Téhoku Math. J.
40 (1988), 473-483.

POSITIVE KERNEL FUNCTIONS AND BERGMAN SPACES

Nozomu MOCHIZUKI

(Received May 8, 1987)

Introduction. We denote by B theo pen unit ball in C*, n = 1. The
Poisson kernel for B is obtained from the Cauchy kernel. In the same
way, we can define a positive kernel function, H,, from the well-known
kernel which is treated in [5]. H, has the reproducing property for the
functions in the weighted Bergman space A?%B), 1 < p < +. Using
this kernel we shall derive Hardy-Littlewood inequalities for A?%B), just
as in H?(B), where the Poisson kernel plays an essential role ([7]). Similar
results will be obtained in the setting of the generalized half plane in
C*. As an application of the inequality, we shall treat the Mackey to-
pology of A?%B), 0 < p < 1, extending the one variable result ([9]).

1. Positive kernels. {z, w) will denote the usual inner produet for
2z, weC" with |z|* = {2, 2). We fix § > —1 throughout. Let K,(z, w) =
A1 — w1 — {z, w))" "+, 2, we B, where

4, = (L(l ~ lufydw) = W :

here, dw denotes Lebesgue measure on R*. We define a positive kernel
H; by

Hd(z; w) = Ka(z, w)Ka(w, Z) — Ao(l - Iz‘z)"+1+6(1 - Iwiz)a

, 2 WEB.
K,(z, 2) 1 — <z, wy[frr+ v

We shall write
HIf0) = | Hz, wfw)idw, zeB,

when the integral makes sense. For 0 < p < + o, L?%B) will denote
the class of measurable functions f on B such that

1£0.0:= (] |F@0)PQ — opydw)e < 4o,

and A7?B) will mean the class of holomorphic functions which belong to
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L**B). We note that the following implies H;[1](z) = 1, 2 € B.

THEOREM 1. Let 1< p < +oco. Then
(1) f(z) = H[fI(2), 2€ B, if fe A*(B).
(2) u(z) < Hjul(z), z€ B, ©f uecL*>*B) and u s plurisubharmonic.

ProOOF. It is enough to suppose p = 1, since L*’cL'’. Fix an ar-
bitrary ¢ > 0. Then, for any fe L“*(B), we have

% <4 1 . 1 - Izlz)n+1+za+e PAY

1L Ve S A (1500~ ] B de)aw
where the inner integral is a bounded function of w on B, by [8, 1.4.10];
thus ||H,[f1ll,s+e < C||fll.,» The same method as in [2, Theorem 3, (ii)] shows
that if g€ A”%(B), 0< p < + =, and g9,(z) = 9(r2), 0 <r <1, then ||g, — g, ,—
0 as —1. Now K, has the reproducing property for the funections in
H>(B) ([8, 7.1.2]). Hence, we can see from a standard argument that
f = HjJf] for fe A(B), the ball algebra. Take fe A% B). Then we have
Ife = Hylf1ll1,54¢ = ClIf, — fll,,5» s0 the continuous functions f and H,[f]
coincide on the whole of B. Next we prove (2). For a fixed ze B, take
#, € Aut(B) as in [8, 2.2.1]. Then 4,(0) = z and ¢,°¢, = identity. Since
%o ¢, is subharmonic on B, it follows from integration in polar coordinates
that

[ wesae - lgvas = u@ioBl | vt — ryar .

Making the change of variable & = ¢,(w), we B, we have, by [8, 2.2.2
and 2.2.6],

o A=l (1l
1— gl T wr % (|1—<z,w>12> dw .

(2) follows from these and the proof is completed.

We denote by D the domain {(z, 2’) € CxC"*|Im z, — |2'|* > 0}. This
is the upper half plane if » = 1. The Cayley transform ¥, defined by
U(z, +++, 2,) = (wy, +++, w,) withw, = (2, —1)(z, + %)™ and w; = 22;(z, + 7)™,
2 < j = n, maps D onto B biholomorphically. We havel — {¥(2), T(w)) =
20(z, w)(z, + 9)(w, + 2))7, 2, we D, where p(z, w) = «(W, — z,) — 2{7/, w').
The Jacobian of ¥ is 2™z, + 4|7 % For {, ¢€ B, put { = T(z), ¢ = T(w),
z, weD. Then

2"_1A0 2, 2 n+1+3 w, w 3 .
HJ(C’ E)df = Izgz, uf)lz(n+1p+(6) ) dw ’

the kernel occurring on the right side will be denoted by H¥(z, w). If
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g9(€) is a measurable function on B, then we can write H,[g][¥T(z)) =
Hf[g-¥](2), ze D. In particular, we have H}[1](z) = 1 for any ze D. We
denote by L?*(D), 0 < p < + o, the class of measurable functions f on
D such that

11 = (] F@Pot, 27d2)” < 4o .

