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0. Introduction. Recently many differential geometers are interested
in complete Riemannian manifolds of negative or nonpositive curvature.
On the other hand, complete Kahler manifolds of negative curvature are
interesting objects in complex analysis because of their function-theoretic
properties. But few results are known about them. Moreover, in general
it is hard to construct examples of negatively curved Kahler manifolds
of finite volume. A typical example is an arithmetic quotient of a bounded
symmetric domain of rank one.

In this paper, we shall investigate the 2-dimensional case. The pur-
pose of this paper is to study how the differential geometric properties
reflect the complex structures in the case of complete negatively pinched
Kahler surfaces of finite volume. More precisely, we study complete
Kahler surfaces S such that

1. vol(S) < oo,
2. - l ^ c - ( S ) ^ c + ( S ) < 0 ,

where c+(S), c~(S) denote the supremum and the infimum of the sectional
curvatures of S, respectively. By [14, p. 363, Main Theorem], such a
complete Kahler surface S is a quasi-projective surface and can be com-
pactified as a normal projective surface S by addition of one point to each
end. We call S the Siu-Yau compactification of S. In this paper, we
shall show that S has only almost simple elliptic singularities. In other
words, we can determine the complex structure at infinity of S. Our
proof depends on the classification of normal surface singularities with
solvable local fundamental groups ([16]).

This paper is organized as follows. In Section 1, we determine the
minimal resolution of the normal isolated singularities of S by using
Wagreich's classification of normal isolated surface singularities with solv-
able local fundamental groups ([16]). In Section 2, we study the asymptotic
behavior of the Kahler metric of S toward infinity by using the existence
of a complete Kahler-Einstein metric with negative scalar curvature ([6])
In Section 3, we prove a finiteness theorem of deformation types if we
pinch the curvature and volume of the surfaces. In Section 4, we remark
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1. Complex structure at infinity. Let S be a complete Kahler surface
of finite volume such that - 1 ^ c-(S) ^ c+(S) < 0. Let S be the Siu-Yau
compactification of S. Let p be a point of S — S. p is a normal isolated
singular point of S (p is not a smooth point of S as we see below). Let
V be a Stein neighborhood of p which is biholomorphic to a closed sub-
variety of the open unit ball Bn in C\ We shall identify V with the
subvariety. We may assume without loss of generality that p is the origin
of Cn. Let ST"1 (resp. 2?J) denote the sphere of radius ε around p. Then
Milnor [9] has shown that the "neighborhood boundary"

K* = F n S r 1 , 0 < ε < l

is a C°° 3-manifold, independent of ε and Vf\Bn

ε is the cone over K.
In [16], Wagreich classified normal surface singularities such that the

fundamental group of the neighbourhood boundary is solvable.
On the other hand, the following holds.

PROPOSITION 1.1 ([13, p. 177, Proposition] and [3, p. 510, Theorem 3.1]).
Let M be a complete Riemannian manifold of finite volume such that its
sectional curvature is pinched between two negative constants.

1. If n = dim M ^ 3, the ends correspond bijectively to the conjugacy
classes of the maximal nilpotent subgroups of rank n — 1 of πx(M).

2. The ends have disjoint neighbourhood Udiffeomorphic to Nx (0, °°),
where N is a compact codimension one submanifold of M.

3. N is diffeomorphic to Γ\Rn~1, where Γ is a maximal almost
nilpotent subgroup of πt(M) of rank n — 1.

By Proposition 1.1, π^K) is an almost nilpotent group of rank three.
In particular, p is a singular point of S. Now we shall determine the
complex analytic structure of the ends.

LEMMA 1.1. Let μ: (V, p) —> (V, p) be a finite covering such that it is
unramified over V — {p} and the fundamental group of the neighborhood
boundary of' (V, p) is nilpotent. Let π: V -» V be the minimal resolution
of V and let E be the exceptional divisor. Then one of the following holds.

1. E is a nonsingular elliptic curve.
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2. E is a cycle of rational curves, i.e., every irreducible component
of E is a nonsingular rational curve and the dual graph of E is a circle.

3. E. is a rational curve with one node.

Befare proving Lemma 1.1, we shall review the definitions of simple
elliptic and cusp singularities.

