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1. Introduction. The purpose of this paper is to study the asymptotic behavior
of the gradient flow of the Yang-Mills functional near Yang-Mills connections.

In differential geometry, many subjects are defined as variational problems on
Riemannian manifolds. Most of them, however, do not satisfy the Palais-Smale
condition. (For the Palais-Smale condition, see Palais [P], Palais and Smale [PS], or
Eells and Sampson [ES2]). If the variational problem defined by a functional /(•) on
a function space X satisfies this condition, the equation for the gradient flow of / with
initial value v:

must have a unique time-global solution. If /does not satisfy this condition, we do not
know, in general, whether this property holds or not.

There are some results on the global existence of the gradient flow. In 1964, Eells
and Sampson proved the existence theorem of harmonic maps by means of the asymptotic
behavior of the gradient flow when the target manifold has non-positive curvature [ESI].

In studying the existence of a time-global solution for the gradient flow, we need
pay attention to the relation between the Morse theoretic stability of a critical point
and the asymptotic behavior of the solution of the gradient flow around the critical
point. For harmonic maps, the first author studied the above relation in the case of a
stable harmonic map [N2]. Concerning more general variational problems, we can refer
to Simon [S]. Recently, the first author proved a stable manifold theorem for quasi-linear
parabolic equations, and showed, as an application, the asymptotic behavior of the
gradient flow even around an unstable critical point assuming the ellipticity of the
Euler-Lagrange operator [Nl].

Since the Yang-Mills functional is invariant under the gauge transformation group,
the equation governing the gradient flow of the Yang-Mills functional is not parabolic.
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To avoid this difficulty, the second and third authors considered a gauge condition and
the gradient flow under the condition that the second variation is strictly positive [KM].
Similar idea is found in Kono and Nagasawa [KN]. These results, however, assume the
Yang-Mills connection to be strictly stable.

In this paper, we prove that the global existence of the gradient flow for the
Yang-Mills functional with the initial value near a Yang-Mills connection without
assuming that it is strictly stable. Our basic set-up is the following. (This set-up was
introduced by Bourguignon and Lawson [BL]). Let (M, Λ) be a compact Riemannian
manifold without boundary and P be a principal G-bundle over M, where G is a compact
Lie group.

We consider a G- vector bundle E: = PxpR
N, associated to P by a faithful

orthogonal representation p : G^O(N). The group of all inner automorphisms is called
the gauge group of P and will be denoted by ̂ P . It can be easily identified with the group of
smooth sections of the bundle G> = Px AdG, i.e., ̂ P = Γ(M;GP). Related to &P is
the infinitesimal gauge group (gauge algebra) which will be denoted by (5P. It is the
Lie algebra of smooth sections of the bundle of Lie algebras Qp'. = Px\d& i e »
(Sp : = Γ(M gp), where g is the Lie algebra of the Lie group G.

The gauge group can be easily re-expressed in terms of E. Let OE be the orthogonal
frame bundle of E over M, i.e., the fiber at xeM is the group of orthogonal
transformations in Ex. Let SOE be the bundle over M whose fiber at xeM is the Lie
algebra of skew-symmetric transformations of Ex. Then the representation p gives
embedding GP c> OE and gp c; so£. We denote the images by GE and g£, respectively.
Clearly, GE ̂  GP and g£ ̂  gp.

We also denote by &E : = Γ(M\ GE) and (5£ : = Γ(M; g£) the spaces of smooth sections
of GE and of g£, respectively.

We now introduce some notation; Given a smooth vector bundle F over M, let
ΩP(F) : = Γ(/\p T*M®F) be the space of exterior differential p-foπns on M with values
in F. Indeed Ω°(F) is just the space of smooth sections of F and ©£ = Ω°(gf;). We study
the space #P of connections on P, or equivalently, #£ on E. (For the relation between
a connection on P and a connection on E, we can refer to [BL]). It is easily shown that,
for two connections V and F'e<βE9 the difference A = V — V is an element of ΩI(QE).
In particular, if we fix Fe#£, then there is a canonical identification

(1.1) TX^sO1^.

To each connection Pe#£, there is associated a curvature 2-form Rv in Ω2(g£)
given by

for tangent vectors X and Y.
The Yang-Mills functional WJl on #£ is defined by
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(1.2) ®Jt(V) = - \\R4ί«^ JM

where the norm is defined in terms of the Riemannian metric on M and a fixed
AdG-invariant scalar product on the Lie algebra g of G. Section 2 contains the precise
definition of this norm.

