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POSITIVE KERNEL FUNCTIONS AND BERGMAN SPACES
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Introduction. We denote by B theo pen unit ball in Cn, n ^ 1. The
Poisson kernel for B is obtained from the Cauchy kernel. In the same
way, we can define a positive kernel function, HδJ from the well-known
kernel which is treated in [5]. Hδ has the reproducing property for the
functions in the weighted Bergman space AP>\B), 1 ^ p < +oo. Using
this kernel we shall derive Hardy-Littlewood inequalities for APi\B), just
as in HP(B), where the Poisson kernel plays an essential role ([7]). Similar
results will be obtained in the setting of the generalized half plane in
C\ As an application of the inequality, we shall treat the Mackey to-
pology of APtδ{B), 0 < p < 1, extending the one variable result ([9]).

1. Positive kernels, (z, w) will denote the usual inner product for
z, weCn with \z\2 = (z,z). We fix δ > - 1 throughout. Let K9(z, w) =
Λ ( l - \w\2)δ(l - {z, w))-{n+1+δ), z, weB, where

- (\a -
here, dw denotes Lebesgue measure on Rin. We define a positive kernel
Hs by

w)._ K,(z, w)Ks{w, z) _ Aoq - |s|'
W ) - Kι(z,z) 11 - (z,

We shall write

= ί Hs(z, w)f(w)dw , z e B ,
JB

when the integral makes sense. For 0 < p < +°°, LPi\B) will denote
the class of measurable functions f on B such that

11/11,,.:=

and APt\B) will mean the class of holomorphic functions which belong to
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Lp'δ(B). We note that the following implies Hδ[l](z) = 1, zeB.

THEOREM 1. Let 1 ^ p < + °°. Γfeew
(1) f(z) = Hδ[f](z), zeB, if feA»9(B).
(2) u(z) <I ίZ ÎVKz), 2 e B, if ue LPtδ(B) and u is plurisubharmonic.

PROOF. It is enough to suppose p — 1, since LPfδdL1>δ. Fix an ar-
bitrary ε > 0. Then, for any feLlfδ(B), we have

S
where the inner integral is a bounded function of w on B, by [8, 1.4.10];
thus ||flί[/]||ifJ+, ^ C| |/ | | M . The same method as in [2, Theorem 3, (ii)] shows
that if ge Ap'\B)y 0 < p < + «>, andgr(z) = g{rz), 0 ^ r < 1, then \\gr-g\\Ptδ->
0 as r—>1. Now if3 has the reproducing property for the functions in
H°°(B) ([8, 7.1.2]). Hence, we can see from a standard argument that
/ = Hδ[f] for feA(B), the ball algebra. Take feAι>\B). Then we have
\\fr — Hδ[f]\\1>δ+ε <; C\\fr — / | | M , so the continuous functions / and Hδ[f]
coincide on the whole of B. Next we prove (2). For a fixed zeB, take
φzeAut(B) as in [8, 2.2.1]. Then 0,(0) = z and φz o ^ = identity. Since
M o ^ is subharmonic on B, it follows from integration in polar coordinates
that

(uoφM)(ξ)(l - \ξ\ηδdζ ^ u(z)\dB\\W\l - r2)δdr .
3 JO

Making the change of variable ξ = φz(w), weB, we have, by [8, 2.2.2
and 2.2.6],

/ ^ \-.\9.\/t I...I2N / t 1-12 \π+l

J dw .

(2) follows from these and the proof is completed.

