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Introduction. For a natural number n, consider the following two sets:
A ={(x, y, t, e Z* gcd.(x,y,t,)=1, X>+y*>=tu, t+u=n},
B)={(x,y, ,w)eZ* gcd.(x,y, ,bu)=1, X’ +y*=tu=n, L u=1}.

Denote by a(n), b(n) the cardinality of 4(n), B(n), respectively. In this paper the reader
will find a proof of the following formulas:

0.1) 93 )=1+ i a(nX9,%(nt)—1), where 9,(1)= Y ™™,
n=1 kez
4 . 2 © b
(02) CQ(!)(S) — Z ('Z) i where CQ(i)(S)=i Z 1 (@ b) % (0, 0) '

4 (a,b)eZ2 ((12 + bZ)s ’

As the reader will also find in this paper, these formulas are special cases of more general
formulas ((5.1), (6.7)) and are proved by looking at a quadratic map f whose fibres are
circles. We shall arrange the matter so that the final results ((3.7), (4.11)) can be stated at
least for any imaginary quadratic field of class number one. This paper has some points
in common with my earlier paper (Hopf maps and quadratic forms over Z,
Contributions to Algebra, A Collection of Papers dedicated to Ellis Kolchin, Academic
Press, (1977), 295-304) but is independent of it logically.

Notation and conventions. The symbols N, Z, Q, R, C denote the set of natural
numbers (0 ¢ V), integers, rational numbers, real numbers and complex numbers. For a
complex number ceC, ¢ is its conjugate, Nc=éc=|c|* and Tc=¢+c. For a com-
mutative associative ring R with unit, we denote by R™ the group of invertible elements
of R, by R" the product of »n copies of R and by R, the ring of matrices of degree n over
R. For ae R, tra is the trace of a. When a=(qg;;) € R,, we often write g; for a;;. For a
set x, we denote by [#] the cardinality of . Given functions a, b: N—C, we define func-
tions acb and axb by (a-b)(n)=), a(x)b(y) (Cauchy product), (axb)(n)=
Y xy=n@(x)b(y) (Dirichlet product).

x+y=n
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1. The map /. Let X=C" neN, be the complex vector space of dimension n and
Y =C, be the set of complex matrices of degree n. Call f the map X— Y defined by
(1.1) y=fx)="%x=(Xx;), x=(x;, ", Xx)EX.

If we put e, =(0, - -+, 1, - - -, 0) where 1 is the kth component, 1 Sk <n, then E, ='e,e; =
f(e). The matrix y is hermitian and y;=y;€R. Furthermore, y=(y,;) satisfies the
following conditions:

(1.2) 20, YiYej=ViJij» 1=i,j,ksn.

We shall denote by V the set of all hermitian matrices ye C, satisfying (1.2). Hence,
Im f< V. We shall use the letter v for matrices in V. For ae N, 1 Sa<n, we put

(1.3) V,={veV; v=0,15k<a—1, v,>0}.

For each «, V, is not empty because E, is in it. Since |v;;|* =v;;5;;=0v,0; by (1.2), there is
an « such that v,>0 when v#0. Therefore, we get the disjoint union of non-empty sets:

(1.9) V={0juV,u---uVr,.

From (1.2) one sees that

(1.5) veV,=v,;=0 unless i, j=o.

For teR, t=0, we put

(1.6) S(t)y={ceC; |c* =1t} (circle of radius '/?) .
(1.7) PROPOSITION. LetveV,, 1 Sa<n. There is a bijection

@, [T ()= S(v,)
given by @ (x)=x, x=(x;, - -+, x,)€f'(v).

PROOF. (i) @, is well-defined. Since v =f(x) ='xx, we have v, =X,x, =|x,|*, i.e. x, =
o (x)eS(v,). (i) @, is injective. Since 0=v,=|x, >, 1 <k<a—1, we have x,=0 for
k<o—1. Assume next that k>a. Since v,=|x,|>, we have x,#0 and so x, =%, 'v,, by
(1.1). Hence x is completely determined by x,, i.e. ¢, is injective. (iii) ¢, is surjective.
Take any ceS(v,). Put x,=---=x,_,=0, x,=c¢ and x,=x, 'v, for k>a. We must
show that xef~!(v), i.e. v;;=Xx;, 1 i, j<n. In view of (1.5), we may assume that i, j > a.
Then, we have

[ 1
XiXj =Xy VgiXqg “Vgj= 5 VigVoj =~ VaV;;= Vjj »
1%, Vs

which proves that @, is surjective. q.e.d.

