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For an oriented spacelike surface M in Minkowski 3-space L3, the Gauss map G
is defined to be a mapping of M into the unit pseudosphere H in L3, which assigns to
each point p of M the point in H obtained by translating the timelike unit normal
vector at p to the origin. Our primary object of this paper is to prove a representation
formula for spacelike surfaces with prescribed mean curvature in terms of their Gauss
maps.

It is well-known that the classical Weierstrass-Enneper representation formula
describes minimal surfaces in Euclidean 3-space R3 in terms of their Gauss maps and
auxiliary holomorphic functions ([8]). More generally, a remarkable representation
formula has been discovered by Kenmotsu [3] for arbitrary surfaces in R3 with
nonvanishing mean curvature, which describes these surfaces in terms of their Gauss
maps and mean curvature functions. On the other hand, Kobayashi [4, 5] proved the
Lorentzian version of the classical Weierstrass-Enneper representation formula for

maximal surfaces in Minkowski 3-space L3 (see also McNertney [10]) and applied it to
the study of maximal surfaces with conelike singularities.

Motivated by these results, we shall prove, in §4 of this paper, that arbitrary oriented
spacelike surfaces in L3 satisfy a system of first order partial differential equations
involving the mean curvature function H and the Gauss map G of the surface (Theorem
4.1). An interesting feature therein is that the complete integrability condition for the
formula then yields a system of nonlinear second order partial differential equations
which identifies the gradient of H and the tension field of G (Proposition 5.3). In
particular, the condition simply means that the Gauss map G should be a harmonic
mapping provided the mean curvature H is constant.

The converse of these observations will be discussed in §6. Our main result is that
given a nowhere holomorphic smooth mapping G of a simply connected Riemman

surface M into the pseudosphere H satisfying the complete integrability condition for
some nonvanishing smooth function H on M, we can construct explicitly a spacelike
immersion of M into L3 such that the mean curvature of M is H and the Gauss map
of M is given by G (Theorem 6.1). This allows us, in particular, to produce a wealth
of spacelike surfaces of constant mean curvature in L3, and more importantly, to relate
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the geometry of these surfaces to the theory of harmonic mappings through their Gauss
maps.

We would like to thank Professor R. Schoen by whose invitation the second author
enjoyed a pleasant visit to the University of California at San Diego while completing
this work.

1. Preliminaries. We begin with fixing our terminology and notation. Let
L3 = (J?3, g) denote Minkowski 3-space with flat Lorentzian metric g of signature
( + , +, — ). In terms of the canonical coordinates (x1,.*2, x3) of /?3, the metric g,
denoted also by < , >, can be expressed as g = (dxί)2 + (dx2)2 — (dx3)2. Let M2 be a

connected smooth 2-manifold, and X: M2-*L3 be a smooth immersion of M2 into L3.
Throughout this paper, we assume that X is a space like immersion or M2 is a spacelike
surface in L3, that is, the pull back X*g of the Lorentzian metric g via A' is a positive
definite metric on M2 (cf. [1, 7]). Also, we always assume that M is orientable. It should
be remarked that there exists no closed spacelike surface in L3. Indeed, otherwise the
Euclidean normal directions of the surface would all make an angle of more than π/4
with the horizontal plane, contradicting the fact that a closed surface in R3 has Euclidean
normals in all directions.

Let M = (M2, g) denote the Riemannian 2-manifold M2 with induced metric g = X*g
so that X: M2->L3 is an isometric immersion. By ξ = (ξl, ξ2) we always denote an
isothermal coordinates compatible with the orientation on M, by which g is expressed
locally as

(1.1) 0 = λ2((dξl)2 + (dξ2)2), A > 0 .

It is well-known that (ξ1, ξ2) is defined around each point of M, and we may regard
M as a Riemann surface by introducing complex coordinates b y z = ξ 1 + Λ /— lξ2.

