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1. Introduction. The purpose of this paper is to characterize the well posed
Cauchy problem for a system of linear partial differential equations in a complex domain.
In particular, one of our interests is to investigate matrices of linear partial differential
operators normalizable in the time derivative, and another one is to show the necessity
of non characteristicness of the initial hyperplane for the well posed Cauchy problem.
For that purpose the determinant theory for matrices of linear partial differential
operators due to Sato and Kashiwara plays an important role. In particular,
characterizations of invertible matrices, which will be give in Section 2, play the most
crucial role.

For a (non commutative) unitary ring R, we denote by My(R) the set of Nx N
matrices with entries in R, and by GLy(R) the set of invertible matrices in My(R).

Let x=(x,, - - -, x,)=(x;, x') be variables in the complex n-dimensional space C",
D=(D,, - -, D,)=(D;, D) be the usual symbol of differentiations, that is, D;=0/0x;
(=1, - -+, n). Let Q and p be a domain and a point in C", respectively. Then we denote

by 2(2) (resp. 2,) the non commutative ring of linear partial differential operators
with holomorphic coefficients in Q2 (resp. at p).

Let A(x, D)=(4;))e My(2(2)) and p=(u,, - - -, uy) be an N-ple of non negative
integers. We consider the following Cauchy problem (4, u), at a point p=(p,, p")€Q:

Ax, = @p , 1<i< )
(4, W, ,-‘:v‘l A, DJujx)=fi{x)€ <i<N

D’iui|x1=m=wjk(x’)e(op’a 03k<ﬂj, 1<j<N,

where O, (resp. 0,) denotes the germ of holomorphic functions at p (resp. p).

The Cauchy problem (4, p), is said to be well posed if it has a unique solution
{uy(x)} € O for any {fi(x)} € OF and {w;(x)} € O'#!, where | pu|=p; + - - - + py.

The Cauchy problem (4, p) is said to be well posed in Q if (A, p), is well posed at
every point p in Q.

The following fundamental theorem due to Wagschal motivates the research of
this paper. The notions appearing in the theorem will be defined in Section 2 below.

THEOREM 0 [21, Th. 4. 1]. Let A(x, D)e M(2(Q2)) be a non degenerate matrix of
total order m (>0), with non characteristic initial hyperplane x,=p, at p=(p,, p')eQ.
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Then there is at least one pwith | 1| = m such that the Cauchy problem (A, ), is well posed.

Here arises a question whether we can give a relation between A(x, D) and u for
the well posed Cauchy problem (4, u),. The purely combinatorial proof given in [21]
does not seem to answer this question.

A matrix A(x, D) e M (2(R2)) is said to be reducible to a u-normal matrix with respect
to Dy in Q (resp. at p) if there is P(x, D)e GLy(2(R)) (resp. € GLy(2,)) such that PA
is of u-normal type with respect to D,, that is,

where §;; is Kronecker’s delta and orderj, b;; denotes the order of b;; with respect to D;.
In this terminology we first have the following theorem.

THEOREM 1. Let A(x, D) be as in Theorem 0. Then the Cauchy problem (A, u) is
well posed in a neighbourhood of p if and only if |u|=m and A(x, D) is reducible in a
unique way to a p-normal matrix with respect to D, at p.

Wagschal constructed such u that the Cuachy problem (4, u) is well posed in a
neighbourhood of p, and hence Theorem 1 can be applied to his case. However, it must
be stressed that the well posedness of (4, u), does not imply the well posedness of (4, )
in a neighbourhood of p in general. Such examples will be given in Example 4.3. We
shall meet there an example of the well posed Cauchy problem (4, p), such that it has
infinitely many formal power series solutions.

In the above theorem the non characteristicness of the initial hyperplane was
assumed apriori, but the following theorem guarantees its necessity for the well posed
Cauchy problem in general.

THEOREM 2. Let A(x, D)e M(2(Q)) be a non degenerate matrix of total order m
(=0). Then the Cauchy problem (A, ) with | u|=m is well posed in a neighbourhood of
p=(p1, p') only if the initial hyperplane x,=p, is not characteristic for A(x, D) at p.