2. The map f,. Let K be an imaginary quadratic field, o be the ring of integers
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of K and
2.1) L=poy"cX=C".

We shall denote by f; the restriction on L of the map f in (1.1). Clearly, we have
Im f; =« V(og) = V' N(0g),. For a, 1 Sa<n, we put

(22) Va(ol()z Van(oK)n .

Since E, € V (0g), V,(0k) is still not empty and we get the disjoint union of non-empty
sets:

(2.3) Vo) ={0} UV, (og)U -+~ UV, (o) .
For teR, 120, and a lattice a in C, put

(2.4) S()=ansS().

For ve V, (og), put

2.5) a,={ceog; cv,;=0 (modv,), a<j<n}.
Obviously, a, is an ideal of oy.

(2.6) PROPOSITION. Let v be in V (og), | Sa<n. Then, the bijection ¢ in (1.7)
induces the bijection

(pv,L fi I(U) ~ Sav(va) .

PROOF. (i) ¢, is well-defined. In view of (1.7), it is enough to check that x,ea,.
In fact, multiplying x, on both sides of X,x;=v,;, we have xavajzlxa|2xj=vaxj50
(mod v,) which proves our assertion. (ii) ¢, , is injective. This is obvious from (ii) of
(1.7). (iii) @, is surjective. Take any ce S, (v,) and define x =(x;, - - -, x,) as in (iii) of
(1.7). It remains to check that xe L, i.e. all x;e ok. For j, I £j<a—1, this is trivial be-
cause x;=0. For j=a, we have x,=ceaq,. Finally, for j, j>a, we have

xj:i“_lvaj:#xavajzv‘axavaj:U-acvrzje Dk,
which proves that ¢, , is surjective. q.e.d.
For v=(v;;) € V(og), we put
2.7 n(v)=g.c.d.(v;, Tv;;) (i#j) .
Since v is hermitian, we have Tv;;=v;;+v;. For a, | Sa<n, we define
(2.8) Vilow) ={veV,(ox); n(v)=1},

2.9) Vo) ={0}UV(o) U - UV (o) .
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As E, is still in V¥(og), (2.9) is the disjoint union of non-empty sets.

(2.10) PROPOSITION. For veV (ok) define a matrix v* by v=n(v)v*. Then
v¥e V¥(og) and a,=a,.

PROOF. Assume that v*=(v¥). Since v;=n(v)v} and n(v) divides v;, we have
v¥eZ. Next, we must verify that v e oy for i#}, or, equivalently, that Nv¥ and Tv} are

in Z. Since v;;v;=vv;, we have Nvf=v}v%=v¥v¥eZ. On the other hand, we have
Tv}=(1/n(v))Tv;;€ Z and so v*€ V' ¥(ok). The last statement is obvious. q.e.d.

From (2.10), it follows that
(2.11) So, (V) =8, (n()F),  veEV,(0g).
(2.12) PROPOSITION. If v=(v;;) € V¥(og), then Na,=v,.*’

PROOF. (i) Na, divides v,. Clearly v,ea, and so v,ed,. Since v;,0,;=0,0,;=0
(mod v,), we have v,, € a, and hence v,; =7,, € a,. Therefore (Na,) =a,a, contains v2, v,v,;,
Ualigs Viglai =U;U, 80 0;,0,;=0,0;;, 1 =i, j<n. We have (Na,) 5 0,(v,;, v;;+0v;) 30, because
n(v) =g.c.d.(v;, Tv;;)=1, which shows that Na, divides v,. (ii) v, divides Na,. Let ¢ be any
number in a,. Since n(v)=1 by the assumption, there are g,, b;; in Z such that

a

(213) 1= Z akvk+ z b,]TUU

k=a asi<j<n
Multiplying Nc=|c|* on both sides of (2.13), we get
(214)  [clP=amw,lcl?+ Z awleP+ Y byTogleP+ Y b;Toglcl”.
k=a+1 a<j<n a<i<jsn