We shall define a local Lorentzian frame field (el9 e2, e3) adapted to M in L3 in
the following manner. Let X(ξ) = (X\ζ\ ξ2), X2(ξ\ ξ2\ X3(ξl, ξ2)) be a local expression
of the immersion X with respect to an isothermal coordinates (ξ1, ξ2) on M. For i= 1,
2, let

1 dX 1 fdX1 dX2 dX3

Then (el9e2) defines an orthonormal tangent frame field on M compatible with the
orientation. We then define e3 = e1 x e2. Here the exterior product v x w of two vectors
v, w in L3 is defined by υ x w= — (ιwιvdx1Λdx2/\dx3)*, ιv and * denoting the interior
product with respect to v and the operation of raising indices by the metric g, respectively.
Note that e3 is timelike and defines a (Lorentzian) unit normal vector field on M, that
is, <e3, e3y= — 1 and <e3, ^> = 0 for /= 1, 2. In terms of local coordinates, e3 is given
explicitly by
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It should be noted that δ/δx1 x δ/δx2 = δ/δx3, δ/δx2 x δ/δx3 = -δ/δx1 and δ/δx3 x
δ/δx1 = — δ/dx2 due to our sign convention for the exterior product.

Let h denote the second fundamental form of M in L3 (cf. [1, 7]). With respect to
a Lorentzian frame field (elt e2, e3), h is represented by the matrix (A;j)ιgjjs2> where

hij=~<Deiepe3y9

D denoting covariant differentiation in ZA Then, by an elementary calculation, we see
that the fundamental formulas of Gauss and Weingarten for Mm L3 are given as follows:

d2X _ 1 dλ dX 1 dλ dX

d2X 1 dλ dX 1 dλ dX ,
(1.3) — - = 2~Ί + ϊ~^ + λ Λ12^3 ,

_d2X_ 1 dλ dX 1 dλ dX

dξ2dξ2 λdξ^ξ1 λdξ2dξ2

de3 t dX , dX
—f = *ii—+ Ai2-^»

(1.4)
de3 , dX , dX
^ = h2,-- + h22--.

The mean curvature H of M is defined to be H=(hίί+h22)/2. If H vanishes
identically on M, then M is said to be maximal. It is easy to see from (1.3) that M is
maximal if and only if each component function of the immersion X is harmonic on M.

Let φ = (l/2)(hiί—h22) — ̂ /—lhί2, which represents, up to a factor, the (2,0)-part
of the complexification of the second fundamental form h of M. Then from (1.4) we
have

where we set d/dz = (l/2)(d/dξi -J^ϊd/dξ2) and 5/δz = (l/2)(δ/^1 + J^ϊδ/dξ2). Note
that φ(p) = Q at a point peM if and only if/? is an umbilical point of M. It is also not
difficult to see that the Gaussian curvature K of M is given by

(1.6) K=-

for K= —(hίih22 — h2

L2) by the equation of Gauss.
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2. The Gauss map. For a spacelike surface M in L3, the Gauss map G of M is
by definition a mapping of M into L3, which assigns to each point pεM the point in
L3 obtained by translating parallelly the unit normal vector e$(p) of M at/? to the origin
of L3 (cf. [1, 7]). Note that, since e3(p) is a timelike unit vector at/? E L3, the Gauss map G
is in fact a mapping of M into the unit pseudosphere H in L3. That is, the image of
G is contained in a spacelike surface // in L3 defined by

which is a two-sheeted hyperboloid in L3, and has constant Gaussian curvature K= — 1
with respect to the induced metric.

On H we may define a natural complex structure in the following manner. Let
Uι=H— {(0,0, 1)} and U2 = H— {(0, 0, —1)}, and introduce complex coordinates by
means of stereographic mappings \l/1 : U^-^C and ι^2: U2-*C, which are defined
respectively by

r (Ύ V V "^C TJί — {A , Λ , Λ J 6 I/ i ,

(2.1)
V 1-- /-I V2

:U2.

In fact, t/Ί(.x) is the intersection of the line joining x e U± and the north pole (0, 0, 1) e//,
and the (x^x^-plane identified with C by setting ζ = χl+J — lχ2. Similarly, ι//2

represents the stereographic mapping from the south pole (0, 0, — l)e H. It should be
noted that the images of φ1 and ψ2 are contained in the set C— {| ζ \ = 1}, and the inverse
mappings ψϊ1 and ψ^1 of \f/1 and \l/2 are given respectively by

,1-ICI 2 i - I C I 2

(2.2)

It is then immediate to see that Ψι(x)ψ2(
x)= ~ 1 f°Γ xe ̂ i n ^2? and {Ψι> ^2} defines

a complex structure on H, since ι^2 ° ΆΓ 1(0= — 1/ί and Άi ° 1A^1(0= — 1/C ^ ^s also

not difficult to see that ψ^ and ^2 are conformal with respect to the induced metric on
H and the flat metric on C. (Indeed, the induced metric on H can be written as

4 1 dζ |2/(1 — I ζ |2)2, ζ being complex coordinates defined by stereographic mappings.)
In consequence, we obtain the following sequence of mappings:

l}, ι = l , 2 .