A?*(D) will denote the class of holomorphic L?*(D)-functions. Take fe
A?*(D). Then from |z, + 4| > 1, z€ D, we see that

[ 17 T D@l — wirdw < 2755011, < 40

i.e.,, foU¥U'eA?»B). Thus, for 1=<p< +o, we have f(z)=
Hf T '|(¥(2) = Hf[f1I(z), z€ D. Similarly, if « is plurisubharmonic and
ueLP(D), 1 £ p < +o, then we have

(3) w?) = Hi[ul(z) , zeD.
2. Hardy-Littlewood inequalities for A?’(B). For a continuous fune-

tion f on B, 1<=k=<mn, and 0 <7 <1, we define means M/f, k; r),
0 < qg=< 4+, as follows:

M.(f, k;r) = max |f(rg’, 0],

wf, ) = ([ 1702, 00dou @), 0 << +eo

where B, and do, denote, respectively, the unit ball in C* and the surface
measure on 0B,. We shall simply write do instead of do,. Also, M (f; r)
will mean M,(f, n; r).

LEMMA 1. Let 1 £ p < +o and put w = H,[h] for he L*”*B). Let
c=p'n—+1+8 —qg™n for p<q= +oo. Then

(4) Mu;r) < A(n, p, ¢, DA, A —7)", 0=r<1.
If1<p<qg= 4+, p=A< +oo, then

(5) (35 w1 = ryear)” < Aln, 2, 4,8, Ml -

PROOF. (4): Supposeq = +o. Let{edB,0=r<1. Since H,[1](z)=1
for any ze¢ B, Jensen’s inequality shows that |u(r{)|? <241 —
7))~ FHA(||||, )7, and (4) is clear. Suppose p < ¢ < +oo. Then we have,
by (4) with ¢ = + o,

M5 7 < (Clbll (1 = ) 272ye| (u(r)lrda(?)
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In the second factor, we see that

|, Juropdo©
= a1 — vyl () — | do() )duw

B |1 — <,rc, w>12(n+1+5)
The inner integral, I(w, r), is ~ (1 — |rw|?)~ "+ a5 |rw|—1, by [8, 1.4.10],
hence I(w, r) < CA — r*)~ 2 0 < < 1. Thus (4) follows from these
estimates. (5): We define a measure dy on [0, 1) by dv(r) = 1 — r)"*dr.
Letl1=p=£qifg< +,andl1 £ p < +,if ¢ = 4. For heL”(B),
putting u = H,[h], we define (Th)(r) = M, (u; r)(1 — r)™%, 0 < r < 1. The
rest of the proof is quite similar to the case k = » in [7, (1T)].

For a function g on B,, let (£, ,9)(w', w") = g(w'), (w', w')e B. For
a function f on B, let (R, .f)(w') = f(w', 0"), w' € B,.

LEMMA 2. Let feA?*B), 0<p< +o, and 1k =n. Then

~

(6) (SBklf(z’, 0?1 — lzr|z)n+a~kdz,>1/p < A & p, 5)||f”p,d .

Moreover, for 1 =k = n — 1, E, , becomes a linear isometry of A»""*~*(B,)
into A”*(B), and R,, is a morm-decreasing operator of AP*(B) onto
Ap,n+a—k(Bk).