Critical points of the smooth functional tyM \y>E-+R are called Yang- Mills
connections and their associated curvature tensors are called Yang-Mills fields. Clearly,
a connection V £%>E is a Yang-Mills connection if and only if Fe^£ satisfies the
Euler-Lagrange equation grad(W^(F)) = 0 of the Yang-Mills functional QJJl. The
Euler-Lagrange equation of tyM is expressed as

(1.3) (5^ = 0,

where <5F is the formal adjoint operator of the exterior derivative dv associated with
V e <&E with respect to the global inner product induced by || || . In particular, the equation
<5Γ/?F = 0 is a second order partial differential equation with respect to V .

We remark that the Yang-Mills functional is invariant under the action of the
gauge group <&E on ^E. Therefore if Ve(6E is a Yang-Mills connection, then
F«:=0opΌ0-ι is also a Yang-Mills connection, because of (δvRvΪP = δVβRVβ.

On the other hand, since dvRv = Q (the Bianchi identity), Fe#£ is a Yang-Mills
connection if and only if

(1.4) ΔΓΛF = 0,

where Δp = dvδ* + δvdv is the Hodge Laplacian on β2(g£).
We shall construct a solution of the Yang-Mills gradient flow with initial value

close to a Yang-Mills connection. The Yang-Mills gradient flow with initial value V \
on ΉE is governed by the following equation:

dt(YMGF)

Unfortunately, the above (YMGF) is not a parabolic equation, since (YMGF) is
invariant under the gauge group action on %>E. A more finely treatment on (YMGF)
in [KM] allows us to avoid this difficulty.

This idea is stated briefly as follows. Take and fix a Yang-Mills connection P0 e^£.
There is a natural splitting of the tangent space:

(1-5)

where Z1(QE): = {V=d^φ; 0ei20(g£)n(Ker d^} and Ωi(g£): = Ker((5F°). The expo-
nential map of the Lie groups induces naturaly the map
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exp : g£-»^£ .

For smooth curves dΫQΦ(t) and A(t) in Z*(g£) and Ω£(g£), respectively, we define the

map σ : Zl($E) x Ω^(QE)^ΩI(QE) by

(1.6) σ(d^Φ(t)9 A(t)) : = g(t) o(P0 + A(t)) ° g(t) ~ ί - Γ0 ,

where g(t) : = exp Φ(ί).
Since σ(0, 0) = 0 and the Frechet derivative Z)σ(0, 0) is an isomorphism on Ω 1(g£), σ

is a local diffeomorphism near 0 in ΩI(QE). Then, by (1.5), we may regard σ as giving

a coordinate around P0

 ίn *E Now> taking F(ί) = F0 + σ(ί/FoΦ(ί), Λ(ί)) in (YMGF), we
have the following equation (Eq) equivalent to (YMGF):

(Eq)

where S(t) = g(t)~1dg(i)/dt. For precise notation, see Section 2. We here notice that the

linear differential operator /F° is the Jacobi operator (denoted in Section 2) of the

Yang-Mills connection P0.

Let //m(Ω1(g£)) be the m-th order Sobolev space using the coordinate covering

of M (see Section 3 for the precise definition). A subset £feHm(Ω1(QE)) is said to be a

stable manifold of a Yang-Mills connection Γ0, whenever & satisfies the following
conditions:

(1) & isasubmanifoldin^^Ω1^)).
(2) If Vl — V Q is contained in &, then there exists a time-global solution V of

(YMGF) with initial value P \ such that 7(t) tends to gauge equivalence to Γ0 as f->oo
in //m-topology.

A subset Ql in //m(Ω1(g£)) is said to be an unstable manifold, whenever ̂  is a stable
manifold with respect to backward (YMGF).

Here we do not assume the maximality of stable and unstable manifolds, and

therefore dimensions of these are not maximal.
For the evolution equation (Eq), our main result, briefly stated, is:

THEOREM. Let m>dim M/2 + 2. For the Yang-Mills connection F0, there exists a

finite codimensίonal stable manifold and a finite dimensional unstable manifold 0/(Eq) in

the m-th order Sobolev space //m(Ω*(g£)) on

REMARK. (1) Viewing Ωi(g£) as a closed subspace of ^Xg^), we can induce

naturally the norm || ||m on the β^(g£) and make Sobolev space of &i(g£). For the
technical reason, we will introduce another norm || ||#«(βi(g )) equivalent to || ||m for
m>dim M/2 + 2 (see Section 3). This is a reason why we need the assumption in the
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Theorem.
(2) In the above theorem, the assumption m>dim M/2 + 2 also needs to embed

the Sobolev space //"(Oifes)) into C2(Ω*(g£)).

