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Summary. In this paper we consider a harmonic Kihler foliation &
and study the infinitesimal automorphisms of & which are either trans-
versally holomorphic or transversally Killing. A special study is made for
the case of foliations with constant transversal scalar curvature.

1. Introduction. Let .& be a transversally oriented foliation on a
compact oriented manifold M. It is given by an exact sequence of vector
bundles

0->L->TM5Q—0,

where L is the tangent bundle and @ the normal bundle of .#. We have
an associated exact sequence of Lie algebras

0>I'L—>V(F)S5TQ*—0,

where V(") denotes the algebra of infinitesimal automorphisms of &,
and I'Q* the portion of I'Q invariant under the action of L by Lie de-
rivatives [KT 2], [MO]. The foliation is assumed to be transversally Kahler.
By a Kahler foliation % we mean a foliation satisfying the following
conditions: (i) & is Riemannian, with a bundle-like metric g, on M
inducing the holonomy invariant metric g, on @ = L*, (ii) there is a
holonomy invariant almost complex structure J: @ — Q, where dim Q = ¢ =
2n (real dimension), with respect to which g, is Hermitian, i.e. go(J, Jv) =
go(t, v) for p, v € I'Q, and (iii) if V denotes the unique metric and torsionfree
connection in @, then V is almost complex, i.e. VJ = 0. Note that &(g, v) =
go(t, Jv) defines a basic 2-form @, which is closed as a consequence of
Vge =0 and VJ = 0.
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Associated to V are transversal curvature data, in particular the
transversal Ricei curvature tensor S; = Ric,, the associated Ricci operator
Ov: @ — @, the transversal scalar curvature c¢;, and the transversal Jocabi
operator J;, = A — 0;: I'Q — I'Q. In this paper we study geometric prop-
erties of infinitesimal automorphisms Y e V(). For Y € V(%) the trans-
versal part 7(Y) is denoted by Y, and the transversal Lie derivative
operator O(Y): I'Q — I'Q is defined as in [KT 2]. In view of the variational
meaning of J, [KT 2], it is natural to assume & to be harmonic, i.e.
all leaves of &% are minimal submanifolds of (M, g,).

THEOREM A. Let & be a harmonic Kdahler foliation on a closed
orientable manifold M, and Y an infinitesimal automorphism of . Then
the following properties are equivalent:

(i) Y is transversally holomorphic, t.e. O(Y)J = 0,

(i) Y s a transversal Jacobi field, i.e. J,Y = 0.

- Combining Theorem A with the results of [KTT] yields the following
consequence. '

THEOREM B. Let & be a harmonic Kdahler foliation on a closed
orientable manifold M, and Y an infinitesimal automorphism of 5. Then
the following properties are equivalent:

(i) Y is transversally Killing, i.e. 6(Y)gq = 0,

(ii) Y s a transversally divergencefree Jacobi field,

(iii) Y s transversally holomorphic and transversally divergencefree.

For the point foliation these are results of Bochner [B] and Yano
[Y]. The next result generalizes a theorem of Bochner [B] to the folia-
tion context. The corresponding result for Riemannian foliations was
proved in [KT 2]. :

THEOREM .C. Let & be a harmonic Kahler foliation on a closed
orientable manifold M with transversal Ricci operator oy < 0. Then every
transversally holomorphic infinitesimal automorphism Y € V(&) satisfies
VY =0. If p, <0 for at least one point xc M, then every Ye V()
with transversally holomorphic ¥ satisfies Y e I'L.

Note that the commutative diagram

V(&) —> Q-
U U
Ko )—K(5)

describes the projection of the transVe_rSally metric infinitesimal  auto-
morphisms K( %) to the Lie algebra K(.%") of transversal Killing fields.
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Similarly the commutative diagram

V(g )—> I'Q*-
U v
H(& )— H(%)

describes the Lie algebra H(< ) of transversal holomorphic fields. Then
we prove the following theorem. ‘

THEOREM D. Let & be a harmonic Kahler foliation on a closed
orientable manifold M with constant transversal scalar curvature ¢y. Then
the Lie algebra H(Z) of tranmsversally holomorphic fields splits imto the
direct sum of the abelian Lie algebra of parallel transversally holomorphic
fields and the Lie algebra of the tramsversally holomorphic fields which
are annihilated by all basic harmonic 1-forms. The latter Lie algebra
18 the complexification of the real Lie subalgebra of transversally Killing
fields annihilated by basic harmonic 1-forms.

