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Summary. In this paper we consider a harmonic Kahler foliation &~
and study the infinitesimal automorphisms of <&~ which are either trans-
versally holomorphic or transversally Killing. A special study is made for
the case of foliations with constant transversal scalar curvature.

1. Introduction. Let ^~ be a transversally oriented foliation on a
compact oriented manifold M. It is given by an exact sequence of vector
bundles

where L is the tangent bundle and Q the normal bundle of ^ 7 We have
an associated exact sequence of Lie algebras

0 -> ΓL -> V(^r) Λ ΓQL -> 0 ,

where V(^~) denotes the algebra of infinitesimal automorphisms of
and ΓQL the portion of ΓQ invariant under the action of L by Lie de-
rivatives [KT 2], [MO]. The foliation is assumed to be transversally Kahler
By a Kahler foliation ^~ we mean a foliation satisfying the following
conditions: (i) &~ is Riemannian, with a bundle-like metric gM on M
inducing the holonomy invariant metric gq on Q = L1, (ii) there is a
holonomy invariant almost complex structure J: Q -*Q, where dim Q = q =
2n (real dimension), with respect to which gQ is Hermitian, i.e. gQ(Jμ, Jv) =
gQ(μ, v) for μ, v 6 ΓQ, and (iii) if V denotes the unique metric and torsionfree
connection in Q, then V is almost complex, i.e. VJ = 0. Note that Φ(μ, v) —
gQ(μ, Jv) defines a basic 2-form Φ, which is closed as a consequence of
VgQ = 0 and VJ = 0.
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Associated to V are transversal curvature data, in particular the
transversal Ricci curvature tensor Sv = Ricv, the associated Ricci operator
Pi'.Q-+Q, the transversal scalar curvature cv, and the transversal Jocabi
operator J v = Δ — ρv: ΓQ -> ΓQ. In this paper we study geometric prop-
erties of infinitesimal automorphisms Ye V(^~). For Ye V(^~) the trans-
versal part π(Y) is denoted by Ϋ, and the transversal Lie derivative
operator Θ(Y): ΓQ-+ΓQ is defined as in [KT 2]. In view of the variational
meaning of Jv [KT2], it is natural to assume ^~ to be "harmonic, i.e.
all leaves of ^~ are minimal submanifolds of (M, gM).

THEOREM A. Let J?~ be a harmonic Kdhler foliation on a closed
orientable manifold M, and Y an infinitesimal automorphism of j^~. Then
the following properties are equivalent:

(i) Ϋ is transversally holomorphic, i.e. Θ(Y)J — 0,
(ii) Ϋ is a transversal Jacobi field, i.e. JVΫ = 0.

Combining Theorem A with the results of [KTT] yields the following
consequence.

THEOREM B. Let J^~ be a harmonic Kdhler foliation on a closed
orientable manifold M, and Y an infinitesimal automorphism of ^ 7 Then
the following properties are equivalent:

( i ) Ϋ is transversally Killing, i.e. Θ(Y)gQ = 0,
(ii) Ϋ is a transversally dίvergencefree Jacobi field,
(iiϊ) Ϋ is transversally holomorphic and transversally divergencefree.

For the point foliation these are results of Bochner [B] and Yano
[Y]. The next result generalizes a theorem of Bochner [B] to the folia-
tion context. The corresponding result for Riemannian foliations was
proved in [KT2],

THEOREM C. Let 'Jf be a harmonic Kdhler foliation on a closed
orientable manifold M with transversal Ricci operator pv ^ 0. Then every
transversally holomorphic infinitesimal automorphism Y e V(^r) satisfies
VΫ — 0. If pv < 0 for at least one point xeM, then every Ye V(^")
with transversally holomorphic Y satisfies YeΓL.

Note that the commutative diagram

V(jιr) > ΓQL

U U
K(jr) >JΓ(^Γ)

describes the projection of the transversally metric infinitesimal auto-
morphisms K(^~) to the Lie algebra K(^~) of transversal Killing fields.
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Similarly the commutative diagram

πjn—>
u

H(jr) >

ΓQL

U
3(JΓ)

describes the Lie algebra H{^) of transversal holomorphic fields. Then
we prove the following theorem.