We often refer to the composite mapping ψ—ψ^ G for i= 1, 2 also as the Gauss map
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of M (into C). Moreover, we omit the subscript / in Ψh and write simply as Ψ, if there
is no confusion or if the statement under consideration holds for both Ψ^

3. Beltrami equation. Let M be a spacelike surface immersed in L3 by a mapping

X: M->/Λ and Ψ denote the Gauss map of M into C as in §2. The goal of this section
is to prove that Ψ satisfies a Beltrami equation. To start with, we prove the following

lemma.

LEMMA 3.1. If X=(X1

9 X2, X3): M-+L3 is a spacelike immersion, then

(3.1)

(3.2)

(3.3)

dz L dz

2) λ2Ψ1

dz dz (i-l^i I 2) 2 '

PROOF. Since z = ξ1 + j — 1 ξ2 for which (ξ1, ξ2) is an isothermal coordinates on
M, it follows from (1.1) that

~. . .dz dz I 2 \ dz dz / \ dz dz

On the other hand, if (el9 e2, e$) is a Lorentzian frame field adapted to M in L3, then

we see from (1.2)
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(3.5) έ?
3
- ^

and also from (2.1)

(3.6)

(3-7) (l-|¥M2)(l-4) = 2,

where we put e3 = (e\, e\, el). On substituting (3.5) into (3.6), and making use of (3.4)
and (3.7), we can then check (3.1), (3.2) and (3.3) without difficulty by a straightforward
calculation.

We shall now compute the derivatives of the Gauss map Ψ. First we prove:

PROPOSITION 3.2. The complex derivatives of the Gauss map Ψ± are given by
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(3.8)

(3-9)
dz 2 dz

PROOF. Differentiating (3.6) with respect to z and applying (1.5), we get

dΨ^_ 1 \HδXl τδX^ ΓΣ\[H^_ <5 !̂Y| 1 Γ dχ3 xdx*
dz 1— el\_ dz dz \ dz dz J J 1— e\ l\_ dz dz

Then, by (3.1) and (3.2) together with (3.7), it is verified that

dz dz dz

. .
2 ^z

thus proving (3.8). (3.9) can be proved in a similar fashion.

By the same argument we can also prove the following

PROPOSITION 3.3. The complex derivatives of the Gauss map Ψ2 are given by

(3.10)

(3.11)

Λ _ /^
dz 2

/»_

dz

From these propositions the following theorem is now immediate.

THEOREM 3.4. The Gauss map Ψ of a spacelike surface M in L3 satisfies a Beltrami

equation

(3.12)
dΨ
——
dz

-—
dz

It is well-known that the Gauss map of a minimal surface in Euclidean 3-space is
a holomorphic mapping into the Riemann sphere (cf. [8]). In connection with this, we
may point out the following
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(3-13)

PROPOSITION 3.5. Let M be a spacelike surface in L3. Then at peM

dΨ

dz

(3.14)

PROOF. It is verified from Lemma 3.1 that

(3.15)

Hence from Proposition 3.2 we get

dψ,

dz

(3.16)
dz

= «\H\,
dΨί

dz
= α

where α = λ\ 1 -1 ΪΊ |21/2. Since α ̂  0, this proves the proposition when p e Ψ j HO The
proof for the case pe Ψ^l(C) is similar.

4. Representation formula. Given a spacelike surface M in L3, we shall now
prove a representation formula for M in terms of the Gauss map Ψ and the mean
curvature H of M.

THEOREM 4.1. Let M be a spacelike surface immersed in L3 by a mapping
X=(Xl, X2, X3): M->L3. Let H and Ψt (i= 1, 2) denote the mean curvature function of
M and the Gauss map of M into C defined in §2, respectively. Then the following hold.

