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Introduction. Throughout the present article, we work on an algebraically closed
field k of characteristic zero. Whenever we consider problems of topological nature, we
assume k to be the complex field C.

DEFINITION 1. A logarithmic del Pezzo surface (henceforth called log del Pezzo
surface, for short) Fwith contractible boundary is a projective normal algebraic surface
satisfying:

(i) V is singular but has at most quotient singularities.
(ii) The anti-canonical divisor — Kψ is ample.
V is said to have rank one if the Picard number p(V) of V is equal to one.

Let g: V-+ V be a minimal resolution of singularities of P, D: =g~1(Sing V) and
V°: = F-Sing(F) = V-D. We often denote (V, D) and V interchangeably (cf. [7]). A
general theory on the structure of such singular surfaces is developed in Zhang [11].
When V with p(V)=l admits only rational double points, we studied topological
properties of V— Sing(F) in Miyanishi-Zhang [9]. In the present article, we consider a
special class of such surfaces admitting singularities of higher multiplicity. Namely, we
consider a class specified in the following:

DEFINITION 2. Let V be a log del Pezzo surface of rank one with contractible
boundary. V or (V, D) is called a dP3-surface if V has no singular points other than
rational double points and a unique rational triple point.

In §2 ~§5, we apply the results in [11] and classify all dP3-surfaces. In §6, we
compute H^V0; Z) and nx{V°). Let U° be the universal covering of V°, which is an
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algebraic surface because it turns out that π ^ F 0 ) is finite. We let 0 be the normalization
of Fin k(U°) and call D the quasi-universal covering of V. We give an explicit method to
construct 0. Some examples show that π^V0) is not necessarily abelian, contrary to
the case admitting only rational double points (cf. [9]). Our main result is the following:

MAIN THEOREM. Let V be a dP3-surface. In the previous notation, we have:

(I) There are altogether 97 singularity types of dP3-surfaces, each of which is
realizable and given in terms of the dual graph of D in a table (see Appendix). We call
this table just the Table, and a singularity type given with classifying number n in the
Table just <(the singularity of No.n.".

(II) Suppose (V, D) is not isomorphic to (Σ3, M3). Then we can find a (— \)-curve
C and a Pι-fibration Ψ: V-+P1 in such a way that 0< - (C, D* + Kv)< -(E, D* + Kv)
for every irreducible curve EonV which is not a component ofD, and that the configuration
of CΛ-D as well as all singular fibers of Ψ can be explicitly described. The configuration
is given in Appendix, as the configuration (ή) if nφ 15, 18 and as the configuration (na)
or (nb)ifn= 15, 18.

(III) π\{V°) is a finite group which is not necessarily abelian, and the quasi-universal
covering U of V is a rational log del Pezzo surface. The fundamental group τr1(K°) and
the singularities of U are given in the Table together with other data.

(IV) Suppose π t( V°) = (0). Then V° contains CxC* as a Zariski open set, where
C*: = C-{0}.

(V) Suppose π1(K°)#(0). Then V is a quotient of P2 by a finite subgroup H of
PGL(2, C) if and only if the Picard number p(Ό)=\. If this is the case, then there exists
a cyclic normal subgroup Hx of H such that H/H1^π1(V°) and P2/H1 ^ D.

It remains to consider the following problem:

(*) For a given singularity type, say of No. n, how many isomorphism classes of
dP3-surfaces are there with the given singularity type!

A singularity type does not necessarily determine uniquely the isomorphism class
of a dP3-surface. Indeed, if we consider the singularity of NO.H (n= 15 or 18), there
are two dP3-surfaces V(na) and V(nb) corresponding to the configurations (na) and (nb),
respectively, such that Sing V(nά) and Sing V(nb) are given as the same singularity type
of No. n, while V(na) is not isomorphic to V(nb). For the proof, see the argument in
Lemma 2.5. However, there is a result which suggests that a singularity type may
determine uniquely the isomorphism class of a dP3-surface in the cases considered in
§5. Namely, suppose that a dP3-surface (V, D) has a (—l)-curve E which meets a
(-2)-curve Dx and the unique (-3)-curve D2 in D with (E, D) = (E, D1+D2) = 2. Let
η: V-* W be the blowing-down of E. Then η(D — Dγ) is contractible to rational double
singular points on a Gorenstein log del Pezzo surface W of rank one by Lemma 4.2.
In [9; Lemma 7], it is proved that unless Sing W consists of two singular points of
Dynkin type (D4), W is uniquely determined by Sing W up to isomorphisms. But we
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do not know yet whether or not such a ( - l)-curve E as above is unique.

TERMINOLOGY. A (—«)-curve is a nonsingular rational curve with self-intersection
number — n. A ( —2)-rod (resp. ( —2)-fork) is a rod (resp. fork) whose irreducible
components are ( —2)-curves. For the definitions of rods, twigs, forks, admissible rods,
rational forks, Bk(Z>), D\ we refer to Miyanishi-Tsunoda [7; pp. 203-204, pp. 211-213].
A (—2)-rod (resp. ( —2)-fork) corresponds to the exceptional locus of a minimal
resolution of a rational double point of Dynkin type An (resp. Dn, E6, EΊ or E8). A
reduced effective divisor D is called an NC (resp. SNC) divisor if D has only normal
(resp. simple normal) crossings. An irreducible component of D is called a
( — tf)-component if it is a ( —«)-curve. A surface V° is said to be affine-uniruled (resp.
affine-ruled) if there exists a dominant morphism (resp. an open immersion)
φ A1 x R-+ V°, where R is an affine curve. We often denote A1 by C when the ground
field k = C. Given a P^fibrataion Ψ: V-+P1, an irreducible curve B is called an n-section
of Ψ if n>2 and (B, L) = n for a general fiber L of Ψ.

NOTATION.

#(D): the number of irreducible components in D
p(V): Picard number of V

Kv: canonical divisor of V
q(V): irregularity of V

pa(A): arithmetic genus of an irreducible curve A
h\D)\ dim H\V,D)

D~D'': D and D' are linearly equivalent divisors
D = D'': D and D' are numerically equivalent divisors
(Z), Dr): the intersection number of two divisors D and D'

\D\\ complete linear system defined by D
Φm: the rational map V- ->/>dim'Dl defined by\D\
f*D: the total transform of a divisor D by a morphism /
f'D: the proper transform of a divisor D by a morphism /

(Σn, Mn): Σn is a Hirzebruch surface of degree n and Mn is a minimal section
(x), o, * : stand for a (— l)-curve, a (— 2)-curve and a (— 3)-curve, respectively

(see Figures (10)-(12) and the Table)
*—o n —*: a rod (i.e., a linear chain) consisting of two ( —3)-curves (as tips)

and n ( — 2)-curve (see the Table)
( — ή)\ a ( —«)-curve in the dual graph of the exceptional divisor coming

from a resolution of Sing(£7) (see the Table)
Ax + Dm + ( — ή)\ disjoint union of Dynkin types At and Dm and a ( — rc)-curve (see

Lemma 5.1 and the Table).

This article is submitted to the Department of Mathematics, Osaka University as
the dissertation for Doctor of Science. The author would like to express his gratitude
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constant encouragement during the preparation of the present article. The author also

thank the referee for giving valuable comments which make the article more readable.

1. Preliminary results. We employ the notation in the Introduction. Let (V, D)

be a log del Pezzo surface with contractible boundary. There is a natural number N

such that for any Weil divisor F on V, NF is linearly equivalent to a Carder divisor.

Thus, for Weil divisors Fx and F2 on V one can define the intersection number by

(Fί9 F2) '. = (l/N2)(g*NF1 , g*NF2). One can also define the direct image g^Foϊ a divisor

F on V as usual, and if F1~F2 on V then g*F1~g^F2. For relevant results, we refer

to Artin [1; Cor. 2.6] and [7; Lemma 2.4].

Let (V, D) be a dP3-surface and let A be a connected component of D. Since any

singular point of V is a quotient singularity, the dual graph of A is as described in

Brieskorn [3; Satz 2.10]. On the other hand, the dual graph of the exceptional divisor

of a minimal resolution of a rational double (or triple) singular point is given in Artin

[2; p. 135]. Combining these results, we know all possibilities of the dual graph of A.

In particular, g(A) is a rational double point if and only if A is either a ( —2)-rod or a

( —2)-fork, and g(A) is a rational triple point if and only if A consists of only one ( — 3)-

curve and several (—2)-curves and the dual graph of A is either a rod or a fork.

LEMMA 1.1 Let (V, D) be a log del Pezzo surface with contractible boundary. Then

we have:

(1) g*Ky=D* + Kv and — {D* + Kv,F)>§for any curve F where the inequality

becomes an equality if and only ifFis a component ofD. Moreover, p(V) = #(D) + p(V).

(2) Any (-- ή)-curve with n>2is a component ofD. Hence if( V, D) is a dP3-surface,

there are a unique ( — 3)-curve in D and no other ( — n)-curves on V with n>3.

(3) Ifp(V) = \ then Pic(V)^H2(V;Z)^Z and V is rational.

PROOF. (1) For the first assertion, see [7; Lemma 2.5]. The second follows from

the first and the hypothesis that — Ky is ample. The last assertion is obvious.

(2) Suppose that a ( —«)-curve E, with «>2, is not a component of D. Then

(£,ΛV)<(£,£* + ̂ ) < 0 by (1) and hence (E2)=-2-(E, Kv)>-\. This is a

contradiction.

(3) For the first assertion we refer to [9; Lemma 1]. Let P be a natural number

such that PD* is an integral divisor. By (1), we have 0 = h°(nP(D* + Kv))>h°(nPKv) for

any n>0. Hence κ(V)= — oo and there is a P^fibration Φ: V-*B onto a nonsingular

curve B with genus q(V). If q(V)>0, then every component Dt of D which is rational

is contained in a fiber of Φ. Let H be a section of Φ. Then H, a fiber / o f Φ, and Z>f's

are numerically independent. Hence p(V)>#(D) + 2. This is absurd by (1) and by the

hypothesis that p(V)=l. Thus, κ(F)= — oo and q(V) = 0. Hence Vis rational, q.e.d.

By Lemma 1.1, (1), if C is an irreducible curve not contained in Z>, — (C, D* + Kv)
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takes value in (l/P)N: = {n/P \ n eN}9 where P is a natural number such that PD* is an

integral divisor. So, we can find an irreducible curve C such that — (C, D* + Kv) attains

the smallest positive value.

DEFINITION 1.2. Let (F, D) be a log del Pezzo surface with contractible boundary.

(F, D) is said to be of the first kind if there exists an irreducible curve C such that

I C+D + Kv\ Φ0 and that - ( C , D* + Kv) attains the smallest positive value. (F, D) is

said to be of the second kind if (F, D) is not of the first kind, i.e., if | C + D + Kv | = 0

for each irreducible curve C for which — (C, Z>* + Kv) attains the smallest positive

value.

LEMMA 1.3. Let V be a projective normal algebraic surface with only quotient

singularities. Let g: V—• V be a minimal resolution of singularities of V and let

D = g~x (Sing V). Then we have:

(1) Assume that p(F) = l. Then for any (—\)-curve E on V and any bi-

rational morphism σ: F—• W with W nonsingular, not every connected component of

σ^(E+D) is an admissible rational rod or fork.

(2) Assume that V is rational and that any ( — ή)-curve with n>2 is a component

of D. {These assumptions are satisfied by dP3-surfaces by Lemma 1.1). Let Φ: V^P1 be

a P1-fibration. Then p(V) — #(£>) — 1 + ̂ {irreducible components of D not contained in

any fiber of Φ} = 1 +X^{#((— l)-curves inf)—l}, where f moves over all singular fibers

of Φ. If a singular fiber f contains only (— l)-curves and ( — 2)-curves then the dual graph

of f is of type (I) or (II) in Figure (1).

1 1 1 1

2 2 2 1

(ii) ®—°- ••• - j—°

FIGURE (1)

In Figure (1), ® (resp. o) stands for a (—\)-curve {resp. ( — 2)-curve) and each number

is the multiplicity of the corresponding curve in f

(3) With the notation and assumptions in (2), assume further that V is a

άP3-surface. If there is a singular fiber f of type (II) whose {—\)-curve E satisfies that

— (E, D* + Kv) attains the smallest positive value, then the unique (— 3)-curve is not

contained in any fiber and every (— \)-curve E' contained in a singular fiber f satisfies

PROOF. (1) If σ^(E+D) consists of admissible rational .rods or forks, i.e., if

σ^(E+D) is contractible to quotient singularities, then #(D)+ 1 =p(F)>#{irreducible

components of E+D contracted by σ}+p(JF) ^{irreducible components of E+D

contracted by σ} + #(σ*(E+Z>)) + 1 = #(D) + 2. This is absurd.

(2) By contracting components of singular fibers of Ψ, we can blow down F to
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a Hirzebruch surface Σn. Since ρ(Σn) = 2, one verifies the first assertion. For the second

assertion, one just argues by induction on #(/).

(3) Suppose that the ( —3)-curve of D is in a fiber of Φ, say/^ Then the sum of

coefficients of all (—l)-curves i n / x is greater than 2 by [11; Lemma 1.6] and hence

- 2(E, Z>* -I- Kv) = - (/, /)* + Kv) = - {fx ,D* + KV)>- 3(E, D* + Ky) by the minimality of

— (E, D* + Ky). This is absurd. Thus, the ( — 3)-curve is transversal to Φ and every

singular fiber/' has type (I) or (II). Hence, by -2(E, D* + Kv)= - ( / ' , Z)* + Kv) and by

the minimality of — (E, D* + Kv), one verifies the second assertion. q.e.d.

By the definition and the computation of D* given in [7; p. 213], one verifies

straightforwardly the following:

Lemma 1.4. Let (V, D) be a dP3-surface and let Δ be the connected component of

D containing the ( — 3)-curve. Then according to the dual graph ofA, one has the following

results.

L) "= L) 1 ~Γ " " * ~τ U —Λ i x-'ί

5 ί |" X.J

-A + 1 + +;

has the dual graph as shown in Figure (2).

o o— - o * o— —o
Di D2 V i Di D m Ds

FIGURE (2)

if Δ has the dual graph as shown in Figure (3).

D
s

^1 D2 D..J D. D . + 1 D s . 2 D ^ j

FIGURE (3)

- 2 4 6 _ 4 2 • 3 „
(3) 0 y y y

if Δ has the dual graph as shown in Figure (4).
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Γ 6 o o
o 0 * 0 o
D l D2. D 3 D 4 D5

FIGURE (4)

We also use the following result.

LEMMA 1.5. Let Φ: V-+P1 be a P^-fibration on a nonsingular projective rational

surface V. Then we have:

(1) Suppose that there are two cross-sections Hγ and H2 of Φ, where H1 is a

( — 2)-curve. Let v: V^Σ2 be a contraction of all (—\)-curves and consecutively

contractible curves in singular fibers so that (v^H^)2 = — 2. Then (v^H2)
2 = 2 + 2(if l 5 H2).

(2) Let D be an SNC divisor on V. If the following three conditions are satisfied

then V—D is ajffine-ruled:

(1) There are two cross-sections Hx and H2 ofΦ contained in D such that D — H1—H2

is contained in fibers, and (HΛ, H2) = 0 (resp. 1);

(ii) For every fiber f except at most two (resp. one), say fjjs where k<2 (resp.

k< 1), one of Hί and H2 meets a component of f not in D;

(iii) Iffi andf2 (resp. fx) as above exist, then one of fx and f2 (resp. fj, say fί9

is a singular fiber, and Hί and H2 meet different connected components of the reduced

effective divisor formed by all common components infx and D.

(3) Suppose that there is an irreducible rational curve H such that H is a 2-sectίon

ofΦ and that pa(H)<\. Then there are at most two (resp. one) singular fibers of type (II)

in (2) of Lemma 1.3 of which H meets only in the (—\)-curves if H is nonsingular or

nodal (resp. cuspidal). Let v: V^Σn be a contraction ofall(— \)-curves and consecutively

contractible curves in singular fibers. Then (v^H)2 = 4m for some m>\, and (v^H, v+F) = 0

(mod 2) for any 2-section F of Φ. Moreover, ifn = 2 and v^H does not meet the minimal

section of Σ2, then (v^H)2 = S.

PROOF. (1) Since Hί does not meet any curve contracted by v, one has

(v^Hi, v+H2) = (Hί9 Hi) a n d v*H2~v^H1+(2 + (H1, H2))L, where L is a general fiber
of φ o y " 1 : Σ2-^Pι. Thence follows (1).

(2) The affine-ruledness of V—D can be proved in the same way as in [11; Lemma

3.3] where the case (Hl9 H2) = 0 is treated. Indeed, for the case (Hl9 H2)= 1, we only

need to replace the claim there by the following:

CLAIM. Let Ax and A2 be two cross-sections of a P1-fibration π: Σm-*P1 such

that (Au A2) = 1. Then we have Ax +A2 + L + KΣm~0 with a general fiber L of π.

Since this can be easily verified, we omit the proof.

(3) Note that if/ is a fiber of type (II) and if H meets only the (— l)-curve in the

fiber/then/ n H is a ramification point of Φj H and that ^{ramification points of Φj H } = 2

provided H is nonsingular. If H is singular, by extending Φ j H: H-+P1 to Φ: H^P1

where H is the normalization of H, one verifies the first assertion. The second assertion
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follows from the fact that v+H and v+F are 2-sections of φov'1: Σ^P1. The last
assertion is obvious. q.e.d.