PROOF. Suppose 1<k <n—1. We write L, for the space C*x
{0} x .-+ x{0}cC" and consider measures on B: du,(z) = (1 — |Z'[)*"**dz,
2= (7, 0")e BNL,, and dy,(z) = 1 — |2])’dz, z€ B. For £€0B, let K(g, r) =
{zeB||l — (7, &| < r¥. It is enough to see that there is a constant C,
independent of &, 7, such that p,(K(g, 7)) < Cuy(K(g, 7)), since this implies
(6) by [1] or [6]. First suppose 0 < <272, We shall show that g, (K(g, r)) <
Crrnt14d £ e 9B, just as in [7, Theorem 1, (2)]. Put a =n +6 — k and
t = |&'|, where ¢ = (¢, &”) with & eC*. Then

L(r) i= pK(, 7)) = Cln, b, )] (1~ o)+, ,
where G” = {w, € B,||1 — tw,| < r*}, and then we get I,(r) < Cr:»*t+® by
the change of variable w, = ¢(\) = t7'(1 — r\7*), »€C — {0}. Next, letting
E = {w,eB ||l —w)]| <7}, we have

(KL, ™) = Cln, 8)| (1 — wyy++~du,

— C,,,2(n+l+d)§ (2 Re A — ,,.2)n+6—1!xl-—-2(n+1+6)dh
E’

with E' = {AeC||x| > 1, Rex > 2%, Since n = 2, the above integral
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exceeds the integral of (2 Re ) — 271"~ |*»+1+9 gyer the domain {\| > 1,
Rex > 47"}, thus showing that g,(K(¢, r)) = Crt»t+9, If 9 > 272, then
t(K(g, 1) S (BN L) < Cps(K(g, 277) < Cpy(K(g, 1)) for any & € 9B, hence
the desired inequality holds for » > 0. Next, let ge A»***~¥B,). Then,
by Fubini’s theorem,

|,/ (Bes) a1 — fwfydw = Cf o)t — 'yt

R, . is continuous by (6) and onto, since R, .o E, , = identity.

THEOREM 2. Let feA™(B), 0<p< +o. Puto=p'n+1+ 05—
¢k for p<q= -+, 1=k=mn. Then, for p =\ < + o,

(1 ([ v - ryedr) < A,k 0, 0,8, W1

o 18 the best possible exponent. (7) does not hold, when 0 < q < p.

Proor. It is sufficient to assume k = n, because the other cases can
be settled by Lemma 2. First suppose p < ¢ < + o, pS A< +. Since
|1 e L**(B), we have |f(2)|”* £ H,[|f|"*1(z) =: u(z), z€ B, by (2), hence
M/(f; 7)) £ Myp(u; r)*¥?. Taking 2, p~(29), and p~(2\), respectively, for
P, q, and )\ in (5), we get (7). In the case p = ¢ = A\, we can derive (7)
from the definition of || f||,,;, as we have obtained (13) from (14) in [7,
Theorem 4]. If p = q¢ < A, then (7) follows from [7, (19)]. Now the func-
tion 1 — 2,)7%, B > 0, belongs to A”%B) if and only if 8 < p7'(n + 1 + 9).
Let 0<a<o, 0<p=q=+c. Then f(z):=(1 —2z)* % ¢cA»¥B)
and M(f, k;r)~ 1 — r*)™* as r — 1. Thus the integral in (7), with ¢
replaced by «, becomes + . The last assertion can be verified by taking
the functions 2%, 7 =1,2, ---, as in the proof of [7, Theorem 4].

3. Hardy-Littlewood inequalities for A7’(D). We denote by G, the
domain {(z, 2)eD|Imz, — |2’ > r}, »r > 0.

LEMMA 8. Let u be plurisubharmonic on D, uw = 0, and _ueL""’(D),
1<p< +o. Then u(z)—0 as |z — + o, uniformly on G, for any
r>0.

PrROOF. We can suppose p = 1, since u”? is plurisubharmonic. Let
du(w) = p(w, w)u(w)dw, weD. Then, in view of (8), it is enough to
verify the assertion for the function v defined by

v(z) = SD‘O(Z’ z)"“*”[p(z, w)[‘“”“*"’d{z(w) , zeD.