We denote by D the domain {(z19 z') e Cx C71'1 \ Im zx - |«'|2 > 0}. This
is the upper half plane if n = 1. The Cay ley transform Ψ, defined by
^(Zi, , s») = (wlf , ^ J with Wj = («! — i){z1 + i)" 1 and wy = 2zj(z1 + ΐ)"1,
2 ^ i ^ n, maps D onto 1? biholomorphically. We have 1 — (Ψ(z), Ψ(w)} =>

- up = α - w y - M ) , d i = ( i - w

2p(z, €̂7)((̂ 1 + i)(Wi + i))"1, ^, weD, where |0(z, w) = i(wx — zλ) — 2<«', w').
The Jacobian of f is 22 n |^ + i|-2n"2. For ζ, ξ eB, put ζ = Ψ(z), ξ = y(w),

Then

, w)δ

 d .

the kernel occurring on the right side will be denoted by Hf{z, w). If
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flf(ζ) is a measurable function on B, then we can write Hδ[g](Ψ(z)) =
Hf[g o Ψ](z), zeD. In particular, we have Hf[l](z) = 1 for any zeD. We
denote by LPiδ(D), 0 < p < +oo, the class of measurable functions / on
D such that

UP

Ap>δ{D) will denote the class of holomorphic LPiδ(D)-ίunctions. Take fe
APfδ(D). Then from \z± + i\ > 1, z e J9, we see that

- \w\ydw < 22n+δ(\\f\\P)δy < + o o ,

i.e., foψ~1eAp'δ(B). Thus, for l ^ p < + ° ° , we have f(z) =
Hδ[f °Ψ~ι](Ψ(z)) = iϊa*[/](z), zeZλ Similarly, if % is plurisubharmonic and
ueLp>δ(D), 1 ^ p < +°o, then we have

2. Hardy-Littlewood inequalities for APiδ{B). For a continuous func-
tion / o n JB, 1 ^ A; ̂  n, and 0 <̂  r < 1, we define means Mq(ff k; r),
0 < q ^ +oo, as follows:

Λf»C/;Λ;r) = max|/(rC',0'OI,

Mg(/, k; r) = (\ \f(rC, O")\*dσk(ζ'))1/Q , 0 < q < + oo ,

where J5fc and c?i7fc denote, respectively, the unit ball in Ck and the surface
measure on dBk. We shall simply write dσ instead of dσn. Also, Mq(f; r)
will mean Mq(f, n r).

LEMMA 1. Let 1 ^ p < +00 and put u = Hδ[h] for h e LPtδ(B). Let
σ = p~\n + 1 + S) — q~γn for p ^ q ^ + 00. Then

( 4 ) Mq(u; r) ^ A{n, p, q, δ)\\h\\,,9(l - r)~σ , 0 ^ r < 1 .

/ / 1 < p < q <Ξ + 0 0 , p < j λ < + ° ° , ίfce^

1 /5

^ A(n, p, q, δ, \)\\h\\Pt9 .

PROOF. (4): Suppose q = + 00. Let ζ 6 3JS, 0 ^ r < 1. Since ίί3[l](z) = 1
for any zeZ?, Jensen's inequality shows that \u(rζ)\p < 2n+1+δA0(l —
r)"< n + 1 + ί )(| |λ| |1, ί J)

p, and (4) is clear. Suppose p ^ q < +°o. Then we have,
by (4) with q = + °o,

Jlff(tt; r) ^ (C||λ||, f i(l - r)~
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In the second factor, we see that

\u(rζ)\>dσ(Q
B

^ Λ(l - rr+1+δ\ (\h(w)Πl - \w\2)δ\ - /
}B\ }dB |l — <rζ, w)\

The inner integral, I(w, r), is M (1 - \rw\2)"{n+2+2δ) as \rw\->l, by [8, 1.4.10],
hence I{w, r) ^ C(l - r

2 Γ ( n + 2 + 2 δ ) , 0 ^ r < 1. Thus (4) follows from these
estimates. (5): We define a measure dv on [0, 1) by dv(r) = (1 — r)n+δdr.
Let l^p ^q, it q < + °°, and 1 ^ p < + oo, if <? = +oo. For h e LP>\B),
putting u = Hδ[h], we define (Th)(r) = Mq(u; r)(l - r)'n/q

f 0 ^ r < 1. The
rest of the proof is quite similar to the case k = n in [7, (17)].