THEOREM D. Let J?" be a harmonic Kahler foliation on a closed
orientable manifold M with constant transversal scalar curvature cv. Then
the Lie algebra 3(&~) of transversally holomorphic fields splits into the
direct sum of the abelίan Lie algebra of parallel transversally holomorphic
fields and the Lie algebra of the transversally holomorphic fields which
are annihilated by all basic harmonic 1-forms. The latter Lie algebra
is the complexification of the real Lie subalgebra of transversally Killing
fields annihilated by basic harmonic 1-forms.

For a point foliation this is a result of Lichnerowicz [L].
The key elements for the proofs presented below are the transversal

divergence theorem of [KTT], valid for harmonic foliations and the de
Rham-Hodge theory for basic forms of a Riemannian foliations as developed
in [EH] and [KT5]. Further applications can be made in the spirit of
[TT].

2. Transversally holomorphic infinitesimal automorphisms. Let i?v

be the curvature associated to the unique metric and torsionfree connec-
tion V in the normal bundle of the Riemannian foliation ^ 7 Let similarly
Sv be the Ricci curvature. For a Kahler foliation we have then the
following identities:

(2.1) Rv(μyV)oJ= JoRv(μ, ») ,

(2.2) Rv(Jμ, Jv) = Rτ(μ, v) ,

(2.3) Sv(Jμ, Jv) = Sv(μ, v) ,

(2.4) #v(λ, μ)v + Rv(μ, v)X + Rv(v, X)μ = 0 .

In fact, (2.1) follows from VJ = 0. (2.2) and (2.3) follow from gQ(Jμ, Jv) =
0ρ(# v) Finally (2.4) is a consequence of the Jacobi identity. The proofs
are similar to the usual ones in Kahler geometry [KNJ.

An infinitesimal automorphism Y e V(^~) gives rise to a transversally
holomorphic field Ϋ = π(Y) if and only if

(2.5) 0 ( T ) J = O ,



602 S. NISHIKAWA AND P. TONDEUR

where for ZeΓL1 by definition

- J{Θ{Y)Z).

But this expression equals π[Y, JZ] — Jπ[Y, Z], which yields the formula

(2.6) (β( Y)J){Z) = - VJZ Ϋ + JVz Ϋ ,

so that (2.5) holds if and only if

(2.7) vJZΫ=JVzΫ for all ZeΓL1.

In the sequel it will be convenient to use the following orthonormal
frame on M. For xeM let {eA}, A = 1, , m = dimM be an oriented
orthonormal basis of TXM with ei9 i = 1, , p = dim L in L^ and eα, βα+n =
Jeα in Li for α = p + l, , p + w (^" is of codimension ^ = 2n on Mw,
m = p + 2w). The transversal Kahler property of ^ allows then to ex-
tend eα, Jea to local vector fields Ea1 JEa 6 ΓL1 such that for α, /3 =
p + 1, .-, p + n

(2.8) ^ , = 0, (V^J^) x = 0, (V / J f ^) . = 0, ( V ^ J ^ ) . = 0 .

As a consequence of torsionfreeness [KT1, 1.5]

(2.9) [EmEβ]m, [Ea,JEβ]x, [JEa,JEβ]xeLz.

The Eaf JEa can be chosen as (local) infinitesimal automorphisms of ^ 7
so that

(2.10) VxEa = 7r[X, S J = 0 for XeΓL .

We can complete Ea, JEa by the Gram-Schmidt process to a moving local
frame by adding EteΓL with (Et)e = e«, ΐ = 1, , p.

In terms of such a moving frame the transversal Ricci operator
pv:Q —> Q is given by

(2.11) ^ v = Σ / o ] ? ^

In fact, let j«6ΓQ. Then by (2.4), (2.1)

R,(Ea> JEa)μ = -m.JEa Ea)μ = R,(Ea, μ)JEa + R,(μ, JEa)Ea

or

JRτ(

It follows that

P

= JRv(Ec

= -J(RV

Ea, JEa)μ ••

P+n

VJ" = Σ (i

„ μ)Ea - JR,(
(μ, Ea)Ea + R

= Rv(μ, Ea)Ea

Rv(μ, Ea)Ea +

μ, JEa)JEtt

\(μ, JEa)JEa)

+ Rv(μ, JEa)Jj

Rv(μ, JEa)JEa)



HARMONIC KAHLER FOLIATIONS 603

is given by (2.11).