We can now explain very roughly what we are going to do in the subsequent
sections. Given any dP3-surface (F, Z>), we shall find below a /^-fibration Ψ: V-+P1,
which must satisfy the following conditions on singular fibers. First of all, by (2) of
Lemma 1.1, each singular fiber of Ψ consists of (— l)-curves, ( —2)-curves or the unique
(— 3)-curve. Secondly, there are exactly five possible types of the singular fiber containing
the ( —3)-curve which are described in [11; Lemma 1.6]. Thirdly, there are exactly two
possible types, type (I) and type (II) in (2) of Lemma 1.3, of singular fibers consisting
only of ( - l)-curves or (— 2)-curves. The divisor D will consist of irreducible components
of singular fibers, cross-sections and 2-sections of the fiberation Ψ. An explicit
configuration of D is given in Appendix, where the /^-fibration is given vertically. We
can compute nγ(V°) or construct the quasi-universal covering Ό of V only by making
use of the F^fibration Ψ.

Conversely, starting with a minimal ruled surface Σm (m < 3) and blowing up points
on fibers of the P^fibration, we can produce a P^fibration Ψ with singular fibers as
specified as above. In this way, we can produce a dP3-surface with any singularity
type.

The rest of the present section is a preparation for the study of dP3-surfaces of
the first kind. First of all, we need the following:

DEFINITION 1.6 (cf. [10], [11]). A pair (F, D) of a nonsingular projective rational
surface V and a reduced effective divisor D on V is called a quasi-Iitaka surface if D
admits a decomposition into integral divisors D = A + N, such that A>0, N>0,
A + Kv~0 and N consists of ( —2)-rods or ( —2)-forks.

Furthermore, if A is an SNC divisor, we call the pair (F, D) an Iitaka surface.

Given a quasi-Iitaka surface (F, D), we can consider smooth contractions of the
following two types:

(A) the contraction of an irreducible component of the part A,
(B) the contraction of a rod E+R, where E is a (— l)-curve, R (might be zero)

is a connected component of the part N, and E does not meet connected components
of N other than R.

It is easy to show that if u: F-» W is a birational morphism which is a composite
of smooth contractions of the above type (A) or (2?), then (W, u#(D)) is again a
quasi-Iitaka surface. We call a quasi-Iitaka surface (F, D) minimal if no further
contractions of type (A) or (B) are possible on (F, D).

LEMMA 1.7. Let (F, D) be a dP3-surface of the first kind with a curve C as in the
Definition 1.2. Then the following assertions hold true.

(1) There exists a unique decomposition of D into effective integral divisors
D = D' + D" such that:
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(i) C+D" + Kv~0;

(ii) (C,Di) = (D",Di) = (Kv,Di) = 0 for any component Dt of D'. Hence

(V, (C-I-D") + D') is a quasi-Iitaka surface.

(2) C is a nonsingular rational curve and (C, D") = 2. Moreover, either C+D" is

an SNC rational loop or #(/)")< 2 and C+D" has no intersection except at a single

point common to all components. D" is the connected component of D containing the

unique (-3)~curve. Furthermore, Supp(/)*) = Supp(Z>") and (C, /)*)>0.

(3) We have (K$)>0 and#(D) = p(V)-\=9-(K$)<9.

PROOF. (1) is proved in [11; Lemma 2.1].

(2) If Z)" = 0 then D = D', where D' consists of (—2)-curves. This is not the case

since (V, D) is a dP3-surface. In view of (1), we can list up all possible configurations

of C+D". (Use Miyanishi [6; Lemma 2.1.3]). In particular, D" is connected and

(C, D") = 2. Hence D" is the connected component of D containing the unique ( — 3)-curve

because D'nD" = 0 by (1). By the definition of Z>*, the coefficient of a component D{

in D* is zero if and only if Dt is contained in a connected component of D which is a

(-2)-rod or (-2)-fork (cf. [7; §1.5]). Hence Supp(Z>*) = Supp(Z>"). Thus (C,Z)*)>0

because (C,D") = 2.

(3) Let α be the coefficient of the (— 3)-curve in D*. Then 0 < α < 1 by the definition

of D*. Hence 0<(Ky2) = (D* + Kv)
2 = (D* + Kv, D*) + (K$) + {D\ KV) = (K^) + OL<

(Kl)+1 and ( ^ ) > 0 (cf. (1) of Lemma 1.1). q.e.d.

The following proposition is proved in [11; Th 3.1].

PROPOSITION 1.8. Let (V,D) be a dP3-surface of the first kind. Then there exist

an irreducible curve C and a birational morphism u: F-> V+ such that \C+D + Kv\φ0

and — (C, D* + Kv) attains the smallest positive value and that the following assertions

hold true:

(1) D is decomposed into D = Df + D" such that (V, (C+D") + D') is a quasi-Iitaka

surface as in Lemma 1.7, and u is a composite of smooth contractions of type (A) or (B)

such that if A^: = u^(C+D") and N^: = u^(Df) then (V+, A+ + NJ is a minimal

quasi-Iitaka surface.

(2) Each smooth contraction of type (B) constituting u has the exceptional divisor,

i.e., E+Rin the above notation, disjoint from {the image of) C.

(3) One of the following three cases takes place:

CASE (X). V^P2 or Σm(m>0). A* is an NC divisor and N* = 0.

CASE(Y). ThereisaP1-fibrationΦ: V+-+P1 such that A ^ consists of one 2-section

H and one nonsingular fiber I with Hn 1= two points, and that the components of N^ are

contained in fibers of Φ.

CASE (Z). A# is a singular irreducible curve with pa(A^)=\.

(4) Let t be the number of contractions of type (B) involved in u. Then

' In CASE (Y) and CASE (Z) one has t = 0.
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2. dP3-surfaces of the first kind. We shall classify dP3-surfaces of the first kind.
For this porpose, we divide them into three types by making use of Proposition 1.8.

DEFINITION 2.1. Let (F, D) be a dP3-surface of the first kind. (V, D) is said to be
of type (Ic) if there exist a curve C and a birational morphism u so that CASE (Z) in
Proposition 1.8 takes place. (F, D) is said to be of type (Ib) if there exist a curve C and
a birational morphism u so that CASE (Y) in Proposition 1.8 takes place but (F, D) is
not of type (Ic). (F, D) is said to be of type (la) if there exist a curve C and a birational
morphism u so that CASE (X) in Proposition 1.8 takes place but (F, D) is neither of
type (Ic) nor type

The following is the main result of the present section.

THEOREM 2.2. Let (F, D) be a dP3-surface of the first kind, which is not isomorphic
to (Σ3, M3). Then the following assertions hold:

(1) The dual graph of D (i.e., the singularity type of F), is one of those given in
the cases No.n in the Table with 2<n<27.

(2) We can take a (—\)-curve as the curve C considered in Proposition 1.8, and
find a P1-fibration Ψ: F-^P1 such that the configuration ofC+Das well as all singular
fibers of Ψ is given in the configuration (ή) if nφ 15, 18 and in the configuration (na) or
(nb) */7i = 15,18 (see Appendix). In particular, all components of D with at most three
exceptions are contained in singular fibers of Ψ.

(3) All the cases (2<n<2Ί) are realizable.
(4) V°: = V-D is affine-ruled if « = 2, 3, 4, 8, 9, 12, 13, 15, 18.

The proof of Theorem 2.2 consists of the subsequent three lemmas. Throughout
this section, we assume that (F, D) is not isomorphic to (Σ3, M3).

LEMMA 2.3. If (F, D) is of type (la) then all the assertions in Theorem 2.2 with
n = 3, 4 hold.

PROOF. Suppose that (F, D) is of type (la). Then there exist a curve C and a
birational morphism u: V +V^ so that CASE (X) in Proposition 1.8 takes place. We
use the notation /)', D", A^ and N+ there. Since N# = 0, for any connected component
R of D' there exists a (— l)-curve E such that E+R is contracted by u. In particular,
D' consists of ( —2)-rods. In view of Lemma 1.7, C+D" is an SNC rational loop be-
cause A+ = Uχ(C+D") is an NC divisor. Hence D consists of rods. Note that
t = #(A^) — p(V^)<#(A^)— 1 <3. For the configuration of the anti-canonical divisor A^
of normal crossing type, see Zhang [10; Lemma 2.6]. If w = id then (F, D) = (Σ3, M3).
Hence we assume that u contracts a (—l)-curve F of V. Then 0< — (C, D* + Kv)<
~(F,D* + KV)=\-(F9D*)<\. Write the rod /)" = />!+•••+/),+ •••+/)„ where
(Df)= - 3 and (C, Dί) = (Du D2)= =(DS9 C) = l. By Lemma 1.4, one has 1>
-(C,D* + Kv) = 2 + (C2)-(C,D*) = 2 + (C2)-(s-i+\)/(s+\+i(s-i+l))-i/(s+ 1 +
i(s-i+ 1))>(C2)+ 1. Hence (C 2 )= - 1 by (2) of Lemma 1.1. Namely, Cis a ( - l)-curve.
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Then, since each divisor E+R of contraction type (B) does not meet C, we can find a
birational morphism w: V-> W^ such that w is a composite of smooth contractions of
type (A) or (B), that w contracts C and that (W+, w^(D)) is a minimal quasi-Iitaka
surface satisfying the assertion (3) of Proposition 1.8 (cf. [11; Lemma 3.5]). Then, by
replacing u by w, one may assume that u contracts C.

We proceed according to the value of s.
Thecases=\, i.e., the {-3)-curve is isolated in D. Since (u+(C + D"))2 = (Kv)

2 ( = 8
or 9)>1, u contracts some E+R (contraction of type (B)). Ler τ: V->VX be the
contraction of C and let g: Vt-* Vί be the contraction of τ(Z>'). Note that C is disjoint
from E+D' by Lemma 1.7, (1) and Proposition 1.8, (2), and note that p(Vί)= 1 because
s=l. Since τ(2s) is a (— l)-curve and τ(R) is a ( —2)-rod, let σx: V1-+W1 be the contrac-
tion of τ(E+R). Then (σ1)^.((τ(E) + τ(Df)) consists of admissible rational rods. This is a
contradiction by Lemma 1.3, (1).

The case s = 2. Since (wJ|t(C+D"))2>2, for / defined in Proposition 1.8, one has
t> 1. One also has t = #{A^)-p(y^)<2-p(V^< 1. Hence ί= 1, #(AJ = 2 and p(FJ|c)= 1,
i.e., V^P2. But then the direct image in F^ of the component of Z>", which E+R
(being the unique divisor of type (B) contracted by u) does not meet, has self-intersection
number < — 1. This is absurd.

The case s = 3. We may assume that (D2)=-2. Note that t = #(Aitt)-ρ(V^)<
3-p(KJ |c)<2. If t = 2, then #(AJ = 3 and V^P2. However, the direct image in
Vj. of the component of D", which the two divisors of type (B) contracted by u fail to
meet, has self-intersection number < - 1 , a contradiction. If t = 0, then (u^C+D"))2 = 2
or 3 according as whether (Dj)= -2 or not. This is absurd. Suppose that t=\. Let
E+R be the unique divisor of type (2?) contracted by u. If (Dl)=—2 and E does not
meet Du we reach a contradiction as in the case s= 1, where we let τ be the contraction
of all components of C+D" except the component meeting E. If {D\)= — 2 and E
meets D l 5 then (ws|tZ)2)

2 = (w^ 3 ) 2 = — 2, again a contradiction. If (/)?,)=— 3, we let
Φ: V-+P1 be the /^-fibration defined by | 5 0 | , where Sr

0 = 2C+JD1+Z>3. By Lemma
1.3, (2), all singular fibers Sθ9 , Sk are of type (II). Since D = D" + R, one has k = 0
or 1, and if k= 1 then #(S1) = #(R)+ 1 =4. This is impossible in view of (3) of Lemma
1.5 with H=D2.

Assume s>4. Consider first the case where (/)?)=— 3 for some 1 < Ϊ < S . Let
Φ: K - P 1 be the P^fibration defined by | S 0 | , where S0 = 2C+Dί+Ds. By (3) and (2)
of Lemma 1.3, one may assume that i=2 and that there exists exactly one singular fiber
Sx of type (I). If D2 meets a ( - l)-curve Ex in Sl9 then -(Eu D* + Kv)=\ -2(s- 1)/
(3s-l)<\-(s-l)/(3s-l)-2/(3s-l)=-(C,D* + Kv) because s>4 (cf. Lemma 1.4).
This is absurd. Therefore, s>5 and there are two (—l)-curves Ex and E2 with
(E1,D3) = (E2,Ds_2)=l such that S1=Eί+D3+ +DS_2 + E2. Then there are no
other singular fibers because the cross-section D2 meets only Dί and D3 in

(EuD* + Kv)=\-2(s-2)l(3s-\)<\-(s-\)/(3s-\)-2/(3s-\) =
because s>5, a contradiction to the choice of C. Indeed, s = 9 by
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Lemma 1.5, (1) where H1 : = Ds_ί and H2: = D2.
Consider next the case where (Df) = —3 for /= 1 or s. We may assume /= 1. Let

Ψ: V-+P1 be the P^fibration defined by | S 0 | , where SO = 3C+2Z>S + /) S _ 1 + /) 1 .
Suppose s = 4. Then D2 is a 2-section. By Lemma 1.3, (2) and Lemma 1.5, (3), each
singular fiber (ΦSO) is of type (II) and there are at most three singular fibers
S09 Sl9 -,Sk (k<2). Since D consists of rods, #(S, ) = 3 or 4 (Jφϋ). With the notation
in (3) of Lemma 1.5 where H: = D2, one has Yί%1(#SJ-

1)~ι =(v*H)2 = 4m for some
m> 1. Thus, m=\ and k = 2, and we may assume that #(Si) = 3, #(S2) = 4 Hence there
are exactly three connected components Rr

9s in D' ( l<r<3) . Note that for each Rr

there is a (— l)-curve Er such that u contracts Er + Rr. Let w: V^>Wbe the contraction
of Cand(Er + RrYs. Then p(W) = p(V)-l-Σ*=1#(Er + Rr) = (#(D)+l)-1-8 = 1, i.e.,
W=P 2 , while w#D1 does not meet w^D3. This is absurd.

Suppose s>5. Then D2 and Ds_2 are cross-sections of Ψ. By (2) of Lemma 1.3,
if one let Sθ9 Sί9 , Sk (k> 1) be all singular fibers, we may assume that Sx is of type
(I) and Sj (y> 2) ί s o f tyPe (II). By (!) of Lemma 1.5 where Hί: = D2 and 7/2 :=DS_2,
one sees that Z>2 and />s_2 do not meet the same (— l)-curve in any singular fiber and
that {s, k; #S0, '-,#Sk} = {5, 1; 4, 6}, {9, 1; 4, 6} or {8, 2; 4, 3,4}. The configuration of
C+D and 5f's is given in the configuration (2), (3) or (4) in Appendix. By Lemma 1.5,
(2), where H1:=D2 and H2: = DS_2, V° is affine-ruled. We shall see in Remark 2.7
below, that the dP3-surface corresponding to the configuration (2) is of type (Ic). For
the existence of the configurations (2), (3), and (4), we refer to the argument at the end
of §2. q.e.d

LEMMA 2.4. If(V,D) is of type (Ib) then all the assertions in Theorem 2.2 with
n = 5,6,7hold.

PROOF. Suppose (V, D) is of type (Ib). Then there exist a curve C and a birational
morphism u so that CASE (Y) in Proposition 1.8 takes place. We use the notation D",
Φ in Proposition 1.8. In view of Lemma 1.7, C+D" is an SNC rational loop because
u+(C+D") is an NC divisor. By the same argument as that in Lemma 2.3, one can
prove that C is a ( - l)-curve. The morphism u consists of contractions of type (Λ) by
Proposition 1.8, (4). The 2-section H of Φ in A^ is not a (— l)-curve, for otherwise the
contraction of a (—l)-curve H is a contraction of type (A) and this contradicts the
minimality of the quasi-Iitaka surface (K^, A^ + N+). So, we can write D" = D1+D2 + D3

with (Q Dί) = (Du D2) = (D2, D3) = (D3, C ) = l and with ( / ) | ) = - 3 . Let S0 = 2C+
Dγ + D3 and let Ψ: V-+P1 be the P^fibration defined by | So |. Ψ is nothing but Φ ° u.
By (2) of Lemma 1.3 and (3) of Lemma 1.5 where Φ: = Ψ and H: = D2, all singular
fibers So, Si> '">Sk a r e of type (II) and k<2. With the notation in (3) of Lemma 1.5,
one has - 2 + ̂ = 1 ( # S ^ - l ) = ( t ; ^ ) 2 = 4m. Note that v+(H+S0)e\-KΣn\9 because
C+D" + Kv~0. Hence 0 v # ) 2 = 4, and {*; #S0, , #Sk} = {l; 3, 7}, {2; 3, 3, 5} or
{2; 3, 4, 4}. The configuration of C+D and S/s is given in the configuration (5), (6),
or (7) in Appendix. For the existence of the configurations (5), (6) or (7), we refer to



LOGARITHMIC DEL PEZZO SURFACES 411

the argument at the end of § 2. q.e.d.

LEMMA 2.5. If(V,D) is of type (Ic) then all the assertions in Thoerem 2.2 with

n = 2 and 8 < « < 2 7 hold.

