ROOT STRINGS WITH THREE OR FOUR REAL ROOTS IN KAC-MOODY ROOT SYSTEMS

Dedicated to Professor Eiichi Abe on his sixtieth birthday

Jun Morita
(Received June 30, 1987)
0. Introduction. A characterization and a presentation of a (universal) Kac-Moody group over a field (of any characteristic) have been given by Tits [6]. Such a presentation, which is a natural generalization of Steinberg's one for a (simply connected) split semisimple algebraic group over a field (cf. [5]), is conjectured by E. Abe and established by J. Tits. The most interesting part of the presentation is the so-called "commutation relation", which is deeply related to the root strings and whose explicit description is given in [4]. In this paper, we will discuss certain root strings in Kac-Moody root systems, and give some direct applications to the associated Kac-Moody groups. Our main result is as follows.

Let $A=\left(\alpha_{i j}\right)$ be an $n \times n$ generalized Cartan matrix, Δ the associated root system, and $\Delta^{\text {re }}$ the set of real roots. Put $r(\alpha ; \beta)=\# \mid\{\beta+k \alpha \mid k \in \boldsymbol{Z}\} \cap$ $\Delta^{\mathrm{re}} \mid$ for $(\alpha, \beta) \in \Delta^{\mathrm{re}} \times \Delta$. Then the following two conditions are equivalent.
(1) $r(\alpha ; \beta)=3$ or 4 for some $(\alpha, \beta) \in \Delta^{\text {re }} \times \Delta$.
(2) $a_{i j}=-1$ and $a_{j i}<-1$ for some $i, j(1 \leqq i, j \leqq n)$.

As a corollary, we can simplify the Steinberg-Tits presentation of the associated Kac-Moody group in the case when A has a certain property.

1. Notation and lemmas. Let $A=\left(a_{i j}\right)_{i, j \in I}$ be an $n \times n$ generalized Cartan matrix, ($\mathfrak{h}, \Pi, \Pi^{\vee}$) a realization of A, and $\mathfrak{g}(A)$ the Kac-Moody Lie algebra (over C associated with A), where $I=\{1,2, \cdots, n\}, \Pi=$ $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}, \Pi^{\vee}=\left\{h_{1}, \cdots, h_{n}\right\}$ and $\alpha_{i}\left(h_{j}\right)=a_{j i}$ (cf. [1]). We denote by W the Weyl group with simple reflections w_{1}, \cdots, w_{n}. Let Δ be the root system of $\mathfrak{g}(A)$ with Π as simple roots, $\Delta^{\mathrm{re}}=\{w(\alpha) \mid w \in W, \alpha \in \Pi\}$ the set of real roots, Δ_{+}the set of positive roots, and $\Delta_{+}^{\text {re }}$ the set of positive real roots. For each $\alpha \in \Delta^{\mathrm{re}}$, let $h_{\alpha} \in \mathfrak{G}$ be the dual root of α. Then both $\alpha\left(h_{\beta}\right)$ and $\beta\left(h_{\alpha}\right)$ have the same sign (one of $+, 0,-$) for all $\alpha, \beta \in \Delta^{\mathrm{re}}$ (cf. [3]). Put $\operatorname{ht}(\alpha)=\sum_{k=1}^{n} c_{k}$, called the height of α, if $\alpha=\sum_{k=1}^{n} c_{k} \alpha_{k} \in \Delta$. Let $S(\alpha ; \beta)=\{\beta+k \alpha \mid k \in \boldsymbol{Z}\} \cap \Delta$ for $(\alpha, \beta) \in \Delta^{\mathrm{re}} \times \Delta$. This $S(\alpha ; \beta)$ is called
the α-string through β. Let $r(\alpha ; \beta)=\#\left|S(\alpha ; \beta) \cap \Delta^{\text {re }}\right|$ for each $(\alpha, \beta) \in$ $\Delta^{\text {re }} \times \Delta$. Then one sees $r(\alpha ; \beta)=0,1,2,3$ or 4 . Our interest in this paper (in view of Steinberg-Tits presentation) is when $r(\alpha ; \beta)$ is 3 or 4 for some $(\alpha, \beta) \in \Delta^{\mathrm{re}} \times \Delta$. Set $R=\left\{(\alpha, \beta) \in \Delta^{\mathrm{re}} \times \Delta^{\mathrm{re}} \mid \alpha-\beta \notin \Delta, r(\alpha ; \beta)=3\right.$ or 4$\}$ and $R_{+}=R \cap\left(\Delta_{+}^{\mathrm{re}} \times \Delta_{+}^{\mathrm{re}}\right)$. Then $(\alpha, \beta) \in R$ implies that $\alpha\left(h_{\beta}\right)=-1$ and $\beta\left(h_{\alpha}\right)<-1$.