For a function g on Bk, let (En>kg)(w\ w") = g(w')9 (w\ w") 6 B. For
a function / on B, let (Rk,J)(w') = f(w', 0"), w' e £*.

LEMMA 2. Le£ / e AP>'(J5), 0 < p < + oo, and 1 <; fc ̂  n. Then

β \f{z\ O")K1 - \zr)n+δ-kdz') ^ A(n, k, p, δ)\\f\\Ptδ .

Moreover, for 1 ^ k ^ n — lf En>k becomes a linear isometry of Ap'n+δ~k(Bk)
into APfδ(B), and Rkf7l is a norm-decreasing operator of Ap>δ(B) onto
A*'n+δ-\Bk).

PROOF. Suppose 1 <̂  k ^ n — 1. We write Lk for the space Ckx
{0}x ••• x{0}cCn and consider measures on B: dμk{z) = (1 - \z'\2)n+δ~kdz',
z = {z\ 0") e B Π LkJ and dμδ(z) = (1 - \z\2)δdz, zeB. For ξ 6 35, let iΓ(f, r) =
{ZGJB| |1 — (z, ξ)\ < r2}. It is enough to see that there is a constant C,
independent of ξ, r, such that μk{K(ζ, r)) ^ Cμδ(K(ξ, r)), since this implies
(6) by [1] or [6]. First suppose 0 < r ^ 2~1/2. We shall show that μk(K(ξ, r)) ^
Cr2 ( n + 1 + δ ), f edB, just as in [7, Theorem 1, (2)]. Put a = n + δ - k and
t = |f'|, where ξ = (f, ξ") with ? e Ck. Then

Ik(r):= μk(K(ξ, r)) = C(n, k, 8)\ (1 - M

where G" = {w.eB.l |1 - ίwj < r2}, and then we get /fc(r) ^ Cr2 ( n + 1 + 3 ) by
the change of variable w1 = φ(x) = t~\l — r2λ"x), xeC — {0}. Next, letting
# = {wx e J?! 111 - wj < r2}, we have

> ( (2 Re x - r f)"+l~ΊλΓ2( l l+1+l)<iλ

with £" = {xeC\ \χ\ > 1, Reλ > 2"V}. Since ^ ^ 2, the above integral
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exceeds the integral of (2 Re x - 2~1)n+δ-1|λΓ2(n+1+3) over the domain {|λ| > 1,
Reλ > 4"1}, thus showing that μ9(K(ξ, r)) ^ Cr2{n+1+δ). If r > 2"1/2, then
μk(K(ξ, r)) ^ μk(BΠLk) ^ Cμδ(K(ζ, 2~1/2)) ^ Cμ9(K(ξ, r)) for any £ e 8B, hence
the desired inequality holds for r > 0. Next, let g e Ap'n+δ~k(Bk). Then,
by Fubini's theorem,

( \(En,kg)(w)\p(l - \w\2)δdw = C\ \g(w')\p(l - \w'\2)n+δ-kdw' .
JB JBk

Rk>n is continuous by (6) and onto, since Rk)n°Entk = identity.

THEOREM 2. L<rt / e A ' 'CB), 0 < p < + oo. Put σ = p~\n
q-'k for p <ίq ^ +00, 1 <; k ^ n. Then, for p ^ λ < + ~ ,

( 7 ) ( [M g (/, fe; r W - r)^dr)m <ί A(n, k, p, q, δ, \)\\f\\,,. .

σ is the best possible exponent. (7) does not hold, when 0 < q < p.