Although the assumption | u|=m seems to be excessive, the author does not know
whether we can remove it even for the case N=1 (single equation).
Next, we give a characterization of reducible matrices for matrices in My (2(Q)).

THEOREM 3. Letn=2. Then A(x, D)e M\ (2(Q)) is reducible to a y-normal matrix
with respect to D in Q if and only if the Cauchy problem (A, y), has a unique formal solution

a0

() ufx)= kgo Uj(x2)(x4 —p) k!, up(x,)e0,,,

(G=1,2, ---, N) at every point p=(p,, p,)€Q.

Finally, combining the above theorem with a result by the author [12, Th. 2], we
obtain the following:
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THEOREM 4. Assume n=2 and that the Cauchy problem (A, j1), has a unique formal
solution (F) at every point pe Q. Then the Cauchy problem (A, p) is well posed in Q if
and only if |u|=order,A and x,=p, is not characteristic for A(x,D) at very point
p=(p;, p2)€R, that is, (det,4) (x, (1,0))#£0 in Q.

In the above theorem (det,4) (x, &) (e O(T*R)) denotes the determinant of A(x, D)
in the sense of Sato and Kashiwara [18], and order,4 denotes the degree of homogeneous
polynomial det, A4 in the fibre variables ¢ € C?, where T*Qis the cotangent space of Q.

Throughout this paper the determinant theory for matrices of linear partial
differential operators plays an essential role, so we give a brief summary of them in
Section 2.

In the case n=2, we easily obtain results corresponding to Theorems 1 and 2 when
the matrix A(x, D) is not assumed to be non degenerate (see Remark 7.3).

We now briefly review relevant results. After the work of Wagschal, the author
[13], [14] and Adjamagbo [1] studied the case of ordinary differential equations, and
gave a proto-type of the results in this paper. As concerns the partial differential
equations, Kitagawa and Sadamatsu [10] developed Wagschal’s results and showed a
principle of reduction to a normal matrix, which will be used in this paper (see Section
3). After that Sadamatsu [16] studied the case of constant coefficients. Sadamatsu [17]
studied the case of variable coefficients, and proved a result similar to Theorem 1 under
more restrictive situations. He constructed there an inverse matrix for an invertible
matrix in the case n=2. His idea will be developed in Sections S and 6 for the proof
of Theorem 3. Another useful result for our purpose is a characterization of invertible
matrices due to Adjamagbo [2] and Andronikov [5] (see Proposition 2.2).

Concerning Theorem 4, Mizohata [15] posed the problem of characterizing
Kowalevskian system from the viewpoint of the Cauchy-Kowalevski theorem. In other
words, it is the problem of proving the necessity of non characteristicness of the initial
hyperplane for the well posed Cauchy problem. It is a fundamental and very important
problem, but few results are known on this subject. For a matrix 4 of y-normal type
with respect to D, Mizohata gave a necessary condition for the Cauchy porblem (4, )
to be well posed in Q, while the author [12] gave a necessary and sufficient condition
in the case n=2 (see Theorem 7.2). Theorems 3 and 4 give a complete extension of the
author’s result in the case where a matrix 4 is not given as a u-normal matrix with
respect to D,. These theorems make clear that the notion of characteristics for matrices
of partial differential operators must be understood by the determinant of Sato and
Kashiwara.

The difficulty of extending Theorems 3 and 4 to general dimension 7 lies in the
treatment of degenerate matrices (see Lemma 5.5, Lemma 6.2 and Theorem 7.2). Our
main idea for n=2 is to reduce degenerate matrices to non degenerate ones in the
category of partial differential operators with meromorphic coefficients, but it is not
available in general dimension ».
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The author would like to express his thanks to the referees for their careful reading
of the manuscript and useful advices.

2. Determinant theory. We give in this section a brief summary of the
determinant theory of matrices of linear partial differential operators due to Sato
and Kashiwara [18] (see also Hufford [7]), and give characterizations of invertible
matrices.

