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1. Introduction. There are many efforts to extend the decomposable operator
theory on a complex Banach space, which was introduced by Colojoara and Foia§ [3].
Bacalu [2] discovered S-decomposability for a restriction of a decomposable operator.
Subsequently, many authors studied the S-decomposable operator theory and obtained
many characterizations of bounded S-decomposable operators, which are similar to
those of decomposable operators. Hence, now, it seems a natural problem to seek
appropriate characterizations of a closed ^-decomposable operators, (cf. Nagy [8], [10],
Wang [16] and Wang and Erdelyi [17].)

In this paper we obtain several characterizations of a closed S-decomposable
operator (Theorem 1), which generalize the results due to the author [12], [13] and-
Radjabalipour [11], etc.

After this, we consider the duality theorem. Vasilescu [15] proved that if T is a
densely defined closed S-decomposable operator, then T* is also an ^-decomposable
operator. Conversely, Wang and Liu [18] proved that if the dual operator T* of
Te B(X) is an S-decomposable operator, then T is also an 5-decomposable operator.
Using Theorem 1, we prove the duality theorem of a closed S-decomposable operator
(Theorem 2) by a way similar to that of [18]. We remark that Theorem 2 is partly
proved by Erdelyi and Wang [4], who proved the case S= {oo}. (cf. Erdelyi and Wang
[5] and Lange [6]).

2. Preliminaries. Let J b e a complex Banach space. Let C(X) (resp. B(X)) be
the family of all closed (resp. bounded) linear operators on X. C is the complex plane
and C=Cu{oo} is its one-point compactification.

D(T) is the domain of TeC(X) and σe(T) is its extended spectrum, i.e., σe(T) = σ(T)
if Te B(X) and σe(T) = σ(T) u {oo}, otherwise. A closed subspace Y of X is an invariant
subspace of T if T(Y n D(T)) cYI(T) is the family of all invariant subspaces of T. T\Y
is the restriction of T to YeI(T) with domain D(T\ Y)= YnD(T). T/Yis the quotient
operator induced by T on XIY with domain D(T/Y) = {xeX/Y\xr\D(T)Φ0}, i.e.,
(T/Y)x = (Tx)A for xexnD(T), where x = x+ YeX/Y is the coset of c e J . Ωτ is the
maximal open set with the property that if ω c Ω Γ is open and if/: ω->D(T) is an
analytic function such that (z — Γ)/(z) = 0 for zeωnC, then /(z) = 0 for zeω. Let
ST = C\ΩT. For a closed set FczC, we denote by Xj{F) the set of points xeX such
that there exists an analytic function/: C\F-+D(T) with (z-T)f(z) = x for zeC\F.
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For any set EeC,we denote by XT(E) the union of XT(F) for all closed sets FczE. We
call XT(F), XT(E) spectral manifolds of X. We remark that Xj{E) = X^E n σe(T)) for all
subsets Ee C These definitions of spectral manifolds are due to Radjabalipour [11] and
different from those of [4], [7] and [14], etc. But if SτaE, then they are equivalent.

For a closed set F<=€, let X(T,F) be an invariant subspace of T such that
(1) σJT\X(T,F))cF and that (2) if YeI(T) satisfies σe(T\Y)czF, then YaX{T,F).
Naturally, X(T, F) may or may not exists, but if such an invariant subspace exists, then
it is obviously unique. We call X(T,F) a spectral maximal space of T. SM(T) is the
family of all spectral maximal spaces of T.

Let SczC be a closed set. A family of open sets {Gu -,Gn; Go} is called an
S-covering of σe(T) if σe(T)uSaG1 u uGπuG 0 and GtnS=0 for i = l , •••,«.
Te C(X) is called an ̂ -decomposable operator if for every S-covering {Gu , Gn; Go}
of σe(T\ there exists a family {Xu , XH; Xo} of spectral maximal spaces of T such
that (1) X = Xt+ - - +Xn + X0 with Xu ,XnaD{T) and that (2) σ^X^czGi for
i = l , ••-,/!, 0. If TGC(X) is .S-decomposable, then T is Sn^eO-decomposable.
Hence we may assume S<=σe{T). If TeC(X) is ^-decomposable and if oo φS, then
TeB{X).