Pick » > 0 and fix e > 0. Let Q, = {(y, + 18 + t|w']>, w) e CxC" ||y < m,
0<s<m, |w]<m}. We can take m so that #(D\@Q,) < ¢ and, then,
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T, S, and R so that T-""*9u(Q,) < e, TS — m)~ "+ 1(Q,) < ¢ with
S>m, and T""'*(R — m(1 + 28))*""*+u(Q,) < ¢ with R > m(l + 28S).
Now take an arbitrary 2z = (z, 2)e@G,, 2, =, + it + i[¢|>, such that
|z, > R* + (T + S*?*. Then we have, for any w = (y, + 18 + t|w'’, w’) € D,

p(z, z)n+1+6
( 8 ) ]‘O(z’ w)|2(n+1+6)
Ontitagntits

T @ — ¢, + 2ImiZ, W) + ¢ + 5+ [ — WP
< (@r )t =i M,

hence
v(z) = SQ + Me .
Suppose ¢ > T. Then
o) < | 2 du) + Me < @+ Ms
Suppose r <t < T. If |z/| > S, then

v(2) = S

Q1+ inti+s
em lzr . w'|4(n+1+6)

If || <8, then |x,| > R, hence from
v(z) = S

dp(w) + Me < (2~"*% 4+ Me .

2n+1+6 T’n+1+6

d Me,
Qm le - Y, + 2 Im<2', W'>l2(n+l+w #(W) * ©

we have v(z) < 2"*'** + M)e, completing the proof.

Let f be a complex-valued function on D such that |f| is upper semi-
continuous. We define means M/(f, k;t), ¢t >0, for 0 < g =< 4+ and
1 <k < n as follows:

Mo(f, k;8) = sup |f(e + 3t +dle'f, ), 07)],

2y,2') eRxCk™
1/q
M(S, ks ) = <S @, + it + i, 2, O")I"dxdz') ,
Rxck—1
for 0 < qg< +o. MJSf, k;t) is an extended real-valued function on (0,
too). M(f;t) will mean M,(f, n; t).

LEMMA 4. Let u be plurisubharmonic on D, uw = 0, and w e L**(D),
1=<p< +oco. Then, for p < q= + o, M (u;t) is a real-valued decreasing
Sunction of t.

PROOF. Suppose ¢ = + . By Lemma 8, the maximum principle for
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subharmonic functions holds on the domain G, and M.(u; ) is identical
with the supremum of wu(z) taken over G,. This proves the assertion.
Suppose p < ¢ < +<. The fact that M (u;t) < +c will be seen from
(9) in the next Lemma 5, so we show that M, is decreasing on (0, + ).
For a fixed 2’ eC", put u,.(x, + it) = u(x, + it + |2')3, )%, (x, t) € R X
(0, +c0). Then u, is subharmonic on Rx (0, + <) and we can write

Mty = | a2\ wita, + ityda, .

Lemma 3 implies that u,(x, + it) — 0 as |z, + 9t| — + oo, uniformly on
RX[r, + o) for any r > 0. It follows from [3, Theorem 1] that the inner
integral is an extended real-valued, decreasing function of %, so that
M (u; t)? is decreasing. This completes the proof.

The Poisson kernel P(z, ) for the domain D is given by

_ 2 I'(n) p(z, 2)"
P(z, 1) o o, D zeD, mnedD.
H, ,:= RxC"* becomes the Heisenberg group under the group operation,
2y = (@ + ¥y, +2Imz, w), 2" +w') forx = (x, 7)), y = (y, w)eH,_,. If
we put z-w = (x, + w, + 22w’, ') + ]2’} 2" + w') for w= (w, w')eC,
we can write (x, + it + |2'|}, 2’) = x-ite, with e = (1,0, ---, 0)eC*. Since
P(x-ite, y-0) = P(ite, x7*-y-0), we have

S P(x-ite,y-O)dw:S P(ite, u-0du =1, t>0, yeH,,.
Hp—y

Hp—1

LEMMA 5. Put w = H}[h] for heL*(D), 1<p< +w. Let =
P n+14+08)—q'n for p<qg= +. Then

(9) M(u; t) < A(n, p, g, )|kl t7°, t>0.
If p<q= +oo, then
10) M(u;t) =o(t") as t—0%.