Lemma 1. Let $i, j \in I$, and $\alpha=\sum_{k=1}^{n} c_{k} \alpha_{k} \in A_{+}$. Suppose $\alpha_{i}\left(h_{j}\right)=$ $\alpha_{j}\left(h_{i}\right)=-2$.
(1) In general, $\alpha\left(h_{i}+h_{j}\right) \leqq 0$.
(2) If $\alpha\left(h_{i}+h_{j}\right)=0$, then $\alpha\left(h_{i}\right)=-\alpha\left(h_{j}\right) \equiv 0(\bmod 2)$.

Proof. Put $\alpha^{\prime}=\sum_{k \neq i, j} c_{k} \alpha_{k}$. Since $\alpha^{\prime}\left(h_{i}\right) \leqq 0, \alpha^{\prime}\left(h_{j}\right) \leqq 0$ and $\left(c_{i} \alpha_{i}+\right.$ $\left.c_{j} \alpha_{j}\right)\left(h_{i}+h_{j}\right)=0$, we obtain $\alpha\left(h_{i}+h_{j}\right) \leqq 0$. Suppose $\alpha\left(h_{i}+h_{j}\right)=0$. Then $\alpha^{\prime}\left(h_{i}\right)=\alpha^{\prime}\left(h_{j}\right)=0$. Therefore $\alpha\left(h_{i}\right)=\left(c_{i} \alpha_{i}+c_{j} \alpha_{j}\right)\left(h_{i}\right)=2\left(c_{i}-c_{j}\right) \equiv 0(\bmod$ 2).

Lemma 2. Let $i, j \in I$, and $\alpha=\sum_{k=1}^{n} c_{k} \alpha_{k} \in \Delta_{+}$. Suppose $\alpha_{i}\left(h_{j}\right)=-4$ and $\alpha_{j}\left(h_{i}\right)=-1$.
(1) In general, $\alpha\left(2 h_{i}+h_{j}\right) \leqq 0$.
(2) If $\alpha\left(h_{i}\right)=-1$ and $\alpha\left(h_{j}\right)=2$, then $\alpha=\alpha_{j}+m \xi$, where $m \in Z_{\geq 0}$ and $\xi=\alpha_{i}+2 \alpha_{j}$.

Proof. By the same reason as in Lemma 1(1), we see $\alpha\left(2 h_{i}+h_{j}\right) \leqq 0$. Suppose $\alpha\left(h_{i}\right)=-1$ and $\alpha\left(h_{j}\right)=2$. Then $\alpha^{\prime}=\sum_{k \neq i, j} c_{k} \alpha_{k}$ must be zero and $\alpha=c_{i} \alpha_{i}+c_{j} \alpha_{j}$, since $\alpha^{\prime}\left(h_{i}\right)=\alpha^{\prime}\left(h_{j}\right)=0$. If $\operatorname{ht}(\alpha)=1$, then $\alpha=\alpha_{i}$ or α_{j}, hence $\alpha=\alpha_{j}$ by the condition. Suppose $\operatorname{ht}(\alpha)>1$. Then $c_{i}>0$ and $c_{j}>0$, and $\left(\alpha-\alpha_{j}\right)\left(h_{i}\right)=\left(\alpha-\alpha_{j}\right)\left(h_{j}\right)=0$. Therefore $\alpha-\alpha_{j}=m \xi$ with $m \in \boldsymbol{Z}_{>0}$.