3. Main results. We always assume σe{T)ΦC in this paper. We need some
lemmas to prove Theorem 1. Lemma 1 is due to Nagy [8, Lemma 2].

LEMMA 1. Let Te C(X ).IfF<=C is a closed set with SτaF and if XT(F) is closed,
then Xj{F ) = X{T,F) and σe(T \ Xj{F ) )c fn σe(T).

Lemma 2 is a modification of Nagy [10, Lemma, 3.1], but it plays an essential role
in this paper. Although [10, Lemma 3.1] used the assumption YaD(T\ we can prove
Lemma 2 without this assumption.

LEMMA 2. Let Te C(X) and Ye I(T). Let σe(T) u σe(T\ Y) Φ C. Let D = (D(T), || || Γ)
denote the linear manifold D(T) endowed with the graph norm | |x | | r = ||x|| + \\Tx\\. Then
D is a Banach space and YnD(T) is closed in D. Moreover, T/Y is closed and (D(T/Y),

The proof of Lemma 3 is similar to that of [12, Lemma 2] by Lemma 2.

LEMMA 3. Let TeC(X\ TeI(T) and xeX. If xe(X/Y)τ/γ(F) for a closed set
Fez C, then x e XT(F u σe(T \ Y) u Sτ).

LEMMA 4. Let Te C(X) and xeXτ{F)for some closed set FezC, i.e., there exists
an analytic function f:C\F^D(T) such that (z-T)f(z) = x for zeC\F. Then
f(z)eXΊ{F)forzeC\F.

PROOF. If z = oo, then/(z) = 0 by the same argument as in the proof of Lemma
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3. The rest of the proof is similar to that of [14, Proposition 2.2]. q.e.d.

The proof of Lemma 5 is similar to that of [12, Lemma 3] by Lemma 4.

LEMMA 5. Let TeC{X). IfXΊ(H)=X(T9 H)for all closed sets H with SaH, then

χτ(F ) = X(T,F)for all closed sets F with FnS = 0.

The proof of Lemma 6 is routine, but the formulation seems most general, (cf. [1].)

LEMMA 6. Let TeC(X). If Fx and F2 are disjoint closed sets, then

THEOREM 1. Let Te C(X) and S c C be a closed set with ooeS. Then the following

assertions are equivalent.

(1) T is S-decomposable.

(2) Xτ(F) = X(T9F) for all closed sets F with SaF and XΊ(GίuG0) =

XjiGJ + XjiG^for all open sets Gί9 Go with G1ϊ\S=0 and S^G0.

(3) XT(F) = X(T,F% T/XjiF) is closed and σe(T/XΊ{F))ci(C\Fi)ϋS for all

closed sets F with S<^F. (Fι is the interior of F.)

(4) For all open sets G with 5 c G , there exists Ys I{T) such that σe{T \ Y) c G, T/ Y

is closed and σe(T/Y) c (C\G) u S.

PROOF. The proof of Theorem 1 is similar to that of [12]. We prove the implica-
tions (l)^(3)-»(4H(2)-»(l).

(l)->(3). Let T be ^-decomposable and F b e a closed set with SaF. Nagy [8]

proved that SτaS and XT(F) = X(T,F). Since Xj{F) = XT(Fnae(T)), we obtain

σβ(T)uσe(T|ZΓ(F))czσβ(Γ)^C. Hence T/X^F) is closed by [9, Lemma 3].

The rest of the proof is similar to that of [12] by Lemma 4.

(3)^(4). Let Y=Xj(G).

(4)->(2). We can prove that SτaS by a, similar argument as in [12].

Next we prove that XT(F) = X(T, F) for all closed sets F with S c F . By Lemma 1,

we have only to prove that Xj(F) is closed. Let G be any open set with FczG. Then

there exists YeI(T) such that σe{T\Y)αG, Γ/7is closed and σe(T/Y)cz(C\G)uS.