A normal surface singularity (X, x) is called a simple elliptic singu-
larity, if the exceptional set of the minimal resolution consists of a single
nonsingular elliptic curve A. In this case X — {x} is a quotient of the
unit ball B2 in C2 as a germ [6, p. 49, Lemma 4]). See [11] for details.

Let k be a totally real field of degree n over the rationale and Man
additive subgroup of k which is a free abelian group of rank n. Let Ui
be the group of those units ε of k which are totally positive and satisfy
εM = M. For a given pair (M, E) with Ed Uϊ (where E has rank n — 1)
one defines the group G(M, E) consisting of the elements of the form:

'ε μ

β 1

where εeE, μeM.
Let H be the upper half plane. The group G(M, E) acts freely and

properly discontinuously on Hn by z5v-*ε{ά)Zj + μ{j), where x\-+x{j), 1 <> j <; n,
denote the n different embeddings of k into the reals. Then Hn/G(M, E)
defines a complex manifold which acquires a normal singularity when a
point oo is added with neighborhoods |Im(^)Im(^2) Im(zJ| > const. The
singularity at oo will be called a cusp singularity of type (M, E).

Cusp singularities of dimension two are characterized as follows. Let
(X, x) be a normal surface singularity and let π: X —» X be the minimal
resolution of (X, x). Let A = π~\x) be the exceptional set. Then (X, x)
is a cusp singularity if and only if A is an irreducible rational curve
with a node singularity or A is a "cycle" of rational curves (see [4], [5], [8]).

PROOF OF LEMMA 1.1. First by assumption we may assume that πx(K)
is nilpotent, hence solvable. In this case by the classification of [16], we
can check easily that if πx{K) is nilpotent of rank three, then E must
be a nonsingular elliptic curve or a cycle of rational curves. In the first
case, (V, p) is a germ of a simple elliptic singularity and in the second
case (F, p) is a cusp singularity. q.e.d.

Let us consider the case in which πx(K) is not nilpotent. In this case,
there exists a nilpotent subgroup Γ of finite index in π^K) by Proposition
1.1. Let μ: Vf —> V — {p} be the unramified covering corresponding to
Γ. Then we can compactify one end of Vf as a normal complex space
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VΓ by adding one point. VΓ has a unique singular point pΓ whose local
fundamental group is Γ. Hence (VΓ, pΓ) is a germ of the simple elliptic
singularity or a cusp singularity.

Hence we obtain the following lemma.

LEMMA 1.2. (VΓ, pΓ) is a germ of a simple elliptic singularity or a
cusp singularity.

DEFINITION 1.1. A germ of a normal isolated surface singularity
(V, p) is said to be almost simple elliptic, if there exists a finite covering
(W, q) —> (V, p) which is unramified on W — {q} such that (W, q) is a germ
of a simple elliptic singularity.

The following theorem will be proved in the next section.

THEOREM 1.1. S has only almost simple elliptic singularities.

2. Asymptotic behavior of the Kahler metric. In this section, we
use the same notation as in Section 1.

LEMMA 2.1. If we take V sufficiently small, then there exists a Kdhler-
Einstein metric with constant negative scalar curvature on VΓ — {pΓ}
which is complete toward p r

PROOF. We note that B2 and H2 have canonical Kahler-Einstein
metrics which are invariant under their automorphism groups, respectively.
Then the lemma follows from Lemma 1.1. q.e.d.

Let ωE be the Kahler-Einstein metric constructed in Lemma 2.1. Let
cor denote the pull-back of the original Kahler metric on S by μ: Vf —>
V - {p}. We note that - 1 ^ c~(S) ^ c+(S) < 0 holds. Then since ωE is
complete toward pΓ, by Yau's Schwarz lemma (which is essentially the
maximum principle), we see that there exists a positive constant Cx > 1
such that

(1) (OΓ^C&E on Vf

and

(2) Cr'aii ^ ω2

Γ ^ C.ωl on Vf

Hence there exists a positive constant C2 > 1 such that

(3) CϊιωE < o)r < C2ωE on Vf .

PROOF OF THEOREM 1.1. For geπ^VϊX^iS1, F?]), we define the
length |ffI of g by

Iff I = inf length(τ) ,
[]
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where length(τ) is the length of the loop 7 which represents the homotopy
class g measured by ωE> Assume that (VΓ, pΓ) is a germ of a cusp sin-
gularity. Then there exists g such that \g\ > 0 (cf. [4]). This contradicts
(3). By Lemma 1.1 this completes the proof. q.e.d.