In [KM], they have shown the asymptotic stability of the Yang-Mills gradient
flow near a strictly stable Yang-Mills connection. Our theorem asserts that we can get
such behavior without assuming the stability of the critical point: a Yang-Mills
connection.

COROLLARY. Let F0e^E be a Yang-Mills connection and F1 = P0 + ̂ 40, where
AQ€Q^(§^). If AQ belongs to the stable manifold as in the Theorem, there exists a unique
solution V of (YMGF) with initial value V± such that F-P0eL2([0, oo); Hm(Ωl(QE)).
Moreover the solution V(i) tends to a Yang-Mills connection up to the gauge group action
as f-κx) in Hm-topology.

Here is an outline of the contents. In Section 2 we recall the set-up of the Yang-Mills
theory and introduce the evolution equation (Eq). In Section 3, we discuss the evolution
equation (Eq) and reduce it to an abstract evolution equation. Section 4 is devoted to
the proofs of the existence of a solution for the abstract evolution equation and of the
main result.

2. Preliminalies. As we mentioned in Section 1, we consider the Yang-Mills
functional on ^E.

Let (M, h) be a closed Riemannian manifold and P a principal G-bundle over M,
where G is a compact Lie group. Taking a faithful representation p : G-+0(N), we can
define a G- vector bundle E : = Px PR

N associated to P. The Yang-Mills functional on
the set (6E of connections on E is

4L'(2.1) WJί(V)=— H/Π .
2 JM

The norm || || is, in local coordinates, defined as follows. In a chart U of M, ω 6 Ωk(
is expressed as

(2.2) ω = -ω,v..,.>x' > Λ Λ dx*®El ,

where {El} is a basis of the fiber of QE at xeM and ( c1, , x") is a local coordinate
on U (« = dim M). For such above ω, we denote o) = (ωjί...jkl) simply.

In local coordinates neighborhoods, the norm of ω is defined by

(2.3) IMI 2 : =k\h^ -

That is to say, the fiber metric on E is defined by

(2.4) <4, By : =
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for two endomorphisms A, BeEx.
Now let us calculate the first and the second variation formulas. For a smooth

one-parameter family V ie
c€E of connections with F0 at ί = 0 and A : = (d/dt)yt\t=0, the

first and second variation formulas are given by

(2.5)

and

(2.6)

f = o JM

dt'' ,Λ
respectively. In particular, if A satisfies <5ΓM = 0 then

d2

(2.7)
t=o JM

], Ay.

= Q. For AeΩ1^) and
, A] =

Therefore, the Euler-Lagrange equation for WJt is
a Yang-Mills connection F0, the operator JV"A : = (
ΔΓM-h[ΛΓ°, A] is called the Jacobί operator for F0.

Since there is a natural <$E action on ̂ £, it is easily shown that
and δvβRvg = (δvRv)9, where F«: = flfopoflf-ι.

For a Yang-Mills connection P0, we define the stability of it. Since the restriction
of the Jacobi operator Jv° to Ω^(QE) maps Q^E) into itself and has the discrete spec-
trum: {λί <λ2< - - - * + oo }, we can define the index: Index(Γ0) of P0 and the nullity.

Null(Γo) of FO as

(2.8)
Index(F0): = #{negative eigenvalues} ,

Null(F0): = #{zero eigenvalues} .

A Yang-Mills connection F0 is said to be weakly stable whenever Index(P0) = 0. This
definition is equivalent to

(2.9) >0

for any one-parameter family Ft of connections with F0.
Furthermore, we define a strictly stable Yang-Mills connection. A Yang-Mills

connection F0 is said to be strictly stable whenever for any one-parameter family Fr of
connections with F0 and

(2.10)
dt'
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(c.f. [BL], [KM].) In terms of the Jacobi operator, a weakly stable Yang-Mills connection

7Q is strictly stable if and only if Ker/^czZ1^).

In this situation, we try to avoid the difficulty that the Euler-Lagrange equation

of ®JJt is not elliptic.

In what follows, a Yang-Mills connection P0 is fixed. As we mentioned in Section

1, there are a canonical identification of the tangent space T^0(VE) with Ω1(g£), and

the splitting of Ωl(§E)\

(2.11)

Concerning (2.11), we define the map σ: ZI(QE) x Ω+fo^-ϊΩ1^) as follows:

(2.12)

where #: = exp Φ and Φeβ°(g£)n(Ker dΫQ)L. It is easily shown that there exist three

neighborhoods Ul9 U2 and U in Z1^), £2i(g£) and O1^)* respectively, such that the
map σ induces a diffeomorphism from U^ x U2 onto U. In particular, taking A = 0 in

(2.12), we get

Therefore the tangent space at P0 of orbits under the action of the gauge group coincides
with Z1(g£).