PROOF. It is sufficient to assume k = n, because the other cases can
be settled by Lemma 2. First suppose p < q <̂  +00, p<^λ,< +00. Since
\f\*neU>\B), we have |/(z)|p / 2 ^ iWl p / 2 ](z) = : u(z), zeB, by (2), hence
M//; r ) ; ^ Af(2ff/l0(w; r)2λ/p. Taking 2, p"1(2g), and p~\2χ), respectively, for
p, g, and λ in (5), we get (7). In the case p = g = λ, we can derive (7)
from the definition of | |/ | |P f β, as we have obtained (13) from (14) in [7,
Theorem 4]. If p = q < λ, then (7) follows from [7, (19)]. Now the func-
tion (1 - zxy^ β>0, belongs to Ap>δ(B) if and only if β < p~\n + 1 + 8).
Let 0 <a<σ, 0 <p ^q^ +00. Then f(z): = (1 - ^ Γ " - ^ e Ap δ(B)
and Mq(f k; r) <**> (1 — r 2 )" α as r —> 1. Thus the integral in (7), with σ
replaced by α, becomes + 00. The last assertion can be verified by taking
the functions z\\ j = 1, 2, , as in the proof of [7, Theorem 4].

3. Hardy-Littlewood inequalities for Ap>δ(D). We denote by Gr the
domain {(z19 z')eD\Imzγ - \zj > r}, r > 0.

LEMMA 3. Let u be plurisubharmonic on D, u ^ 0, and ueLp>δ(D),
1 ^ P < + ° ° . Then u(z)->0 as \z1\-^+oof uniformly on Gr for any
r > 0.

PROOF. We can suppose p = 1, since up is plurisubharmonic. Let
dμ(w) = |θ(w, w)δn{w)dw, weD. Then, in view of (3), it is enough to
verify the assertion for the function v defined by

v(z) = \ ρ(zy z ) n + 1 + δ \ ρ ( z , w ) \ - 2 { n + 1 + δ ) d μ ( w ) , z e D .
JD

Pick r > 0 and fix ε > 0. Let Qm = {{yx + is + i\w'\\ w') e Cx C71'1 \ [yj < m,
0 < s < m, \w'\ < m). We can take m so that μ(D\Qm) < ε and, then,
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T, S, and R so that T~ι'+1+nμ(Qm) < ε, Tn+1+!(S - mTi{n+1+>)μ(QJ < & with
S>m, and Tn+1+δ(R - m(l + 2S)Γ2<'!+1+s)μ(QJ < e with # > m(l + 2S).
Now take an arbitrary z = (z1; z') 6 Gr, zx = xx + it + i\z'\\ such that
IzJ2 > R1 + (T + S2)2. Then we have, for any w = (y, + is + i\w'\\ w') 6 D,

( 8 ) P(z, zY+
\ρ(z,

Qn+1+δ+n+l+δδ+n

(t + β

hence

+ Me .

Suppose t > T. Then

v(z) ^ \ 2n+1+δt~{n+1+δ)dμ(w) + Mε< (2n+1+δ + M)ε .
JQm

Suppose r <>t^ T. If |z'| > S, then

If ^ S, then Î J > R, hence from

».ix,-i<, +

M ε < (2n M)ε'

we have v(z) < (2n+1+δ + ikf)e, completing the proof.

Let / be a complex-valued function on D such that |/ | is upper semi-
continuous. We define means Mq(f, k; t), t > 0, for 0 < q ^ +00 and
1 <J k ^ n as follows:

/; fc; ί) = sup | it

Φ

for 0 < q < + 00. Λfff(/, fc; t) is an extended real-valued function on (0,
+ 00). Mq(f; t) will mean Mg(f, n; t).

LEMMA 4. Let u be plurisubharmonic on D, u^ 0, and ueLPtδ(D),
1 ^ V < + °° 77&ew, /or v ^ q ^ + 00, J|fff(t&; t) is a real-valued decreasing
function of t.