Let A(x, D)=(A4;;) € My(2(R)) and put

2.1 m;;= orderDAij(x, D) (: =deg¢Ai,(X, 9)B
where we define orderp4;;= — oo if 4;;=0. Then the total order of A is defined to be

N
2.2 orderpd =max ., my,,eNu{—o0}.
geCGy i=1
Here N={0, 1, 2, - - -}, S denotes the permutation group of {1,2, ---, N} and we
define /+(—o0)= — oo for any /e Nu{—oo}.
A matrix A(x, D) of total order m (>0) is said to be non degenerate if

2.3) m=deg (det A(x, {)) ((eC").
In this case, the characteristic polynomial a(x, £) of A(x, D) is defined to be
2.4) the homogeneous part a(x, &) of degree m of det A(x, &) in &.

A hypersurface S: @(x)=0 (with grad ¢ #0 on §) is said to be non characteristic for
A(x, D) if

2.5) a(x, grad @) #0 on S.

The determinant of matrices in the sense of Sato and Kashiwara was defined as
an extension of the characteristic polynomial. Let A(x, D)e My(2(€2)) and denote by
(det,A)(x, &) the determinant of A(x, D) in the sense of Sato and Kashiwara, which is
holomorphic in the cotangent space T*Q of 2, and is a homogeneous polynomial in
the fibre variables £ e C".

THEOREM 2.1 (cf. [18]). The determinant above is well defined so that it has the
following properties:
(i) det, (AB)=det,4-det,B.
(ii) If A(x, D) is non degenerate, then det,A coincides with a(x, &) in (2.4).
(iii)) A(x, D)e GLy(2(R)) if and only if det,A=a(x)#0 in Q.
(iv) If P(x, D)e 2(Q) commutes with A(x, D), then {o(P), det,A} =0, where o(P)
denotes the principal symbol of P(x, D) and {-, +} denotes the Poisson bracket.

The detailed proofs were given by Andronikov [3].
We define order,4 by
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(2.6) order,4 =deg,(det,4)(x, &)

and call it the order of A(x, D).

As an immediate consequence of this theorem, we can prove that A(x, D)e
GLy(2(Q)) if A has a left or right inverse in My(2(Q)). Indeed, suppose that 4 has a
left inverse Be My(2(R2)), that is, BA=1I,. Then we have det,4-det,B=1. The
determinants are holomorphic in 7*Q and are homogeneous polynomials in e C".
Therefore, det,4=a(x)#0 in Q.

The next proposition due to Andronikov (see also Adjamagbo [2] and Sadamatsu
[17]) gives a characterization of invertible matrices from the viewpoint of the unique
solvability of the equation.

ProposiTION 2.2 (cf. [S]). Let P(x,D) be an Nx N' matrix of linear partiaI
differential operators with holomorphic coefficients in Q. If the mapping

OY su(x)— P(x, Dyu(x)e O}

is bijective at every point peQ, then N=N' and P(x, D)e GLy(Z(R2)). The converse is
obvious.

The next proposition gives a characterization of invertible matrices containing a
variable x, as a parameter.

PROPOSITION 2.3. Let Q=Q, x Q' with Q,cC! and Q'cC"" . Then A(x,D’)e
GLN(2(R)) if and only if A(p,, x', D")Ye GL(2(R2")) for any fixed p, € 2,. Moreover, the
inverse matrix is obtained in the form A~'=B(x, D’).

This is an immediate consequence of the following lemma, which will be proved
in the Appendix.

Lemma 2.4. Let Q be as in the above proposition. Let A(x, D")e My(2(R)) and
put det,A=a(x, &) (see Th. 2.1, (iv)). '
(i) If a(x, &')=0, then det, A(p,, x’, D')=0 for any p, €Q,, where det,. denotes
the determinant for matrices in My(2(Q")). '
(i) If a(py, x', &) #0, then det, A(p,, x', D')=a(p,, x', &').
(i) If a(x, £)#£0 and a(py, x', £')=0, then order,4>order,A(p,, x', D").