Since Sc:G, we can write A 7 F = Z 1 0 Z O where ZuZoeI(T/Y), σe((T/Y)\Zί) =

σe(T/Y)n(C\G)cz(C\G) and σe((T/Y)\Z0) = σe(T/Y)nSαS. Let Pt be the projection

of XIY onto Zf along Z, for iΦj. Let xeXj(F). Then there exists an analytic func-

tion/: C\F^D{T) such that ( Z - Γ ) / ( Z ) = JC for zeC\F. Since Pt commutes with

T/Y, we obtain PJ{z)eD(T/Y) for i = 1, 0. Then we can write

( z -

for zeC\F where ί/f = (T/Y)|Z,, gJiz) = Ptf{z) and *, = />,* f o Γ * = l , 0 . Then

xίeZ1Uί(F) = ZίUί(Fnσe(U1)) = Z1Uί(0) = {d}. Hence x = xoeZo. Hence XT(F)^

Π~1(Z0) where Π: X->X/Y is the canonical mapping. Since σe((T/Y) | Z0)cί S, we obtain

Z 0 cZ/y Γ / y (5), and hence Π~XZO α Xτ(Suσe(T\Y)uSτ)α:Xτ(G) by Lemma 3. Since G
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is any open set with FcG, we obtain XΊ{F)^f]Π~1(Z0)^(]{XΊ{G)\G is open and
Fez G) = XT(F) because SτczS<=F. Hence X^F) = {)Π" % , and hence XΓ(F) is closed.

The rest of the proof is similar to that of [12] by Lemmas 3 and 6.
(2)->(l). The proof is similar to that of [12] by Lemma 5. q.e.d.

REMARK. Theorem 1 is proved partly by many authors. (See introduction.) We
remark that Wang [16] proved the implication (l)->(2) implicitly. Also [16] proved that
if TeC(X) is S-decomposable and if G is an open set with G n S = 0 , then T/Xj{G) is
closed and σe(T/Xτ(G))czC\G. (cf. [13].)

Next we prove the duality theorem of closed 5-decomρosability (Theorem 2). For
the proof of Theorem 2, we need some lemmas. We assume some density conditions
in the following, i.e.,

(*) D(T) is dense,
(**) D(T) and D(T*) are dense,

(***) D(T), D(T*) and D(T**) are dense,
(****) D{T\ D(T*), D(T**) and D(Γ***) are dense,

(*****) D{T\ D(T*), D{T**l D(T***) and D(T****) are dense.

LEMMA 7. Let TeC(X) be an S-decomposable operator with (*). Then
Xτ(G)1 = X**(C\G)for all open sets G with SczG or GnS = 0 .

PROOF. Vasilescu [15, Proposition 2.9] proved the case GnS=0 implicitly. We
prove the case G is an open set with S<=G. We may assume S<^σe(T). If oo φS, then
TeB(X), and hence XT(G)1 = X^(C\G) by [13]. Hence we may assume oo eS.

We prove Xj(G)L^X**(C\G). Let X*EXΊ{G)1. We can write G= \jHa where Ha

are the components of G. Let Sa = S n Ha. Then Sa is closed and {α | S n Ha Φ 0} is finite.
We write

S=StΌ ••• u 5 π u 5 0 where Sk = 0 and ooeS 0 .

Then there exist connected open sets H^ H^ such that Sk<z\H^ H^dH^. HkaHk for
k=l,'-9n90. Let Go = \JH£ and Gx = f |(C\ϊ7£). Then {Gt; Go} is an S-covering of
σe(T), and hence there exist Xu XoeSM(T) such that X = Xί+X0, XίaD(T) and
σe(T\Xι)cGi for i= 1, 0. Let xeX. Then we can write x = xί+x0 for some x^Xt for
/= 1, 0. Since xιeX1czXτ(G), there exists an analytic function/: \jHk^>D(T) such that
( z - T)f(z) = x1 for ze((J#fc)n C because SVczS and ^ is connected.