(1) On Ψϊ\C), we have

(4.1)

___
dz (1-|¥Ί|2)2 dz '

= \ l

dz V (1-IΪΊI2)2 dz

dz

(2) On Ψ 2 \C\we have

(1-|¥M2)2 dz

[ + Ψ2, dΨ ,

(4.2)

dz (l-|f2 |
2)2 dz '

H—=- !~\ l~Ψl dψϊ

dz v n-\ψ,\2)2 dz '
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.̂2-δz ~(i-\ψ2\
2)2

PROOF. (1) Recall that by (3.8) we have

,4.3, δz 2

on Ψϊ\C). From (3.1) and (3.2) it then follows that

(4.4) y2IJ_L=Il ( 1_|y |
δz 2

Hence, by adding (4.4) to (4.3), we get

δz

and, by subtracting (4.4) from (4.3),

' L ' 7 δz

Since 1 -| ϊ^ |Vθ, it follows from these that on Ψ^(

(4.5)
δz (1-IΪΊI2)2 2

δz (1-I5ΊI2)2 Sz

Now note that from (3.2) we also have

(4.7)
dz dz

It then follows from (4.3) and (4.7) that on Ψϊ^

(4-8) _ _ _ ,
δz (1-IΪΊI2)2 δz

for l - | f ι l V θ
(2) can be proved in a similar fashion, or one can derive it from (1) by means of

the relation Ψί Ψ2 = - 1 valid on !Pf \C) n Ψ

REMARK 4.1. The Euclidean counterpart of Theorem 4.1, namely, the cor-
responding representation formula for surfaces in Euclidean 3-space has been proved
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in Kenmotsu [3].

REMARK 4.2. If we carry out the same argument, utilizing the equations (3.9),
(3.11) instead of (3.8), (3.10), then we obtain the following representation formula in
terms of Ψ and φ: On iPf^C),

τdX* \ + Ψ\ dΨ\

TdX2 .— \-Ψ\
(4'9) -^-'

dx*_ ψί

dz (1-lfJ2)2 dz

(The corresponding formula also holds on Ψ^ *•(€).)

Now, let M be a spacelike surface immersed in Z,3 by X=(X1, X2, A"3): M-»L3,
and assume that φ^O. If we set F=[<?(1-| Ψt |

2)2]' \Wjdz), then it follows from
(4.9) that

fδXί δX2 δX3\
(4.10) — , — , — - =(F(1 + Ψ\\ y=ΪF(l - Ψl\ -2FΨJ ,

\ dz dz dz J

and, in consequence,

v ' 2 V dz v dz

Recall that if M is assumed to be maximal in L3, then each component function of the
immersion X is harmonic on M. It then follows from (4.11) that F is holomorphic in
this case. This fact implies that (4.10) gives a Lorentzian counterpart of the classical
Weierstrass-Enneper formula for minimal surfaces in Euclidean 3-space (cf. [8]). To be
more precise, the following has been proved.

PROPOSITION 4.2 (Kobayashi [4], McNertney [10]). Any simply connected maximal
spacelike surface M in L3 can be represented in the form

•Γ(4.12) *(z) = 2Re | (F(l + Ψ\\ J- IF(1- Ψ\\ -IFΨJdz + c,

where z € M and c eL3, the integral being taken along an arbitrary path from a fixed point
to the point z.

PROOF. Here we remark only on the following matters. For more details, see [4],
[10]. First, Fis defined by (4.11), which is a holomorphic function on M. Ψ± is given as
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Ψι = —(l/2F)(dX3/dz) by virtue of (4.10), which defines a meromorphic function on
M such that FΨ\ is holomorphic on M. (The exceptional case where F=Q corresponds
to the (x1, Λτ2)-plane in L3, but it can be obtained by setting F= I and Ψ± = 0 in (4.12).)