PrOOF OF PROPOSITION 2.3. The necessity follows from Theorem 2.1, (iii) and
Lemma 2.4, (ii). Let us prove the sufficiency. Assume that A(p,, x’, D')e GL(2(2")
forany p, € Q,, thatis, det,.A(p,, x', D")=a, (x") #0in Q'. This assumption and Lemma
2.4, (i) imply det,4 #0, hence det,4 =a(x)#0 by Lemma 2.4, (ii). For any fixed p, € Q2,,
we have a(p,, x)#0. Indeed, if a(p,, x")=0 for some p, €Q,, then Lemma 2.4, (iii)
shows that

0=order,4 > order,.A(p,, x', D'),
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that s, det,.A(p,, x’, D")=0, which contradicts the assumption. Hence, again, by Lemma
2.4, (i) we have a(p;,x)=a,(x)#0 in Q' for any p,eQ,. Thus we have
A(x, D")e GLy(2(2)). Next, assume A '= Z;‘z oBj(x, D')D}. Then the identity
AA™'=1I implies AB,=1Iy and AB;=0 (j=1,2, - - -, k). Therefore, Bj=A"'(4B))=0
(=12, -, k). q.e.d.

The determinant theory relies essentially on the Ore property of 9, which is also
important in the following sections.

ProPOSITION 2.5 (Ore property). For any non zero two elements P(x, D) and Q(x, D)
in 9,, we have

2,Pn2,0+#{0} (resp. P9,0092,#{0}),
that is, P(x, D) and Q(x, D) have non zero common left (resp. right) multiples.

Kashiwara [8] proved that &, is a Noetherian ring without zero divisors, that is,
left or right ideals of 2, satisfy the ascending chain condition. Therefore the above
proposition can be proved algebraically (Goldie [6, Th. 1]) or by the method of algebraic
analysis (see Andronikov [3] or Schapira [19, Remark 1.3.8, p. 65]).

As an immediate consequence of the Ore property of &,, we have order,4 >0 if
the Cauchy problem (4, p), is well posed. Indeed, if det,4 =0, then there exists a non
zero left null vector Q(x, D)=(Q,, - - -, Qn) € 25 \{0} of 4, that is, QA4 =0. Hence, the
equation Au= f e} has no solutions ue O} for such f that Qf+0, a contradiction.
Therefore, we always assume order,4 >order,4 >0 if the Cauchy problem (4, p), is
well posed.

3. Reduction to normal matrices. Let A(x, D)=(4;)e My(2(2)) and put
l;j=orderp, A;;. Then the total order of A with respect to D, is defined to be

N
3.1 orderD1A=mgx Y leeNU{—00}.
geON i=1
Suppose orderp, A>0. Then by Volevi¢’s lemma (cf. [12], [20]), there is a system of
integers {s;, t;}; j=1,2,... y Satisfying
3.2) Lj<tj—s; and orderp A=|t|—|s]|,
where |¢|=¢t;+1,4+ - - + 1y, etc. Now we put

tj—Si

Ai](x’ D)= Z aijk(x’ D,)D?_s‘—k

and

(3.3) Ao(x, D)= (aijo(xa D’))i,j= 1,2,-,N -
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The purpose of this section is to show the following:

THEOREM 3.1. Assume Ay(x, D')e GLy(D(L2)). Then at every point p € Q the Cauchy
problem (A, ), has a unique formal solution (F) with x, in Theorem 3 replaced by x' if
and only if
@) |ul=ordery A(x, D),

(ii) A(x, D) is reducible in a unique way to a y-normal matrix with respect to D, in Q.

Since the ““if” part is obvious, we have only to prove the “only if” part. Let us
fix the notation for the proof.