PROOF. Assume that (V, D) is of type (Ic). Then there exist a curve C and a

birational morphism u: V-*V+ so that CASE (Z) in Proposition 1.8 takes place. We

employ the notation Z>', D", A^ and N+ there. Then D"Φ0, C is a (-l)-curve, w is

a composite of the contractions of type (̂ 4), A+ is a rational nodal curve or a rational

cuspidal curve, and C meets the ( —3)-curve in D. We may (and shall) take u to be the

composite of the contractions of all components of C+D" except the ( —3)-curve (cf.

Lemma 1.7, (2)). Then (K2

v) = (u*(C+D"))2 = #(D") and #{D') = #(NJ = p{VJ-

l=9-(X£+) = 9 - # ( / r ) < 8 . Applying Lemmas 5.2 and 5.3 in [10] to the quasi-Iitaka
surface (V^, A^ + N^ we obtain:

LEMMA 2.6. Suppose that A^ is a nodal curve. Then there exists a P1-fibration

Φ.V^-^P1 such that A^ is a 2-section of Φ and all components of N^ with at most two

exceptions are contained in singular fibers of Φ. If there is an irreducible component of

N^ not contained in singular fibers of Φ, it is a cross-section of Φ. We denote all these

components by Bt (\<i<m;m<2) (see Figures (5) and (6) when m = 2). Moreover, one

of the following cases occurs.

(ia) We have m=l. All singular fibers fί9 ,fk ofΦ are of type (II) in Lemma

1.3. More precisely, {k; #fu , #Λ} = {1; 4}, {1;3}, {1; 5}, {2; 3, 3}, {2; 3, 4}, {1;6},

{2; 3, 5}, {2; 4, 4}, {1; 7}, {2; 4, 5}, {2; 3, 6}, {1; 8}. Hence the dual graph of D is one of

No. 2 and No. $~No. 18 in the Table.

(iifl) We have m = 2. A^ + N^ has one of the configurations (\9a)' ~ (21 a)' as shown

in Figures (5) and (6) where N^ is written as N^ = YjDi and the fibers of Φ is given

vertically. The dual graph of D is one of No. 19 ~ No. 27 in the Table.
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REMARK 2.7. (1) If the dual graph of D is given in No. 2 of the Table, we
consider the P^fibration φ: V-+P1 defined by | 3C+2Z>5-\-D4r + D1 \ instead ofΦ°«,
where Dx is the (-3)-curve and D" = Dί+ +D5 with (C, />!) = (/>!, D2)= =
(i)4, Z)5) = (Z)5, C) = 1. Then we see that (V, D) is nothing but the one given in the proof
of Lemma 2.3 with the same singularity type, and the assertions (2) and (4) in Theorem
2.2 for this case are verified there.

(2) By the arguments used in § 6 to prove the impossibility of the configuration
(206)', we can prove that in the configuration (20α)', A+ meets the fiber of Φ passing
through the point D'3nD'4 in two distinct points.

Now we continue our proof of Lemma 2.5 and consider the case where A+ is a
rational cuspidal curve. Then either D" is the ( —3)-curve with CnD" one point and
with (C, Z>") = 2, or D" consists of the (-3)-curve, say Du and a (-2)-curve, say D2

with CnDίnD2 one point and with (C, D1+D2) = 2 (cf. Lemma 1.7, (2)). Hence
u\ V-*V^ is the contraction, of C in the first case and of C and the ( —2)-curve D2 in
the second case. We can prove, by the same method as that in the proof of Lemmas
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5.2 and 5.3 in [10], that two similar cases (i6) and (iib) are possible whose statements
are obtained from the corresponding cases (ia) and (iia) in Lemma 2.6, respectively, by
replacing the nodal curve A+ by a cuspidal curve. The configuration (na)' in Figure (5)
or (6) should be replaced by the same configuration (nb)' (19<«<27) but with a cuspidal
curve A+.

Suppose that the case (ib) occurs. Applying (3) of Lemma 1.5 to V+, Φ and the
2-section A^, one sees that there is exactly one singular fiber in Φ. Since
ftNJ = p(VJ-l=9-(K2,) = 9-#(D") = 8 or 7, N* has the dual graph of Dynkin type
Es or EΊ, respectively, and D has the dual graph No. 18 or No. 15 in the Table,
respectively.

We shall show that the case (iib) does not occur. Since the Perforation Φ has at
most one singular fiber of type (II) by Lemma 1.5, (3), where H: = A+, the cases with
the configurations (196)' and (226)' are impossible. In the case of the configuration
(266)' (resp. (276)'), we take a /^-fibration Φγ: V^P1 defined by 12E2 + D'2 + Z>'8 | (resp.
12E2 + Z>4 + D f

η I) and get a contradiction by the same reasoning. Next we show that the
configuration (236)' is impossible. This entails that the configurations (216)', (246)' and
(256)' are impossible because they are obtained from the configuration (236)' by blowing
up some of the points Eί n A^9 E2 n A+ and E3 n A^ and their infinitely near points. Let
v: V^-+P2 be the contraction of Eu Z>'5, Z>'4, E3, D'9, D'8 in the configuration (236)'.
Then vjΰ'η and v+D'6 are two inflectional tangents of a cuspidal cubic curve v^A^ on
P2. This is impossible (cf. Griffiths-Harris [5; p. 281]). The impossibility of the
configuration (206)' will be proved in § 6.

Set Ψ: = Φ°u: V-tP1 regardless of whether A+ is a nodal or cuspidal curve. Denote
by Dx the unique ( —3)-curve. Let So be the singular fiber of Ψ such that u+S0 is the
nonsingular fiber of Φ passing through the double point of A%. Note that in singular
fibers (¥"S0) of Ψ, the 2-section Dί of Ψ meets only (—l)-curves. One can write
S0 = E+D2+- +DS + C, where E is a (-l)-curve, D" = Dγ+ +DS and
(E,D2) = (D2,D3)= =(DS_UDS) = (DS, C)=\ (D2,-,DS m i g h t n o t exis t) . L e t

fu ''' »Λ be all singular fibers of Φ and let St = u*f( (\<i<k). Then w* modifies nothing
on fi and Sj (0<j<k) are all singular fibers of Ψ. D — Dί — u'Bί (resp.
D — D1—u'B1—u'B2) are contained in the singular fibers of Ψ if the case (ia) or (i6)
(resp. (iiα)) occurs. Suppose that D has the dual graph No. n in the Table for some
8 < n < 27. If n = 15, 18, the configuration of C+D and S/s is given in the configuration
(na) or (nb) in Appendix according as A^ is a nodal curve or a cuspidal curve, respectively.
If nφ 15, 18, then A^ is a nodal curve and the configuration of C+D and S/s is given
in the configuration (n) in Appendix.

Let V(a) (resp. V(b)) be a dP3-surface such that its minimal resolution of singularity
(V(a\ D(a)) (resp. (V(b\ D(b))) corresponds to the configuration (18α) (resp. (186)). We
shall show that V(a) is not isomorphic to V(b). Suppose the contrary, and let σ: F(α)-> V(b)
be an isomorphism. Then σ induces an isomorphism F(α)->F(6), denoted also by σ,
such that σ(D(a)) = D(b). Note that σ maps the unique ( —3)-curve D(a)1 on V(a) to the
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unique ( —3)-curve D{b)ι on V(b). We have (— l)-curves C(a) and C(b) such that
C(a) + Z)(a)1+ii:K(e)~0 and C(b) + D ^ + i ^ - O . Then σC(a)~C(b), whence σC(a) =
C(b). This is a contradiction because C(α)nD(α)1 = two points and C(b)nD(b)1 = one
point. Similarly, the surfaces belonging to the configurations (15α) and (15b) are not iso-
morphic to each other.

As for the affine-ruledness of V°, it remains to show it when n = $, 9, 12, 13, 15, 18.
Employ the notation, Dγ = the ( - 3)-curve and So = E+D2 + +DS + C as in the above
arguments. Let S1 (φSo) be a singular fiber of f such that #(S1) is maximal among
the singular fibers of Ψ other than So. Write S1 = 2(Eί + H1+- + # r _ 2 ) + # r - i + # Γ ,
where Eλ is a (— l)-curve, //,'s are components of D and (£Ί, H1) = (H1, H2) = =
(//Γ_3, Hr_2) = (Hr_2, ^r-i) = (^r-25 ^r) = l Denote by // r + 1 the unique cross-section
of !P in Z> (hence u(Hr+1) = J8l5 cf. Lemma 2.6). Then one may assume that (//Γ, //r + 1 ) = 1.

Consider the configuration (12) (resp. (15), or (18)) in Appendix. Then r = 5 (resp.
6, or 7) and all components of D, except H3 and D2 (resp. H3 and D2, or H3), are
contained in the singular fibers of the P1-fibration φ: V-+P1 defined by
\3Eί+2Hί+H2 + Dί\. Hence V° is affine-ruled by (2) of Lemma 1.5 where Φ: = φ.
Consider the configuration (8) (resp. (13)) in Appendix. Hence s = 6 and r = 2 (resp.
s = 2 and r = 4). One can get the affine-ruledness of V° by applying (2) of Lemma 1.5
to the P^fibration defined by \3C+2D6 + D5+D1 \ (resp. \2E1+H1+D1+D2 + E\)
and its cross-sections D2 and Z)4 (resp. H2 and H5). Consider the configuration (9) in
Appendix. Then s = r = 4. Let v: V-+Σ2 be a contraction of all (—l)-curves and
consecutively contractible curves in the singular fibers of Ψ so that (v*H5)

2 = — 2. Take
a nonsingular irreducible curve E2 in | v^H5 + 2v#S0 \ such that E2 meets viitD1 with
local intersection number i(E2,v+D1;v(C)) = 4 at the node v(C). Then the proper
transform E2: = v'E2 is a (-l)-curve such that (E2, D4) = {E2, H4) = (E2, So)= 1. By
considering the P^fibration which is defined by 12E1+H1+D1 + -\-DAr + E2 \ and
which has cross-sections H2 and //4 and by (2) of Lemma 1.5, the affine-ruledness of
V° follows.

To complete the proof of Lemma 2.5, we must show the existence of the
configurations (n) in Appendix. By contracting irreducible components of singular fibers
of Ψ, we obtain a birational morphism w: V-+Σm onto a relatively minimal ruled surface
Σm(m < 3). Looking at the configuration (n) in Appendix, we can easily find which curves
should be contracted. Thus, we are reduced to proving the existence of the configuration
of w(C+D) on Σm. For 19<«<27, by the proof of Lemmas 3.5 and 4.2 in [10], we can
take w as a composite of u: V-* V^ (with the notation at the beginning of Lemma 2.5)
and a blowing-down w^ : V+-*Σ2, and the configuration of w(C + D) is one of Fig. (1),

• , Fig. (5) and Fig. (9) displayed in [10; pp. 418^19]. The existence of those figures
was proved in [10; Lemma 5.3]. The other cases can be treated more easily.
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3. dP3-surfaces of the second kind and type (Πα). By [11; Lemma 2.2] and [6;

Lemma 2.1.3] we obtain the following:

LEMMA 3.1 Let (F, D) be a log del Pezzo surface of rank one with contractible

boundary. Suppose that (F, D) is of the second kind and is not isomorphic to (Σm, Mm).

Then there exists a (—l)-curve C such that —(C,D* + KV) attains the smallest positive

value. Hence \ C + D + Kv\ = 0. Furthermore, we have:

(1) Each component of D is a nonsingular rational curve, C + D is an SNC divisor

whose dual graph consists of trees, and (C, D)> 1 by Lemma 1.3, (1).

(2) One of the following cases takes place:

CASE (α). C meets at least two { — 2)-components D1 and D2 of D.

CASE (β). C meets only one component Dx of D.

CASE (y). C meets only two components Dx and D2 of D, and D1 is a ( — 2)-curve

and D2 is the ( — 3)-curve.

Employing Lemma 3.1, we consider three types for. dP3-surfaces of the second

kind. Namely, we have the following:

DEFINITION 3.2. Let (F, D) be a dP3-surface of the second kind. (F, D) is said to

be of type (Ilα), if there exists a (— l)-curve C so that CASE (α) in Lemma 3.1 occurs.

(F, D) is said to be of type (116) if there exists a ( - l)-curve C so that CASE (β) in

Lemma 3.1 occurs but (F, D) is not of type (ϊla). (F, D) is said to be of type (Πc) if

there exists a (— l)-curve C so that CASE (y) in Lemma 3.1 occurs but (F, D) is neither

of type (Πα) nor type (lib).

In the present section, we consider dP3-surfaces of the second kind and type (ϊla).

We shall prove the following:

THEOREM 3.3. Let (F, D) be a dP3-surface of the second kind and type (Πα) with

a (— 1)-curve C as in Lemma 3.1. Then we have:

(1) The dual graph ofD is one of those given in the cases No. n (28<«<35) in the

Table.

(2) There exist a P1-fibration Ψ: V-+P1 and a component H of D such that H is

a cross-section of Ψ and the other components of D are contained in singular fibers of Ψ.

Hence V° is affine-ruled.

(3) The configuration ofC+D and all singular fibers of Ψ is given in the configuration

(n) for 2 8 < « < 3 5 (see Appendix).

(4) All the cases are realizable.

PROOF. Let Dx and D2 be (—2)-components of D which C meets. Let Φ: V-+P1

be the P^fibration defined by 12C+D 1 +D 2 1.

First, we consider the case where C meets a component of D — Dx — D2. By Lemma

1.3, (3), we have - ( £ , D* + Kv)= - ( C , /)* + Kv) for every ( - l)-curve E in a fiber of

Φ. Hence \E + D + Kv\ = 0 because (V, D) is of the second kind. Thus, by the proof
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of [11; Lemma 5.2] and by (2) of Lemma 1.3 there exists another P^fibration Ψ: V-+P1

(ψ = Φί in [11]) such that the configuration (28) or (29) in Appendix shows the

configuration of C+D and all singular fibers of Ψ, where the components of D are

written in solid lines. Hence V° is affine-ruled because every component of Z>, except

one which is a cross-section of Ψ, is contained in a singular fiber of Ψ.

Next, we consider the case where C meets only Dί and D2 in D. Let Ψ: = Φ. By

(3) of Lemma 1.3 and by (1) of Lemma 3.1, the (—3)-curve, say Z)3, is a cross-section.

Let εf be the number of all components of D - D f meeting D{ (i = 1, 2). We may assume

εί > ε2. As in the previous case, we have | E+D + Kv | = 0 for any (— l)-curve £ contained

in a singular fiber of Ψ. Hence, by the arguments in the proof of [11; Lemma 5.3], we

have ( ε l ί ε 2 ) = (l,0), (2,0) or (1,1). Moreover, if (ε1? ε2) = (2,0) then the two

cross-sections D3 and Z)4 contained in D meet two distinct (—l)-curves Ex and E2,

respectively, in a singular fiber Sx of type (I) and So and Sx exhaust all singular fibers.

However, -(El9D* + Kv)=l-3/Ί<l-2p=-(C9D* + Kv)9 which contradicts the
choice of C. So, (ε l 9 ε2) φ (2, 0).

CASE (ε l 5 ε 2 ) = (l,0). Then V° is affine-ruled. By Lemma 1.3, (2), the

configuration of C + D and all singular fibers of Ψ is given in one of the configurations

(n) (30<«<35) in Appendix.

CASE (ε1? ε2) = (1, 1). By the proof of Lemma 5.3 in [11], all singular fibers of Ψ

are as shown in Figure (7). We have \<s<3,0<b<a (Ba + ί: = E2), and (Df)= - 3 or

FIGURE (7)

(Dj)= - 3 . Suppose that (Df)= - 3 . Then the coefficient of D{ in D* is twice that of Dx

by Lemma 1.4. This leads to —(Eu Z>* + Kv)< - ( C , D* + Kv), contradicting the choice

of C. If b = 0, we have a contradiction in a similar fashion. Thus, one may assume that

{D])= - 3 and b>\. By (1) of Lemma 1.5, where H1\ = Di and H2\ = Dj, 2 =

(v^Dj)2= — 3 + s + a — b + 1 , i.e., a — b = 4 — s. Since g(D) are quotient singularities on

V, {s, β,6} = {1,4,1} or {2,3,1}. But then -(E2, D* + Kv)=l-S/l7< 1-5/17 =

-(C,D* + * : κ ) i f s=l ,and _ ( £ 2 , D* + Kv)=l-3/5<\-2/5= -(QD* + KV) if 5 = 2 by

Lemma 1.4. This is a contradiction to the choice of C

For the existence of the configurations (ri) (28<«<35) in Appendix, we refer to

the argument at the end of § 2. q.e.d.
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4. dP3-surfaces of the second kind and type (lift). The purpose of the present

section is to prove the following:

THEOREM 4.1. Let (F, D) be a άPl-surface of the second kind and type (II*). Then

we have the following assertions:

(1) The dual graph ofD is one of those given in the cases No. n(3β<n<62) in Table.

(2) There is a (— \)-curve C with which CASE (β) in Lemma 3.1 occurs and there

is a Pι-fibration Ψ: V^P1 such the configuration of C+D and all singular fibers of Ψ

is given in the configuration (ή)for 3 6 < n < 6 2 in Appendix. In particular, all components

of D, except one cross-section or two disjoint cross-sections, are contained in singular

fibers of Ψ.

(3) All figures are realizable.

(4) V° is affine-ruled if nφ60, 62.