We define (g(z))(x) = x*(f(z)) for z e | J ^ . Then we can prove that g(z)eX* for
ze\jHi and also g(z)((z-T)x) = x*(x) for z G ( | J ^ ) π C a n d for JCG/)(Γ) by an argu-
ment similar to that of [15, Proposition 2.9] by Lemma 4.

Also 0(oo) = OeD(Γ*). This implies that x*eX*.(C\({jH£)), hence x*e
). Thus ^ ( G J ^ X ^ C X G ) . The converse inclusion is easy. q.e.d.

Let Te C(X), YeI(T) and Ω c Cbe an open set. We say Yis Ω-analytically invariant
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under Tiff(z)e 7for zeω for all open sets ω<^Ω and for all analytic functions/: ω->
D(T) which satisfy (z-T)f(z)e Y for zeωnC. We say T has Ω-svep if ΩcΩτ. The
proof of Lemma 8 is similar to that of [18, Proposition 2.1] by Lemma 2.

LEMMA 8. Let Te C(X), YeI(T) and σe(T) u σe(T \ Y) Φ C. Then Y is Ω-analytically
invariant under T if and only if T/Y has Ω-svep.

Let J.X^X** and K\X*^>X*** be the canonical embeddings. Then
X*** = KX* Θ (JX)1 (cf. [18].) Let P be the projection of X*** onto KX* along (JX)1.

LEMMA 9. Let TeC(X) with (****) and let ΩczC be an open set. If Γ**** has
Ω-svep, then JX is Ω-analytίcally invariant under T**.

PROOF. [18, theorem 2.2] proved that (X**/JX)*~(JX)λ = N(P\ {X***/KX*)*~
(KX*)λ = N(P*) and X***/KX*~(JX)λ where N(P) (resp. N(P*)) denotes the null
space of P (resp. P*). Since P commutes with T*** by [4, Lemma 2.6], r***| JV(P)
is densely defined. Hence (T**/JX)* is similar to T***\N(P) by [4, Lemma 2.2].
(We remark that the assumption YczD(T) in [4, Lemma 2.2] is unnecessary.) The rest
of the proof is similar to that of [18, Corollary 2.3] by Lemma 8. q.e.d.

LEMMA 10. Let TeC(X) with (****) and let S^C be a closed set. Let T****
have (C\S)-svep and let F be a closed set with S^F or F n S = 0 . Then JXj(F)
= X*£(F)nJX.

PROOF. First we prove the case S c= F. Let x e X and Jx e X*£(F) n JX. Then there
exists an analytic function/: C\F-+D(T**) such that (z- T**)f(z) = Jx for zeC\F.
We can write C\F=\jGa where Ga are the components of C\F. Then
Gan(C\S)Φ0. Since Sτ^czS, JX is (U\S>analytically invariant under T** by
Lemma 9. Hence/(z)e JXnD(T**) = JD(T) for zeC\F by [4, Theorem 2.7]. The rest
of the proof is similar to that of [18, Corollary 2.4].

Next we prove the case FnS=0. We can prove that/(z) 6 JD(T) = JXnD(T**)
for zeGan(C\S) similarly as above, hence f(z)eJD(T) for zeGa. The rest of the
proof is similar to the case S<^F. q.e.d.

LEMMA 11. Let TeC(X) with (*****) and let SaC be a closed set. Let T*****
have (C\S)-svep and let F be a closed set with SczF or F<=S=0. Then

PROOF. Since P commutes with Γ*** by [4, Lemma 2.6], the proof of Lemma 11
is similar to that of [18, Corollary 2.5]. q.e.d.

The proof of following lemma is similar to that of [18, Proposition 2.6].

LEMMA 12. Let TeC(X) with (*****) and let S^C be a closed set. Let T* be
S-decomposable and let F be a closed set with S^For 5 n F= 0. Then X**(F) is closed in
the w*-topology.
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THEOREM 2. Let TeC{x) with (*****) and let SaC be a closed set. If T* is
S-decomposable, then T is S-decomposable.