If1<p<qg=s +oo, pSA< +oo, then
+oo0 1/2
(an (1, "Muws peoat)” < A, 2, 0,8, VRl -

ProOF. (9): Suppose ¢ = +. For z = (x, + it + ¢z’ 2’)e D, we
have H¥(z, w) £ C(n, )t~ ""*9o(w, w)’, weD, by (8), so |u(z)” = C(n,
Nt~ *9(||nll, ) and (9) follows. Suppose p <q < +c. Note that
M,(u; t)* < (C||h||, g~ 022 M (u; t).  For z = (w, + it + 1/}, 2’) and
w = (y, + 18 + tjw'}}, w')e D, we see that
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‘o(z’ z)n+1+6
IP(Z w)lz(n+l+6)
t

S 2n+l+dt—(l+6) tn

[(w, — 9, + 2Im{2, w)) + (¢ + [z — w'[')]"
= C(n, ))t""*"P(z, 1) ,
where we have put 7 = (y, + i|w'|}, w') €dD. It follows that

[u@l* < Cn, 3~ PGz, motw, wyhw)rdw

hence M, (u; t)* < C(n, 6)t™"*?(||h]|,,)?, which shows (9). (10): We follow
[4, Theorem 1]. Take ¢ > 0. Choose k,€C,(D) so that ||h — k], ; < e.
Put h,=h —h,. Then uw = H}h]+ Hfh,) =:u, + u, and M(u;t) <
M (u,; t) + M (uy; t). Since M.(u,; t) < |||l and since M..(u,; t) < Ct~nt1+d/rg
by (9), we get (10) in the case ¢ = + . Suppose p < ¢ < +. (9)im-
plies that M, (u,; t) < C||h,||, t~ "~ H2/@- @/ “since h, € L**(D), and M, (u,; t) <
Ct~(mtita/m—w/ag - g0 (10) follows. (11): Define a measure dy on (0, + =)
by dy(t) = t"*%dt and let (Th)(t) = M (u;t)t ™ te(0, + ), where u =
H}[h] for he L**(D). Since u(z) = H,[ho¥T'|(¥(2)), u is continuous on D.
The conclusion of Lemma 3 holds for u, hence M.(u;t) is a continuous
function of t. M,(u;t) is obviously measurable, if p < q < +<. The
inequality (11) can be seen as in Lemma 1.

LEMMA 6. Denote by D, the domain {(z, 2') e CxC**|Im 2, — |2'|* > 0},
1=5ks=n. If feA(D), 0 < p < + o, then

(12) (1, 7@, 0o, 2yde) " < A, k2, O s

PrOOF. For gecA?¥B), we define T}g)(z) = 2®+9'?(go¥)(2)(2, +
gyttt ze D, It is easily seen that ||g|l,, = |¥5gll,, and that ¥}
is an isometry of A?*(B) onto A?% D). Let ¥, be the Cayley transform
of D,onto B,. Then, for z = (2/, 0) € DN L,, we can write ¥'(z) = (¥,(2"), 0").
The Jacobian of ¥, is 2%z, + 1|™*7% For fe A»¥D), take ge A?*B) so
that f = ¥¥g. Applying Lemma 2 to g, we obtain (12).

THEOREM 3. Let fec A™(D),0<p < +oc. Puto=p"'(n+1+439)—
g% for p<q= +o,1<k<mn. Then, for p £\ < + oo, the following
hold:

(13) M(f, k; ) = A(n, k, p, ¢, )| fll,t™ 5 t>0.
(14) M(f, k;t) =o(t™) as t—0".

400 1/2
(15) (1725, B epeo-an) ™ < Alm, b, 9, 0,8, 0115
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Proor. We define R, , by (R, .f)#") = f(#, 0"), 2’ € D,, for fe A>*(D),
1<k=<n—1. Lemma 6 means that R, ,f € A»""* "% D,) with ||R, .f|lp.nrs-r =
A(n, k, p, 0)||f]l,,- Hence it is sufficient to treat the case k¥ = n. Now
we have |f]** < H¥[|f|*"] =:w with (|| |f1?*]l.,,)’ = (lf[l,,,)» by (3). From
M(f;t) £ Myym(u; t)?, t >0, (13) follows; also, (14) and (15) follow, in
the case p < ¢ £ + . Next, rewriting the definition of ||f||,, we obtain

(2 "m0 tpvat) " = £l

This shows (15) in the case p = ¢ = \. The case p = q¢ < A follows from
(13). Finally, (14) can be proved for p = q, as follows: Letting v = |f|?73,
we have M,(f; t)* = M,(v; t)}, a decreasing function of ¢{ by Lemma 4. It
follows that, for ¢ > 0,