Lemma 3. Let $i, j \in I$, and suppose $\alpha_{i}\left(h_{j}\right) \cdot \alpha_{j}\left(h_{i}\right)>4$. Put $V=$ $\oplus_{k=1}^{n} \boldsymbol{R} \alpha_{k}$ and $V^{\prime}=\left\{\lambda \in V \mid \lambda\left(h_{i}\right)=\lambda\left(h_{j}\right)=0\right\}$.
(1) $V=\boldsymbol{R} \alpha_{i} \oplus \boldsymbol{R} \alpha_{j} \oplus V^{\prime}$.
(2) If $\mu=b_{i} \alpha_{i}+b_{j} \alpha_{j}+\mu^{\prime} \in V\left(b_{i}, b_{j} \in \boldsymbol{R}, \mu^{\prime} \in V^{\prime}\right)$ with $\mu\left(h_{i}\right) \leqq 0$ and $\mu\left(h_{j}\right) \leqq 0$, then $b_{i} \geqq 0$ and $b_{j} \geqq 0$.
(3) If $\mu \in \Delta_{+}$and $\mu\left(h_{i}\right) \geqq m$ for some $m \in Z_{>0}$, then $\left(w_{j} \mu\right)\left(h_{i}\right) \leqq$ $-(m+1)$.

Proof. For $\mu \in V$, put

$$
b_{i}=\frac{2 \mu\left(h_{i}\right)-\alpha_{j}\left(h_{i}\right) \mu\left(h_{j}\right)}{4-\alpha_{i}\left(h_{j}\right) \alpha_{j}\left(h_{i}\right)}, \quad b_{j}=\frac{2 \mu\left(h_{j}\right)-\alpha_{i}\left(h_{j}\right) \mu\left(h_{i}\right)}{4-\alpha_{i}\left(h_{j}\right) \alpha_{j}\left(h_{i}\right)},
$$

and $\mu^{\prime}=\mu-b_{i} \alpha_{i}-b_{j} \alpha_{j}$. Then $\mu=b_{i} \alpha_{i}+b_{j} \alpha_{j}+\mu^{\prime}$ and $\mu^{\prime} \in V^{\prime}$. If $\mu \in$ $\left(\boldsymbol{R} \alpha_{i} \oplus \boldsymbol{R} \alpha_{j}\right) \cap V^{\prime}$, then $\mu=0$ since $\alpha_{i}\left(h_{j}\right) \cdot \alpha_{j}\left(h_{i}\right)>4$. Hence $V=\boldsymbol{R} \alpha_{i} \oplus$
$\boldsymbol{R} \alpha_{j} \oplus V^{\prime}$. If $\mu\left(h_{i}\right) \leqq 0$ and $\mu\left(h_{j}\right) \leqq 0$, then $b_{i} \geqq 0$ and $b_{j} \geqq 0$. Next suppose $\mu=\sum_{k=1}^{n} c_{k} \alpha_{k} \in \Delta_{+}$and $\mu\left(h_{i}\right) \geqq m$ for some $m \in Z_{>0}$. Put $\mu_{0}=$ $\sum_{k \neq i, j} c_{k} \alpha_{k}$. Then $\mu_{0}\left(h_{i}\right) \leqq 0$ and $\mu_{0}\left(h_{j}\right) \leqq 0$. Therefore, by (2), we can write $\mu_{0}=b_{i} \alpha_{i}+b_{j} \alpha_{j}+\mu_{0}^{\prime}\left(b_{i}, b_{j} \geqq 0, \mu_{0}^{\prime} \in V^{\prime}\right)$. Then $\mu=d_{i} \alpha_{i}+d_{j} \alpha_{j}+\mu_{0}^{\prime}$, where $d_{i}=b_{i}+c_{i}>0$ and $d_{j}=b_{j}+c_{j} \geqq 0$. Hence

$$
\begin{aligned}
\left(w_{j} \mu\right)\left(h_{i}\right) & =\left(\mu-\mu\left(h_{j}\right) \alpha_{j}\right)\left(h_{i}\right)=\mu\left(h_{i}\right)-\mu\left(h_{j}\right) \alpha_{j}\left(h_{i}\right) \\
& =\left(d_{i} \alpha_{i}+d_{j} \alpha_{j}\right)\left(h_{i}\right)-\left(d_{i} \alpha_{i}+d_{j} \alpha_{j}\right)\left(h_{j}\right) \alpha_{j}\left(h_{i}\right) \\
& =2 d_{i}+d_{j} \alpha_{j}\left(h_{i}\right)-d_{i} \alpha_{i}\left(h_{j}\right) \alpha_{j}\left(h_{i}\right)-2 d_{j} \alpha_{j}\left(h_{i}\right) \\
& =\left(2-\alpha_{i}\left(h_{j}\right) \alpha_{j}\left(h_{i}\right)\right) d_{i}-d_{j} \alpha_{j}\left(h_{i}\right)<-2 d_{i}-d_{j} \alpha_{j}\left(h_{i}\right) \\
& =-\left(2 d_{i}+d_{j} \alpha_{j}\left(h_{i}\right)\right)=-\mu\left(h_{i}\right) \leqq-m .
\end{aligned}
$$