PROOF. Suppose q = +00. By Lemma 3, the maximum principle for
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subharmonic functions holds on the domain Gr and M^u; r) is identical
with the supremum of u(z) taken over Gr. This proves the assertion.
Suppose p <; g < +00. The fact that Mg(u; t) < + 00 will be seen from
(9) in the next Lemma 5, so we show that Mq is decreasing on (0, +00).
For a fixed z'eCn~\ put uz,{Xi + it) = u(x, + it + i\z'\\ z')q, (xlf t)eBx
(0, +00). Then uz> is subharmonic on Λx(0, +00) and we can write

Mq (u; t)q =\ dz\ u,'faι + it)dxx .

Lemma 3 implies that uM>(%i + it)-*0 as \xλ + it\-^ + °° f uniformly on
Rx[r, +00) for any r > 0. It follows from [3, Theorem 1] that the inner
integral is an extended real-valued, decreasing function of t, so that
Mq(u; t)q is decreasing. This completes the proof.

The Poisson kernel P(z, η) for the domain D is given by

j y n l : = R x Cn~x becomes the Heisenberg group under the group operation,
x V = (a?! + y1 + 2 lm(z\ w'), zf + wf) for x = (x19 z'), y = (ylf w') e Hn^. If
we put x w = fa + Wi + 2i(w', z'} + i\z'\\ z' + w') for w = (wlf w')eCn,
we can write (xλ + it + ί\z'\2, zr) = x ite, with e = (1, 0, , 0) e C\ Since
P(x ite, i/ 0) = P(iίβ, α?~x 2/ 0), we have

P(x ite, y 0)dx = ί P(i£e, u 0)du = 1 , ί > 0

L E M M A 5. P u ί w = ff?[Λ] / o r heLp>δ(D), 1^P<+™. Let σ =
p - 1 (n- + 1 + δ) — g " 1 ^ / o r p ^ q ^ + °°. TΛew

( 9 ) Mg(u; ί) ^ A(n, p, q, δ)\\h\\Ptit- , t > 0 .

If P < q 1=k + °°, ί^β^

(10) ΛΓβ(w; ί) = o(Γσ) as t -> 0+ .

If 1 < p < q ^ + 0 0 , P ^ λ < + 0 0 , ίλβw

β Mf(tt; tγt^dή £ A(n, p, q, 8, \)\\h\\,ιt .

PROOF. (9): Suppose q = + <*>. For z = {x1 + it + i|2'|2, 2') 6 D, we
have Hf(z, w) ^ C(Λ, δ)rin+1+ι)ρ(w, w)\ weD, by (8), so \φ)\> £ C{n,
δ ) t - i n + ι + ι ) ( \ \ h \ \ p , , ) p a n d ( 9 ) f o l l o w s . S u p p o s e p ^ q < + ™ . N o t e t h a t
Mg(u; ty S aC\\h\\,jt-ln+1+n/'γ-'M,(u; t)". For z = fa + it + i|«T, 2') and

w = (2/j + is + ilw'l2, w') e D, we see that
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p(z, z)n+1+δ

\p(z, w)|«"+ι+«

= [(»i -2/1 + 2 im<y, w'yy + (t + \zf - wT)2]π

= C(n, δ)t~a+δ)P(z, η) ,

where we have put η = (^ + i|w'|2, w') edZλ It follows that

M*)| p ^ C(n, δ)Γ{1+δ)\ P(z, η)ρ(w, w)δ\h{w)\pdw ,

hence ilfp(^; ί)p ^ C(n, δ)r(1+δ)(li/?ΊIP>δ)
p, which shows (9). (10): We follow

[4, Theorem 1]. Take ε > 0. Choose h.eCXD) so that \\h - Λ J ^ < ε.
Put h2 = h - hx. Then u = Ht[hλ] + Hf[h2] =:ut + u2 and Mq(u; t) ^
-MgK; ί) + Mq(u2; t). Since M ^ ^ ; ί) ^ I^JU and since MJiu^ t) < CΓ{n+1+δ)/pε
by (9), we get (10) in the case q = +00. Suppose p < g < +00. (9) im-
plies that Mq(ux\ t) ^ C||fe1||9>3ί~