5. Integrability condition. In this section we shall show that the Gauss map Ψ
of an arbitrary spacelike surface M in L3 satisfies a nonlinear second order partial
differential equation in Ψ and H. The equation we obtain will then turn out to be the
complete integrability condition of the first order PDE system in Theorem 4.1 with
given data H and Ψ. First we prove:

PROPOSITION 5.1. Let M be a spacelike surface in L3. Then the mean curvature
function H of M and the Gauss map Ψ of M into C satisfy the following second order
partial differential equation

HfS2Ψ 2Ψ dΨdΨ\dHdΨ+ 2 ~ ~ ~ ~ ~

PROOF. We shall prove (5.1) for Ψ ί Λ To do this, we may consider only the case
where #/0. Indeed, ifH(p)=Q atpeΨ^(C)9 then dΨl/dz(p) = Q by (3.13), and hence
(5.1) holds trivially there.

This being remarked, recall that from (3.7) and (3.8) we have

fiψ ι rliY1-^ / — 1 Y2\
(5.2) -^=2H ' ϋ( +V J .

dz (1-ei)2 Sz

On the other hand, a simple calculation using (1.3), (3.6) and (3.7) yields

«Ί
(5.3) ^ τv ^ ) = ̂ Hdzdz i — | ¥ Ί Γ

Hence, differentiating (5.2) with respect to z and applying (1.5) and (5.3), we get

dzdz H dz dz |_ dz dz J dz 2

Substituting (4.1) and (4.9) into (5.4) and applying (3.16), we then obtain

d2Ψ^ 2Ψ1 dΨίdΨ1_ 1 dHdΨi

dzdz 1-|¥M2 3z dz H dz dz

thus proving (5.1) for Ψ1. We also get the same equation for Ψ2 by the same argument,
or from (5.5) by using the relation Ψ^ Ψ2= —1

COROLLARY 5.2 (Milnor [6]). The mean curvature of a spacelike surface M in L3

is constant if and only if the Gauss map G of M is a harmonic mapping into H.

PROOF. It is not difficult to observe from (3.13) as well as (5.1), which is in fact
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a nonlinear elliptic system in Ψ, that H is constant if and only if Ψ satisfies

d2ψ 2ψ dΨdΨ
— 0

dzdz l-\Ψ\2 dz dz

which shows that G, whose coordinates expression is Ψ, is a harmonic mapping into
//(cf. [2]).

REMARK 5.1. (1) Equation (5.1) does not depend on the metric on M, but
depends only on the complex structure on M.

(2) It should be noted that geometrically (5.5) means the following: The tension
field τ(G) (see [2] for definition) of the Gauss map G coincides, up to translations in
L3, with the gradient VH of the mean curvature function H (cf. [9]).

REMARK 5.2. Corollary 5.2 gives a Lorentzian counterpart of a theorem of Ruh
and Vilms [9] that the mean curvature of a hypersurface in Euclidean «-space is constant
if and only if its Gauss map is harmonic.

In what follows, let M be a Riemann surface, and H denote, as before, the unit
pseudosphere in L3 with the induced metric of constant negative Gaussian curvature
and natural complex structure defined in §2. Given a nonvanishing smooth function
H'.M^R and a smooth mapping G:M->//, let us now look at the following system
of first order partial differential equations:

dz

dz H (l-|f,.|2)2 dz

PK3 ") W ΆΦ

^=(-ιyl- Ψί dψί

on

dz #(1-|¥M2)2 dz

Here Ψt denotes the composition Ψ—ψfG of G and the stereographic mapping ψt

defined by (2.1), and /= 1, 2. It should be noted that owing to the relation Ψl-Ψ2= — l,
the right sides of (5.6) for i= 1, 2 are compatible on Ψϊl(C) n Ψ2 *(€), and hence (5.6)
defines a system defined globally on M.

With these prepared, we now prove the following

PROPOSITION 5.3. Equation (5.1) is the complete integrabίlity condition of the system
(5.6).