Therefore, $\left(w_{j} \mu\right)\left(h_{i}\right) \leqq-(m+1)$.
2. Main result. In this section, we will establish the following theorem.

Theorem. Notation is as in Section 1. Then the following conditions are equivalent.
(1) $r(\alpha ; \beta)=3$ or 4 for some $(\alpha, \beta) \in \Delta^{\mathrm{re}} \times \Delta$.
(2) $a_{i j}=-1$ and $a_{j i}<-1$ for some $i, j \in I$.

Corollary. The following conditions are equivalent.
(1) $a_{i j}=-1$ if and only if $a_{j_{i}}=-1(i, j \in I)$.
(2) $r(\alpha ; \beta)=0,1$ or 2 for all $(\alpha, \beta) \in \Delta^{\text {re }} \times \Delta$.

Proof of Theorem. The condition (2) implies $r\left(\alpha_{j} ; \alpha_{i}\right)=3$ or 4 and, hence, the condition (1). Therefore it is required to show the converse. Suppose $r(\alpha ; \beta)=3$ or 4 for some $(\alpha, \beta) \in \Delta^{\mathrm{re}} \times \Delta$. Then we can assume $(\alpha, \beta) \in R_{+}$. Let $Q=R_{+} \cap W \cdot(\alpha, \beta)$. Then we can also assume $\operatorname{ht}(\alpha+\beta)$ is minimal in Q. Since $\alpha+\beta \in \Delta^{\mathrm{re}}$ and $\operatorname{ht}(\alpha+\beta)>1$, there is $\alpha_{i} \in \Pi$ such that $(\alpha+\beta)\left(h_{i}\right)>0$. Then $\alpha \neq \alpha_{i}$ for $(\alpha+\beta)\left(h_{\alpha}\right) \leqq 0$. If $\beta \neq \alpha_{i}$, then $\left(w_{i} \alpha, w_{i} \beta\right) \in Q$ and $\operatorname{ht}\left(w_{i} \alpha+w_{i} \beta\right)<\operatorname{ht}(\alpha+\beta)$, which is a contradiction. Therefore $\beta=\alpha_{i}$. Since $\alpha \in \Delta_{+}^{\text {re }}$, there are $\alpha_{i_{0}} \in \Pi$ and $i_{1}, i_{2}, \cdots, i_{l} \in I$ ($l \geqq 0$) such that $\alpha=w_{i_{l}} w_{i_{l-1}} \cdots w_{i_{1}} \alpha_{i_{0}}$ and $\beta_{s-1}\left(h_{i_{s}}\right)<0(1 \leqq s \leqq l)$, where $\beta_{0}=\alpha_{i_{0}}, \beta_{s}=w_{i_{s}} w_{i_{s-1}} \cdots w_{i_{1}} \alpha_{i_{0}}(1 \leqq s \leqq l)$, and $\beta_{l}=\alpha$. Let $j=i_{l}$. Then we claim $a_{i j}=-1$ and $a_{j i}<-1$, which is our goal. If $l=0$, then $\alpha=$ $\alpha_{i_{0}}=\alpha_{j}$. Since $\left(\alpha_{j}, \alpha_{i}\right) \in R_{+}$, one sees $\alpha_{i j}=\alpha_{j}\left(h_{i}\right)=-1$ and $a_{j i}=\alpha_{i}\left(h_{j}\right)<$ -1 . Therefore we suppose, from now on, $l>0$, hence $\operatorname{ht}(\alpha)>1$. Then $j \neq i$ since $\alpha\left(h_{i}\right)=-1$ and $\alpha\left(h_{j}\right)>0$. Put $\alpha^{\prime}=\beta_{l-1}$. If $\alpha_{i}\left(h_{j}\right)=0$, then $\left(\alpha^{\prime}, \alpha_{i}\right)=w_{j}\left(\alpha, \alpha_{i}\right) \in Q$ and $\operatorname{ht}\left(\alpha^{\prime}+\alpha_{i}\right)<\operatorname{ht}\left(\alpha+\alpha_{i}\right)$, which is a contradiction. Thus, $\alpha_{i}\left(h_{j}\right)<0$ and $\alpha_{j}\left(h_{i}\right)<0$. If $\alpha^{\prime}\left(h_{i}\right)<0$, then $\alpha\left(h_{i}\right)=$ $\left(w_{j} \alpha^{\prime}\right)\left(h_{i}\right)=\left(\alpha^{\prime}-\alpha^{\prime}\left(h_{j}\right) \alpha_{j}\right)\left(h_{i}\right)=\alpha^{\prime}\left(h_{i}\right)-\alpha^{\prime}\left(h_{j}\right) \alpha_{j}\left(h_{i}\right) \leqq-2$. Hence $\alpha^{\prime}\left(h_{i}\right) \geqq 0$,
since $\alpha\left(h_{i}\right)=-1$.
Case 1: $\alpha^{\prime}\left(h_{i}\right)=0$. In this case, we obtain $-1=\alpha\left(h_{i}\right)=\left(w_{j} \alpha^{\prime}\right)\left(h_{i}\right)=$ $\alpha^{\prime}\left(h_{i}\right)-\alpha^{\prime}\left(h_{j}\right) \alpha_{j}\left(h_{i}\right)=-\alpha^{\prime}\left(h_{j}\right) \alpha_{j}\left(h_{i}\right)$ and $\alpha^{\prime}\left(h_{j}\right)=\alpha_{j}\left(h_{i}\right)=-1$. If $\alpha_{i}\left(h_{j}\right)=-1$, then $\left(\alpha^{\prime}, \alpha_{j}\right)=w_{i} w_{j}\left(\alpha, \alpha_{i}\right) \in Q$ and $\operatorname{ht}\left(\alpha^{\prime}+\alpha_{j}\right)<\operatorname{ht}\left(\alpha+\alpha_{i}\right)$, a contradiction. Hence $\alpha_{i}\left(h_{j}\right)<-1$, so $a_{i j}=-1$ and $a_{j i}<-1$.