In the above formulation, the Yang-Mills gradient flow is rewritten as the evolution
equation (Eq) (in Section 1).

For a smooth curve V(t) in <&E with F(0) = F0 a Yang-Mills connection, we can

find smooth curves Φ(t) and A(t) in Ω°(g£) and &i(g£), respectively, such that

(2.13) V(t) - P(0) = σ(dv°Φ(t), A(t))

σ
using the diffeomorphism UίxU2 = U. These U, U^ and U2 give local coordinate

neighborhoods around zero, respectively, and we call the system (σ; U, Uί9 U2) an

admisible coordinate system. For the sake of simplicity, we denote σ(dv°Φ(t\ A(ή)
by σ(t).

The differentiation of σ in t gives:

PROPOSITION 2.1. ([KM, (3.8)]). For the map σ defined by (2.12), we obtain

(2.14)

= 0(0 ° f —— - dv°S(i) - \_A(t\ S(t}] } <
V dt )

where S(t) = g(t)~ίdg(t)/dt and g(t) = ε\p Φ(t).
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On the other hand, the Euler-Lagrange operator at 7(t) = P0 + σ(ί) is δ F° + σ(t}R F° + σ(ί).
For g e &E and V e #£, the formulas

(2.15) Rr9 = g°Rr°g-ι,

and

(2.16) δγβRvβ = (δvRvγ = g°δvRv°g-1

guarantee

Γ2 17)
^ ' ^

where

(2.18)

σ(ί) _

= δ^ lA, A] + Id' A, A] +

(cf. [KM, Section 3].)
Here, we use the bracket [ , •] in (2.18) for g£- valued forms. Namely, using local

coordinates, for any α = (l/2)(α^)eί21(g£) and β = (l/2)(β$eΩl(QE)9 we put

and extend this for general g£-valued forms.
Therefore we obtain:

PROPOSITION 2.2. Let P0 be a Yang-Mills connection, and (σ; U, Ul9 U2) be an
admisίble coordinate system. If a smooth curve V(i) in U is the solution of

ot

then a smooth curve (S(t\A(t)} in U1 x U2 satisfying
solution of

(2.19)

where ^1 = F1-F0 (note that σ(0,
The convese is also true.

-VQ = σ(dΫQΦ(t\ A(t)) is the

= 71) and S(t) = g(tΓ1dg(t)/dt
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The first equation of (2.19) is parabolic since Jv°A = (dVQδVΌ + δv°d^A + [RVQ, A]
is an elliptic operator on ί2*(g£). These ideas were introduced by [KM]. In this section,
we showed that the Yang-Mills gradient flow yields the evolution equation (2.19) by
taking a gauge condition into account. Hence, our main purpose is to solve the evolution
equation (2.19) when A1 is small. If the Yang-Mills connection F0 is strictly stable, /F°
is a strictly positive operator in Ω^(QE). In this case, [KM] has shown the asymptotic
stability of the solution of (2.19) using the method in Sections 3 and 4. We would like
to extend such a result for (2.19), without assuming the (strict) stability of F0. In our
case, yF° restricted Ω^.(QE) may have finite dimensional eigenspaces with non-positive
eigenvalues. To solve (2.19) in such a case, we need to introduce a new evolution
equation which is equivalent to (2.19), and have some preliminary analysis: definitions
of Banach spaces, some basic inequalities.

3. Reduction of (Eq). In this section, the equation (Eq) will be reduced to a new
evolution equation.

Let P be a projection from Ωl(§E) to Ω^(QE):

(3.1) P'Ώ^

The operator GΓ° denotes the Green operator of the Hodge Laplacian Δv° =
acting on &°(g£). See [KM, Section 3.3].

Our main purpose of this section is to prove the following theorem.

THEOREM 3.1 ([KM, (3.3)]). Let be VQ a Yang-Mills connection. A smooth curve
{S(t\ A(t)} in Ω°(g£) x ΩfaE) is a solution of (2.19) with A(0) = A1 if and only ίf{S(t\ A(t)}
is the solution of

dt

ϊ(ί) = Gv°δv°(Q(A(t)Y

A(0)=A1,

where ®A: = bv°\RVo, A] + (δ^2dp°A.

REMARK. In (3.2), we define a operator ̂ , which seems to contains a third order
differential operator (<5F°)2rfΓ°. However, by using the Ricci formula, this term can be

reduce to a first order differential operator. Then, for A€Hm(Ω1(QE)), we have

PROOF. The evolution equation (2.19) consists of

dA
(3.3) — = -(ΔΓM + [*F°, A] + Q(A)-\_A, S^-

tit
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and

(3.4) (5FM = 0.