PROOF. Suppose that (F, D) is a dP3-surface of the second kind and type (lib)

with a (— l)-curve C which meets only Dx in D as in Lemma 3.1. By Lemma 3.1, (1),

we have (C, D1)= 1 and hence (/)?)= —2 in view of (1) of Lemma 1.3.

(1) Consider first the case where the connected component R of D containing D1

is a rod. By Lemma 1.3, (1), the intersection matrix of C+D is not negative definite.

So, either D1 meet two ( —2)-curves, say D2 and Z)3, or Dί meets the ( —3)-curve D 4

and a ( — 2)-curve D2 which meets D3 with (Z)2, D3) = 1 for some D3<D — D1—D2 — Z>4.

In the first case we let S0 = 2(C+Dί) + D2+D3 and in the second case we let

£ 0 = 3(C + I>1) + 22)2 + Z>3 + / ) 4 . Denote by Ψ: V-+P1 the P^fibration defined by \S0\.

Any component of R not contained in 5 0 and meeting So is a cross-section of Ψ and

all other components of D are contained in the singular fibers of Ψ.

The case where S0 = 2(C+D1) + D2 + D3. Then the (-3)-curve, which we denote

by Z>4, is a cross-section of Ψ by Lemma 1.3, (3) and Lemma 3.1, (1). Suppose that

there is a singular fiber Sx (ΦSO) with only one (— l)-curve E and with #(S'1) = 3. By

Lemma 1.3, (3), we have - ( £ , D* + KV)= - ( C , D* + Kv). Then, with the curve E, (V, D)

is either a dP3-surface of the first kind or a dP3-surface of the second kind and type

(Πα) according as | E+D + Kv \ Φ 0 or | E+ D + Kv \ = 0. This is a contradiction.

Suppose that every component of D — D4 is contained in a singular fiber. Then V°

is affine-ruled, and all singular fibers Sθ9 Sl9 —-, Sk of Ψ are of type (II) by Lemma

1.3, (2). Since R is a rod, we have {k;#Sθ9 , #Sk} = {0; 4} or {1;4,4}, and the

configuration of C+D and S/s is respectively given in the configuration (36) or (37)

in Appendix.

Suppose next that there are two cross-sections D4 and D5 in D — Dx with

(Z>4, D2) = (D5, D3)=l. If Z>4 or D5 meets a component of D-D2-D3-D4-D5 in

some singular fiber, say Sl9 there is then a (— l)-curve Ex in Sx such that R + Et contains

a loop and hence \E1+D + Kv\Φ0. But then (F, D) is a dP3-surface of the first kind

with the curve Ex because -(Eu D* + Kv)= - ( C , D* + Kv) by Lemma 1.3, (3). So, Z)4

and D5 are tips of the rod R. Meanwhile, by Lemma 1.3, (2), there is a singular fiber
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Sx of type (I). Let E2 be a ( - l)-curve in 5X meeting Z>4. Then, -(£2> ̂ * + κv)= 1 -
5/11 < 1 -3/11 = -(C, Z)* + # κ ) , which is a contradiction.

77*e case where S0 = 3(C + Dί) + 2D2 + D3 + D4. Suppose that there is only one
cross-section, say D5, in D. Then F° is affine-ruled. All singular fibers Sί9 * , Sk (ΦSQ)
are of type (II) by Lemma 1.3, (2). Since R is a rod, {jfc; #S0, , #Sk} = {0; 5}, {1; 5, 3}
or {1; 5, 4}. The configuration of C + D and S/s is given in the configuration (n) for
38 <« < 43 in Appendix. Suppose next that there are two cross-sections D5 and D6 in
D-D1-D2 with (Z>5, D3) = (Z>6, />4)=1. By Lemma 1.3 (2), there exists exactly one
singular fiber Sx of type (I) and all others S2, '' , Sk (ΦSO, SΊ) are of type (II). By
Lemma 1.5, (1), where H1\^D5 and H2:=D6, we have {#R; k; #Sθ9 - -, #Sk} =
{6; 1; 5, 4}, {9; 1; 5, 5}, {8; 2; 5, 3, 3}. The second case has two subcases according as
whether D6 is a tip of R or not. The configuration of C+D and Ŝ 's is given in the
configuration (n) for 44<«<47 in Appendix. F° is affine-ruled by Lemma 1.5, (2)
where Hι\=D5 and H2 : = D6.

We shall consider the case where the connected component of D containing D1 is
a fork F with a central component F o and three maximal twigs 7\, T2 and Γ3, i.e.,
F=F0 + Tί + T2 + T3.

(2) The case where Dί<T1 and C+Tλ is not negative definite. As in the previous
case (1) where C meets a rod R, one can find a P^fibration <F: = Φ| S o | : V^P1 and
has two subcases. Using the notation there, we have:

The case where S0 = 2{C+D1) + D2 + D3. Since (F, D) is neither a dP3-surface of
the first kind nor a dP3-surface of the second kind and type (Πα), as in the case (1),
there are no singular fibers S± of type (II) with #(5Ί) = 3. Note that if there are two
cross-sections in D then one of them meets a component of D in a singular fiber of Ψ,
for F is a fork. As in the case (1), this leads to a contradiction because (F, D) is not
of the first kind. By (3) and (2) of Lemma 1.3, D-D^ with the (-3)-curve Z>4, is
contained in the singular fibers, whence F° is affine-ruled and there is a unique singular
fiber Sx {ΦSQ) in view of the hypothesis that F is a fork. Sx is of type (II) and
{#S0, #S1} = {4, 5}. The configuration of C + D and S/s is given in the configuration
(48) in Appendix.

The case where So = 3(C+Dx) + 2D2 + D3 + Z>4. Suppose that there are two cross-
sections D5 and Z>6 in /) and that So, " ,Sk exhaust all singular fibers of Ψ, where
S, is of type (I) and S2, , Sk are of type (II) (cf. Lemma 1.3, (2)). Since F is
a fork (of Dynkin type Dn\ we have {k; #S0, • , #SJ = {1; 5, 5} or {2; 5, 3, 3}, and
either one of D5 and D6 meets the central component Fo or is Fo itself. This is a
contradiction by Lemma 1.5, (1). Suppose next there is exactly one cross-section D5 in
D. Then F° is affine-ruled. All singular fibers Sl9 - , Sk (ΦSO) are of type (II). Since
Fis a fork, {£; #S0, , ̂ Sk} = {1; 5,5} or {2; 5, 3, 3}. Then either D has the dual graph
No. n (49<«<51) in the Table and the configuration of C+D and S/s is given in the
configuration (n) in Appendix, or the dual graph of D is given in Figure (8).
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FIGURE (8)

Consider the case with Figure (8). Let v: V^Σ2 be a contraction of all (—l)-curves

and consecutively contractible curves in So, St and *S2 so that (v^D5)
2— —2. Take a

nonsingular irreducible curve E in \v^D5-h2v^.S0\ such that E passes through three

points v(D4), v(D8) and v(D9). Then the proper transform E: = υ'E is a (— 1)-

curve satisfying (E, D4) = (E, D8) = (E,D9) = (E, So)= 1 and ~(E, D* + Kv)= 1 -1/2 =

- ( C , £>* + # κ ) by Lemma 1.4. Hence, with the curve E, (V, D) is either a dP3-surface

of the first kind or a dP3-surface of the second kind and type (Πα) according as

IE+ D + Kv I φ 0 or | E+ D + Kv \ = 0. This is a contradiction.

(3) The case where Dί<Tί and C-\-T1 is negative definite. By applying (1) of

Lemma 1.3 to the (— l)-curve C and by noting that g{F) is a quotient singularity on

V, C + F has one of those dual graphs shown in Figure (9).

H i

(3a) —o ό o— — *— — o
D P F 0 R l R t

o— —o ό ό o— * — o * o— —o ( n>?^
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(3ί/) 0 - - 0 *' 0 - ••• -A A 0 - • - 0 (j=l,2)
D l F 0 R l

• 0 0 A(3e)

(3/)

D l D 2 F 0 T 3

,τ 2

D 2 D l D 3 D 4 D p F 0 T 3

FIGURE (9)
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If the case (3/) occurs, then D is contained in singular fibers of the P^fibration

defined by \4(C+D1) + 2(D2 + D3 + + Dp + Fo) + T2 + Γ3 |. This is impossible by (2)

of Lemma 1.3. Before investigating the remaining cases we prove the following results

(due to M. Miyanishi):

LEMMA 4.2. Let Vbea log del Pezzo surface of rank one with contractible boundary.

Suppose that there isa(— \)-curve Csuch that one of the following conditions is satisfied.

(i) C meets exactly one component Dι of D.

(ii) Cmeets exactly two components D± andD2 ofD with (C, D2) = 1 and(Dl) < — 3.

Then the following assertions hold true.

(1) Let σ: V-+W be the contraction of C, let C=σ(D1) and let B = σ^(D-D1).

Then B is contractible to quotient singularities on a projective normal surface W. So, there

exists a contraction h: W-+ W such that h: W— B^ W— Sing( W). Moreover, W is a log

del Pezzo surface of rank one with contractible boundary.

(2) Suppose that the condition (i) above is satisfied and suppose furthermore that

- ( C , D* + Kv) attains the smallest positive value. Then 0< - ( C , B* + Kw) < -(G,B* +

Kw)for every curve G on W which is not a component ofB. Moreover, ifE is an irreducible

curve on V such that EnC=0 and - ( £ , D* + Kv)= - (C, D$ + Kv), then -{σ{E\ B* +

KW)=-(C,B* + KW).

(3) If\C+D + Kv\ = 0 then \C+B + Kw\ = 0.

PROOF. The assertion (1) is proved in [11; Lemma 4.3].

(2) Let G be an irreducible curve not in C + D. Since p ( F ) = l , G = αC +

βD1-\-Γ where oc9βeQ and Γ is a β-divisor supported by Supp(Z> — Dx). Since

-(G,D* + KV) ^-(C,D* + KV\ we have α > l . Since (G,C)>0, we have 0 > α > l .

On the other hand, since σ(G) = βC+σ+(Γ) with Supp σ+(Γ) c Supp B, one has

-(σ(G), B* + Kw)=-β(C, B* + KW)>-(C9 B* + Kw). Now we shall show the second

assertion. Write E=aC + bDt + A where a,beQ and Supp A ^ S u p p φ - D J . Hence

σ(E) = bC+σ*(A) with S u p p σ ^ ) ^ Supρ£. Since - ( £ , D* + Kv)= -(C, D* + Kv),

a=\. Moreover, EnC=0 implies that 0 = (£, C)= — a + b, i.e., b = a=l. Hence

- (σ(£), B* + KW)=-(Cz B* + Kw).

(3) Note that σ*(€ + B + Kw) = D + Kv or C + D + Kv under the condition (i) or
(ii), respectively. From this follows (3).

We shall return to the case (3).

CASE (3a). Let σ: V^Wbe the contraction of C,DU , Dp_ x, let C=σ(Dp) and

let B=σ(D — Dp). By applying Lemma 4.2 successively, we know that (W, B) is a

dP3-surface such that \C+B + Kw\ = 0 and — (C, B* + Kw) is the smallest positive value.

Then the argument in the case (1) works for (W, B) and C. So, if (Rj)= - 3 , then B

has the dual graph No. m (38<m<47) in the Table. Since Fis a fork, D has the dual

graph No. n (54<«<56) in the Table and the configuration of C + D and all singular

fibers of the P^fibration Ψ.V-+P1 which is defined by | 3(C + Dχ+ +/) p
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2H1+H2 + R11 is respectively given in the configuration (n) in Appendix. In particular,

all components of D, except for one cross-section, is contained in singular fibers of

Ψ. Hence, V° is affine-ruled. Suppose (/*?)= - 2 . Consider the J^-fibration Ψ: V-+P1

defined by | S 0 | , where S0 = 2(C-{-D1-\- +Dp + F0) + H1 + R1. By Lemma 1.3, (3),

(Rj)= — 3. If there are two cross-sections H2 and R2 in Z>, then/?=l, ^ = ί = 2 for F is

a fork. This contradicts the minimality of — (£, £* 4- Λ^) by the argument in the previous

case (1). So, s= 1 and D — R2 is contained in the singular fibers, hence V° is aίfine-ruled.

By Lemma 1.3, (2), all singular fibers Sl9 - -,Sk(ΦS0) are of type (II). Since (K, D)

is neither a dP3-surface of the first kind nor a dP3-surface of the second kind and type

(Πα), we have {k; #S0, ,#Sk} = {0; 5}, {0; 6} or {1; 5, 4} by the same argument as in

the previous case (1). The configuration of C+D and St

9s is given in the configuration

(52), (53) or (48) in Appendix where the notation C and E should be interchanged.

Note that - ( £ , D* + Kv)= - (C, D* + Kv) by Lemma 1.3, (3).

CASE (3b). Let σ.V^W be the contraction of C, let C=σ(D1) and let

B=σ(D — Dί). By Lemma 4.2, we may pass to the pair (W9 B) which is a dP3-surface

of the second kind and type (Ilα) with the (— l)-curve C. Let Φ: V^P1 be the /^-fibration

defind by |2(C + D1) + Z>2+/Γol For e a c ^ (—l)-curve E in a singular fiber of Φ, we

have -(£,Z)* + ΛV)=-(C,Z)* + /ί:κ) by Lemma 1.3, (3). Hence, \E+D + Kv\ = 0

because (F, D) is not a dP3-surface of the first kind. This, together with the minimality

of — (C, B+Kw), will lead to a contradiction by the argument in the proof of Theorem

3.3.

CASE (3c). Let σ: V-*Wbt the contraction of C and Dx and let B = σ(D- D2).

By Lemma 4.2, (W, B) is a log del Pezzo surface of rank one with contractible boundary,

on which there are no (—«)-curves with n>3. Hence — Kw= —(B* + Kw) is numerically

effective and 1 <(K&) = 10-ρ(W) = 9-#{B)<1. So, P2 is a relatively minimal model

of W. There is a nonsingular elliptic curve A in | — Kw \ such that (W, A + B) is an Iitaka

surface with p(W) = #(Bk(A + B))+ 1 (cf. Demazure [4; III, Theorem 1, p. 39]). Note

that B contains connected components of Dynkin type Ap_2 and At+2.

Suppose p>4. If /? = 4 then / = 1 , 2 (hence B contains connected components of

Dynkin type A2 + A3 or A2 + A^) and if p>5 then /=1 (hence 2? contains connected

components of Dynkin type A3 + Ap__2)9 since #CF) is a quotient singularity of V. By [10;

Lemmas 3.5, 4.2 and 4.3], B is of type AX+2A3 or 2A1-\-2A3 (cf. Lemma 5.1 below).

Hence p = 5 and ί = l . Note that if Ψ: V^P1 is the /^-fibration defined by

|4(C + D1) + 2(D2 + F0)+:Γ2 + JR11 then D-D3 is contained in the singular fibers. Then

the singular fiber of Ψ containing D4 + D5 must be of type (I) in Lemma 1.3, (2). This

is impossible by the equality in Lemma 1.3, (2).

Suppose that/? = 2. Let So and Ψ be the same as in the casep = 5. Then D — R2 is

contained in the singular fibers and R2 is a cross-section. Hence V° is affine-ruled. By

Lemma 1.3, (2), all singular fibers Su * , Sk (¥=S0) are of type (II). Since g(F) is a

quotient singularity of V, {k; #S0, , #Sk} = {0; 6} or {1; 6, 3} and the configuration

of C+D and S/s is given in the configuration (57) or (58) in Appendix.
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Suppose that/? = 3. Let SO = 3{C + D1) + 2D2 + D3 + FO and let Ψ: V^P1 be the
/^-fibration defined by | S 0 | . Then D — ^ — R^ is contained in the singular fibers. By
Lemma 1.3, (2) and Lemma 1.5, (1) where H1: = T2 and H2 : = RU and by noting that
F is a fork, we know that there is exactly one singular fiber Sx (φ So) which is of type
(I) and which has #(Sf

1) = 5, and that T2 and Rt meet two different (— l)-curves in Sί.
The configuration of C+D and 5f's is given in the configuration (59) in Appendix. In
particular, V° is affine-ruled by Lemma 1.5, (2).

CASE (3d). Let σ: F-> Wbt the contraction of C and all successively contractible
curves in Tl9 let F0: = σ(F0), F: = σ(F), ff: = (j(7V) and let B = σ(D). Then
p(W) = #(Bk(B)) +1 and ic(W-B) = - oo for p(V) = #(£) +1 and *c(F°) = - oo. Indeed,
(W, B) is a log del Pezzo surface of rank one with wow-contractible boundary; for the
proof, see [11; Lemma 6.4]. By Lemma 2.6 and Theorems 4 and 6 in Miyanishi-Tsunoda
[8], B consists of F and an admissible rational fork Q, and there is a /^-fibration
Φ: W^P1 with exactly three singular fibers such that the support of each singular fiber
fi is a rod consisting of a (— l)-curve, a twig ff and a twig Q{ of β, and that Fo and
the central component Qo of Q are cross-sections of Φ. Since Bk(2?) consists of (— 2)-rods
in the present case, ft is of type (II) and #(/f) = 3. Hence s=l, Φl)= — 3 and Q has
Dynkin type D 4. By Lemma 1.5, (1) where H1: = Q0 and H2: = F0, one sees that
(Fl)= - 1 and/? = 2. Let Ψ = Φoσ, Si = σ*(fd. Then {#Sls #S2, #S3} = {5, 3, 3} and the
configuration of C+D and all singular fibers of Ψ is given in the configuration (60)
in Appendix.