We shall show that all four terms in (2.14) are divisible by v,. There is no problem on the
first term because v, is already there. Next, since cea,, we have
(2.15) CU=0,d di€og.
Taking the norm of both sides of (2.15), we get

lellv,; P =vild;?

|C|20ajvju:|6'|2”avj

and so |c[*v;=v,|d;* =0 (mod v,), which shows that the second term is divisible by v,. As
for the third term, because of (2.15) we have |c|?v, ;=0,¢d;. Taking the trace of this, we
get |cf? Tv,;=v,1(¢d;)=0 (modv,), which shows that the third term is divisible by v,.
Finally, again by (2.15), we have

lcPvg=v,ed; and |c]v,=v,cd;.

*) | thank Ming-Guang Leu for his valuable advice on the proof of (2.10).
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Multiplying these equalities, we get |c|*v
equality, we have

)a=V2|c|*dd;. Taking the trace of the last

ail’ja

lclz(uaivja +030,)) = Ug T(dijj)
1
Iclz(vauji +0,0;5) -
Hence we have |c[*Tv;;=v,T(dd;)=0 (modv,), which shows that the fourth term is
divisible by v,. The above argument implies that v, divides |c|> = Nc for all ce a,. Now,

since a, is the g.c.d. of (¢)’s, c€ a,, Na, is the g.c.d. of (Nc¢)’s, ce a,, and so v, must divide
Na q.e.d.

v

3. Case hgy=1. From now on, we assume that the class number Ay of the
imaginary quadratic field K is one. As is well known, such a field is one of the nine fields
Q(/ m) with —m=1,2,3,7,11, 19, 43, 67, 163.

As in §2, take a matrix v=(v;;) € V' (0g). By (2.10), one can write

3.1 v=n(v)v*, v¥e V¥(og) .
Since hg=1, we have
3.2) a,=ay.=(a), aeog.
From (2.12), it follows that
(3.3) |a]*=Na= Na,=v*.
Since we have

ceau<>c=ab, beog,
we obtain the following chain of equivalences:

(3.4) ceS, (n(v)¥)<cea, and [c[*=n(v)v}
<b=a"'ceog and |al?|b]* =n(v)v*
<beog and |b|*=n(v) (by (3.3))
<beS, (n(v)).

By (2.6), (2.11), (3.4), we get the equalities of cardinalities:
(3.5) Lf L' 1=[S,, (0] =[S, (n(0)0 )] =[S, (n(v))] .

For an integer 1= 1, we denote by ri(f) the number of a € o such that Na=t. Hence we
have

(3.6) () =[S, (D]=[og I(1 * x£)(1)

where yg is the Kronecker character belonging to K.
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To sum up, we proved the following:

(3.7) THEOREM. Let K be an imaginary quadratic field of class number one. Let f;
be the map from L =oy" to (o), defined by f(x) ="'xx. Let V(og) be the set of all hermitian
matrices v =(v;;) € (0g), such that v;=v;20, vyv,;=vw,;, 1 =14, j, k<n, and let V (og) be
the subset of V(oy) consisting of v’s such that v,=0, 1 <k<oa—1 and v,>0. Then f; maps
L into V(og)={0}UV,(ox)U--- UV, (0g), where the latter is the disjoint union of non-
empty sets. Furthermore, for each ve V (oy), the cardinality of the fibre f*(v) is equal to
ri(n(v)) where n(v) =g.c.d.(v;, Tv;;) and r(t) is the number of a€ oy such that Na=\|al*=1.

4. Use of the series ;. Let K be, as in § 3, an imaginary quadratic field of class
number one. Consider the formal power series in variable g:

(4.1) V@)= 4"

ce€ok

Since |x;]*=v; when f(x)=v, we have, by (3.7), (2.10),

42 Y@= Y g Y [f[’(v)]q""=1+i Y. rx(n(v)g"”

xeL veV(ok) a=1 veV,(ok)

=1+ Z Z rK(m) Z ¢1"v=1+ i i rK(m) Z qm(trv"‘).

a=1m=1 vﬁ(‘;)aiorﬁ() a=1 m=1 v*e Vilok)

Now, for re N, consider the set

4.3) V* (og)={veV¥oy); trv=t}.
If we put
(4.4) a,()=[V3}(og)],

we get from (4.2) that

o0

(43) wmuui:zmmzxmmﬂ+§§ A0 % e

Z1 -
Since Y(9) =Y 0 4" =200 rx(V)q", We have, by (4.5),

(4.6) l//K(q)"=§0 (h)(v)q —1+a21 tzl a(t¥x(g)—1).
If we put

@) )= Y. a0,

a=1

then, (4.6) implies that
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(4.8) Ylg)'=1+ _Z a(t) ¥ lq)—1)".