PROOF. Let P denote the right side of (5.6), that is,

(5.7) /> = (/,(! + <F2), (- 1)'- V^ϊβl - Ψf), (- φfiΨύ ,

). Assuming that H and Ψt satisfy (5.1), we shall
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show that (5.6) is a completely integrable system. To do this, it suffices to see that
dP/dzeR3. But this is immediate; in fact, by a direct calculation we can easily see that
if (5.1) is satisfied,

dP_H

dz~2

where λ = 2[H(l-\ Ψi\2)Γl\dΨJdz\.
Γq^ (-ιyϊq^)-

6. Spacelike surfaces with prescribed mean curvature. We shall now prove a
converse of Theorem 4.1. Namely, by solving the PDE system (5.6), we shall construct
a spacelike surface M in L3 with prescribed nonvanishing mean curvature H and Gauss
map G. To be precise, we are going to prove the following

THEOREM 6.1. Let M be a simply connected Riemann surface, H'.M^R be a
nonvanishing real smooth function on M, and G: M—>H be a nowhere holomorphic smooth
mapping ofM into the unitpseudosphere Hίn L3. For i= 1, 2, let Ψt denote the composition
Ψi — ψi° G of G and the stereographic mapping ι f̂ defined by (2.1). Suppose that H and
Ψt satisfy the differential equation (5.1). Then there exists a spacelike immersion X:
M-+L3 with the following properties:

(1) The mean curvature of M is H, and the Gauss map of M is given by G.
(2) X = (X \ X2, X3) is given explicitly as

1 - P
rz yry \-ψ2

J H (1-|!P£|2>

Γz

J
(-1)

;

dz

9 Ψ A
ΰ

where zεΨ^(C) and c = (c1, c2, c3)eL3, ίΛe integral being taken along an arbitrary
path from a fixed point to the point z.

PROOF. For given function H and given mapping G, we shall look at the complex
PDE system (5.6) defined on M. Note that, on account of Proposition 5.3, the system
(5.6) is completely integrable, since H and Ψ{ satisfy (5.1). Moreover, any real solution
X=(X^ X2, X3) of the system (5.6) can be represented as

f(6.2) (̂z) = 2Re Pdz + c,

where P is defined by (5.7) and ceR3. Indeed, since M is simply connected and dP/dz 61?3

by (5.8), the right side of (6.2), where the integral is taken along an arbitrary path in
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M from a fixed point to a variable point z, defines a single-valued mapping, and satisfies
(5.6) with given H and Ψt. Thus we define a mapping X: M-*L3 by (6.2), and shall
prove that X has the desired properties.

It is easy to see from (5.6) that X satisfies

(63)

where λ = 2[H(l-\Ψi\
2)]~1\dΨi/dz\. Note that, since G is nowhere holomorphic,

dΨJdz^Q everywhere. Then it follows from (6.3) that A" defines a spacelike immersion
with induced metric g = λ2\dz\2, and by setting z = ξ 1+ λ/— lξ2, we get an isothermal
coordinates on M with respect to g, On the other hand, from (5.6) together with (3.5)
and (2.2), it is immediate to verify that the Gauss map of M coincides with G and the
mean curvature of M is given by H.

REMARK 6.1. In Theorem 6.1, if we merely assume G: M->// to be a smooth

mapping which satisfies the complete integrability condition (5.1) with given H, then
the mapping X: M->£3 given by (6.2) is, in general, ,not a spacelike immersion but
have singularities which occur where dΨi/dz = 0.

COROLLARY 6.2. Let X: M->L3 be a spacelike immersion in Theorem 6.1. Then the

following hold.
(1) The induced metric g on M is given by

2,-Γ 2

Ltf(ι-l\Ψ\2) 8

(2) The Gaussian curvature K of M is given by

K=H2\

PROOF. (1) is already proved. (2) can be obtained by substituting (3.12) into (1.6).

As in the case of minimal surfaces in Euclidean 3-space, it is not difficult to see
from Proposition 4.2 that two noncongruent maximal spacelike surfaces may have the
same Gauss map (cf. [4]). However, for spacelike surfaces with nonvanishing mean
curvature in Theorem 6.1, we have the uniqueness in the following sense.