CASE (3e). By considering the /^-fibration Φ: V-+P1 defined by |2(C+Z>! +
T3\, we can prove that /? = 3, as in Lemma 5.3, (2) below. Let

+ 2Z)2 + F 0 + JD3 and let Ψ: V^P1 be the /^-fibration defined by | S 0 | .
By Lemma 1.3, (2) and Lemma 1.5, (1) with H1: = T2 and H2: = T3, the fibration Ψ
has exactly one singular fiber SΊ ( φ So) with #(SΊ) = 5, and T2 and T3 meet two different
(— l)-curves in SΊ Then V° is affine-ruled by Lemma 1.5, (2). The configuration of
C+D and S/s is given in the configuration (61) in Appendix.

To finish the proof of Theorem 4.1 we shall consider the last case:
(4) The case where Dx is the central component Fo of F. Let σ: V-+W be the

contraction of C and let B=σ{D). Then (W, B) is a log del Pezzo surface of rank one
with «0«-contractible boundary (cf. [11; Lemma 6.4]). By the same reasoning as in
the case (3d), we can prove that D has the dual graph No. 62 in the Table. More pre-
cisely, there is a P1 -fibration Ψ: V-^P1, each of whose singular fibers, except So

which consists of C and another (— l)-curve E9 consists of a (— l)-curve, a twig of F
and a twig of another fork Q (: = D — F), and the two central components Fo and Qo

of F and Q, respectively, are cross-sections of Ψ. The configuration of C+D and all
singular fibers of Ψ is given in the configuration (62) in Appendix.

For the existence of the configurations (n) (36<n<62) in Appendix, we refer to
the argument at the end of § 2.
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5. dP3-surfaces of the second kind and type (Πc). Let (V, D) be a dP3-surface
of the second kind and type (lie) with a (—l)-curve C meeting a ( — 2)-curve Dx and
the ( —3)-curveZ)2 as in Lemma 3.1. Let σ: V-> Wbe the contraction of C, let £=0(0^)
and let B=σ^(D — Dί). Then 2? consists of (—2)-rods and (—2)-forks and hence i?* = 0.
By Lemma 4.2, (1), \<(B* + Kw)

2 = (Klr) = 9-#(B)<S and #(D)<9. There exist a
(-l)-curve C and a (-2)-curve σ(D2) on JΓ with (C, σ(D2))=l. This is absurd if
(Λ:̂ ) = 8. SO, (Klr)<Ί and #(B)>2. As in the proof of Theorem 4.1 for the case (3c),
there exists a nonsingular elliptic curve A in | —Kw\ such that {W, A + B) is an Iitaka
surface with p(W) = #(Bk(A + B)) +1. B is contractible to rational double singular points
on a Gorenstein log del Pezzo surface W of rank one. The dual graph of B is described
(as B=N) in the following lemma which is proved in [10; Lemmas 3.5, 4.2 and 4.3].

LEMMA 5.1. Let (V,A + N) be an Iitaka surface where A is a nonsingular elliptic
curve. Suppose that ρ(V) = #(N)+\. Then the dual graph of N is one of the following
Dynkin graphs:

Al9 A1+A2, A4, 2Aί+A3, D5, Ax+A59 3A2, E6, 3A1+D4, AΊ, Aγ+D6, EΊ,

A1+2A3,A2+A5,Ds,2Aί+D6,E8,A1+E7,A1+AΊ,2A4,A8,Aί+A2 + A5,

A2 + Eβ, A3+D5, 4A2, 2Aί + 2A3, 2D4 .

Our purpose is to prove the following:

THEOREM 5.2. Let ( V, D) be a dP3-surface of the second kind and type (He). Then
the dual graph of D is one of those given in the cases No. n (63<n<97) in the Table.
Furthermore, there is a (—l)-curve C with which CASE (y) in Lemma 3.1 occurs and
there is a P1-fibration Ψ: V^P1 such that the following assertions hold:

(1) The configuration ofC+D and all singular fibers of Ψ is given in the configuration
in) for 63<n<9Ί in Appendix.

(2) All components of D, except at most two cross-sections, say Hu Hk (k<2),
are contained in singular fibers ofΨ, andHx andH2 are disjoint provided k = 2 andn #83.

All the cases (63<n<97) are realizable. Finally, V° is affine-ruled ifnΦ93.

Let C, Dx and D2 be as in the beginning of § 5. Let Δt be the connected component
of D containing Dt for /= 1, 2, respectively. Since \C+D + Kv\ = 0, A1ΦA2. We first
prove:

LEMMA 5.3. Assume that either Λγ is a rod and Dx meets two ( — 2)-curves D3 and
Z>4 in D — D1, or Δγ is a fork with a central component G and three maximal twigs Γf's
(hence Δγ = (/ + £ Tt). Then we have the following assertions:

(1) If A 2 is a fork then D2 is one of the three tips of Δ2.
(2) If Δ2 is a rod then Δ2 = D2.
(3) Suppose that Δx is a fork. If Dί = G then Δx is of Dynkin type Z>4. If Dx is a

component of Tt then either Dx is the tip of T{ or Dx meets the tip of Tt.
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PROOF. We shall define a P^fibration Φ: V-+P1. If Δx is a rod, let Φ
be a P^fibration defined by a linear pencil |2(CH-Z)1) + Z>3 + Z)4|. Suppose Δx

is a fork. Write Ti = Ya

tιβ1 T^) such that TJUJs are irreducible components of Γf and
(̂•C/X 7X/+ 1)) = (7;(1), G)= 1. If Z>! =G, we label three twigs so that n(l)>n(2)>n(3)
and let Φ be a P^fibration defined by \2(C + Dί)+T2(l)+T3(\)\. If D1 = Ti(J)
for some ι,y, we label twigs so that Dγ is a component of the twig 7\, and let Φ be a
P^fibration defined by 12(C+ 7\(1)+ + 7\0) + G) + 7*20)+ ^ 0 ) l N o t e t h a t D2 i s

a 2-section of Φ in each case.

Suppose the assertion (1) is false. Then Δ2 — D2 is not connected and we let/x be
a singular fiber of Φ which contains a connected component of Δ2—D2 and which does
not contain the central component of Δ2. Since D2 is a 2-section of Φ, there is a
(—l)-curve is in/i such that E+D contains a loop and hence \E+D + KV\Φ0. But
then (K, /)) is of the first kind with the curve E because - (E, Z)* + Kv) = - (C, D* + # κ )
by Lemma 1.3, (3). This is a contradiction. The assertions (2) and (3) can be proved in
a similar way. Indeed, if the assertion (2) is false we let fx be a singular fiber of Φ
containing a connected component of Δ2 — D2 and if the assertion (3) is false we let/j
be a singular fiber of Φ containing T^n^. q.e.d.

By Lemma 5.3 and by noting that g(D) are quotient singularities on V, the dual
graph of C-\-Δί-\-Δ2 is one of those cases as shown in Figures (10)~(12). Δx and Δ2

are rods in the cases (1)~(3); Δί is a rod and Δ2 is a fork in the cases (4)~(7); Δx is
a fork and Δ2 is a rod in the cases (8) ~(10); Δ1 and Δ2SLTQ forks in the cases (11) ~(13).

(1) o - ••• - o 0 * o - ••• - o (S>\,p>2)
H s H 1 = D 1 C D 2 D 3 D p

o o

(2) o- ••• -o 0 i o- . . . -o

D P
o— •

(3) o- ••• - o — A 0 * (p>3,s>\,s>p-2)

FIGURE (10)

( 4 ) o - - o 0 * o - ••• -A o - ••• - o (s>l,t>l,p>3)
D p R l R t
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(5) o - ••• -o β 4 o - ••• -o (ί>l,ί>l;/=l,2;/>/)
Hs VDj C

1

T l T i

τ i
o β o D p + 1

(7) o o A ® — — * o A o o (/> 1, s> 1, t> 1,p>3)
H s H l D l C D 2 D 3 D p R l R t

τ i

(8) o o A o o ® * (/>>3, /> 1, s> 1, s>
s 1 p 3 1 2

FIGURE (11)

D f 3

(9) o U β *
D4 U C °2

D 3

D, C

T'
(11) o- — o 6 ô  β * o A o- —o (l>ί,s>l,

H H. L L . s D . C D 9 D., D R, R, . .
s X 1 l X 2 3 p 1 t ί>l,ήf>2,p>3)

(12) o — - 4 — β — * — o - ••• - A — o - ••• -o ( < z > U > i )
C D2 L l Lq R l R t

(13) * 0 1—0 0
τi τ i H s H i D i c D2 L i L

q

 R i R t q>ht>ί)

FIGURE (12)
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Case (1). By Lemma 1.3, (1), C+Aγ + A2 is not negative definite, hence s>2. Let
Ψ: V^P1 be the P^fibration defined by \S0\, where S0 = 3C+2Dί + H2 + D2.
D — H3 — D3, where we set H3 = 0 if s = 2 and set D3 = 0 if p = 2, is contained in the
singular fibers. By Lemma 1.3, (2) and Lemma 1.5, (1), the configuration of C + D and
all singular fibers of Ψ is given in the configuration (ή) for 63<n<Ί2 in Appendix. By
Lemma 1.5, (2), V° is affine-ruled.

Case (2). Assume s<2. Let Ψ: V-+P1 be the P^fibration defined by
\4C+2(Dί+D2) + D3 + Rί\ if s=\ (resp. by \3C+2Dί+H2+D2\ if s = 2). Then
D — D± — R2 (resp. D — D3 — Rί) is contained in the singular fibers. For the same reason
as in the case (1), the configuration of C+D and all singular fibers of Ψ is given in the
configuration («) for 7 3 < H < 8 1 in Appendix, and V° is affine-ruled.

Let (W, B) be the pair given before Lemma 5.1. Then B contains connected
components of Dynkin types As_x and Ap+t_1.

Assume s = 3. By Lemma 5.1, B is of type A2 + A5 or type A1+A2 + A5. Hence
p + t = 6 and D — Aί — A2 = 0oτa( — 2)-curve, respectively. We may assume that t > 2.
Let Φ: V-+P1 be the P^fibration defined by | f01, wheref0 = AC + 2(Dί + D2) + D3 + Rγ.
Then H2 is a 2-section, and R2 and Z>4 (if it exists) are cross-sections. Let /i be the
fiber containing H3, which is of type (I), and let Eγ be the (— l)-curve in the fiber fγ

with (H2, Ex) = (H3, Ex)=l. We can show that Cand Eί + H2 + H3 + # κ are numerically
(hence linearly) equivalent. So, R2 and Z>4 (if it exists) meet another (— l)-curve E2 in
/i since (C, Z)4) = (C, R2) = 0. By Lemma 1.5, (3) where (v^R2)

2 = - 2, we have (v*H2)
2 = 8.

This, together with (2) of Lemma 1.3 and (1) of Lemma 1.5, implies that/? = ί = 3, that
B is of type Ai+A2 + A5 (whence D has the dual graph No. 82 in the Table), and that
R3, together with one (— l)-curve and the curve G: = D — A1 — A2, forms a singular fiber
(^/o>/i) Consider a P^fibration Ψ: V^P1 defined by | S 0 | , where 5'0 = C+Z>1 +
H2 + H3 + E2. Then V° is affine-ruled by Lemma 1.5, (2). Indeed, there exist two
( - l)-curves Fί and F2 such that Sθ9 Sx: = 2Fγ + Rγ + G and S2 : = 2F2 + Z)3 + Λ3 exhaust
singular fibers of !P. The configuration of C + D and S/s is given in the configuration
(82) in Appendix.

Assume s = 4. By Lemma 5.1, B is of type AX+2A3 or 2AX + 2A3. Hence p = 3
and /= 1. Let/0 and Φ be as in the case s = 3. By Lemma 1.3, (2), the singular fiber of
Φ containing H3 + H4 is of type (II). This is impossible.

Assume s>5. Then B is of type 2^44 by Lemma 5.1. Hence s = 5 and one may
assume p = 3 and t = 2. Then D has the dual graph No. 83 in the Table. Let/0 and Φ
be as in the case s = 3. Let/X {φf0) be the singular fiber containing ΊΆ3 + HAr + H5. Let
υ: V->Σ2 be a contraction of curves in fibers as in (3) of Lemma 1.5 with (v^R2)

2 = — 2.
Then (VχH2)

2 = $ since H2 is a 2-section with (R2, H2) = 0. Hence, there are two
( - l)-curves Ex and E2 in/^ such that (Eu H3) = (E1, R2) = (E2, H5) = (E2, H2) = \. Let
I b e a nonsingular irreducible curve in | i^i^ + 2v*fo I s u c h that £* meets v#H2 with
local intersection number i(v^H2, E; v(E2)) = A at the node v(E2). Then the proper
transform E\=v'E is a (-l)-curve with (E,R1) = (E, H5) = {E,f0)=l. Let S0 =
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5 + E and let Ψ: V-+P1 be the P^fibration defined by | SO l By

Lemma 1.3, (2), there is a (—l)-curve E3 such that Sί = 2E3 + D3 + R2 is the unique

singular fiber of Ψ other than So. The configuration of C + D and Sέ's is given in the

configuration (83) in Appendix. V° is affine-ruled by Lemma 1.5, (2).

Case (3). Let (\V9 B) be the pair obtained from (V9 D) as before Lemma 5.1. Then

B contains the graphs of types Aί9 Ap_2 and As. By Lemma 5.1, B is of type 2Aί+A3

(p = s = 3), A,+2A3 (p = 5,s = 3), At+A2 + A5 {p = A9s = 5)9 3Aί+D4r (p = 39s=l) or

2Aί + 2A3 (p = 3,5;s = 3). Let fo = 3C + 2D1 + D3 + D2 and let Φ.V^P1 be the

P^fibration defined by | / 0 1 . Then H1 is a 2-section and Z>4 (if it exists) is a cross-section.

By Lemma 1.3, (2) and Lemma 1.5, (3) where if Z>4 exists we consider a contraction

v: V^>Σ2 such that (v+DJ2 = - 2 and (v+HJ2 = 8, we know that £ is of type 3At + Z>4,

Aί-\-A2 + A5 or 2Aγ + 2A3 (p = 5,s = 3) and that all singular fibers/o,/^ •*•,/* are

described as follows:

(i) B is of type 3A1 + Z>4. Hence /) has the dual graph No. 84 in the Table, k=l,

andfι=2(E+D4 + D5) + D6 + DΊ where £ i s a (-l)-curve and D 4 + Z>5 + Z>6 + / ) 7 =

D — Δ1—Δ2 is a fork of Dynkin type (Z>4) with Z>5 as the central component. Let

So = 2E+Di + H^ and let Ψ: V^P1 be the P^fibration defined by \S0\. Then there

are (-l)-curves Ex and E2 such that SO, S1: = 2E1+D3 + D6 and S2 : = 2E2 + DΊ +

D2 + C are all singular fibers of !F by Lemma 1.3, (2). The configuration of C + D and

S^s is given in the configuration (84) in Appendix. V° is affine-ruled by Lemma 1.5

(2).

(ii) B is of type Aί+A2 + A5. Then k= 1 and there are two ( — l)-curves Ex and

E2 such that (EuH2) = (E1,D4) = (E29H5) = (E29H1)=l and f1=Eί+H2 + H3 +

HA + H5 + E2. As in the case (2) above, there exists a (—l)-curve E such that

(E9D2) = (E9H3) = (EJO)=\. Let S0 = C + Dί+Hί+H2 + H3 + E and let «F: K - P 1 be

the P^fibration defined by 1501. By Lemma 1.3, (2) and Lemma 1.5, (3) where we let

v: V^Σ2 be a contraction of curves in fibers such that (v^D3)
2= —2 and (v*D2)

2 = 8,

there are two ( - l)-curves Fx and F2 such that F1 +F2 is a singular fiber of Ψ and such

that (F l9Z)2) = 2. But then -(Fu D* + Kv)=\-2/3<\-\/3= -(C,D* + KV), con-
tradicting the minimality of — (C, D* + J^F).

(iii) ,5 is of type 2 A x + 2A 3 (p = 5, s = 3). Then A: = 2 and there are three ( — 1 )-curves

£ 1 ? E2 and ^ 3 such that (E2, H2) = (E2, Z)4) = (E3, H 3 ) = (^3, H,) = 1 ,Λ = 2 ^ + D 5 + D6

(D6: = D-Λ1-Δ2) andf2 = E2 + H2 + H3 + E3. We can find a (-l)-curve E, as in the

case (2) above, such that (E, D2) = (E9 D6) = (E9 H2) = (EJ0)=l. By considering the

P^fibration defined by 12E+D6 + H2 |, we reach a contradiction to the choice of C as

in the case (ii) above.