On the other hand, we have

aft) Y. remig™ =Y (a,xrg)V)g",
1 m=1 v=1
and so, by (4.7), (4.8), (4.9), we have

n-times
@ —_— [eo]
(4.10) (rgo =" org)v) Z (axr)v)q”

Nk

4.9)

1]

t

where a(r) is the cardinality of the set
V¥og)={ve Wog); n(v)=1, trv=t} .
To sum up, we have proved the following:

(4.11) THEOREM. Let K be an imaginary quadratic field of class number one and
V(o) be the set of all hermitian matrices v=(v;;) such that v;20 and vy, ;=v,0;, 1=
i, j, k <n. Then the cardinality a(t) of the set V¥(og) ={ve V(og); n(v)=1, trv=t}, teN,

satisfies the relation ,
n-times

(4.12) Fgotttorg=axrg.

5. The cse K=Q(i). In this case, ox=Z[i] and, for 1€ N, a(z) is the cardinality
of hermitian matrices v =(v;;) € Z[i], such that v; 20, vy, ;=v,0;;, n(v)=1and trv=1. Let
g=e™", teC, Im7>0. Then, we have

Ylg)= Y ¢'= Y ¢"*’= (anz> =9,21)  where 9,(1)=Y ¢

cE€og (a,b)eZ? acZ acZ

lj’

Therefore (4.8) can be written
(5.1) 9,2%(1)=1+ Z (EX93%(t7)—1)

or, by the footnote #),

o9}

(5.2) 9, 2"(0)—nd3 )+ (n—1)= Y a(tX9;%(t1)—1).

t=2

If, in particular, n=2, then, since g.c.d.(¢, u, 2x)=1 if and only if g.c.d.(x, y, t, u) =1
for (x, y, t, uye Z*, (5.1) boils down to the formula (0.1) in the introduction.

® One verifies easily that a(l)=n. Hence (4.8) can also be written as Y (q)"—ny(q)
+(n—D)=)", a®x(g)—1).
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6. (x(s). The field K being as in § 3, we shall consider the subsets U(og), U*(vg)
of V(og) defined by

(6.1) Ulog)={ueV(og); u;21, 1 Sisnj,

(6.2) U*(og)={ue U(og); n(u)=1}.

Call b(t), te N, the cardinality of the set

(6.3) UXog)={ue Ulog); n(v)=1, v, - - - v,=t} .

Consider the Dedekind zeta function {(s). Since hx=1, we have

(64) [D;(( ]CK(S) — Z —1—- _ © rK(v)

caneox(NC)s =

By (3.7), (6.1), (6.2), (6.3), (6.4), we have

1 1
6.5 1" = A —— -1 -
©3) Log I"eeds) a“%‘é 0N(x1 T x,)® ueg(:o,() Lo ] (uy - u,)
_ n(v) d 1
_us(;ox)( : ; 1:]5(“[;2(0,()( n)s

© K 1 © © ©
_y r (m) Y ¥ <= Z. rK(m b(t)—[ok]CK(nS b(t)

m= lm t=1 w*eUf(og) t=1 t=

To sum up, we proved the following:

(6.6) THEOREM. Let K be an imaginary quadratic field of class number one and
U(og) be the set of all hermitian matrices u=(u;;) € (0g), such that u; 21, uyu;=uu;,
154, j, k<n, and b(t) be the cardinality of the set

UXog)={ue Uoy), n(u)=1, uy -~ - u,=t}, teN.
Then, we have
Wl _ 500
Clns) Syt

If, in particular, K=Q(i/) and n=2, then (6.7) boils down to the formula (0.2) in the
introduction.

(6.7) [og]" !
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