Applying the projection P to both sides of (3.3), we get

dA
(3.5) — = -P(ΔV°A + [_RV°, A})-P(Q(A)-\_A, S]) ,

ct

since Pdv°S=Q, Note that PA = A since <5F(M = 0. Furthermore applying <5F° to both
sides of (3.3), we have

(3.6) (<5Γo)

Since δv°dv°S=ΔVoS9 we can rewrite (3.6) by in terms of the Green operator Gv° as

(3.7) S=GFo(5Fo([KF°, A] + Q(A)-IA9 S]) + GF°(<5Fo)2</FoΛ .

Therefore the assertion of this theorem follows from (3.5) and (3,7).

Recall that the Sobolev spaces //m(Ωk(g£)), (fc=0, 1, , dim M) are defined as
the completion of Ωk(g£) with respect to the norm

l l ω l l i : = Σ Σ ί (Dtί A^V.
* = o |/ι = ι JM

where I=(iί9 ' ' , ik) is a multi-index and D^ •Z>ίfc: = 3 l / l/3x ί l *3xik.
For the sake of simplicity, we abbreviate -P(Q(A)-\_A, S]) as N(A,S). The

following proposition shows that the first equation of (3.2) is a parabolic equation.

PROPOSITION 3.1. For If0 : = 7VΓ°|Ωι(g )? w Λαve

(3.8) ll«||m+2<C(||LFoW | |m+||W | |m) for all UEΩ^E)

with C independent of u.

PROOF. We can express the projection P as follows:

(3.9) Pu = u-d^°G^δ^u9

where Gv° is the Green operator. From (3.9), the operator LVΌ = PJV° with its domain
in Q^(gE) is denoted by

(3.10) L^u = J^u-d^G^δ^J^u = J^u-d^G^(δ^°)2u for

Here note that dVQGv°(δv°)2 is a bounded operator from Hm(QE) to Hm($E) by the Ricci
formula. Since /Γ° is an elliptic operator, we get the desired results.

As we mentioned in Section 2, — LΓ° has discrete spectra: {A 1>A 2> * * ^ — oo}.
Now we re-number these spectra, and denote by {λN>λN^^ - - >λ^} the positive

spectra and { A _ 1 > Λ _ 2 > ^— 00} the negative spectra. Moreover, π + , π0 and π_
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denote the projection operators onto the eigenspaces of — LF° with positive, zero and
negative eigenvalues, respectively. The space L2(Ω*(g£)) is naturally defined by
considering L2-norm on Ω^(QE). We remark that the operator LΓ° is self-adjoint on

We now introduce the Sobolev space /fm(Ω*(g£)) of Oj,(g£) by defining the norm

As we mention before, the norm || \\H»(Ωfa » is equivalent to the norm || ||m on
for m>dim M/2-f 2. Since Lp° can be considered as a positive definite self-adjoint

operator on π_(L2(Ωjt(g£;))), the first term on the right hand side is well-defined.

The Banach spaces L2(R+; H^Ω^QE))) and L2(R+ι #m(Ω°(g£))) with norms

HI |||m>1 and ||| |L;0, respectively, are defined by

and

Cc° \\s(t)\\2

mdt., -Γ
11,0 • — I

Jo

Furthermore for μ>0, the Banach space
L°°(/?+; Hm(Ω^E))) with the norm | |μ>m is defined by

ί>0

For the sake of simplicity, we abbreviate |||SΊ||m,0, IMIL,ι and \\A\\ Hm(Q^} as | S|m,

L and MH^ for SeΩ°(β£) and A 6θi(βjϊ), respectively.
For the proof of the existence of a solution of (3.2), we need some inequalities.

PROPOSITION 3.2. Let m>dimM/2 + 2. For Aί9 A2eΩ^($E) and Sl9 S2e
satisfying \ At \μtm < 1 , and \Sί\m<l,we have

(3.11)
^2l l l f« l |S l l lm+M2ll^

with C>0 independent of At and St (i= 1, 2).

PROOF. In local coordinate neighborhoods, brackets [̂ 4, A] and [A, 5] are
expressed as

[yl, A]ijl=-— (AilAjl — Aj^Ail)
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and

The g-valued 1-form Q(A) = δVQ\_A,A]/2 + [dVQA, A] + [[A,A],A]/2 is estimated as

(3.12) llβμo-βί^Lpπ-i^c^

Note that Mil |Hm+ι < 1 (/= 1, 2). Similarly, we have

(3.13) IIC^SJ-C^SJIÎ

Therefore (3.12) and (3.13) guarantee (3.11).