(u+1+δ)/9)~(n/9)), since h± e L9fδ(D), and Mq(u2; t) <
Cr{{n+1+δ)/p)-{n/q))ε, so (10) follows. (11): Define a measure dv on (0, +00)
by dv(t) = tn+δdt and let (Γλ)(t) = Mq(u; t)t~n/q\ ί e (0, +00), where w =
ίZ"δ*[Λ] for heLp>δ(D). Since %(«) = £Γ3[Λo?r~1](?Γ(2;)), 6̂ is continuous on D.
The conclusion of Lemma 3 holds for u, hence M^u; t) is a continuous
function of t. Mq(u; t) is obviously measurable, if p ^ g < +00. The
inequality (11) can be seen as in Lemma 1.

L E M M A 6. Denote by Dk the domain {(z19 z') eCxC*"1 \ϊmz1— |z ' | 2 > 0},

1 ^ k ^ n . IffeAp>δ(D), 0 < p < + 0 0 ,

(12) ( L j / ( ^ °")l W ' «0"+|-*d2')1/' ^ A(Λ, A:, p,

PROOF. For ίfGA^(β), we define (y?ff)(«) = 2{2n+δ)/p(goψ)(z)(z1 +
i ) " ! l + 1 + l ) / f , ^ e D . It is easily seen that ||flf||M = ||Γ,*ffll,,ι and that Ψf
is an isometry of APiδ(B) onto Ap>δ(D). Let Ψk be the Cayley transform
of Dk onto Bfc. Then, for z = («', 0") e D Π Lfc, we can write Ψ(z) = (^(2'), 0").
The Jacobian of ffc is 22fc|^ + i\~2k-\ For / e 4 ^ ( ΰ ) , take geAp δ(B) so
that / = Ψfg. Applying Lemma 2 to g, we obtain (12).

THEOREM 3. Let fe Ap>δ(D), 0 < p < +00. p ^ σ = p - 1 ^ + 1 + g) -
g-1fc /or p <ί q ^ +00, l ^ & ^ n . ΓΛβ^, /or p tίx < +00 f the following
hold:

(13) ikfg(/ k; t) ^ A(n, k, p, q, δ)\\f\\PJt- , ί > 0 .

(14) Mq(f, k; t) = o(Γ ) as t -> 0+ .

(15)
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PROOF. We define Rktn by (RkJ)(zr) = f(z', 0"), z* e Dk, for fe A*>δ(D),
l^k^n-1. Lemma6means that RkJ e Ap>n+δ~k{Dk) with ||Rk>nf\\Ptn+δ_k^
A(n, k, p, δ)\\f\\pa. Hence it is sufficient to treat the case k = n. Now
we have \f\>» s£ £Γ?[|/H = : u with (|| | / H | M ) 2 = ( | | /IU P , by (3). From
Mq(f; t) ̂  M(2q/P)(u; t)Vp, t > 0, (13) follows; also, (14) and (15) follow, in
the case p < q <; +oo. Next, rewriting the definition of | |/| |P i ί, we obtain

(2'\*~M,(f; tyt'dtj* =

This shows (15) in the case p = q = λ. The case p — q < λ follows from
(13). Finally, (14) can be proved for p = q, as follows: Letting v = \f\p/2,
we have Mp(f; t)p = M2(v; tf, a decreasing function of t by Lemma 4. It
follows that, for t > 0,

Ά/Γ ( f Q\P<!δdQ >

lVLp\J , oy O U/σ ^

0

this tends to 0 as t —> 0+.

4. The Mackey topology of Apδ(B), 0 < p < 1. Let / e i ^ ΰ ) , 0 <
< +oo, and c ̂  1. Then Theorem 2 implies that

j B ( l i
an extension of Lemma 2. In particular, we have ||/||βPiβ(n+i+β)-n-i ^
C||/||p,3, so A*>\B)(zAc*>c{n+1+δ)-n-\B). This shows that Condition (1) of
the proof of [9, Theorem 3] is satisfied. Moreover, Ap>δ(B) is an F-space
with (A*>\B)Y separating points of A*>\B), by [7, (19)]. Thus, in the
following, it suffices to see that Condition (2) in the proof of [9, Theorem
3] is satisfied.