PROOF OF THEOREM A. To establish (i)=>(ii) we calculate for 7 e F(.JΠ
with transversally holomorphic Ϋ

(AΫ)X = (d*dvΫ)x = -±(VeA(dvΫ))(eA) - - Σ ( V e . V ^ Γ - VV*ABAΫ)

By (2.8) we have for a = p + 1, — -, v + n

VeEa = π(V?aEa) = 0

and therefore V?aEa eLx. Since Ϋis projectable, i.e. Θ(X)Ϋ = 0 or equiva-
lently VXΫ = 0 for every XeΓL, the term VVjrίβΫ vanishes. Similarly
for the corresponding terms involving JEa. On the other hand, for a
projectable Ϋ

where τx — Σ2U ̂ (^H^i) is the mean curvature vector field of ^~. Since
^~ is assumed to be harmonic, τ vanishes, and these contributions also
disappear. It follows that

(ΔΓ). = - Σ v e ivE i? - Σ vβαv^αf - Σ vJeyJEγ.

The first sum disappears since Ϋ is projectable. Since Ϋ is holomorphic,
by (2.7) the terms in the third sum equal

But

Λv(Jeα, ea)Ϋx = VJeVEaΫ - VeVJEaΫ - VlJEMΫ

where the last term vanishes by (2.9). It follows that

(2.12) (Δ Ϋ)m = - Σ VeVEa Ϋ - Σ J(VeαV«α Ϋ + Λτ(Jeβf eα) Ϋ.)

where we have again used (2.7). By (2.11), (2.12) we find then (JvΫ)a =
(Δ7), — pvΫx = 0 and ? is indeed a transversal Jacobi field.

To prove (ii) ==> (i) we consider conversely Y e V(^~) such that J v Ϋ == 0.
The desired result follows then clearly from the following general formula

(2.13) <β(Y)J, Θ{Y)J) =

where the left hand side denotes the global scalar product in the space
of endomorphisms of Q, while the right hand side denotes the global
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scalar product in ΓQ. I t remains to prove (2.13).

F i r s t we evaluate for xeM

= Σ 9Q((Θ(Y)J)(ea\ (Θ(Y)J)(ea)) + Σ gQ((Θ(Y)J)(Jea\ (Θ(Y)J)(Jea))
a=p+l a-p+l

(Θ(Y)J, Θ(Y)J)

Θ

Λ β F - JVeaΫ, VJeaΫ - JV,ttY)

(VίαΓ +

The second sum equals

and thus equals the first sum. It follows that

(θ(Y)J, Θ(Y)J)X

= 2 Σ ff«(VΛβf - /Vίαf, VΛαΓ) + 2

= 2 Σ Jeagq{vJEaY - J v £ α r , f ) - 2 Σ ί/β(v/eαv^αy - vJej{vEaY), Y)
a a

+ 2 Σ eα£fe(JVJEαF + VEaΫ, ?) - 2 Σ ff,(V.y(V«βF) + VeVE<xΫ, Y)
a a

= 2(divB Z). + 2 f f ί(Δ?, ? ) . + 2srρ(Σ JR^JEa Ea)Y, Ϋ). ,

where ZeΓQL is the s^-dual of λ e β ^ J " ) defined by

λ(X) = firρ(VxΓ + JVJXΫ, Ϋ) for l e Γ Q ,

and the transversal divergence div5 Z of Z is defined as the unique scalar
satisfying θ(Z)v = diVβiZ' i;, v being the transversal volume form defined
by gq [KTT]. The third term is by (2.11) equal to 2gQ(-ρvΫ, Ϋ)x. It
follows that

(2.14) (β(Y)J, Θ(Y)J)X = 2(div£ Z). + 2gQ(Jv?9 Ϋ)x .