For a point foliation this is a result of Lichnerowicz [L].

The key elements for the proofs presented below are the transversal
divergence theorem of [KTT], valid for harmonic foliations and the de
Rham-Hodge theory for basic forms of a Riemannian foliations as developed
in [EH] and [KT 5]. Further applications can be made in the spirit of
[TT].

2. Transversally holomorphic infinitesimal automorphisms. Let R,
be the curvature associated to the unique metric and torsionfree connec-
tion V in the normal bundle of the Riemannian foliation .&#. Let similarly
S; be the Ricei curvature. For a Kidhler foliation we have then the
following identities:

@.1) Ro(pt, v)od = JoRy(t, v) ,

2.2) R.(Jp, Jv) = Ri(y, v) ,

(2.8) Sy, Jv) = Sy(y, v) ,

(2.4) RO\ )y + Ro(tt, )N + Ry(y, Mt =0 .

In fact, (2.1) follows from VJ = 0. (2.2) and (2.3) follow from go(Jy, Jy) =
go(#, v). Finally (2.4) is a consequence of the Jacobi identity. The proofs
are similar to the usual ones in Kahler geometry [KN].

An infinitesimal automorphism Y € V(&) gives rise to a transversally
holomorphic field ¥ = z(Y) if and only if

(2.5) | Y =0,
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where for ZeI'L* by definition
O(Y)I)Z) =6(Y)JZ) — JO(Y)Z) .
But this expression equals zn[Y, JZ] — Jz[Y, Z], which yields the formula

(2.6) OY)I)Z) = =V, Y +JV,Y,
so that (2.5) holds if and only if
2.7 V,,Y=JV,Y forall ZelI'L*.

In the sequel it will be convenient to use the following orthonormal
frame on M. For xeM let {e,}, A=1, ---, m =dim M be an oriented
orthonormal basis of T, M withe,, t =1, ---, p=dim L in L, and e,, €,,, =
Je,in L fora=p+1,---,p+n (& is of codimension ¢ = 2n on M™,

m = p + 2n). The transversal Kahler property of .# allows then to ex-
tend e,, Je, to local vector fields E,, JE,cI'L* such that for a, 8 =
P+l -, pt+m

(2.8) (VEaEﬁ)z =0, (VEaJEﬁ)x =0, (VJEaEﬁ)z =0, (VJEaJEﬁ)z =0.
As a consequence of torsionfreeness [KT 1, 1.5]

(2.9) |E,, Es)., |E. JE;l., [JE, JE;.€L,.

The E,, JE, can be chosen as (local) infinitesimal automorphisms of &,
so that

(2.10) ViE,==n[X, E,]=0 for XeIL.
We can complete E,, JE, by the Gram-Schmidt process to a moving local
frame by adding E,e 'L with (E), =e¢;, i =1, -+, p.

In terms of such a moving frame the transversal Ricci operator
0Ov: @ — Q is given by

(2.11) 0y =S JoRy(E, JE,) .

a=p+1
In fact, let e I"Q. Then by (2.4), (2.1)
Ry(Ey JE)U = —Ry(JE,, E )t = Ry(E,, W)JE, + Ry, JE)E,

= JR(E,, WE, — JR(tt, JE,)JE,
= —J(RBy(tt, E)E, + By(tt, JE)JE,)

or

JR(Eo, JEt = Ry(tt, E)E, + Ry(tt, JE)JE, .
It follows that

p+n
Oyt =a=zp‘+1(Rv(p, E)E, + Ry, JE,)JE,)
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is given by (2.11).

ProoF oF THEOREM A. To establish (i)= (ii) we calculate for Y € V(&)
with transversally holomorphic Y

(A Y)x = (d3ydy Y)a: = - 21 (VeA(dv 1—’))(6,4) = - g(VeAVEAI_’ - VV?QEA Y) .