Case (4). Assume s=l. Let Sf

0 = 4 C + 2 ( / ) 1 + / ) 2 + +Dp) + Dp+ι + Rγ and

Ψ: V-tP1 the P^fibration defined by | S 0 | . Then t>2 by Lemma 1.3, (2) and Z)- i? 2

is contained in the singular fibers. Hence V° is affine-ruled. By Lemma 1.3, (2), all

singular fibers Sl9 , Sk (¥=S0) are of type (II). Since g(D) are quotient singularities

on V, {k; #Sθ9 , #Sk) = {0; 6}, {0; 7} or {1; 6, 3}. The configuration of C + D and S/s
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is given in the configuration (85), (86) or (87), respectively, in Appendix.
Assume s>2. Let S0 = 3C+2Dι+H2 + D2 and Ψ: V-+P1 the P^fibration

defined by \S0\. Then D3 and H3 (if it exists) are cross-sections.
Assume further t=\. By Lemma 5.1, B is of Dynkin type 3AX+D4 (s = 2,p = 3),

A! + D6 (s = 2, p = 5), 2A1 + D6 (s = 2, p = 5) or A3 + D5 (s =p = 4). In the first (resp. third
or remaining) case (s), Ό — Δ1 — A2 consists of two (resp. one or none) isolated ( — 2)-
curve (s). Suppose s = 2. Then D — D3 is contained in the singular fibers of Ψ. Hence V° is
affine-ruled. By Lemma 1.3, (2), the third case is impossible and there are two (— l)-curves
Ex and £2

 m the first case (resp. one (— l)-curve E in the second case) such that SO,
Sx: = 2Eί+D4 + D5 and S2 : = 2E2 + R1 +D6 (resp. So and S1: = 2(E+Rι+D5) +
Z>4 + Z>6) are all singular fibers of Ψ, where D5+D6: = D — Δί — Δ2 is a union of two
isolated ( —2)-curves in D. The configuration of C+D and S/s is given in the
configuration (88) or (89) in Appendix. Suppose (s, p) — (4, 4). Then H4 and Rx + D4 + D5

are in two distinct singular fibers of type (I). This contradicts Lemma 1.3, (2).

Next assume t> 2. Hence (/?, t) = (3, 2), (4, 2), (3, 3) or (3, 4) for g(D) are quotient
singularities on V. Thus, B contains a subgraph of type As_ x and a subgraph of Dynkin
type Z>5, E6, D6 or Z>7, respectively. By Lemma 5.1, B is of type A x + D6 (s = 2, p = / = 3),
2A1+D6 (s = 2,p = t = 3), A2 + E6 (s = 3,p = 4, t = 2) or A3 + D5 (s = 4,p = 3, t = 2).

D — Δ1 — Δ2 consists of a ( —2)-curve in the second case and none otherwise. Consider
the case where (s,p, t) = (3, 4, 2) or (4, 3, 2). By Lemma 1.3, (2) and Lemma 1.5, (1),
there are (—l)-curves Eγ and E2 (resp. Eί9 E2 and ^3) such that (Eί,R2) =
(E1,H3) = (E2,D5)=\ (resp. (Eu H3) = (Eί, R2) = (E2, RJ= 1) and that SO and
Sί: = E1 + R2 + Rί+D4 + D5 + E2 (resp. So, S1: = Eί + R2 + R1 + E2 and S2: = 2E3 +
H4 + D4) are all singular fibers of ψ. The configuration of C+D and Sf's is given in
the configuration (90) or (91) in Appendix. By Lemma L5, (2), V° is affine-ruled. Con-
sider the case where (s, p, t) = (2, 3, 3). Then D — D3 is contained in the singular fibers
of Ψ and V° is affine-ruled. By Lemma 1.3, (2), D — Δ1 — Δ2 consists of a ( —2)-curve
Z>5, i.e., B is of type 2Ai+D6, and there are two (—l)-curves E1 and E2 such that
So, S x : = 2Eγ + D4 + D5 and S 2 : = 2(E2 + R2) -\-Rί+R3 are all singular fibers of Ψ. The
configuration of C+Z> and S/s is given in the configuration (92) in Appendix.

Case (5). Assume s=l. Let fo = 4C+2{D1+D2) + D3 + 7\ and Φ: F-^P1 the
P^fibration defined by | / 0 | . i^t is a 2-section and T2 (if it exists) is a cross-section.
Suppose /= 1. By Lemma 1.3, (2), Lemma 1.5, (3) and the fact #(D)<9, we know that
ί = l , that there is a (-l)-curve E with ( £ , ^ 0 = 1 and that /0, / 1 : = 2(£ + D4 +
Z)5) + Z)6 + Z>7 are all singular fibers of Φ, where Z)4 + D5 + D 6 + DΊ : = Z) — Δ x — Δ2. Then
D has the dual graph No. 93 in the Table. Let S0 = 2E+R1 +Z>4 and ίF: V^P1 the
P^fibration defined by | So |. By Lemma 1.3, (2), there are (— l)-curves Eu E2 and E3

such that S0,S1: = C + Dί+E1,S2: = 2E2 + D3 + D6 and S3 : = 2E3-\- Tx +/) 7 are all
singular fibers of Ψ. The configuration of C + D and Sf's is given in the configuration
(93) in Appendix. Suppose 1=2. By Lemma 1.3, (2) and by noting that the cross-section
T2 meets only 7\ in D—T2, there are two (—l)-curves Ex and E2 such that So and
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Sx : = E1 + R2 + ' ' + Rt + E2 are all singular fibers of Ψ. By Lemma 1.5, (3) where
(v^T2)

2 = — 2, we must have (viteRί)
2 = $. This is however impossible because §{D)<9

implies t<4.
Assume1y>2.ThenJβisoftype3^1+Z)4(^ = 2,/=/=l), A1-\-D6 (s = 2,l=\, t = 3),

2AX+D6 (s = 2,l=l,t = 3), Ax+Eη (s = l=2,t = 3)9 A2 + E6 {s = 3J=t = 2) or

A3 + D5 (s=4, l=l,t = 2). Hence D — Δι—Δ2 has two (resp. one, none) isolated
( —2)-curves in the first (resp. third, remaining) case (s).

Consider the case 1=1. Hence s = 2, 4. Let/ 0 and Φ be the same as in the case
s = 1. Suppose t=\. Then B is of type 3Ax + D4 and there are exactly two more singular
fibers f1 and/2 (#/ 0 ) such that/x is of type (II) with #(/1) = 3 and/ 2 consists of two
(—l)-curves Ex and E2 by Lemma 1.3, (2). Since (Rl9 Eί+E2) = 2 we may assume
(Rl9 Ei)<\. By (3) of Lemma 1.5 where we consider a contraction v: V^Σn which
contracts El9 we must have (v^Rί)

2>4, which is impossible. Suppose t>2. Let/X be
the singular fiber of type (I) containing R2 + + Rt. By Lemma 1.3, (2), all other
singular fibers (#/ 0 ,/ i) are of type (II). Hence s = 2 and D = Δ1 + Δ2, i.e., B is of type
A1 + D6. By Lemma 1.5, (3) where υ is a contraction which does not contract the
(— l)-curve of/Ί meeting Ru we must have (v^R1)

2>4. This is impossible.

Consider the case />2. Then B is of type A1-\-EΊ (s=l= 2, ί = 3) or Λ2 + £ 6

(̂  = 3, /= t = 2). Let So = 3C+2/^ +H2 + D2 and Φ: F-^P1 the P^fibration defined by
I So |. D3, Tu Rx and H3 (if it exists) are cross-sections. Let Sx and S2 be singular fibers
such that St > T2 and S2>R2. Then Si φ S2 and they are of type (I), for the cross-section
Z>3 meets only D2 in D — D3. If B is of type Aι+EΊ then SO, 5Ί and 5 2 are all singular
fibers by Lemma 1.3, (2). We then let v: V-*Σ2 be the same as in Lemma 1.5, (1) where
H1:=D3 and H2: = Tί or Rx. Then (v4tTί)

2 = (v^Rί)
2 = (v^T1,v^R1) = 2, which is

impossible by the construction of v. If B is of type A2 + E6 then there is a singular fiber
S3 consisting of two (—l)-curves Eγ and E2 by Lemma 1.3, (2). Hence
(D3 + T1+R1,Ei)>2 for /=1 or 2, say for i = l . But then - ( £ Ί , /)* + J^Γ)< 1-3/7-
4/7 = 0 (cf. Lemma 1.4). This is not the case.

Case (6). Note that if t = 2 then /= 1 ,p = 3, for #(^12) is a quotient singularity of V.
Assume s=l and 1=1. Let St

0 = 4C+2(Z)1+Z)2) + :Γ1+Z>3 and Ψ: V^P1 the
P^fibration defined by | S 0 | . By Lemma 1.3, (2) and Lemma 1.5, (1) and by noting
that g(A2) is a quotient singularity on V, we know that if 50, Su , Sfc are all singular
fibers, then {k; #S0, ,§Sk} = {\; 5, 5} (where p = 6), {2; 5, 3, 3} or {1; 5, 5} (where
p = 3). The configuration of C+D and 5,'s is respectively given in the configuration
(94), (95) or (96) in Appendix. V° is affine-ruled by Lemma 1.5, (2).

Assume s= 1 and />2. Then t= 1. Let S0 = 4C + 2(D1 +Z>2 + -FD^ + i ) ^ ^ ^
and Φ: V-+P1 the P1-fibration defined by |SOI Then the singular fiber containing
T2+ " m +Tt must be of type (I), which contradicts Lemma 1.3, (2).

Assume s > 2. By Lemma 5.1, B is of type A1+D6 ((s, /, p, t) = (2, 1, 4, 1), (2, 2, 3, 1)),
type 2AX +Z)6((s, /, p, t) = (2, 1,4,1),(2, 2, 3,1)), typeΛ3 + D 5 ((s, /, p, t) = (4,1, 3,1)) or type
4 2 + £ 6 ((s, /, p, ί) = (3,1, 3,2)). Let Φ: F-^P 1 be the P^fibration defined by | So |, where
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Tl9 D3 and H3 (if it exists) are cross-sections.

Consider the case s = 2. By Lemma 1.3, (2), B is of type Aί-^D6, and we may

assume that Rx is in a singular fiber of type (I), and that if 1=2 then T2 and D4 are

in the same singular fiber of type (II). This leads to a contradiction by Lemma 1.5, (1)

where Ht: = Tt and H2:=D3.

Consider the case s> 3. If (s, /, p, £) = (4,1, 3, 1) (resp. (3, 1, 3, 2)), then # 4 , D4 and

/?! (resp. Z>4 and Rx+R2) are in distinct singular fibers of type (I) because the

cross-section 7\ meets only D2 in D— 7\. This contradicts Lemma 1.3, (2) (resp. Lemma

1.5, (1) where Hί:=D3 and H2 : = 7\).

Case (7). Let So = 1(C + D1)+T1+ Hx and Φ: V^P1 the P^fibration defined by

| S 0 | . Then D2 is a 2-section. Let Sx be the singular fiber containing A2 — D2. As in

Lemma 5.3, one can prove that Sx is a fiber of type (II). Hence /= 1 and there exists

a (— l)-curve is meeting D3 such that Sx = 2(£ + D 3 + \-Dp) + Dp+1 + RX. By Lemma

1.3, (3), we have - (E, D* + KV)=- (C, D* + Kv). Then ( V, D), with the curve E, is either

a dP3-surface of the first kind or a dP3-surface of the second kind and type (116)

according as | E+D + Kv \ Φ 0 or | E + D + Kv \ = 0 . This is a contradiction.

Case (8). Let S0 = 3C + 2D 1+ JD 3 + Z>2 and Ψ: V-+P1 the P^fibration defined

by I So |. Let Sθ9 Sl9 - , Sk be all singular fibers of Ψ.

Assume s=l (hence /=1). Let /O = 2(C+Z>1+Z>3+ +Z>P) + 7T

1+// 1 and

Φ: V-tP1 the P^fibration defined by | / 0 | . By Lemma 1.3, (2), all singular fibers/0,

fl9 ",fb of Φ are of type (II). By Lemma 1.5, (3), b<\ and 4m = (ι;+/)2)
2 = - 3+/?+

1 +Σ*=i (#fι- 0 < 5 (for #(D)<9). Hence m= 1 and tf^ + Σ ^ i (#/*-1) I f * = l , then

#C/i) = 4 or 3. For the (-l)-curve £" i n ^ we have -(£,D* + # K ) = -(C,D* + Λ:K) by

Lemma 1.3, (3). Hence, if #(/i) = 4, we are reduced to the previous case (3) by replacing

C by E. If #(/1) = 3, (F, Z>), with the curve E, is either a dP3-surface of the first kind

or a dP3-surface of the second kind and type (ϊla) according as \E+D + Kv\Φ0 or

IE+ D + Kv I = 0 . This is a contradiction. Thus we may assume b = 0 and p = 6, and Z>

has the dual graph No. 97 in the Table. Since all components of/), except the cross-section

Z>4, are contained in the singular fibers of Ψ, V° is affine-ruled. By Lemma 1.3, (2),

k = 1 and there is a ( - l)-curve E such that (£, 7\) = 1 and Sx = 2(E +Tί+ D6) + H1 + D5.

The configuration of C+D and S/s is given in the configuration (97) in Appendix.

Assume s>2. By Lemma 1.3, (2), Lemma 1.5, (1) and by noting that g(D) are

quotient singularities on V, we have one of the following cases:

(i) (p, I, s, fe) = (3,1, 5,1). Then there are (-l)-curves Ex and E2 such that

(Eu H2) = (£2, 7\) = (E2, H5) = 1 and that S1=E1+H2 + H3 + HA + H5 + E2. Let τ : 7->

W be the blowing-up of the point A n σ(E2), where σ, W, B and 4̂ are as given before

Lemma 5.1. Let A = T1+D3 + H1+ ••• +HS + E2. Then -Kw~A~σ(Δ) and

-X y~τ'(i4)~τ'σ(^). Hence φ'. = Φ\τ'(A)\: ^ ^ P 1 is a minimal elliptic fibration. Hence

there is a ( - l) curve E on V such that (£, D2) = 2, ( τ ' σ ί E ) ) ^ - 2 and τ'σ(E + D2) is a

singular fiber of φ. But then - ( £ , D* + i^F)= l-2/3< 1-1/3= -(C, D* + Kv), a

contradiction.
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(ii) (p91, 5, fc) = (3, 2, 2,2). Then there are ( - l)-curves El9 E2 and E3 such that
(Ex, Tx) = (£ 2, //i) = 1 and that Sί=Eί+Dt + D5 + E2 and S2 = 2E3 + T2 + H2, where
D4-\-D5: = D-Aί-A2 is a (-2)-rod with two components. Let A = T2 + Tι+D3 +
H1+H2 + E3. By the same argument as in the above case (i), we reach a contradiction
to the minimality of -(C, D* + Kv).

(iii) (p, l,s, fc)=(4,1, 3,2). Then there are (-l)-curves Eί and J?2 such that
S1 = 2E1 + T1+D5 and S2 = 2(E2 + H2) + H3 + HU where Z>5 : = D - z l 1 - z l 2 is an
isolated ( —2)-curve in D. As in the case (2), one can find a (—l)-curve E such that
(E,D2) = (E,D5) = (E9H3) = (E,S0) = L Note that - ( £ , D* + Kv)= -(QD* + KV) =
1-1/3. Then, with the curve E, (V, D) is either a dP3-surface of the first kind or a
dP3-surface of the second kind and type (lla) according as \E+D + Kv\Φ0 or
IE+ D + Kv I = 0 . This is absurd.

(iv) (p, /, s, fc) = (6,1, 2, 1). Then there is a ( - l)-curve Ex such that (El9 H2)=\
and S1=2(E1+H2 + H1+D6)+T1+D5. Consider the P^fibration ψ: V-tP1 defined
by \2(C + D1+D3+ +D6) + T1+H11. Let £ be the (-l)-curve such that E+Ex is
a singular fiber of ψ. Then (D2, E)=(D2, E+Ex) = 2 and -(E, D* + Kv)=l-2β<l-
1/3 = - (C, D* + Kv)9 contradiction.

Case (9). Then B is of type 4^x. This is impossible by Lemma 5.1.
Case (10). Consider the P^fibration ^ : = Φ | / o | , where fo = 3C+2Dx+D3 + D2,

of which H1 is a 2-section. By Lemma 1.3, (2), the singular fibers of φ (//0) are of
type (II). Hence /= 1. Let So = 2(C + Dx + Ht + + Hs) + Hs+ x + 7\ and Φ: F ^ P 1 the
P^fibration defined by | iS01. D 2

 a n d D3 are 2-sections of Φ. By Lemma 1.3, (2), there
is a singular fiber S1 of type (I) with two (—l)-curves Ex and E2. If (Di9 E}) = 2 for
some (/,/) with ι = 2,3 and 7=1,2, then Ej + D contains a loop and hence
I Ej + D + Ky I # 0 for y= 1 or 2. Then (K, Z>) is a dP3-surface of the first kind with the
curve Ej because — (Ep D* + Kv)= — (C, D* + Kv) by Lemma 1.3, (3). This is absurd.
Thus, (D2, Ej) = (D3, Ej) = 1 0 = 1 and 2). If #(5^> 3, (K, Z>), with the curve Eί9 is either
a dP3-surface of the first kind or a dP3-surface of the second kind and type (lla)
according as \Eί+D + Kv\φ0 or \E1+D + Kv\ = 0. This is a contradiction. If
§(Sί) = 2, we are reduced to the previous case (8) by replacing C by Eγ.