LEMMA 2.2. Let W be the blowing up of V with center p. Then W
has only isolated quotient singularities.

PROOF. This lemma is an immediate consequence of [18, p. 85, Theo-
rem 3.9] and Theorem 1.1. q.e.d.

Let π:S~>S be the blowing up with center S — S. Then by Lemma
2.1, S has only normal isolated quotient singularities as singularities. In
other words, S is a normal F-surface. Hence in particular S is Q-factorial,
i.e., every Weil divisor on S is a Q-Cartier divisor. Let D be the ex-
ceptional divisor of π.

THEOREM 2.1. K§ + D is ample modulo D and numerically trivial
on D.

PROOF. First we assume that S has only simply elliptic singularities.
In this case S is smooth and ω is equivalent to the natural locally sym-
metric metric toward the ends. By computing the Lelong number of
the current — Ricω on S along D, we have

(4) [-RicJ = 2π[K-s + D] .

Since there exists a positive constant C3 > 1 such that

(5) Cςιω < -Ric ω < C3ω on S

by assumption, K$ + D is ample modulo D and numerically trivial on D.
Now the proof for the general case follows from the logarithmic

ramification formula and Theorem 1.1. q.e.d.

3. A finiteness theorem. In this section, we shall give an applica-
tion of Theorem 2.1. The following theorem was motivated by [3, p.
498, Theorem I].

THEOREM 3.1. Let C be a positive number. Then there exists only a
finite number of deformation types in the set of complete Kahler surfaces
S such that - 1 ^ c~(S) ̂  c+(S) < 0 and vol(S) ^ C.

REMARK 3.1. In the case of locally symmetric spaces, Theorem 3.1
is a special case of Wang's finiteness theorem ([17]).

PROOF OF THEOREM 3.1. We note that since S is a F-surface, all
the results in transcendental algebraic geometry (Hodge decomposition,
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Riemann-Roch theorem, Hodge index theorem, Ramanujum vanishing theo-
rem) still hold for S (with minor modifications). Let L denote the Q-line
bundle K-s + D.

First we shall consider the special case where K§ is a Cartier divisor.
In this case, since L is numerically trivial on D by Theorem 2.1, D is a
Cartier divisor. We claim that the complete linear system |5L| is base
point free and embeds S and contracts D to finite points. We note that
since L is numerically trivial on D, Bs|mL| f)D consists of irreducible com-
ponents of D for every m > 0. Now we can prove the claim by entirely
the same argument as in the proof of [12, p. 110, Theorem 5.8]. On the
other hand, by the proof of Theorem 2.1, we see that there exists a
positive constant K such that

(6) L2^Kvo\(S).

Hence |5L| gives an embedding of S onto a protective surface of degree ^
25iΓ vol(S) in some PN

m By using a generic projection from PN to P5,
we can embed S as a protective surface of degree <* 25K vol(S) in P\
Now the theorem follows from the finiteness property of the Hubert
scheme.

If Kg is not a Cartier divisor, then we take a canonical covering
/: Scan -* S (cf. [7, p. 608]). We note that the canonical covering is a cyclic
Galois covering. Let DCΆn denote the divisor (f*D)ted. By the logarithmic
ramification formula, we see that

( 7 ) f*(K-s + D) = Ksc&n + Dc&n.

Then it is standard to see that deg/ L is a Cartier divisor on S and
15 deg/ L I is base point free and embeds S and contracts D, since / : Sc&n-+S
is a cyclic Galois covering. The rest of the proof is the same as in the
special case. q.e.d.

4. A remark on the duality between ZΛcohomology and intersection
homology. Let S be a complete Kahler manifold of finite volume such
that — 1 ^ c~(S) ̂  c+(S) < 0 and let S be the Siu-Yau compactification
of S. In Section 2, we saw that the Kahler metric of S is quasi-isometric
to the natural locally symmetric one near the simple elliptic singularities
up to a finite covering toward every end of S. Comparing this with
Saper's metric in [15], we have the following theorem.

THEOREM 4.1.

H\2)(S) cz IHUS) , 0 ̂  i ^ 4 ,

where H% and IH* denote the U-cohomόlogy group and the {middle) in-
tersection homology group, respectively.
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