THEOREM 4. The Mαckey topology of APtδ(B), 0 < p < 1, is induced
by the topology of AUσ{B), σ = p~\n + 1 + S) - n - 1.

PROOF. Fix β> σ. Put (J(w))(z) = J(z, w): = (1 - \w\YσKβ(z, w), z,
weB. Then J(w) e AP>\B). We can see that M: = sup{| \J(w)\\Ptδ \weB}<
+ oo. Indeed, we have

where the integral is « (1 - \w\ηn+i+s-Pu+i+β) a s | w | _ > i β p u t F = {/e
A 1111/11,,, ̂  If} and T7= {/e A ^ 11|/||1)<7 ^ 1}. We denote by [F] and
[V], respectively, the absolutely convex hull of V and its Ap'3-closure and
show that TFcjT]. Take feW. Then feA1*?, so we can see that / =
Kβ[f] in the same way as in (1). Since fr —>/ in Ap>δ, as r -> 1, we need
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only to show that fr e jT], 0 ^ r < 1. Now

fr(z) = ( J{rz9 w)(l - \w\2)σf(w)dw , z e B .

Let ε > 0. Since J(rz, w) is uniformly continuous on B x B, we can choose
closed subsets of B, Bj9 1 ^ i ^ m, with the interior being mutually dis-
joint, so that UBj = B and \J(rzf w) — J(rz, u)\ < ε for zeB, w, ueB3,
1 ^ 3 ̂  m. Taking arbitrary wy 6 1?, and putting dμ(w) = (1 — \w\*)σf(w)dw,
we define S£z) = Σ7=i J(rz, wό)μ{Bά). Then S£ 6 [F] and |/r(z) - Se(z)| < e,
u e 5 . This completes the proof.

NOTE. After submission of the manuscript, K. Izuchi showed that
Theorem 2 can directly be derived from [7, Theorem 4] by computation,
without any use of Hδ. In this connection, we note here that [7, Theorem
4] is, conversely, an easy consequence of Theorem 2 and others. This
method seems to have an advantage of being applicable in the setting of
the domain D. We shall state the result as follows:

THEOREM 5. Suppose feHp(D), 0 < p < + «>. Let p^q^+^=>(p<
q, when k = n in (17) and (18)) and put a = p~γn — q~ιk, 1 5̂  k ^ n.
Then the following hold.

(16) Mq(f, k; t) ^ A(n, k, p, 9) | | / | | , r β , t > 0 .

(17) Mq(f, k; t) = o(t~a) as t -> 0+ .

(18) For p^X< + oo,

(S+CΛf,(/, k; t)Ψ"-ιdt)m 5S A(n, k, p, q, x)\\f\\r
0 /

PROOF. First suppose p < q <* + oo, and take c > 1 so that cp < q.
Then [7, Theorem 2, (4)] implies that Hp(D)c.Acp>cn~n-\D) with U/IU™-*-! ^
C(Λ, (Oll/H, for feHp(D). Theorem 3, (13) shows that Mg(f,k;t)^
A(n, k, p, q)\\f\\pr

a, 1 ^ k £ n. Next let p = q and 1 ^ k ^ n - 1, (16)
being trivial in the case k = n. Then [7, Theorem 2, (4)] again implies
that RktJeAp>«-k-\Dk) with Ili^JΊU-*-! ^ Cfo fc)||/||, for feHp(D).
Applying Theorem 3, (13) to Rk,nf on Dk, we obtain Mp(f, k; t) ^
C(n, k, p)\\f\\pr

a. (17) and (18) can similarly be verified.
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