor. It will be enough to prove that, in (6.18), the possibility
that Z,N B, = FUC does not, in fact, occur. Indeed, if Z,NB, = F and
if _# were infinite, then some point of F' would belong to B, = @.

Suppose that Z,NB, = FUC and obtain a contradiction as follows.

(1) Let A =]z, %, be a gap of C. If A contains infinitely many
elements of _#,, they must cluster in A, necessarily only at x, and/or ,.
But this cluster point would belong to B, = &.

(2) By step (1), either A is an element of £, or some point of
0A, say x,, is an element of B,.

If z,€ B, then z, is r-cyclic (6.15) and, by (6.4), I" . (x,) N B, C B,, hence
I’ ()N B, lies in the z-cycle.

If Ac_#Z, then, with finitely many possible exceptions, A is a -
cyclic gap of Z, (6.8) and the z-cycle of z, also contains I, (x,) N B,, again
with the at most finitely many exceptions allowed by (6.8).

(3) By step (2), choose A and x,€0A so that {x, x, ---, z,} = X is
a r-cycle and I',(x,)N B, S X.

Similarly, choose a sequence {A4,};-, of gaps of C clustering at z, and
having z-cyclic endpoint z, €04, with exactly the same property as z,.

(4) Let v,el'. be the simple loop at z,. By symbolic dynamics,
v3(A,) —x, as n— o, for k sufficiently large. An application of (6.9) to
z =2z,€A,, k large enough, then contradicts the fact that I",(2) N B, lies

in the r-cycle of z. 0
ProOF OF (6.1). If infinitely many z-cyclic points are semi-isolated
in Z,, then (6.8) implies that _Z, is an infinite set. |

As already observed, this completes the proof of Theorem 2.

7.. Concluding remarks. It is not hard to produce exceptional mini-
mal sets (or, more generally, LMS) that are not Markovian. One way is
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to start with a Markov example in which one of the generators of I,
say h = h,, is a contraction to a point x € C that is not semi-isolated in
C, having the property that A is C>-tangent to the identity at z. One
can replace the generator h with %, an element that agrees with 7 on
one~side of # and with A~ on the other side. The new pseudogroup, call
it I', has the same orbits as I, but the generator of H,(I'(z), C) is not
represented by a contraction. By Theorem 1, the exceptional, /-minimal
set C cannot be Markovian. Again, one could replace & with two gener-
ators, & and h, one agreeing with h on one side of  and with the identity
on the other side, the other being similar, but with the sides of z re-
versed. In this case, H,(I', C) = Z@ Z, again contrary to the conclusion
of Theorem 1.

Another naturally occuring class of non-Markov examples has been
suggested by Inaba (private communication). They are finitely generated,
nonelementary Fuchsian groups of the second kind which have parabolic
elements. The limit set of such a group is an exceptional minimal set,
but it is not Markovian because a parabolic element is neither a contrac-
tion nor an expansion at its unique fixed point.

In an earlier version of this paper we proposed some conjectures that
now seem to us to have been overly optimistic. One of these was that
the general case might be orbit equivalent to the Markov case. In the
special case of a transversely projective foliation that is transverse to a
fibration by circles, Inaba has verified this conjecture (Ibid.). It would
be interesting to remove the hypothesis of transversality to an S'-
fibration.

It is not hard to show that the general exceptional LMS gives rise
to a multitude of Markov sub-pseudogroups that, in some sense, form a
“dense” subsystem. It should be possible to exploit this fact.
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