Case 2: $\quad \alpha^{\prime}\left(h_{i}\right)>0$. We proceed in several steps.
Step 1. Suppose $\alpha_{i}\left(h_{j}\right)=\alpha_{j}\left(h_{i}\right)=-2$. Then $\alpha\left(h_{i}+h_{j}\right) \leqq 0$ by Lemma 1(1). Since $\alpha\left(h_{i}\right)=-1$ and $\alpha\left(h_{j}\right)>0$, one sees $-1<\alpha\left(h_{i}\right)+\alpha\left(h_{j}\right) \leqq 0$, hence $\alpha\left(h_{i}+h_{j}\right)=0$. By Lemma 1(2), we obtain a contradiction: $-1=$ $\alpha\left(h_{i}\right) \equiv 0(\bmod 2)$.

Step 2. Suppose $\alpha_{i}\left(h_{j}\right) \cdot \alpha_{j}\left(h_{i}\right)>4$. Then $\alpha^{\prime} \in \Delta_{+}$and $\alpha^{\prime}\left(h_{i}\right)>0$ imply a contradiction: $\alpha\left(h_{i}\right)=\left(w_{j} \alpha^{\prime}\right)\left(h_{i}\right)<-1$ by Lemma 3(3).

Step 3. We have just got $\left\{\alpha_{i}\left(h_{j}\right), \alpha_{j}\left(h_{i}\right)\right\}=\{-1,-1\},\{-1,-2\}$, $\{-1,-3\}$ or $\{-1,-4\}$. If $w_{i} w_{j}(\alpha) \in \Delta_{-}^{\mathrm{re}}$, then $\alpha^{\prime}=w_{j}(\alpha)=\alpha_{i}$, hence $\alpha=$ $\alpha_{i}-\alpha_{i}\left(h_{j}\right) \alpha_{j}$ and $-1=\alpha\left(h_{i}\right)=2-\alpha_{i}\left(h_{j}\right) \alpha_{j}\left(h_{i}\right)$, so $\alpha_{i}\left(h_{j}\right) \alpha_{j}\left(h_{i}\right)=3$. If $\alpha_{i}\left(h_{j}\right)=-1$ and $\alpha_{j}\left(h_{i}\right)=-3$, then $\alpha=w_{j}\left(\alpha_{i}\right)=\alpha_{i}+\alpha_{j}$ and $\left(\alpha, \alpha_{i}\right) \notin R$, a contradiction. If $\alpha_{i}\left(h_{j}\right)=-3$ and $\alpha_{j}\left(h_{i}\right)=-1$, then $\alpha=w_{j}\left(\alpha_{i}\right)=\alpha_{i}+3 \alpha_{j}$ and $\left(\alpha, \alpha_{i}\right) \notin R$, also a contradiction. Therefore $w_{i} w_{j}(\alpha) \in \Delta_{+}^{\text {re }}$ and $\left(w_{i} w_{j} \alpha\right.$, $\left.w_{i} w_{j} \alpha_{i}\right) \in Q$.

Step 4. Our hypothesis, the minimality of $\operatorname{ht}(\alpha+\beta)$ in Q, leads to

$$
\begin{aligned}
& \mathrm{ht}\left(w_{i} w_{j}\left(\alpha+\alpha_{i}\right)\right)-\mathrm{ht}\left(\alpha+\alpha_{i}\right) \\
& \quad=-\left(\alpha+\alpha_{i}\right)\left(h_{i}\right)-\left(\alpha+\alpha_{i}\right)\left(h_{j}\right)+\left(\alpha+\alpha_{i}\right)\left(h_{j}\right) \alpha_{j}\left(h_{i}\right) \\
& \quad=-\left(\alpha+\alpha_{i}\right)\left(h_{j}\right)\left[1-\alpha_{j}\left(h_{i}\right)\right]-1 \geqq 0,
\end{aligned}
$$

which implies $\left(\alpha+\alpha_{i}\right)\left(h_{j}\right)<0$ and $\alpha_{i}\left(h_{j}\right)<-1$. Therefore $\alpha_{j}\left(h_{i}\right)=-1$ and $\alpha_{i}\left(h_{j}\right)=-2,-3,-4$. Hence our theorem has been established. We, however, want to continue in order to obtain a stronger result.

Step 5. Suppose $\alpha_{j}\left(h_{i}\right)=-1$ and $\alpha_{i}\left(h_{j}\right)=-2$. Then Step 4 says $\alpha\left(h_{j}\right)=1$ and $\alpha^{\prime}\left(h_{i}\right)=\left(\alpha-\alpha_{j}\right)\left(h_{i}\right)=0$, a contradiction.

Step 6. Suppose $\alpha_{j}\left(h_{i}\right)=-1$ and $\alpha_{i}\left(h_{j}\right)=-3$. Then Step 4 says $\alpha\left(h_{j}\right)=1$ or 2 , and $\alpha^{\prime}\left(h_{i}\right)=\alpha\left(h_{i}\right)-\alpha\left(h_{j}\right) \alpha_{j}\left(h_{i}\right)=-1+\alpha\left(h_{j}\right)$. Therefore $\alpha\left(h_{j}\right)=2$ since $\alpha^{\prime}\left(h_{i}\right)>0$. Hence $\alpha^{\prime}\left(h_{i}\right)=1$. Put $w_{0}=w_{j} w_{i} w_{j} w_{i} w_{j} \in W$. Then $w_{0}\left(\alpha, \alpha_{i}\right)=\left(\alpha-\alpha_{i}-2 \alpha_{j}, \alpha_{i}\right) \in Q$ and $\operatorname{ht}\left(w_{0}\left(\alpha+\alpha_{i}\right)\right)<\operatorname{ht}\left(\alpha+\alpha_{i}\right)$, a contradiction.