Case (11). Then B contains either two forks (if q> 3) or a fork and a rod of type
^i+s+i (if tf = 2) By Lemma 5.1, 5 is of type ^ 3 + £>5 (/ = s = l , q = 2;(p, ί) = (3, 2) or
(4,1)) or 2Z>4 (/=s = ί=l,^=/? = 3). In particular, l=s=l. Let S0 = 2(C + D! +
L 2 + +L g) + Tx +HX and Φ: K-^P1 the P^fibration defined by 15Ό|. Then D2 is a
2-section. Let Sί be the singular fiber of Φ containing Δ2 — D2. By Lemma 1.3, (2), Sγ

is of type (II), hence t=\ and there is a (—l)-curve £ with (£, D 3 ) = l such that
S 1=2(£ + D 3 + +Z>,) + Z>p+i + 7^. Then (F, Z>), with the curve E, is either a
dP3-surface of the first kind or a dP3-surface of the second kind and type (lib) according
as \E+D + Kv\Φ0 or \E+D + Kv\ = 0 because -(E, D* + Kv)= -(C9D* + KV) by
Lemma 1.3, (3). This is a contradiction.

Case (12). Then B contains three isolated ( —2)-curves and a fork. By Lemma
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5.1, Bis of type 3AX+D4. Hence q = t=\. Let S0 = 2(C + D1) + D3 + Z)4 and Φ: V^P1

the Perforation defined by | 5 0 | . As in Lemma 5.3, one can prove that the singular

fiber iSi containing A2 — D2 is of type (II). Then there is a (—l)-curve E such that

( £ , L 1 ) = 1 and S r

1 =2(£ F +L 1 ) + ̂ 2 + ̂ i Note that (E,D5)=l. Then (V, D\ with the

curve E, is either a dP3-surface of the first kind or a dP3-surface of the second kind

and type (lla) according as \E+D + Kv\Φ0 or \E+D + Kv\ = 0 because -(E, D* +
Kv)= -(C,D* + KV) by Lemma 1.3, (3). This is a contradiction.

Case (13). Since #(D)<9, /=£ = # = /= 1 and D = A1 + Δ2. Hence 5 is of type

Ax +A3 + Z>4. This is impossible by Lemma 5.1.

To complete the proof of Theorem 5.2, we refer to the argument at the end of § 2

for the existence of the configurations (n) (63<«<97) given in Appendix.

6. Quasi-universal coverings. Let (F, D) be a dP3-surface and let V°=V—

Supp(Z)). In this section, we shall look into the fundamental group n^V0) and the

quasi-universal covering Ό of V (cf. the notation in the Introduction). First of all, we

prove:

PROPOSITION 6.1. Let π: X^Y be a finite morphism between normal algebraic

surfaces. Suppose that Y has only quotient singularities and that πo'. = π\χQ

m. X°-^Y° is

έtalewhere Y°: = Y-Sing(Y) and X° : = π~1(Y°). Then X has only quotient singularities.

In particular, if Y is a log del Pezzo surface with contractible boundary, so is X.

PROOF. Assume that the first assertion is proved. Note that — Kxo = π0*(—Kγ0)

since π° is etale. Hence — Kx = π*( — KY) and — Kx is ample because π is finite. Thus,

the second assertion is proved.

To show the first assertion, we may assume that Y— SpecS and X= Specif, where
S is the local ring of a singular point of Y. Then R is a semi-local ring with maximal
ideals 3Λl9 , 2Rr. Let SR be the maximal ideal of 5, let /=Rad(7ί) ( = 501! 9Mr), let
S be the SH-completion of 5, let R be the /completion of R and let Rt be the 90tΓcomple-
tion of R. Then Λ = proj limN(R/JNR)^pro) l i m ^ / Ϊ R ^ ^ p r o j lir%0R (g)sS/SRN)^
R®SS since ϋ is a finite S-module. By the Chinese remainder theorem,

R/JNR^ Yl.iRmJWlfRm)- Thus, R ( g ) s £ ^ j R ^ Π i ^ i s i n c e π i s finite a n d π ° i s έ t a l e >
the induced map π f : Spec i^->Spec S is a finite morphism and is etale outside the closed
point of S. Note that Ar=Spec R has only quotient singularities if and only if
Spec R = \Ji Spec Rt has only quotient singularities. Instead of R and S we consider R(

and S. Rewrite R: = Rh S: = S, X: = SpecRi, Γ: = Sρec5 and π: = πf by abuse of
notation.

Since the singularity of Y is a quotient singularity, there exists a finite group
G^GL(2;k) such that the G-invariant ring (k[[Xu X2]])G = S, where Xί and X2 are
indeterminates. Let Z: = Specfc[[Ar

1, A^]] and q: Z-+Y the quotient morphism. Note
that ZxYX is finite over Z and etale outside the closed point of Z. Let
T=k[[Xt, X2]] (g)sR be the coordinate ring of Z x YX. Then T is a reduced ring with
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minimal prime ideals p l 5 , ps. Let K—Q^T/p^ and Γf the integral closure of T/pι in

A:f. Then T: = Π f ? ι i s t h e integral closure of Γ in the total quotient ring Q(T) ( = f ] , Kd

of Γ. Note that k[[Xu X2]] <+ Γ/p, and hence fcp^, Af2]] c* f. are integral extensions.

Note also that Spec T/p^Z and hence Spec f f->Z are etale outside the closed point

of Z. By the purity of branch locus, Spec t{-+Z is etale everywhere. Hence Spec T^Z.

Let p be the composite of morphisms: Z^Spec T{ c; Spec T->Z x YX-+X. Then p is a

finite morphism and if we set H=Gal(k(Z)/k(X)), then Λ = (fc[[Jir1, X2]])H. So, X has

only quotient singularities. q.e.d.

The following corollary is useful in finding the quasi-universal covering D of V.

COROLLARY 6.2. Let V be a log del Pezzo surface with contractible boundary. We

employ the notation g: V-+ V, D and V° in Definition 1 of the Introduction. Suppose that

there exist an effective divisor Δ>Q supported by D, an integer / > 2 and an integral divisor

F such that Δ~IF and that I is prime to the greatest common divisor of the coefficients

of Δ. Let τx: Xί-*V be a Z/lZ-covering defined by the relation O(F)®ι^O(Δ) and a

nonzero global section ofO(Δ). Let τ2 :X-> X\ be the normalization and let τ : = τ 1

o τ 2 . Then

τ~1(D) is contractible to points on a projective normal algebraic surface X and τ induces

a finite morphism f: X-*V such that τ = τ on X° ( : = τ" 1 (K 0 )) . Hence X is a log del

Pezzo surface with contractible boundary.

PROOF. Let σ: T-+ V be the normalization of V in the function field k(X). Then

σ = τ on V°. Hence there is a rational map g: X- -• Γ such that g\ χ0 is an isomorphism.

Let Z be the normalization of the graph of g contained in Xx T and let α: Z-+X be

the canonical projection. Then α|α-i ( χ 0 ) is the identity morphism and β: = gooc is a

morphism. Note that g°τ°(x = σoβ. So, every exceptional curve of α is contractible to

a point under β. Thus g is a morphism which contracts τ~1(D) to points on T. Set

X: = T and τ: = σ. Now Corollary 6.2 follows from Proposition 6.1. q.e.d.

In [9; Lemma 2] we proved the injectivity of the following composite

homomorphism:

H2(D; Z)^H2(V; Z) P θ i n C a r έ d u a l i t y i/^(K; Z)^H\D- Z),

and the assertion (1) of the following lemma.

LEMMA 6.3. Let V be a dJ*3-surface. We employ the notation g: V-+V, D and V°

in Definition 1 of the Introduction. Then the following assertions hold true.

(1) We have H^V0; Z)s(H2(D; Z)/H2(D; Z))/(Cl(F)/Pic(F)).

(2) Let Γ = ΣΊ=i Di b e a connected component ofD and let G = H2(Γ; Z)/H2(Γ; Z).

Then we have:

(i) G^Z/(n+ 1)Z, (Z/2Z)Θ2, Z/4Z, Z/3Z, Z/2Z or (0), according as whether

the dual graph ofΓ is of Dynkin type An (n> 1), Dn (n — ever, n>4), Dn (n = odd, n>5),
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E6, EΊ or Es, respectively.

(ii) G ̂  Z/(n + ! + * ( « + ! - i))Z if the dual graph of Γ is given in Figure (13).

o— —o * o - — o
D l D i - 1 D i D i + 1 D n

FIGURE (13)

^ ΓZ/2Z 0 Z/2(i + 1 )Z ί/foίλ n andi are even
= [_Z/4(i + 1)Z otherwise

if the dual graph of Γ is given in Figure (14) and n>4.

D i D i - i D i D i ^
o— —o * o—

F I G U R E (14)

— o " " 1

(iv) GsZ/(n + 4)Z //the dual graph of Γ is given in Figure (15) and n>5.

D l D

oί ....
FIGURE (15)

(v) G^Z/ΊZ if the dual graph of Γ is given in Figure (16).

D l D 2 D,T 4 D 5 D 6

—o *

FIGURE (16)

(vi) G = Z/\3Z if the dual graph of Γ is given in Figure (17).

D l D 2 D 3 Γ 4 D 5 D 6

FIGURE (17)

(vii) G = Z/(5n — 9)Z if the dual graph of Γ is given in Figure (18) and n>5.

Dl Dn-4 Dn 3 [ D n - 2 Dn-1 Dn
0 - -0 ί^iJc o 0

FIGURE (18)

(3) Assume that (F, D)^(Σ3, M 3 ) and that there exist a P^fibration Φ: V^P1

and a { — 2)-component H of D which is a cross-section of Φ. Then C1(F) is generated by
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the direct images on V of all (— \)-curves E/s (/= 1, , k) in the singular fibers of Φ.
Moreover, if Σ*= 1 a^ is linearly equivalent to zero with at e Z and Et = g+Eh then
Σ*= l ai^i+ ΣJ= l bjDj ~ 0 on V with some bj e Z and some components D/s of D.

(4) Let Pbea divisor on V such that (P, Dt) = Ofor any component Dt ofD. Suppose
that {P,Fγ) and (P, F2) are coprime for some divisors F1 and F2 on V. Then
g^P generates Pic(F) (cf Lemma 1.1, (3)).

PROOF. (2) Note that G^(Z£ 1 + +Z{J/{Σ^i(A, W = 0; J=h ":,n}9

where £,'s form a Z-basis of H2(Γ;Z). Then (2) follows from straightforward
computation.

(3) Let v: V^Σ2 be a contraction of all (— l)-curves and consecutively contractible
curves in the singular fibers of Φ such that (v^H)2=—2. Note that C\(Σ2) =
Z[υ+H](BZ[υ+S]9 where S is a singular fiber of Φ. Therefore, C1(K) is generated by
H, S and all exceptional curves of v. Note that g^: C1(K)->C1(F) is surjective. By (2)
of Lemma 1.1, the first assertion is verified. The second one is obvious.

(4) By the condition that (P, A) = 0 for any component Dt of D, P is linearly
equivalent to a divisor disjoint from D (cf. [1; Cor. 2.6]). Hence g+P is a Cartier divisor
such that P—g*g+P is linearly equivalent to zero. Write g+P~aξ where aeZ and ξ is
a generator of Pic(F). Since (P, Fί) = a(g*ξ, FJ and (P, F2) = a(g*ξ, F2) are coprime we
h a v e α = ± l . q.e.d.

We shall treat only a dP3-surface V or (K, D) corresponding to the configuration
(20) in Appendix and explain our method of computing π^V0) and constructing the
quasi-universal covering. Let v: V^Σ2 be the contraction of C, E2, D9, Z>8, Z>7, Z>6,
E3, D5 which are displayed in the configuration (20). Let Ψ: V-+P1 be the vertical
P^fibration defined by | 5 | where S\ = C+E. Then one has:

t = Z>4 + D6 4- 2DΊ + 3Z>8 + 4D9 + 5E2 + Z)5 + E

S=E+C~Eί+D6+ - +D9 + E2~2E3

Hence 5(D3 + S) = 4Z>3 + (D3 + 35) + 2 5 - 4D3 + /) 4 + D6 + 2i)7 + 32)8 + 4D9 + 5£"2 +
D5 + E3 + 4E3 + 2D2 + 2D5 and if one lets A=2D2+4D3 + D4 + 3D5 + D6 + 2D7 +
3D8 + 4D9 and F=S+D3-E2-E3 then Λ~5F. Let P = - 3 C - 2 D 1 . Then (P, 1)^ = 0
for any component D( of Z>, (P, £)= — 3 and (P, E1)= —2. By Lemma 6.3, (4), g^P
generates Pic(F). Put E=g+E, E1=g^E1 and so on. Then g*S=E+C~E1 + E2~2E3,

SE3 and they are all relations among C, £, E/s which generate Cl(F) by Lemma 6.3.
Hence Cl( F)/Pic( V) = (Z[C] 4- Z[E] + Z[E1 ] + Z[E2] + Z[E3])/ - (where " - " = {[E] +

Z/15Z. By Lemma 6.3, (I) and (2), H^V0; Z)^((Z/5Z)Θ 2 0 Z/3Z)/(Z/l5Z)^Z/5Z.
Let σ!: C/i-̂ K be the composite of the following morphisms in the given order:
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the blowing-up τ of the point P: = D3 n/)4, the Z/5Z-covering defined by the relation

O(τ*F-τ-\P))®5^O{τ'Δ) and a nonzero global section of O(τ'Δ\ the normalization

of the covering surface and the minimal desingularization of the isolated singularities

on the normalized surface. Then σ^1(D) (written in solid lines) is given in Figure (19).

Ψ induces a P^fibration Φx: U1-^Pί of which all singular fibers are those four given

in Figure (19). In particular, Uί is rational and (JfJi)= — 18. Let σ2: Uί-^U be the

contraction of σf 1 (/> 2 + +Z)9). Write σ1"
1(C) = C 1 + + C 5 and σ 1 " 1 Φi) =

where (C1 ? ffx) = (Cl9 H^) = {C2, H2) = (C2, H5) = (C3, H3) = (C3,H5) =

,H^ = (C5,Hί) = (C59H3)=l. Let_i/f = σ 2 ( ^ ) and Ct = σ2(Cd. Let

( = /fx + * +H5) and let # 2 : £/-•£/ be the contraction of B. Then σx

induces a finite morphism σx: £/-• F which is etale outside Sing(F), and D (or (£/, j?))

is a log del Pezzo surface with contractible boundary by Corollary 6.2. Note that

P(U)= 10-(K2

v)= 10 and p(U) = p(U)-#(B) = 5. Consider the P^fibration Φ 2: CZ-^P1

defined by | To\ where Γ0 = 3C1 + 3C4 + 2i/4 + //r

1 + # 2 . By Lemma 1.1, (2), there are

( - l)-curves Ft and F2 such that (Fl9 H3) = (F2, i/5) = 1 and that Tγ: = 2C3 + ̂  + F2 +

# 3 + /f5 is a singular fiber of Φ2. Let w: U->Σn be the contraction of C3, ̂ 2, /^5, ̂ 3 , C l 5

C4, //4, i/2 Then w(β) is a union of a single point and a fiber of the P1-fibration

Φ 2°w" 1: Σ^P1. So, Γπ —w(5)and U—B contain C2. Hence U— B is simply connected.

Therefore, D is the quasi-universal covering of V and π1(F°)^Z/5Z.

σ i D 3
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We now prove the impossibility of the configuration (20b)' which has the same
configuration as the configuration (20a)' in Lemma 2.6 but with the nodal curve A+
replaced by a cuspidal curve A+. By blowing up the cusp of A+9 we can make a
configuration (206) from the configuration (20ft)' where the configuration (20ft) has the
same configuration as the configuration (20) (see Appendix) but with the exceptional
curve C meeting the ( —3)-curve Dγ with order of contact 2. In the case of the
configuration (20ft), using the same arguments and notation as those for the case of
the configuration (20), we also have a Z/5Z-covering σγ\ U1-+V, a P1-fibration
Φ1\ U^P1 and Figure (19ft) which has the same figure as Figure (19) but with every
component Ht of σ f 1(Dί) meeting exactly one component of σ ϊ ί(C) = £ Cf in a single
point with order of contact 2. Let υx: Uί -+Σί be the contraction of curves in the singular
fibers of Φx such that (vίσ'1D3)

2 = - 1 . Then (vxffi9 v1σ'1D3) = 0 and (ι?1^ i)
2 = 6 by the

definition of vx. This is absurd.

Similarly, one can compute Hγ(VQ\Z) for all cases. We also can get the
quasi-universal covering D for each case with H^V0; Z)#(0) and prove that, in this
case, U is a rational log del Pezzo surface with contractible boundary, by taking
successively morphisms like σ1: Uί-+Vin the case of the configuration (20), which are
etale outside D. For the cases with H^V0; Z) = (0), we can check that V°^CxC*
where C*: = C— {0}, in the same fashion as the one given in the next paragraph for
the case of the configuration (3). Hence π^V0) is a quotient group of πx(Cx C*)^Z.
So, π^V0) is an abelian group and π^V^^H^V0; Z) = (0). Since we know HX(V°; Z)
and I π ^ F 0 ) ! , we can obtain π^V0) for all dP3-surfaces except for those with the
configurations (6), (7), (27), (93) and (95) in Appendix. For the cases with the
configurations (7), (93) and (95), we do not know which of D2 and Q3 the fundamental
group π^V0) takes. For the cases with the configurations (6) and (27), we do not know
what π^V0) is.