By the transversal divergence theorem of [KTT], the integral of divBZ
over M vanishes for harmonic ^ 7 Thus we obtain (2.13) by integrating
(2.14) over M. •

PROOF OF THEOREM B. This is an immediate consequence of the
characterization in [KTT] of transversal Killing fields as transversally
divergencefree Jacobi fields, together with Theorem A. •

PROOF OF THEOREM C. Let Ϋ be transversally holomorphic. Then
Ϋ is a transversal Jacobi field by Theorem A. By [KT 2, (4.3)] we have
then the identity
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(2.15) ~±99{Ϋ, Ϋ) = g9(yΫ, V?) - g9(pvΫ, Ϋ) .

From here on the proof is exactly as in [KT 2]. Namely pv 5j 0 yields
immediately gQ(VΫ, VΫ) = 0 and hence V ? = 0 . If pv < 0 for at least
one xeM, then one concludes in addition Ϋx = 0 and hence Ϋ = 0. •

EXAMPLE 2.16 (Complex hyperbolic space CHn, see [KN, p. 282]). This
is the quotient space of the anti de Sitter space Hln+1 under the canonical
circle action. Here

£Π + 1 = {z = (20, su . , z j e Cn+ί\(z, z) = -1}

with the Hermitian form (z, w) — —zQw0 + Σk=iZkwk. The signature of
the induced metric on H\n+1 is (1, 2ri), and the sectional curvature is con-
stant — 1. The canonical Sx-action on iff1*1 defines a fibration

H\n+1 ->Cff™ = SZ7(1, n)/S(U(l)x i7(n)) ,

which gives rise naturally to a harmonic (and totally geodesic) Kahler
foliation jβf on Hln+1. The transversal holomorphic sectional curvature
is constant —4. The assumptions of Theorem C are satisfied, and it follows
that every Y e V(^~) with transversally holomorphic Ϋ satisfies Y e ΓL.
In this case pv < 0 and ^~ is a (strictly) stable harmonic foliation of
vanishing index and nullity (see [KT 2] for the second variation formula).

3. Dual basic 1-forms. For use below it is convenient to consider
the basic 1-form associated to Ϋ by gfρ-duality. Recall that the basic
forms are given by

Ωm

B(^r) = {ωeΩ\M)\ί(X)ω = 0, Θ(X)ω = 0 for all XeΓL} .

The exterior differential d restricts to dB: Ω'B -> Ω'B
+1. The adjoint dB with

respect to the induced scalar product < , ) B on ΩB yield then the basic
Laplacian ΔB = δBdB + dBδB. In the harmonic case, δB is locally given by
the usual formula (in the general case, the mean curvature produces
correction terms). Similarly, in the harmonic case the Weitzenbock for-
mula on basic 1-forms is the usual ΔBω = — trace Ψω + p^{ω) (while in
the general case the mean curvature produces correction terms).

Let ω be the basic 1-form associated to Ϋ by gρ-duality. It then
follows that the Jacobi condition J v Ϋ = 0 is equivalent to

(3.1) ABω = 2pv(ω) ,

where (pv(ω))(μ) = ω(pv(μ)) for μ e ΓQ. By Theorem A it follows that
this identity characterizes transversally holomorphic infinitesimal auto-
morphisms, while by Theorem B transversally Killing fields have addition-
ally to satisfy δBω = — d i v β ? = 0.
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We will need the identity

(3.2) 2δS, = -dBcv

for the transversal Ricci curvature Sv and transversal scalar curvature
cv. It involves the differential operator δ: ΓS2Q* -> ΓQ* defined in [KTT].
It is proved by contracting the second Bianchi identity for the transversal
curvature Rv as in the case of a foliation by points. We further need
the following identity for ω e ΩB(^~) and the transversal Kahler form

(3.3) δB(ωΛΦ)(μ, v) - (δBω) Φ(μ, v)

= dB(Jω)(μ, v) - (dBω)(Jμ, v) - (dBω)(μ, Jv)

for ftye ΓQ. To verify (3.3), let Ea be one of the vector fields Ep+1, ,
E p + n ; E p + n + 1 = J E P + 1 , , E p + 2 n = J E p + n . T h e n a t a p o i n t x e M w e o b s e r v e
f o r a , b , c = p + l9 •••, p + 2 n

δB(a)ΛΦ)x(ea, eh) = - Σ V > Λ Φ ) ( ί c , Ea, Eh)

= - Σ V.Λ[ω(E0) Φ(Ea, Eb) - ω(Ea) Φ(E., Eb) + ω(Eb).φ(Ec, Ea)}
c

= - Σ V..lω(E.) g9{E., JEh) - a>{Ea) gQ(Ec, JEh) + ω(Eb) gQ(Ec, JE.)]