For an N-ple v=(v,, - - -, vy) of non negative integers, we define two matrices 4"
and £ by

3.9 AM=diag {DY, - - -, D"} (N x N matrix) ,
t Dl' . 'D;’_l [ IR 0
(3‘5) L7740 P ) P 0 IDI...D;z—l 0--- 0
Q +crrrr e 0 ~1 Dl..‘D;N_l

(lv|x N matrix), where diag{a,, - - -, ay} denotes the diagonal matrix with the j-th
diagonal entry «;, and '(+) denotes the transposed .matrix of (*).
For the Cauchy problem (4, p),, we may assume

(3.6) tj>p; and 5>0 for any i,j=1,2, -, N,

since we can replace {s;, #;} by {s;+1/, t;+1} (leN). Applying £ (s=(s;, -, sy)) to
the equation Au= f from the left, we have an equation
FOAu=F9f .

By the above choice of {s;, ¢;}, we see that the left hand side of this equation depends
only on

POy ~ t(t(g(u)u)’ ‘(A(“)u) , t(g)(t—u— DA+ l)u)) ,
where u+1=(u, +1, - - -, uy+ 1), etc., and '(- - -) denotes the transposed vector of (- - -).
Therefore the above equation is rewritten as
(1)

g(t—u— I)A(u+ 1)

3.7) (x, D’)( >u+ga(x, D) #PWy=F9f

where /(x, D')isan|s| x (| t|—| u|) matrix and #(x, D’)isan | s| x | u | matrix. Note that

g(")u |X1 =p1 =(wjk(xl))05k<uj, 1<j<N

is a known vector by the Cauchy data.
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Next, applying 4® to the equation Au= f from the left, we have

(3.8) Ao(x, DYADu+%(x, D)L Pu= A9 f
in view of (3.3). Here %(x, D’) is an N x | t| matrix. Let
© X, — k
() w= 3w B ye0,, 1555m)
k=0 !

be a formal solution of the Cauchy problem (4, p),. Then {u;(x"); k>p;, 1 <j<N} are
determined by the equations (3.7) and (3.8).

LEMMA 3.2. If the Cauchy problem (A, p), has at least one (formal) solution, then
the mapping

(3.9) A(py, x', D'): O -1l . pls!
definedby 0¥\ 1* sU(x") > of(p;, x', D')U(x') € O\ is surjective. More precisely, we have:
(3.10) [s|<|t|—|ul, that is, |pu|<orderp A(x,D),

rank </(p,, x', D")=|s|, that is, o/(p,, x', D’) has at least one non-vanishing

G-11) minor of degree |s| in the sense of Sato and Kashiwara.

PrROOF. Restricting the equation (3.7) to x, =p,, we see that
B(py, x', D)L Wu| and Z9f|

are known vectors by the Cauchy data and f. It is obvious that the mapping
O 3 f(x)> LOf |, =p, € OY! is surjective. Hence, the existence of a (formal) solution
of (4, p), implies the surjectivity of (3.9). Let assume the inequality |s|>|¢|—|u|. Then
by the Ore property of 2, (cf. Proposition 2.5), there exists a left null vector

0", D)=(Qy, - -, Q1) € DL\ {0}

of «(py,x', D), ie., Q(x', D) (p,, x', D')=0. Hence, in this case the equation.
&(py, x', D')U(x')=F(x") € 05 has no solutions for such F(x’) that Q(x’, D')F(x")#0, a
contradiction to the surjectivity of (3.9). Thus we have proved |s|<|?|—]|u|. Next,
we assume that every minor of degree |s| of &/(p,, x’, D’) vanishes. Then again by the
Ore property we see the existence of a left null vector of «/(p,, x’, D’) as above, which
contradicts the surjectivity of (3.9). q.ed.

X1=p1 X1=p1

The next proposition due to Kitagawa and Sadamatsu plays a crucial role in our
proof.

ProposiTION 3.3 (cf. [10, Prop. 4]). We consider the Cauchy problem (A, p), with
| u|=orderp A(x, D). If 4(x,D")eGL,;(2,) and Ay(x, D)€ GLN(D,), then there exists
P(x, D)e GLy(2,) such that PA is of p-normal type with respect to D,. Moreover, the
matrix P(x, D) is given by
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(3.12) P(x, D)=94 " '(x, D)L -
where 2=[Iy:0] is an N x|s| matrix.