Here note that the assumptions | At \μ m < 1 and | Si \m < 1 in Proposition 3.2 are used
in the proof of (3.12).

Since ((5Γ°)2rfF° is a first order differential operator by the remark immediately after
Theorem 3.1, we see the 0t in (3.2) is of first order. Therefore using a property of the
Green operator, we obtain

(3.14)

and

(3.15)

for all AεHm~\Ωl(QE)) with C>0 independent of A. These estimates (3.11H3.15) play
very important roles in the proof of the main result.

The following lemma is a basic inequality for linear partial differential equations.

LEMMA 3.1. For uεL2(R+; Hm+1(Ω^(QE))) and vεL2(R+\Hm~^(Ω\(§E))), we
assume that

ί du
-___ u + π_v,

w(0)elm(π_).

Then we obtain

(3.16) I Nί)||im+tΛ^||ιι(0)||έm+ \ \\v(t)\\2

Hm-.dt
Jo Jo

and

(3.17) ^2 μΊlw(Ollέ-^<llw(θ)llέ-+c r NOHlm-iΛ, for.all />o,
Jo

where 0<μ<min{|Λ,1 |, | λ-^ |}.

For the proof see [Nl, Lemmas 2.1 and 2.3].
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In the next section, we will prove the main result.

57

dt

S(t) =

4. Proof of the main result. In this section, we show our main result by solving

(3.2), which is reduced to solving the following initial value problem:

(4.1)

For this purpose, we adopt the following iteration scheme:

dA. „

S(t)) + G

(4.2)

dt

where A1 is in Hm(Ω ^(g£)) for m > dim Af/2 + 2. For the sake of simplicity, we abbreviate

N(A(t), S(t)) as N(A, S)(t). This iteration scheme is given as the following system of

equations:

(4.3)

= e-tL'°π-A1 + e-ϊ-^oπ.
Jo

.-LS.-Msjds

for

If this iteration scheme converges in H m-topology, the initial value of a solution is

expressed as

ί
oo POO

π0PN(A, S)(s)ds - esL'°π+PN(A, S)(s)ds .
D Jo

Therefore the initial value A1 of (4.1) is expressed as (4.4). This implies that for a

Yang-Mills connection F0, if A
1 is expressed as (4.4) and satisfies a suitable condition

(this condition will be mentioned in the proof of the result), then there exists a solution

of (4.1) with the initial value A1 which tends to zero as /->oo in //m-topology.

We assume m> dim M/2 + 2. Then the Sobolev spaces Hm(Ω^E)) and //m(ί2°(g£))
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are compactly embedded in C2(Ωi(g£)) and C2(Ω°(gE)), respectively. Moreover, we
choose a positive number μ satisfying 0<μ<min{|/ί1 1, | λ_ ! |}. We prove that the
iteration scheme (4.3) converges in J^m and L2(/?+; Hm(Ω°(QE))). Put Mn: = \An\^m

THEOREM 4.1. For the iteration scheme (4.3), there exist positive constants C l9 C2

and C3 depending only μ and m such that if Mn < 1 and Kn<\ then

and

(4.6) \An-e-<LV»π_A^\

PROOF. We will construct ^μ>m and L2(#+; #m(Ω°(g£)))-estimates of (4.5H4.6)

by separating (4.3) freely.
Step 1. The 7/m(Ωi(g£))-estimate.
(i) To estimate the π _ -part of the first equation, we apply (3.17) in Lemma 3 . 1 to

o

This function f-.(i) = π_An(t) satisfies

Remark that by (3.9) and (3.15), we have \\Pu\\Hm<C\\u\\Hm. Lemma 3.1 and Proposition
3.2 imply that

J
\\π_PN(An_1, S^^s)^-

o

JJ00

By the definitions of norms | |μ>m and | |m, we obtain

(4.7) e^\\n.AM\H^<\\n-A1\\j
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(ii) We will estimate the π+An in the Hm-noτm. Put

/+(ί):= - Γ e-t-'Won+PN^i, Sn.,)(s)ds .
Jt

Since f+(t) = π+An(t) and dim(Im(π+))<oo, we obtain

(4.8) ^Ί|π+Λ(Oll

(iii) Since dim(Im(π0)) < oo, we obtain

(4.9) ^ΊIπ0Λ(Ollέ~<C(IΛ-ι lίU+14,-1 lίJ^-i Ii)
Combining (4.7)-(4.9), we conclude that

(4.10)

and

(4.11)

Step 2. TheL2(tf+;fl™+1(ί2i(9E)))-estimate.