= -Σ[(Vβ (,ft))(e c) flrρ(eα, Jeh) - {^efi)){ea)-gQ{ec,Jeh) + (V, β))(e») flrρ(ec, Jea)]
c

= (δBω)-Φ(ea, eb) + (V/ i6ω)(O - (VJeαω)(β6) .

But by direct calculation

dB(Jω)(ea, eb) - (dBω)(Jea, eb) - (dβω)(eα, Jβ6) = (V/β6α>)(eβ) - (VJeαω)(e6) ,

which completes the proof of (3.3).
We further need the characterization

(3.4) Vjzω = -JVzω for all ZeΓL1

for ω e ΩB{^) associated to Ϋ e H(^~) by grQ-duality. This is simply the
dual version of (2.7). Finally we need for ΫeH(^~) the J-invariance of
dBω, i.e.

(3.5) (dBω)(JZ, W) + (dBω)(Z, JW) = 0 for all Z, We ΓL1 .

This is a consequence of (3.4).

4. Proof of theorem D. For the sake of simplicity we identify from
now on H{^) with the corresponding space of dual basic 1-forms, and
similarly for K{^~). Consider the de Rham-Hodge direct sum decompo-
sition of Ω%&~) [EH], [KT5], which represents ω in the form
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(4.1) a) = dBa + δBβ + πBω ,

where πB: ΩB —> ^ B is the orthogonal projection onto the basic harmonic
1-forms £ίfB. Define ζ = dBa, ξ = δBβ + πBω. Then

(4.2) ω ^ j + ζ with δBξ = O, dBζ = O.

We first prove that for ω e H{J?~)

(4.3) δB(ξΛΦ) = 0 and ^ ( J f ) = 0 .

By (3.5) we have

(dBω)(JEa, Eb) + (dBω)(Ea, JEh) = 0 ,

and since dBζ = 0, it follows that

(dBζ)(JEa, Eh) + (dBξ)(Ea, JEb) = 0 .

From (3.3) and δBζ = 0 it follows further that

δ*(f ΛΦ) = CZB(^)

Since the left and right hand sides are in orthogonal spaces, they both
vanish.

Next we prove for the operator <5*: ΓQ* -> ΓS2Q* adjoint to 8 (see
[KTT]), and ω e H(jr)9 the identity

(4.4) (δ*ξ)(JZ, W) - (δ*ξ)(Z, JW) = 0 for all Z, WeΓL1 .

In fact, at each xeM, by (4.3), (3.3)

0 = δB(ξΛΦ)(ea, eb) + dB(Jξ)(ea, eb)

which yields (4.4).
Now we establish that for ω e ( )

(4.5) 3 B (^) = 0 .

At x e M we have

dB(P,ξ)x = - Σ Vu((Pά)(E.)) = - Σ J
α α

= - Σ (v..ί)θθvβ.) - f ( Σ v.αdt>vί?.))
α α

= - Σ Sv(eo, e») (V..f)(e») - Σ SM-g^V^E.), eb)
α,fe α,b

For the second sum we find

u(p,.Em), et) =
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and therefore by the definition of 3SV

Σ (VβαSv)(βα, eb) = -
a

Using (3.2) and the constancy of the transversal scalar curvature cv, we
find that this term vanishes. Using the symmetry of Sv, we find therefore

Σ
a,b

βα, eb)\h(Veaξ)(eb) + (Vβfc

L Δ

Using (2.3) and (4.4) establishes now (4.5).
We want to show that for ω e B(^~), ζ and £ in (4.2) are both also

in JHf(JH By Theorem A and (3.1) we have ΔBω = 2/θv(α>), i.e. ΔΛ(ζ + ξ) =
2^ov(ζ + ξ), or equivalently

Applying δB to both sides, and using (4.5) and δBξ = 0, we have

(4.6) δB(ΔBζ - 2p,ζ) = 0 .