StMp(f s 8ps’ds = CM,(f; )7t ;
0
this tends to 0 as t — 0™,

4. The Mackey topology of A™(B), 0 < p < 1. Let fe A*»*¥B), 0 <
p< +oo, and ¢ =1. Then Theorem 2 implies that

(S If(z,; Oll)lcp(l — lzrlz)c(n+1+5)—k—1dzr)1/(cp) g C”f”p,a s
By

an extension of Lemma 2. In particular, we have |/fll. cmsrto—nt =
Cl|fllps so AP¥(B)c Aewentita-n—y(B)  This shows that Condition (1) of
the proof of [9, Theorem 3] is satisfied. Moreover, A?’(B) is an F-space
with (A?’(B))* separating points of A#»(B), by [7, (19)]. Thus, in the
following, it suffices to see that Condition (2) in the proof of [9, Theorem
3] is satisfied.

THEOREM 4. The Mackey topology of A?*B), 0 < p <1, s induced
by the topology of A*(B), 0 = p'(n +1+68) —n — 1.

PrOOF. Fix g8 > 0. Put (J(w))(z) = J(z, w):= 1 — [w) Kz, w), 2,
we B. Then J(w)e A>(B). We can see that M := sup{||J(w)||,,|we B} <
+oco. Indeed, we have

A — [z}
B|1 — <z’ w>1p(n+1+ﬁ) ’ ‘
where the integral is ~ (1 — |wP)*titi7?nti+d g8 || —>1. Put V={fe
A7 || fll,s < M} and W = {feA™||fll, =1}. We denote by [V] and

[V1], respectively, the absolutely convex hull of V and its A®’-closure and

show that Wc[V]. Take fe W. Then fe A"*, so we can see that f =
K[ f] in the same way as in (1). Since f, —f in A*?’ as r — 1, we need

(W), = 431 — =
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only to show that f,e[V], 0 < r < 1. Now
| £42) = | Joa, w)1 — iy sayiw, zeB.

Let ¢ > 0. Since J(rz, w) is uniformly continuous on B x B, we can choose
closed subsets of B, B;, 1 < j < m, with the interior being mutually dis-
joint, so that UB; = B and |J(rz, w) — J(rz, u)| < ¢ for ze B, w, %€ B;,
1< j=m. Taking arbitrary w; ¢ B; and putting dg(w) = (1 — |w|?)°f(w)dw,
we define S,(z) = 3™, J(rz, w)/(B;). Then S,e[V]and |f,(2) — S.(2)] < e,
ze€ B. This completes the proof.

NoTE. After submission of the manusecript, K. Izuchi showed that
Theorem 2 can directly be derived from [7, Theorem 4] by computation,
without any use of H,. In this connection, we note here that [7, Theorem
4] is, conversely, an easy consequence of Theorem 2 and others. This
method seems to have an advantage of being applicable in the setting of
the domain D. We shall state the result as follows:

THEOREM 5. Suppose fe H*(D),0 < p< +c. Let pSqg= + (p<
q, when k=mn in QA7) and (18)) and put a = p™'n — ¢k, 1 £k £ n.
Then the following hold.

(16) M(f, k;t) < A, k, p, Q|| fll,t7*, t>0.
amn M/(f, k;t) =o(t™) as t—0.
(18) For p =\ < +oo,

+o0 1/4
(1,75, 1 peat) " < A, &, 5, @, WIS, -

Proor. First suppose p < ¢ £ + o, and take ¢ > 1 so that ¢p <q.
Then [7, Theorem 2, (4)] implies that H?(D)c A*»*" YD) with || f|cp,en-n-1 =
C(m, ¢)||fll, for fe H?(D). Theorem 3, (13) shows that M/(f, k;t) <
A, k, o, OISt 1=k=<n. Next let p=qgand 1=k=<n-1, (16)
being trivial in the case k = ». Then [7, Theorem 2, (4)] again implies
that B,.f€A»"*XD,) with |Ry.flpnss= Cln, B)|Sfl, for feH~D).
Applying Theorem 38, (18) to R,.f on D, we obtain M,(f, k;t) <
C(n, k, »)||fll,t7= (17) and (18) can similarly be verified.
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