By (2.8) we have fora=p+ 1, -+, p+n

V..E. = n(VAE,) =0
and therefore V' E, € L,. Since Y is projectable, i.e. &(X)Y = 0 or equiva-
lently V;Y =0 for every XeI'L, the term Vi, ¥ vanishes. Similarly

for the corresponding terms involving JE,. On the other hand, for a
projectable ¥

vd — —
> Voug Y =V Y
i=1 i

where 7, = X7, n(V.E,) is the mean curvature vector field of .&. Since
Z 1is assumed to be harmonie, ¢ vanishes, and these contributions also
disappear. It follows that

_ P — p+n — p+n _
AY), = =2V, Ve, Y — XV, Ve, Y — 3 V5, Vi Y.
i=1 a=p+1 a=p+1

The first sum disappears since Y is projectable. Since Y is holomorphic,
by (2.7) the terms in the third sum equal

VierVir, Y = V5o IV, Y) = J(V5 Ve, Y)

But
Ry(Jew €)Y, =V, V., ¥ =V, Ve ¥V — V50, Y

where the last term vanishes by (2.9). It follows that
2.12) (AY), = -3 V. Ve, Y — by J(V, Ve, Y + Ry(Je, €,)Y,)

= 3 JRy(e Je) Y.
where we have again used (2.7). By (2.11), (2.12) we find then J,Y), =
(AY), — pyY, =0 and Y is indeed a transversal Jacobi field.

To prove (ii) = (i) we consider conversely Y € V(<) such that J,Y = 0.
The desired result follows then clearly from the following general formula

(2.13) OV, 6(Y)) =2(:Y, ¥),

where the left hand side denotes the global scalar product in the space
of endomorphisms of Q, while the right hand side denotes the global
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scalar product in I'Q. It remains to prove (2.13).
First we evaluate for xe M
6(Y)J, 6(Y)J).
= 3 9O, BNWNe) + 35 9o(OTINTen), (O(Y)I)(Je.)
= ; 9oV, Y —JV, Y, v, Y —-JV,7)
+3 9oV, Y +Jv, Y, V.Y +JV, 7).

The second sum equals
39V, Y-V, Y JV,Y-V,7)

and thus equals the first sum. It follows that
O(Y)J, 6(Y)J).
=23.0o(Va., ¥ - JV, Y, 9,.7) + 2 pY 9V, Y+ V9,7, V,7)
=23 Jeufo(Vor, ¥ = IVe, ¥, ¥) = 23.00(Y5e, V52, ¥ — Vi J(V2,¥), V)
+23 9o V5, Y +V, Y, Y)—2 3 9V J(V;:, YY)+ V, V. Y, 7)
= 2(div, Z), + 20,AY, ¥), + 2043, JR(JE,, E.) Y, ).,

where ZeI'Q" is the g,-dual of )\ € 23(5) defined by
MX) = 9oV Y + IV, Y, ¥) for XerlQ,

and the transversal divergence div, Z of Z is defined as the unique scalar
satisfying ©(Z)y = divy Z-v, v being the transversal volume form defined
by go [KTT]. The third term is by (2.11) equal to 2go(—p.Y, V). It
follows that

2.14) O(Y)], (Y)), = 2(div, Z), + 205 T, 7). .

By the transversal divergence theorem of [KTT], the integral of div, Z
over M vanishes for harmonic .&#. Thus we obtain (2.13) by integrating
(2.14) over M. O

ProoF or THEOREM B. This is an immediate consequence of the
characterization in [KTT] of transversal Killing fields as transversally
divergencefree Jacobi fields, together with Theorem A. O

_ Proor or THEOREM C. Let Y be transversally holomorphic. Then
Y is a transversal Jacobi field by Theorem A. By [KT 2, (4.3)] we have
then the identity
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2.15) -%Ag,;( 7, 7) = go(VE, VY) — go(0, 7, 7).