Thus

<Jvζ, ζ> = <Δ5ζ - 2p,ζ, dBa) = 0 ,

and it follows from (2.13) that ζ 6 H(^~). Therefore also ξ = ω - ζ e
Note that in fact ξ e K(^~) by Theorem B, since S5f = 0.

Next we want to show that ζ = Jη for some η 6 K(^~). Necessarily
we have

(4.7) η = - Jζ

and with this definition we now show that indeed ΎJ e K{^). Clearly
ηeH{^), so that by Theorem B it remains to show that

(4.8) δBη = δB(-Jζ) = 0 .

We observe for xeM

(δBη)x = - ( δ 5 J ζ ) α - Σ (v,.(Jζ))(β.) = Σ (^v#βθ(β.) = Σ (vβαζ)(Je€)
α α a

= Σ (V Σ
Now srς(Jβα, e6) = -gQ(ea, Jeh), while (Vd5α)(βα, eb) = (Vd5α)(e6, eβ) From
this (4.8) follows.

The previous results show that the decomposition (4.2) represents
H{&") as the (not necessarily direct) sum

(4.9)
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The canonical homomorphism of K(^~)ξ&C onto H(^) has the kernel,
the ideal of elements £®1 + f ' ® ! / 1 1 ! with ξ, ξ'eK(J?~) such that

(4.10) ξ + Jζ' = 0 .

But ς = -«/£' implies by (4.3)

d r f = -dBJξ' = 0 .

Thus Δ5£ = 0, and hence by (4.10) also ABζ' = ΔSe7f = JΔ5£ = 0.
To complete the proof of Theorem D, we show that the harmonic

part πBω in (4.1) defines a parallel vector field. Let

(4.11) Jξ = J(δBβ) + J(πBω) = Ψ + φ e JK{^r)czH(J^) .

Since ΔBφ = ΔB(JπBω) = JΔBπBω = 0, it follows that dβ<£> = 0 and δBφ — 0.
By (4.3) we have dB(Jζ) — 0, hence also dBΨ = 0. Thus the decomposition
(4.11) satisfies the same conditions as (4.2), and by the arguments made
above to prove ξ e K{^)y we conclude also that φ 6 K{^). This condition
together with dBφ — 0 implies now Vφ — 0. But then

JV(πBω) = V(JπBω) = Vφ = 0

and thus VπBω = 0, as claimed. The parallel transversal holomorphic
fields form a abelian Lie algebra, since for two such fields Ϋ9 Ϋr we have
[Ϋ, Ϋ'] = 0 as a consequence of the torsionfreeness of V. This completes
the proof of Theorem D.

5. Kahler-Einstein foliations. This is a special case of the situation
discussed above, where pv — c id: Q—>Q for some constant c = cv/q. By
(3.1) it follows that ωeH(^') is characterized by ABω = 2c ω.

If c = 0 this shows that H{Jf) s ^f^B% Thus in this case K(J?~) s

COROLLARY 5.1. Let ^ be a harmonic Kdhler foliation with zero
transversal Ricci curvature. Then H{^) = K{^r)f and this Lie algebra
is an abelian subalgebra of the algebra of all parallel transversal fields.

In view of Theorem C, the only case of interest for c Φ 0 is c > 0.
In this case ΔBω = 2c ω applied to (4.1) implies that πBω = 0. The pre-
vious arguments imply then the following result (see Matsushima [MA] for
the case of a point foliation).

COROLLARY 5.2. Let ^ be a harmonic KahlerΈinstein foliation
with c > 0. Then ΐϊ{jr) s

EXAMPLE 5.3. Let P2n+1 -^ CPn be a principal circle bundle with a
connection form η. Let ξ be the vertical vector field characterized by
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η(ξ) = 1. Let g be the Fubini-Study metric of constant holomorphic sec-
tional curvature 4 on CPn. Then g = π*g + 7]®rj defines a Riemannian
metric on P, for which ξ is easily verified to be a unit Killing vector
field. The fibers of π are geodesies (see e.g. [KT1, 3.20]), and define a
harmonic Kahler-Einstein foliation. Thus Corollary 5.2 applies and

(5.4) H(jr) = K(^r)®JK{jr) .