PROPOSITION 6.3. Let X (resp. X) be a spacelike immersion in Theorem 6.1 of a
simply connected Riemann surface M into L3 with nonvanishing mean curvature function
H(resp. ft) and Gauss map G (resp. G) into H. Then the following statements are equivalent:

(1) There exist a holomorphic diffeomorphism φ on M and an orientation preserving
isometry τ of L3 such that for zeM

(6.5) τ°X(z) = X°φ(z).
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(2) There exist a holomorphic diffeomorphism φ on M and an orientation preserving
ίsometry σ of H such that for zeM

σ°G(z) = G°φ(z),
(6.6)

PROOF. [(!)=> (2)] Putting w = φ(z) and differentiating (6.5), we have

τ+(dX/dz)(z) = (dX/dw)(φ(z)) φ'(z) and τ^(dX/dz)(z) = (dX/dw)(φ(z))-φΊtf for zeM, τφ

being extended C-linearly. Denoting by (eA) (resp. (eA}), A = 1, 2, 3, a Lorentzian frame

field adapted to X (resp. X) in L3, we then get

(e, + V -1 e2)(φ(z)) = \ φ'(z) \ φ'(z) ~ ̂ (

and hence

since τ is orientation preserving. Therefore, by setting σ = τs|e, we obtain an orientation
preserving isometry σ of H such that G° φ(z) = σ° G(z) for zeM. Now differentiating
e3(φ(z)) = 1 (̂̂ 3(7)) and substituting (1.5), it can be checked without difficulty that

H(φ(z)) = H(z) for zeM, thus proving (6.6).
[(2)=>( 1)] Denote also by σ the extension of σ to an orientation preserving isometry

of L3. To show (6.5), we may assume σ = identity, considering σ° X instead of X if
necessary. Then we have G(z) = G(φ(z)), that is, Ψ(z) = Ψ(φ(z)), since σ is orientation

preserving. It then follows from (6.1) that

d(XA(z)-ΫA(φ(z)))ldz = 0 , A = 1, 2, 3 .

Therefore, X(z) = X(φ(z)) H- c for some c e R3. This means that σ ° X(z) = X(φ(z)) + c, and
hence there exists an orientation preserving isometry τ of L3 such that τ ° X(z) = X° φ(z)

for zeM.

In the case where a given H in Theorem 6.1 is constant, the complete integrability
condition (5.1) requires simply that a given G should be a harmonic mapping.
Consequently, given a nonzero real constant H and nowhere holomorphic harmonic
mapping G of a simply connected Riemann surface M into H, we can construct, by
(6.1), a spacelike immersion X: M-*L3 with constant mean curvature //and prescribed

Gauss map G.

REMARK 6.2. More generally, given a nonzero real constant H and a non-
holomorphic harmonic mapping G: M->//, the mapping X: M-»L3 given by (6.1)

defines a spacelike immersion except for possible isolated singular points, which has,
away from these singular points, constant mean curvature H and prescribed Gauss map
G. Indeed, it follows from a standard result in the theory of harmonic mappings (cf.
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[2, (10.5)]) that if G: M^H is a nonholomorphic harmonic mapping, then dΨJdz has
at most isolated zeros where singularities of X occur.

From this point of view, we shall next exhibit some examples of spacelike surfaces
of constant mean curvature in L3.

EXAMPLE 6.1. Let D = {zeC\ \z\<l} be the unit disk in C. Take H=-l, and
define Ψ^: Z)-»Cby Ψ^(z)= — z. Then Ψ1 satisfies (5.1), and the spacelike immersion
^defined by (6.1) is written as

' 2 R e z 2Imz

\zf l_|z|2Ί-|z|2,

This is the standard immersion of the hyperboloid or the upper sheet of H in L3.

EXAMPLE 6.2. Take #=-1/2, and define Ψ^.C^C by Ψ1(z) = (ez+z-l)/
(ez+z +1). Then Ψί satisfies (5.1); indeed Ψ^(C) is a geodesic in D. The spacelike
immersion X defined by (6.1) is written as

This is the standard immersion of the hyperbolic cylinder, the surface defined by
(jc3)2-(x1)2=l with x3>0, in L3.

EXAMPLE 6.3. Let M be a closed Riemann surface of genus ^2. Then each
homotopy class of mappings M-+M contains a harmonic mapping, with respect to the
hyperbolic metric of constant negative Gaussian curvature (cf. [2, (6.11)]). Lifting these
to the universal covering M of M, we get harmonic mappings G: M-»//. With each of
these and a nonzero real constant H, there is associated by (6.1) a spacelike immersion
with possible isolated singular points X: M-»L3, which has, away from singular points,
constant mean curvature H and the Gauss map G. (Take the conjugate mapping G of
G, if G is holomorphic.)
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