From here on the proof is exactly as in [KT2]. Namely p, £ 0 yields
immediately go(VY, VY) =0 and hence VY =0. If p, <0 for at least
one x € M, then one concludes in addition ¥, = 0 and hence ¥ = 0. O

ExAMPLE 2.16 (Complex hyperbolic space CH", see [KN, p. 282]). This
is the quotient space of the anti de Sitter space H!"*' under the canonical
circle action. Here

Hi " = {2 = (2 2, **+, 2,) €C""(2, 2) = —1}

with the Hermitian form (z, w) = —2,@, + D,i-1 2,@,. The signature of
the induced metric on H*™ is (1, 2n), and the sectional curvature is con-
stant —1. The canonical S'-action on H>*' defines a fibration

H»' — CH" = SUQ, n)/S(UQ) x U(n)) ,

which gives rise naturally to a harmonic (and totally geodesic) Kadhler
foliation .&# on H®*'. The transversal holomorphic sectional curvature
is constant —4. The assumptions of Theorem C are satisfied, and it follows
that every Ye V(&) with transversally holomorphic Y satisfies YeI'L.
In this case py < 0 and & is a (strictly) stable harmonic foliation of
vanishing index and nullity (see [KT 2] for the second variation formula).

3. Dual basic 1-forms. For use below it is convenient to consider
the basic 1-form associated to Y by g,-duality. Recall that the basic
forms are given by

Q23(F) ={we 2 (M)i(X)w =0, O X)w =0 for all XeI'L}.

The exterior differential d restricts to dz: 23 — 23. The adjoint §; with
respect to the induced scalar product <{, ); on 23 yield then the basic
Laplacian A = §,dz + dzdz. In the harmonic case, d; is locally given by
the usual formula (in the general case, the mean curvature produces
correction terms). Similarly, in the harmonic case the Weitzenbock for-
mula on basic 1-forms is the usual Ay,w = —trace V’w + 0(w) (while in
the general case the mean curvature produces correction terms).

Let @ be the basic 1-form associated to ¥ by g,-duality. It then
follows that the Jacobi condition J,¥ = 0 is equivalent to

(3.1) Az = 20¢(w) ,
where (0,(w))(tt) = w(oy(p)) for pe'Q. By Theorem A it follows that
this identity characterizes transversally holomorphic infinitesimal auto-

morphisms, while by Theorem B transversally Killing fields have addition-
ally to satisfy 0,0 = —divy, Y = 0.
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We will need the identity
(38.2) 208, = —dzey

for the transversal Ricci curvature S, and transversal scalar curvature
¢y. It involves the differential operator 6: I'S*Q* — I'Q* defined in [KTT].
It is proved by contracting the second Bianchi identity for the transversal
curvature R, as in the case of a foliation by points. We further need
the following identity for w e Q%(% ) and the transversal Kahler form
DedyF):
(3.3) 0s(@ A O)(, v) — (05@)- (L, v)

= d(Jw)(t, v) — (dz0)(Jt, v) — (dzw)(t, Jv)
for p, veI'Q. To verify (3.3), let E, be one of the vector fields E,.,, - - -,
E, ;E, ..,=JE, ., -, E, ., =JE,, Thenata pointxeM we observe
fora,b,c=p+1, ---, 0+ 2n

ds(w N\ D). (e, €) = —Zc‘, V. (0 N\O)E, E,, E,)
= =2V, [0(E)-O(E, E) — o(E) O(E, E) + o(E) (E, E,)]
= =2 V. [0(E) 9o(E, JE) — 0(E,)-9(E,, TE) + 0(E) 9o(E,, JE,)]
= =2 [(V.,0)(e.) golea, Jos) — (Vo,0)(en)- gole: Je) + (V. w)(e)- gole., Je.)]
= (050) D(€s €) + (Vso,0)(€0) — (Vy,,0)(€) -
But by direct calculation
ds(Jw)(e,, €) — (dsw)(Je,, &) — (dzw)(e,, Je,) = (Vs,,0)(e.) — (V,.,0)(e,) ,

which completes the proof of (3.3).
We further need the characterization

(8.4) Vo0 = —JV,w for all ZelL*

for w e Q4(7) associated to Ye H(Z") by g,-duality. This is simply the
dual version of (2.7). Finally we need for Ye H(.%") the J-invariance of
dzw, i.e.