We can moreover estimate the nullity of j^~ as follows:

(5.5) nullity of ^r ^ 2[(n + I)2 - 1] .

In fact, the nullity of ^~ is the dimension of the space of Jacobi fields
of ^ 7 and hence it exceeds the dimension of space of transversal Jacobi
automorphisms of _^7 But by Theorem A, the latter space coincides with
the space of transversally holomorphic automorphisms of ^ 7 By (5.4),
this space has twice the dimension of the space of transversal Killing
automorphisms of ^ 7 It follows that

nullity of ^r ^ 2.dim(Isom0(CP")) = 2 dim SU(n + 1) = 2[(n + I)2 - 1] .

In view of [KT1, (3.20)] this inequality holds more generally for the
foliation defined by any principal G-bundle over CPn. We further note
that for the special case of the Hopf fibration S2n+1 -»CPn, the index of
&~ is ^2n + 1 by [KT4], while the (complex) dimension of the space of
holomorphic foliations near &~ is precisely (n + I)2 — 1 by [DK, p. 79].

REFERENCES

[B] S. BOCHNER, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946),
776-797.

[DK] T. DUCHAMP AND M. KALKA, Holomorphic foliations and deformations of the Hopf
foliations, Pacific J. Math. 112 (1984), 69-81.

[EH] A. EL KACIMI AND G. HECTOR, Decomposition de Hodge basique pour un feuilletage
riemannien, Ann. Inst. Fourier 36 (1986), 207-227.

[KN] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, John Wiley and
Sons, Vol. II (1969).

[KO] S. KOBAYASHI, Transformation groups in differential geometry, Ergebnisse der Math.
70 (1972), Springer-Verlag, Berlin, Heidelberg, New York.

[KT 1] F. W. KAMBER AND PH. TONDEUR, Harmonic Foliations, Proc. NSF conference on Har-
monic Maps, Tulane University (1980), Springer Lecture Notes 949 (1982), 87-121.

[KT 2] F. W. KAMBER AND PH. TONDEUR, Infinitesimal automorphisms and second variation
of the energy for harmonic foliations, Tόhoku Math. J. 34 (1982), 525-538.

[KT 3] F. W. KAMBER AND PH. TONDEUR, Foliations and metrics, Proc. of the 1981-82 year
in Differential Geometry, University of Maryland, Birkhauser, Progress in Mathe-
matics Vol. 32 (1983), 103-152.

[KT 4] F. W. KAMBER AND PH. TONDEUR, The index of harmonic foliations on spheres, Trans.
Amer. Math. Soc. 275 (1983), 257-263.



HARMONIC KAHLER FOLIATIONS 611

[KT5] F. W. KAMBER AND PH. TONDEUR, De Rham-Hodge theory for Riemannian foliations,
Math. Ann. 277 (1987), 415-431.

[KTT] F. W. KAMBER, PH. TONDEUR AND G. TOTH, Transversal Jacobi fields for harmonic
foliations, Michigan Math. J. 34 (1987), 261-266.

[L] A. LICHNEROWICZ, Geometrie des groupes de transformations, Dunod, Paris, 1958.
[MA] Y. MATSUSHIMA, Sur la structure du groupe d'homeomorphismes analytiques d'une

certaine variete Kahlerienne, Nagoya Math. J. 11 (1957), 145-150.
[MO] P. MOLINO, Geometrie globale des feuilletages riemanniens, Proc, Kon. Ned. Akad.,

Al, 85 (1982), 45-76.
[TT] PH. TONDEUR AND G. TOTH, On transversal infinitesimal automorphisms for harmonic

foliations, Geometriae Dedicata 24 (1987), 229-236.
[Y] K. YANO, Sur un theoreme de M. Matsushima, Nagoya Math. J. 12 (1957), 147-150.

DEPARTMENT OF MATHEMATICS AND DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCS UNIVERSITY OF ILLINOIS AT

KYUSHU UNIVERSITY URBANA-CHAMPAIGN

FUKUOKA, 812 1409 WEST GREEN STREET

JAPAN URBANA, IL 61801

USA