By treating the dP3-surface (V, D) corresponding to the configuration (3), we explain
our method of investigating the affine-ruledness of V°= V— D. We employ the same
notation D = Σ*=ίDhΨ: F-»P, So and S1 as in Lemma 2.3. Then 5Ό = 3C+
2D9 + D8 + D1 and S1=E1+D3+ +D6 + E2 where Ex and E2 are (-l)-curves
with (Ex, Z>3) = (E2, D6) = 1. Let σx: Vx -+ V be the blowing-up of the point P:=D4nD5

and let F\ = σϊ \P). Let σ2: F2-> Vt be the blowing-up of the point Q: = {σΊφ 5) n F\}
and let σ: = σx ° σ2. Denote by Fx: = σ'2(F\\ F2: = σ2 \Q\ Et: = σ'(Eύ and D{: = σ\D^,

Then|/ 0 | defines a /^-fibration φ: V2-+Pι and /i is the unique singular fiber of φ
other than/0. All components of σ~1(Z>), except F2, are contained in the singular fibers
of φ. Note that F2 and σ'(C) are cross-sections of φ. Let τ: V2^>Σ0 be the contraction
of curves in/ 0 and/i except F1 and D9. Then, τ(σ~1D) is the union of τ(/0), τ(/i) and
τ(F2). We have, V°-E1-E2 = Σo-τ(σ-1D)^CxC*.

To complete the proof of the Main Theorem, we have only to verify the assertion
(V). Suppose that π1(V°)Φ(1S) and the Picard number of the quasi-universal covering
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U is equal to one. Then Fis a surface corresponding to the configuration (ή) for « = 23,
28, 31, 34 or 88. For the case « = 23, we see that P ^ T T ^ F ^ C V T I ^ K 0 ) ^ V (cf. the
Table). In the remaining cases, we see that D^Σm(m>2) which is the surface obtained
by contracting the minimal section on the Hirzebruch surface Σm of degree m (cf. the
Table). Since Σm is the quotient of P2 by a cyclic subgroup of PGL(2, C) of order m9

there are a finite subgroup H of PGL(2, C) and a cyclic normal subgroup Hγ of H of
order m such tht H/H1 Ξπ^V 0 ), P2/Hx ^Σm^D and P 2 / # s K

The "only if" part of the assertion (V) of the Main Theorem is a consequence of
the following:

PROPOSITION 6.4. Let V be a dP3-surface. Suppose that there is a finite morphism
h: P2-+V. Then p(Ό)=\.

PROOF. Let π: U-+ V be the canonical finite morphism. Denote U° = π ~1 (K°) and
p o = Λ-1(F°). Then U° and P° are simply connected. Consider Z\ = P° x vo U°. Since
t/° is finite and etale over V°, so is Z over P°. Since P° is simply connected, Z is a
disjoint union of degπ copies of P°. Let /τ°: P°^U° be the restriction of the projection
Z^U° to a copy of P° in Z. Then k° is a finite morphism such that πok° = h\Po.
Clearly, k° extends to a finite morphism k\ P2^Ό so that π°k = h. Therefore, p(U)=\
because p(P2) = 1. q.e.d.

Appendix. Table and list of configurations. In the Table, we employ the following

notation and convention:
Let/: l/-> Ό be a minimal resolution of singularities on the quasi-universal covering

Ό of a dP3-surface V. The singularities of V (resp. £7) are described in terms of the
dual graph of D: = g ~ HSing F) c K (resp. ^ : = / " ^Sing f7) c U).

V°, U°: stand for V-D and t / - £ , respectively; hence U°=>π-\V0)
C*,C**,C2-P: stand for C-{0}, C-{two distinct points}, and C 2-{one

point P}, respectively
Σn (n>2): the surface obtained by contracting the minimal section on

the Hirzebruch surface Σn of degree n.
We employ the following notation for finite groups.

D2 : the binary dihedral group of order 8
Q3 : the quaternion group of order 8
S3: the symmetric group of degree 3 and of order 6

π1(V°) = (x,y, z\x3=y3 = z2 = \9 xy = yx,yz = zy, xz = zx2} in No. 22

π i(K°) = <α,6|tf3 = 6 4 = l , α b = fcα2> in No. 26.

In No. 7, No. 93 and No. 95, we do not know yet which of D2 and β 3 the
fundamental group n^V0) takes.

The No. na (resp. No. nb) row for «=15, 18 is the information concerning a
dP3-surface corresponding to the configuration (na) (resp. (nb)).
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No. Sing, type of V Sing, type of £/
Ruledness
of V°, U°

27
28

29
30
31

32

33

34

J—L-o)

2Λ 1 +(o—*—o)
!+(θ—*—O—O—O)

(0)
(0)
(0)
(0)

Z/2Z
(Z/2Z)®2

(Z/2Z)®2

(0)
(0)

Z/2Z
Z/2Z

(0)
Z/2Z
Z/2Z

(0)
(0)

Z/2Z
Z/2Z

(0)
(0)

(Z/2Z)®2

Z/5Z
Z/3Z
Z/6Z

Z/3Z
Z/3Z
Z/3Z
Z/4Z

1 ^ 1 = 4
Z/2Z

Z/2Z

(0)
Z/2Z
Z/2Z

Z/2Z

(Z/2Z)®2

(Z/2Z)®2

(0)
Z/2Z

(0)
(0)
(0)

(0)
(0)
(0)
(0)

Z/2Z
1^1 = 16
z>2 or ρ 3

(0)
(0)

Z/2Z

(0)
Z/2Z
Z/2Z

(0)
(0)

Z/2Z

(0)
(0)

(Z/2Z)®2

Z/5Z
Z/3Z

1^1=20

(0)
Z/2Z
Z/2Z

(Z/2Z)®2

(0)
Z/2Z

(0)
(0)
(0)

1
1
1
1
2
2
4
1
1
3
2
1
2
3
1
1
3
4
1
1
5
5
5
4

Z/3Z 3
Z/3Z 3

π, | = 12 6

Z/2Z 2

(Z/2Z)®2 1

C7=F

£ 5 + 2*

£7=V
ί7=F

smooth del Pezzo
surface of deg 6

C7=P2

U°=>C2-P

u°=ϋ

U° = P2

smooth del Pezzo
surface of deg 4

£7=Γ,

ϋ=v

u°=ϋ

O=Σ6

o—i-βy-o
ϋ=v K°Ξ>C2

ϋ=v
ϋ=v
ϋ=v
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No. Sing, type of V πx(V°) p{Ό) Sing, type of Ό
Ruledness
of V°, U°

(0)
(0)
(0)
(0)
(0)
(0)
(0)

Z/2Z

(0)

(0)

(0)

(0)

(0)

(0)

(0)

(0)

Z/2Z

Z/2Z

Z/2Z

Z/2Z

(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)

1
1
1
1
1
1

1

3

1

1

5

1

1

1

1

1

1

2

2

2

2

6

ϋ=v
Ό=V
Ό=V
ϋ=v
ϋ=v
ϋ=v

ϋ=v

ϋ=v

*-(-4)-*

ϋ=v

ϋ=v

ϋ=v

Ό=Ϋ

ϋ=v

ϋ=v

?
o—(—4)—o—o

O 3—*)

O 5—*)

V°=>CxC*

K°Ξ>CxC**

i
ϋ=v
ϋ=v
ϋ=v
ϋ=v
ϋ=v
ϋ=v
ϋ=v
ϋ=v
Ό=V
ϋ=v

V°=>CxC*

C/°2C2

K°Ξ>C2

V0=>CxC*
V°=>CxC*

V°=>CxC*
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No.

73
74
75
76
77
78
79
80
81
82
83
84

85

86

87

88

89

90

91

92

93

94

95

96
97

Sing, type of V

2A j + (o—*—o—o—o)

At+A2 + (o2—*—o2)

2Λ 1 +(θ 3 —*—O 3 )
A2+A3 + (o—*—o)

A1-\-A3-\- (o—*—o3)
Λ5 + (o-*—o—o)

A3+D4+ *

A1 + (*—o—o—o)

A j + (* O O O O)

2A! + (*—o—o—o—o)

2A1+A2 + (*—ό—o)

A 2 + (*—o—o—o—o)

A3 + (*—o—o—o—o)

A^ + (*—0—0—0)

Aί-\-A2-\- (*—ό—o3)
0

A1+DA + (o—*—0)

Aί+(o—*—o3—ό—0)

3 A1 + (0—*—0—0—0)

A j + A 3 + (0—*—0—0)
DΊ+ *

«*"•.*

(0)
ZβZ
ZβZ
ZβZ
ZβZ

(ZβZ)®2

ZβZ
ZβZ
ZβZ
ZβZ

(0)
ZβZ

(0)

(0)

ZβZ

ZβZ

(0)

(0)

(0)

ZβZ

(ZβZ)®2

ZβZ

(ZβZ)®2

(0)

(0)
ZβZ
ZβZ
ZβZ
ZβZ

(ZβZ)®2

ZβZ
ZβZ
ZβZ
ZβZ

(0)
ZβZ

(0)

(0)

ZβZ

s,

(0)

(0)

(0)

S3

D2 or Q3

ZβZ

D2 or Q3

Z/4Z
(0)

P(U)

1
2
3
3
5
5
2
3
3
2
1
2

1

1

2

1

1

1

1

4

4

3

3

4
1

o . A c π Ruledness
Sing, type of U Q( y0^ ^ 0

ΰ=v v°^c2

AΛX + ( - 6 ) V°^CxC*
^ ! + 2 ^ 2 + (-4) V°=>CxC*

2v43 + (o—(-4)) V°^CxC*
0=V V°^CxC*

Ό=V K°Ξ>C2

ΰ=v v°^c2

2^1 +((-3)-L(-3)) K° = CxC*

ϋ=Σi V^C*C"

Ό=V K°2CxC*

ί7=F F°2CxC*

Ό=V V°^CxC*
?

0—(_4)-o K°=>CxC**

2^!+((-4)—0—i—0) F°2CxC*

o-(-4)-o K°=>CxC**

4.1 + ((-=4)-(-4)) . o . C , ^

In the following list of configurations, the numbers in brackets coincide with the
classifying numbers in the Table; a solid line stands for a component of D; the
self-intersection number —2 of a ( —2)-component of D is omitted; a line with (*) on
it is not contained in any fiber of the vertical P^fibration Ψ: V^P1.
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D
4

 D
3

cL-i
D
l

-1

D
9

E
l

D
8

-Γ

D
7

E
2

(1) (2)

clzi.

-1

-3

D
7 -ill

'4

'-I

ί
•

 D
9 I

I
 9

 I

-&-ΪL -1

(3) (4)

"c""

D
9

 D
8
 D

6
 D

4

7

(5)

-1 -1

(6)

"c

-1|E
2

-3><:

D
5
 D

6
 D

8
 D

9

(7)

'
D
l

..c...

D
5

Dg

D
4

1

D
3

.....

D
2

-
Ί
1

H
2

- i |
E l

J

-S*
(8)

1 D
3

D
4

D
2

Ej-l

—1

II

"2

H
4

.1 ,

H
3

H
l

H
5
 "I

lD
i

-1

c 1

D
3

D
4

1

E|-l
 7

1

— 1 1 E,

•I' Lj,-ΐ-
D
9

(9) (10)
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" 1 -1

-1 In.

(11)

- 3
x 1

-1
-HE

(12)

! t
i k

-1

(13)

- 3
-HE,

E ί - l

-2ft
(14)

- 3

-1
H 5 H 3

( 1 5 a ) (15b)

-He

-1

(16)

-1

-i-
-1

1 - 1 | E -
- I 1

(17)

Hc H. Ho
" 1 E 1

- 3 ,

ri
E -1

(18a)

E l - i

-2a
(18b)
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1

- 1

- 3

4 - 1 | EJE2

D J - l | E o

Do

5 - 1 - i ί E

( 1 9 )

-1 1
"c 1"
-J—

D
3 D 1,

 6
 1

D4

 D
9.μ!

Γ

1

1 n
1
 D

2
-1

E
2
-

l l E
>
 1 K

3

5̂

ί
( 2 0 )

( 2 1 )

- 1
E,"

...
D
5

D
6

ί
D
3 !

D

4
 ~

l !

-0
!

E
2

E
3

D
7

-t?1
-1 E

D
l.

-1

- 3

( 2 2 )

- 1 _
E l

8 - l ί E 2 - 1
-1

- 3

( 2 3 )
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E
l

D
7

K

\
1
1
|-1

ί
1

D
8

—

D
3

D
4 -

1
E
2

Eg

E -1

D
2

1
!

( 2 4 )

-1

E
l

I

l-|
D
4

-

D
8

D
7

μ-
D
5

D,
D
2

E
2

E
3

-1 E

-1

T

-

( 2 5 )

E
l

D
6

->,

ί!
D
8 -(

°' »,
rv

D
2

D
4

f

-l!

-1 E

E
2

3

j

-I|E
1

ϊT
1

j

-1
C

-3
:

( 2 6 )

-1

E
ll-ί-
K

D
5

D
4 -A

D
8

D
7

D
9

-1

Il
3

1

-1 -1

D
2

1
1

c

-3'

.-

Φ

( 2 7 )

- 3

-1 -1

-1

-1

- 3 D n

-1
" l " Γ

( 2 8 ) ( 2 9 )
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( 3 0 )

- 1

c "

I 3

3

(31)

3

( 3 2 )

- 1

- 1

D l D .

— • I —
3

( 3 3 )

- 1 "
- ^

D 3

( 3 4 )

6 Γ

Ί U4

*—

•I}-J l D

( 3 5 )

- 1
c i - i

( 3 6 )

C l - l

- 3

4

( 3 7 )

Ej-1

D 3

D 2

- 1

D 4
- 3

( 3 8 )

- 3

( 3 9 )

-Si

- l

- 3

( 4 0 )

- 3

( 4 1 )

- 1

""c - 1
-1 !E

- 3 D o '
- 3

( 4 2 ) ( 4 3 )
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D
i_

D
2

-1

"c
I-3

D
3

D

D
6

*

5 -I|E
1

7 I
D
8 '

E
2

- 1 i
1

( 4 4 )

- 1
C

- 1
"E7

E 9

- : Γ | 2

( 4 5 )

-1

c E 2

( 4 6 )

- 1
C

- t

-1
E 3

( 4 7 )

Cj-1

ί Dj

3

-3

D
2

D
6

D
5

 D
7

( 4 8 )

- 3

( 4 9 )

c

D
3

-3

D

D

4

2

D

D

1

5

D
7

D
6

1
6'

D
8

•-

D
9

D
4

-1

-3

C

D
l

D
2

D
3

"E
i_

1 t-,1
1

 E
2 1

7 9

(50) ( 5 1 )

-1 1 C
- 3 Cj-1

- 3

( 5 2 ) ( 5 3 ) ( 5 4 )
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-1

- 3

( 5 5 )

- 3

( 5 6 )

F
o
-3

R
l

D
l

T
2

-1

c

D
2

( 5 7 )

Fo °i
- 3

-1

D 3 R 3

( 5 8 )

F
o -3

C

D
H

|
 D
l

!-i

T

D
2

*—
2

D
5

-1

D
4

D
6

-1

IE,
!

1

1

( 5 9 )

-1

- 3

1 -

- l ί E n

. _ . _ _ _

( 6 0 )

F
o

D
l

D
2

f*
-1 2

"c " _j

D
3

:>

D
4
 "I

D
5

E
!

( 6 1 )

c l - i
- 3

( 6 2 )

E 3

-1

- 3

( 6 3 )

-1
" c "
- 3

-1

- 3

( 6 4 ) ( 6 5 )
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- 3
-1

( 6 6 )

- 3

l !
" " E "

( 6 7 )

- 3 - 1 E
ί-i

1 H,

( 6 8 )

- 3

c i - i - l ί E 2

5 ' H,

I

( 6 9 )

E 3

1-3

C - 1

( 7 0 )

H
2

-3
>

»3

-1 Hg

D
l "*

H
3

._.:L

H
5

L
2
__

z
l

1
H
4

( 7 1 )

- 3

Cj-l
z l

( 7 2 )

- 1 C

- 3

( 7 3 )

c ί - i

- 3 " ~ "

( 7 4 )

-1

- 3
R 3 R 5

( 7 5 )

R
l

D
3

D
2
-3

j

I*

-1 |E
D
5

D
fi6
 I

-Γ
h

( 7 6 )
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( 7 7 ) ( 7 8 )

- 1
- 1

- 3
- 1 | E 2

( 7 9 )

D
2

-1 1

c

- 3 I

D
l

 R
4

"
2
 R

I
1

R
3 -

R
2

E
l

, -1

(80)

- 1

c

- 3 - l ί E 2 R,

( 8 1 )

•'if«;
R l G

V

"I

(82)

(83)

D 4 D 6
D_

E i
E 2

- 3

Ί - i

( 8 4 )

D
2

-3

D
3

R
l

D
4 - 3

( 8 5 ) ( 8 6 )
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D
ί
 D
2 -3

D
3

R
l

D
4

D
5

-1

-_.

R
3

H
2

D
2

ί -i
c 1
-3

D
l

D
5

E
l

-ϊ 1
D
4

R
l

D
6

E
2
-1

D

*

( 8 7 ) ( 8 8 )

- 3

( 8 9 )

-2a
( 9 0 )

»r -HE,

•He
_ 3

"-Γ

( 9 1 )

2

c
-3

D
5

D
2

E
l 1

-ϊ
D
4

R
3

R
2

R
l

E
2 -1

( 9 2 )

-1

- 3

ί D,
_ 2

"-Γ
-1

_3
"-Γ

( 9 3 )

- 1
E"

r H
Γ i ί

- 3 !

( 9 4 )

-1

- 3 I I
" - I "

( 9 5 )

_ 2

"-Γ c l - i
- 3

E l - i

( 9 6 )
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- 3

1 υι

-1

( 9 7 )
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