(8.5) (dzw)JZ, W) + (dzw)(Z, JW) =0 for all Z,WelL*.
This is a consequence of (3.4).

4. P1_°oof of theorem D. For the sake of simplicity we identify from
now on H(% ) with the corresponding space of dual basic 1-forms, and

similarly for K(). Consider the de Rham-Hodge direct sum decompo-
sition of Q%(&) [EH], [KT 5], which represents @ in the form
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(4.1) w = dBa + 53,8 + Tz® ,

where 7z Q4 — 574 is the orthogonal projection onto the basic harmonic
1-forms 5#%. Define { = dza, & = 658 + wzw. Then

4.2) w=¢+C with 8,6=0, dl=0.
We first prove that for we H(S)
4.3) 03(END) =0 and dzJg) =0.

By (3.5) we have
(dsw)(JE,, E;) + (dz0)(E,, JE,) =0,
and since dz¢ = 0, it follows that
(d:8)(JE,, E;) + (d:6)(E,, JE,) =0 .
From (8.3) and §5¢ = 0 it follows further that
05(END) = dx(JE) .

Since the left and right hand sides are in orthogonal spaces, they both

vanish.
Next we prove for the operator §*: I'Q* — I'S*Q* adjoint to § (see

[KTT]), and @€ H(<), the identity
(4.4) O*)JZ, W) — (6*e)(Z, JW) =0 for all Z,WelL".
In fact, at each xze M, by (4.3), (3.3)

0 = d3(AD)(e,, ) + da(JE)(e,, €)
= (Vsaf)e) — (Vi &)es) + (Vo JE)(es) — (Vo JE)(en)
= 2[(5*5)(6417 Jeb) - (3*5)(']611,, eb)]

which yields (4.4).
Now we establish that for @e H(5)

(4.5) 05(0+8) = 0 .
At xe M we have
05(058)s = — 2 Ve (05)(EL)) = — 35V, ((05 )
= =25 (Ve d)0ver) — (2 Ve, (05 E0))
= —% Sy(ear )+ (Ve £)(e) — Z,: &)+ 9o(V.,(0:EL), e,)

For the second sum we find ,
Za:l gQ(Vea(pV‘Ea)’ eb) = ; (VGGSV)(eai eb) ’
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and therefore by the definition of S,
; E(eb) : %‘l (VcaSV)(em eb) = —; é(eb) : (BSV)(eb) .

Using (8.2) and the constancy of the transversal scalar curvature c,, we
find that this term vanishes. Using the symmetry of S;, we find therefore

o(0:8), = 3 i eo[%«v,aexeo (7,80 |

= —aZlb Sv(ear 65)‘(3*5)(6“ eb) .

Using (2.3) and (4.4) establishes now (4.5).

We want to show that for we H(#), { and ¢ in (4.2) are both also
in H(<"). By Theorem A and (3.1) we have Azw = 204(®), i.e. Az + &) =
204 + &), or equivalently

Agl — 2|0VC = "‘(Asf - 2pv5) .
Applying 6, to both sides, and using (4.5) and ;¢ = 0, we have
(4.6) 05(AsL — 20,8) = 0.
Thus
CJWE, & = (AL — 20, dpa) =0,

and it follows from (2.13) that { € H("). Therefore also &= @ — { € H(.F).
Note that in fact ¢e K(&) by Theorem B, since 5z = 0.

Next we want to show that { = Jy for some e K(%"). Necessarily
we have

(4.7 n=—JC

and with this definition we now show that indeed 7€ K(& ). Clearly
ne H(Z), so that by Theorem B it remains to show that

(4.8) 0 = 05(=JL) =0.
We observe for x e M
@)e = —(05J0)s = 2 (Vo (JONea) = 3 (T V, 0)(en) = 2 (V. 0)(Je)
= 2 (Ve dsa)(Jeo) = 35 9ol Jee, &) (Vdaa)(e, ) -

Now go(Je,, &) = —9gqle,, Je,), while (Vdza)(e, ) = (Vdza)(e, ¢,). From
this (4.8) follows.