As is remarked in Step 1, since the dimension of Im(π+ +π0) is finite, there exists

a constant C such that

(4.12) ||π+Λ(ί)lll-. + llπ0Λ(OIII— <C(||π+Λ(ί)llέ".+ llπ0Λ(ί)ll|m)-

Integrating (4.12) in t, and then applying (4.8)-(4.9), we get

(4.13) lll«+^JIIί+ι + ll|π(^,||li+1^C(|X._1|*. + μ._1|ί(JS,_1|i).

For π_ΛΛ(f), we apply (3.16) in Lemma 3.1 and Proposition 3.2

_tLP0 j Γ' -(ί-s)£,r0

J0

e

and get (note that π_Λπ(t)=/-(ί))

2 1 2 Γ00

„ m + 1_ π_ Hm J^ „_!, „_,

1 2 Γ00 2
H m+J^ n _ j S Hm + > B _ l S

Γ 2 r 2 1 Γ00

L»o "~1 Hf"JJ0 '

Γ 2 1 Γ00

L«>o " J a JJo
+c

Hence it follows that



60 H. NAITO, H. KOZONO AND Y. MAEDA

(4.14) ll|π-^.llli+1^l|π-^1

Combining (4.11) and (4.12), we obtain

(4.15) IMJIIi+ι^ll«-^ 1ll

and

(4.16) \\\A.-e-tL'^_A1\fc

Therefore (4.12H4.15) and (4.13H4.16) yield

(4.17) \An\l,m<\\π^\\

and

(4.18) \An-e-'Le'>π_A1\2

μ

respectively, which gives (4.6).
Step 3. The L2(R+; Hm(Ω°(QE)))-esύmate.
We estimate both sides of the second equation of (4.3) in //m(Ω°(g£))-norm, we have

||SΠ(t)L< ||G

Using (3.12H3.15), we get

(4.19) ll^wii

Integrating both sides of (4.19) in /, we see

L'>o
-iWIlϋ f

JJo

+ΓsuPe2'"MΠ-ι(t)lll™] f
L >° JJ0

This yields

(4.20) l

By (4.17) and (4.20), we obtain

(4.21) I^I

Then (4.5) follows from (4.17) and (4.21). Here one should note that the assumptions
Mn < 1 and Kn < I are needed for the estimate of non-linear terms.

Theorem 4.1 leads to apriori estimates.

COROLLARY 4.1. Let LΠ:=max{MΠ, Kn}9 (« = 0, 1, •)• There exist ε0>0 and a
monotone deer easing function L(ε) 0/0 < ε < ε0 such that under the condition LQ < ε0 we have
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(4.22) Ln<L(ε0) for all «>0.

Moreover L(ε) satisfies

(4.23) limJL(ε)=0.
εlO

PROOF. Theorem 4.1 yields

Remarking \\π_A1\\Hm<\A0\μιm, we have

(4.24) Ln+l<C(L0 + L2).

Elementary calculus yields the assertion of this corollary.

COROLLARY 4.2. There isε>0 such that if \\ π _ A ί \\ %„ < ε, | An \ £ m < ε and \ Sn\ £ < ε
then An+1 is contained in the ε-ball in &μtTn whose center is e~tL"°π-Al.

The final step of the proof of the main result is to show the convergence of the
iteration scheme (4.3). For this purpose, we may prove that sequence {An} and {Sn}
are Cauchy sequences in ^μ>m and L2(R+', Hm(Ω°(QE)))9 respectively.

THEOREM 4.2. For the iteration scheme (4.3), the following two inequalities hold.

(4.25) I Λ + i - Λ l L

(4.26)

PROOF. The proof of this theorem is essentially the same as that of Theorem 4. 1 .
First we calculate successive differences:

An+1(t)-An(t)= Γ e-«-*L'°π.
Jo

-

Γ e-«-*Lf°π +

Jt

(4.27) - π0P(N(An, SJ(s)-N(A._ls Su.J(s))ds

and

(4.28) SH+l(t)-SJit) = G^δ
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As in the proof of Theorem 4.1, we will take three steps to show our assertion.

Step 1. The /r"(Qj(g£))-estimate.
(i) Taking

Jo
(4.29)

we have /_(ί) = π_(^4π(ί) — An_^(t)) and

^= -L"°f- + π-P(N(An, Sn)-N(An_ι, Sn-J),

*_(0) = 0 .