PROOF. We prove that T satisfies the condition (4) of Theorem 1. If oo φ S, then
T*eB(X*) and T is S-decomposable by [18, Theorem 2.7]. Hence we may assume
oo eS. Let G be an open set with SaG. Let H=C\G and let Y = LX**{H) =
{xeX\xlX^(H)}.τhenHnS=0andXp(iη = X*(T*iH)czD(TηbyLQmm^s I and
5. Hence YeI(T). Also Yλ = X**(H) and Y* = X*/Y1 = X*/Xp(ff) by Lemma 12. First
we prove that σe(T\ Y)czC\H=G. Let V be an open ball with Fez//. Let ze V. We
prove that z— T\Y is bijective. Since there exist open sets Gu Go such that VcGί9

GczH, VnGo = 0 and {G^GQ} is an ^-covering of σe(T*)9 we obtain X* = Xp{Gί) +
Xp(G0).

We prove that z - T | Y is injective. Let y e Y n D( T) and (z - T | Y)j = 0. Let Λ:* G X*.
Then we can write x* = jef + xg for some jcf* e *£(<?,) for i = 1, 0. Since X^iGx) <= Xplfl),
we obtain

and hence >̂  = 0.
We prove that z—T\Y is surjectϊve. Let yeY. Let x*eX*. Then we can write

JC* = χ* +χ* for some jef e ̂ ( G f ) for /= 1, 0. We define

We prove that φ)eX**. If x* = xΐ + x% = aϊ -hαj for some afeX${G& then

because Sτ*aS<^G0. Hence there exists an analytic function/: C\(G1 c\G0)-+D(T*)
such that

μ-Γ*)/μ) = x*-β* = α*-x* for λeC\(GonGί).

Since

/(A) G A^tf?! n G0)c X**(H) for A e C \ (Gx n Go)

by Lemma 4 and

/μ)=μ-τ*|x**(G0))-1(«S-^) for λeC\G0,

we obtain

μ-^I^Go^^K-^e^W for λeV.

Hence,
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and hence φ(z) is well-defined. By Banach's theorem, there exists an M>0 such that
| |JC?| |<M||JC*| | for all x*eX*. Hence,

and hence φ(z)eX**. Let x*eD(T*). Then we can write x* = xf+jc$ for some
for i=\, 0. Since I ^ G ^ c D f Γ ) , we obtain x$ = x*-xf eD(T*). Then

Hence φ(z)eD(T**) and (z-T^*)φ(z) = Jy. Since Γ** is ^-decomposable by [15, Theo-
rem 2.10], Γ** has (C\5)-sveρ. Hence /Jf is (C\S)-analytically invariant under
.T** by Lemma 7, and hence φ(z)eJXnD(T**) = JD(T) by [4, Theorem 2.7]. Hence
J~^φ(z)\ V^D(T) is an analytic function such that (z—T)J~ίφ(z) = y for ze K. We can
prove that J~1φ(z)e Y by an argument similar to the proof of φ(z)eX**. This implies
that z— T\ Y is surjective.

Since it is easy to prove the inclusion σe(T | Y) c σe(Γ) because X**(H) c D(Γ*), T/7 is
closed by [9, Lemma 3].

Finally we prove that σe(Γ/Y)c:C\G. Since Xp(H)cD(T*) and Γ/Γ is closed,
we can prove that

σe(T/Y) = σe((T/Y)*) = σe(T* | Y1) = σe(T* \ X

similarly to the proof of [4, Lemma 2.2]. q.e.d.

REMARK. If T\Y is densely defined, i.e., YnD(T)=Y, then σe(T\Y) =

\)*) = σe(T*/X**(H))czC\H^Gby [16, Theorem 2.6]. But we do not know
whether YnD(T)= Y Also we doubt whether the assumption (*****) is necessary, but
it seems a difficult problem.
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