The previous results show that the decomposition (4.2) represents
H(<) as the (not necessarily direct) sum

4.9) H(o)=Ko) + JK(F) .
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The canonical homomorphism of K(Z)®C onto H(< ) has the kernel,
the ideal of elements é®1 + & ®1V —1 with ¢, ¢’ € K(&) such that

(4.10) e+ JE=0.
But ¢ = —J¢& implies by (4.3)
dgg = —dgJg =0.

Thus Az = 0, and hence by (4.10) also Ags’ = AgJe = JARE = 0.
To complete the proof of Theorem D, we show that the harmonic
part myw in (4.1) defines a parallel vector field. Let

(4.11) Je = J(0s8) + J(mw) =¥ + pe JK(F)CH(S) .

Since App = Ax(Jzw) = JAzwzw = 0, it follows that dzp = 0 and 6, = 0.
By (4.3) we have dz(J¢) = 0, hence also d,¥ = 0. Thus the decomposition
(4.11) satisfies the same conditions as (4.2), and by the arguments made
above to prove & € K(%), we conclude also that ¢ € K(&"). This condition
together with dzp = 0 implies now Vo = 0. But then

JV(mzw) = V(Jmzw) = Vo = 0

and thus Vzzw =0, as claimed. The parallel transversal holomorphic
fields form a abelian Lie algebra, since for two such fields ¥, ¥’ we have
[Y, Y'] = 0 as a consequence of the torsionfreeness of V. This completes
the proof of Theorem D.

5. Kahler-Einstein foliations. This is a special case of the situation
discussed above, where 0, = ¢-id: @ — @ for some constant ¢ = ¢,/q. By
(8.1) it follows that w e H(%") is characterized by A,w = 2¢-w.

If ¢ = 0 this shows that H(%) = £#%. Thus in this case K(&) =
H(F).

COROLLARY 5.1. Let &% be a harmonic Kdahler foliation with zero

transversal Ricci curvature. Then H(F ) = K(<), and this Lie algebra
18 an abelian subalgebra of the algebra of all parallel transversal fields.

In view of Theorem C, the only case of interest for ¢+ 0 is ¢ > 0.
In this case A,w = 2¢-w applied to (4.1) implies that zy,w = 0. The pre-
vious arguments imply then the following result (see Matsushima [MA] for
the case of a point foliation).

COROLLARY 5.2. Let & be a harmonic Kahler-Einstein foliation
with ¢ > 0. Then H(5) = K(F)DJIK(F).

EXAMPLE 5.3. Let P**'5 CP" be a principal circle bundle with a
connection form 7. Let & be the vertical vector field characterized by
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7 = 1. Let g be the Fubini-Study metric of constant holomorphic sec-
tional curvature 4 on CP". Then g = n*g + @7 defines a Riemannian
metric on P, for which ¢ is easily verified to be a unit Killing vector
field. The fibers of z are geodesics (see e.g. [KT 1, 3.20]), and define a
harmonic Kahler-Einstein foliation. Thus Corollary 5.2 applies and

(5.4) Heo) = K(F)PJIK(F) .
We can moreover estimate the nullity of &% as follows:
(5.5) nullity of & = 2[(n + 1) —1].

In fact, the nullity of & is the dimension of the space of Jacobi fields
of &, and hence it exceeds the dimension of space of transversal Jacobi
automorphisms of .&#. But by Theorem A, the latter space coincides with
the space of transversally holomorphic automorphisms of .. By (5.4),
this space has twice the dimension of the space of transversal Killing
automorphisms of .&. It follows that

nullity of & = 2-dim(Isom,(CP") = 2-dim SU(n + 1) = 2[(n + 1) — 1].

In view of [KT1, (8.20)] this inequality holds more generally for the
foliation defined by any principal G-bundle over CP*. We further note
that for the special case of the Hopf fibration S**' — CP", the index of
& is =22n + 1 by [KT 4], while the (complex) dimension of the space of
holomorphic foliations near & is precisely (» + 1)* — 1 by [DK, p. 79].
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