It follows from Lemma 3.1 and Proposition 3.2 that

e2μt\\f-(t)\\2

Hm<C\Ί
Jo

y-2μs\\

'>0

The above inequality implies that

(ii) As in the proof of Lemma 3.1 and the above (i), we can estimate the π0- and
π+-ρarts of An+1(t)— An(t), as follows:

(4.31)
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and

( ' } . - - ι . . . - . - ι .

Consequently, as for the Hm(Ω^(gEy)-norm of the successive difference, we see that

( '
Step 2. The L2(Jt+; #m+1(Ωi(g£)))-estimate.
As we remarked in the proof of Theorem 4.1, Im(π+ +π0) is of finite dimension.

Calculating similarly to (4.31) and (4.32), we have

(4.34)

For the estimate of the π_-part of the successive difference, we apply (3.16) of Lemma
3.1 to (4.29). We thus obtain

Il l/Will ̂ i < P llJvμ
Jo

'!!̂ )!! I J ΐ e-2»*\\An(s)-An^(s)\\ 2

Hm^

Hence we have

^ΛAn^-A^

Therefore we get by (4.34H4.35)

\\\An + 1-An\\\2

m+

( } - - ι
Consequently, it follows from (4.33) and (4.36) that
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(4'37)

Step 3. TheL2(J?+;#m(Ω^g£)))-estimate.
We estimate (4.28) by #m(Ω0(g£))-norm. We obtain

\\sa(t)- sa-1
(4'38)

By using estimates (3.12), (3.13) and (3.15), the first term on the right hand side of

(4.38) is estimated as

(4.39)
+ \\A

By (3.14) we have

(4.40) \\G^^(An+1(t)-An(tM2H^<C\\An+1(t)-An(t)\\H n-^

Therefore, we can estimate | Sn+ ί — Sn |£ as follows:

x + i - m
Combining (4.37) and (4.41), we therefore obtain

\Sn+1-Sn\

' } χ - - ι . . . - . - i .
REMARK. The solution of (Eq) in Introduction given by the above step is unique

solution in {(S9A)i 5 eL2([0, oo); Hm(Ω°(QE)))9 Ae<%μ,m} (cf. see [KM, the proof of

Proposition 4.3, (ii) uniqueness]).

By virtue of Theorem 4.2, we can conclude the existence of a solution to (4.1),
therefore (YMGF), with initial value determinated by (4.4). Combining Corollaries 4.1
and 4.2 with Theorem 4.2, we have

COROLLARY 4.3. For m>dim M/2 + 2 and μ satisfying 0<μ<dim{| λ± \9\λ^l |},
there exists an ε>0 such that for every A1 elm(π_) with

I p-tLVQ A\ I ^p

\e Λ lμ,m< ε

there is a unique solution {S, A} of

^_= -Pjr*A(t) + PN(A(t), S(t))
ot
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S(t) = G^°δ^(N(A(t)9ί

with Ae&μtm and SeL2(R+:> #m(i20(g£))) satisfying \ A |μ,m<ε. Moreover such a solution
A exponentially tends to zero in Hm-norm at t ^ao.

Therefore the solution of (4.1) is expressed as

e-tL'°π_Al+ e-(t-s)L'0π_N(A(s),S(s))ds
Jo

- f °° π0N(A(s), S(s))ds- Γ e-«-s^°π+N(A(s\ S(s))ds,

(4.43)

and

(4.44)

By using standard arguments for semigroup theory, we obtain that N(A(t), S(t))
is locally Holder continuous in / (cf. [GM, Theorem 2.5]). Then we get A(t) in (4.43)
satisfies (4.1). Furthermore, by the form of (4.43) and (4.44), A(t)eHm(Ω^E)) and

Thanks to this expression (4.43)-(4.44) of a solution, one can show that the solutions
A(t) and S(t) depend smoothly on the initial value A1 in the /Γ^O*^))- and
//fn(ί2°(gf;))-topology, respectively. The stable manifold of the Yang-Mills connection
FO is the set of all initial values A1 satisfying the condition in Corollary 4.3. That is,

the stable manifold of P0 is the set of the initial values of the Yang-Mills gradient flow
with which the solution is tends to P0 up to gauge equivalence as /->oo. The stable
manifold is clearly a submanifold of ^m(βjt(gf;)) with codimension dim(Im(π+ +π0)).

To obtain the unstable manifold, we use the iteration scheme:

(4.45)

= e-tL'°π+Ai + Γ e^-s^π+PN(An

Jo

- J ^π0PN(An.ί(s)9Sn-1(s))ds- !

for

As in Corollary 4.3, one can show the existence of a set of the initial values for which
the solutions are asymptotically stable for the backward evolution equation. This set
is clearly a submanifold of #m(Ωi(gE)) and has dimension dim(Im(π+)).
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