Step 7. Suppose $\alpha_{j}\left(h_{i}\right)=-1$ and $\alpha_{i}\left(h_{j}\right)=-4$. Then Step 4 says $\alpha\left(h_{j}\right)=1,2$ or 3 , and $\alpha^{\prime}\left(h_{i}\right)=-1+\alpha\left(h_{j}\right)$. Therefore $\alpha\left(h_{j}\right)=2$ or 3 since $\alpha^{\prime}\left(h_{i}\right)>0$. Suppose $\alpha\left(h_{j}\right)=3$. We inductively define $\gamma_{t}\left(t \in \boldsymbol{Z}_{\geq_{0}}\right)$ by $\gamma_{0}=\alpha$, $\gamma_{2 m+1}=w_{j}\left(\gamma_{2 m}\right)$ and $\gamma_{2 m+2}=w_{i}\left(\gamma_{2 m+1}\right)$ for $m \in \boldsymbol{Z}_{\geq 0}$. Then one can easily check that $\gamma_{2 m}\left(h_{j}\right)=2 m+3>0$ and $\gamma_{2 m+1}\left(h_{i}\right)=m+2>0$. This means that α must be of the form $c_{i} \alpha_{i}+c_{j} \alpha_{j} \in \Delta_{+}^{\mathrm{re}}$, since $\mathrm{ht}\left(\gamma_{t}\right)<0$ for some (sufficiently
large) t. Then $0 \geqq \alpha\left(2 h_{i}+h_{j}\right)=2 \alpha\left(h_{i}\right)+\alpha\left(h_{j}\right)=-2+3=1$, a contradiction. Therefore $\alpha\left(h_{j}\right)=2$ and $\alpha\left(h_{i}\right)=-1$. By Lemma 2(2), we obtain $\alpha=$ $\alpha_{j}+m \xi$, where $m \in Z_{\geqq 0}$ and $\xi=\alpha_{i}+2 \alpha_{j}$.

Step 8. In particular, we have established that $\alpha^{\prime}\left(h_{i}\right)>0$ implies $a_{i j}=-1$ and $a_{j i}=-4$.
3. Relations in Kac-Moody groups. (1) Steinberg-Tits presentation. Let A be a generalized Cartan matrix and $G(A)$ the associated (universal) Kac-Moody group over a field K. Then $G(A)$ has the following presentation (cf. Tits [6]):
generators

$$
x_{\alpha}(t) \text { for all } \alpha \in \Delta^{\mathrm{re}} \text { and } t \in K
$$

relations
(A) $x_{\alpha}(s) \cdot x_{\alpha}(t)=x_{\alpha}(s+t)$,
(B) $\left[x_{\alpha}(s), x_{\beta}(t)\right]=\Pi_{i \alpha+j \beta \in \Delta^{\mathrm{e}}{ }_{i, i, j>0}} x_{i \alpha+j \beta}\left(c_{\alpha \beta i j} s^{i} t^{j}\right)$ if $\left(Z_{>0} \alpha+Z_{>0} \beta\right) \cap \Delta^{\mathrm{im}}=\varnothing$,
($\left.\mathrm{B}^{\prime}\right) w_{\alpha}(u) \cdot x_{\beta}(t) \cdot w_{\alpha}(-u)=x_{\beta^{\prime}}\left(u^{\prime} t\right)$,
(C) $h_{\alpha}(u) \cdot h_{\alpha}(v)=h_{\alpha}(u v)$
for all $\alpha, \beta \in \Delta^{\mathrm{re}}, s, t \in K$ and $u, v \in K^{\times}$, where $c_{\alpha \beta i j}$ is a certain integer, $\beta^{\prime}=\beta-\beta\left(h_{\alpha}\right) \alpha, u^{\prime}= \pm u^{-\beta\left(h_{\alpha}\right)} t, w_{\alpha}(u)=x_{\alpha}(u) \cdot x_{-\alpha}\left(-u^{-1}\right) \cdot x_{\alpha}(u)$ and $h_{\alpha}(u)=$ $w_{\alpha}(u) \cdot w_{\alpha}(-1)$. An explicit description of the right-hand side in (B) has been calculated (cf. [4]). We must notice that the coefficients $c_{\alpha \beta i j}$ are deeply related to the root strings in the rank two subsystem generated by α and β.
(2) Symmetry of -1 . Suppose that $A=\left(a_{i j}\right)_{i, j \in I}$ has the property that $a_{i j}=-1$ if and only if $a_{j i}=-1(i, j \in I)$. Then the above relation (B) can be simplified as follows:

$$
\left[x_{\alpha}(s), x_{\beta}(t)\right]= \begin{cases}1 & \text { if } \quad \alpha+\beta \notin \Delta \tag{B}\\ x_{\alpha+\beta}(\pm s t) & \text { if } \quad \alpha+\beta \in \Delta^{\mathrm{re}}\end{cases}
$$

The other type relations for (B) (cf. [4]) do not happen here. This comes from our theorem (or its corollary). Then we should compare this to the corresponding relation for $S L_{n}$.
(3) A_{2}-subsystems. As a direct consequence of Kac-Peterson conjugacy theorems (cf. [2]), we obtain the equivalence of the following two conditions.
(i) There exist $\alpha, \beta \in \Delta^{\text {re }}$ such that α and β generate an A_{2}-subsystem of Δ.
(ii) There are some $i, j \in I$ such that $a_{i j} \cdot a_{j i}=1$ or 3 .
(4) No entry of -1 . If A has no -1 as an entry, then from (2) and (3) we see that the relation (B) is just

$$
\left[x_{\alpha}(s), x_{\beta}(t)\right]=1 \quad \text { if } \quad \alpha+\beta \notin \Delta
$$

(5) The set $P(A)$. Let $P(A)$ be the set of all the prime numbers p having the property that p divides $\left|a_{i j}\right|$ for some $i, j \in I$ with $a_{j i}=-1$. If char K does not belong to $P(A)$, then the following two conditions are equivalent.
(i) $\left[x_{\alpha}(s), x_{\beta}(t)\right]=1$.
(ii) $\alpha+\beta \notin \Delta$.

Here $\alpha, \beta \in \Delta^{\mathrm{re}}$ and $s, t \in K^{\times}$. This equivalence is due to [4], [6] and the proof of Theorem. For example, $P\left(B_{n}\right)=\{2\}, P\left(G_{2}\right)=\{3\}, P\left(A_{1}^{(1)}\right)=\varnothing$, and $P\left(\left(\begin{array}{rr}2 & -6 \\ -1 & 2\end{array}\right)\right)=\{2,3\}$.
(6) Example. Let $A=\left(\begin{array}{rr}2 & -a \\ -b & 2\end{array}\right)$ with $a b \geqq 4$, and $U(A)$ the subgroup of $G(A)$ generated by $x_{\alpha}(t)$ for all $\alpha \in \Delta_{+}^{\mathrm{re}}$ and $t \in K$. Put $\Phi_{i}=$ $\left\{\alpha \in \Delta_{+}^{\mathrm{re}} \mid \alpha\left(h_{i}\right)>0\right\}$ for each $i=1,2$. Then $\Delta_{+}^{\mathrm{re}}=\Phi_{1} \cup \Phi_{2}$. Let U_{i} be the subgroup of $U(A)$ generated by $x_{\alpha}(t)$ for all $\alpha \in \Phi_{i}$ and $t \in K(i=1,2)$. If char $K=0$, then we see $U(A) \simeq U_{1} * U_{2}$, the free product of U_{1} and U_{2} (cf. [6], (1)). If $a>1$ and $b>1$, then each U_{i} is abelian by Theorem. Suppose $a=1$ (, hence $b \geqq 4$). If char K belongs to $P(A)$, then each U_{i} is abelian. Otherwise each U_{i} is meta-abelian (not abelian).

References

[1] V.G. KAC, Infinite dimensional Lie algebras, 44 Progress in Math., Birkhäuser, Boston, 1983.
[2] V. G. Kac and D. H. Peterson, On geometric invariant theory for infinite demensional groups, preprint.
[3] R. V. Moody and T. Yokonuma, Root systems and Cartan matrices, Canad. J. Math. (1) 34 (1982), 63-79.
[4] J. Morita, Commutator relations in Kac-Moody groups, Proc. Japan Acad., Ser. A, (1) 63 (1987), 21-22.
[5] R. Steinberg, Lectures on Chevalley groups, Yale Univ. Lecture notes, 1967/68.
[6] J. Tits, Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra, 105 (1987), 542-573.

Institute of Mathematics
University of Tsukuba
Tsuruba, 305
Japan