Proor. We give here a proof in a form slightly different from that of [10], since
it is most fundamental in this paper. Without loss of generality, we may assume
A(x,D)eGL|(2(2)) and Ay(x,D)eGLW(Z(2)), and hence .( p1, x', D) and
Ao(py, x', D) are invertible for any fixed p,. These assumptions imply immediately the
unique existence of the formal solution (F) of the Cauchy problem (4, p), at every
point pe Q. Let P(x, D) be the matrix given by (3.12). Then obviouly PA4 is of y-normal
type with respect to D, that is,

(3.13) PA=A4W+(Ci{x,D)),  ordery Cif{x,D)<p;.

By the above observations, we see that the Cauchy problem for two equations
Au=feOY and PAu=Pf

with the same Cauchy data have the same (unique) formal solution (F). Note that the

equation L MPAu=F""MPf is rewritten in a form similar to (3.7),

AW -
NPy — pi—n
g(t_“_l)A(“”)u%é?(x,D)f u=L""MPf,

(3.14) A(x, D’)(

where 7 is a square matrix of size |s| (=|¢|—|u|) and 4 is an |s| x | u| matrix. Since
PA is of u-normal type with respect to D;, we see that the mapping

A(py, x', D'): O — O}
is injective at every point p’ with p=(p,, p'). The surjectivity of is obvious, and hence

#(py, x', D) is invertible for any p, by Proposition 2.2. Therefore, (x,D")e
GL,;(2(2)) by Proposition 2.3. Now we have the following two equations

A® B ~
(.15) (g(t_“_l)A(“+l)>u+M 'BL Y=o 1LPOS
AW . - ~
(3.16) <$('_H_I)A(”_”)u+ﬂ 'BLPyu=of "1 L WP

These equations determine the same coefficients {up(x"); pj<k<t, 1<j<N} in the

formal solution (F). By choosing f =0, we have (& ~'®)|,,,, =(# " '%)|,, -,, for any
P1, and hence o/ ~'# = .o/ ~' 4. Therefore,

(A LOf) |y =py = (LT LPPS)|

for any feOY and any p,. This implies o 'LY=F 1 LEWP je, LU=
A~ P PP, We take an N x | s| matrix # such that

X1=p1
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Iy=RLO=RoA A L PP

This proves P(x, D)e GLy(2(R)), since P(x,D) has a left inverse R/~ 1£C~#
€ My(2(9)). qed.

PrROOF OF THEOREM 3.1. As mentioned at the beginning, we only prove the
necessity. We assume Q=0 x Q' (2, =C,,, Q'<C% ') without loss of generality.
From the above proposition, it is sufficient to show that | u|=order, 4 (=|t|—|s|) and
A (x, D')e GL 5 (2(2)). For that purpose it suffices to show the bijectivity of the mapping
(3.9) for any fixed p, € 2, by Propositions 2.2 and 2.3. We have only to prove the
injectivity by Lemma 3.2.

Let {u(x); u;<k<t; 1<j<N} be the coefficients of the formal solution (F),
which are determined by the equation (3.7). Then by induction on k, {u;, .+ (x"); 1 <j< N}
(k=0,1,2, - --) are determined uniquely by the relations

D’i{AO(x’ D’)Amu'{_%(-x’ D’)gmu} |x1 =p1 =D,;A(S)f |x1=P1 ?

since Aq(x, D)€ GLy(D(R)) implies Ay(p,, x', D') e GLy(2(2')). Therefore the unique
existence of the formal solution (F) assures the injectivity of the mapping (3.9).

The uniqueness of the reduction of A(x, D) to a y-normal matrix with respect to
D, is proved by the same reasoning as that for of 1 £ = o =1 #¢~¥P in the proof of
the above proposition. q.ed.

4. Proof of Theorems 1 and 2. Theorem 1 is an immediate consequence of the
following lemma and Theorem 3.1, since order, 4 =orderp4 in this case.

LemMA 4.1. Let A(x, D) be as in Theorem 1. Then the Cauchy problem (A, p) is
well posed in a neighbourhood of p only if the Cauchy problem (A, p), has a unique formal
solution (F) at every point q in a neighbourhood of p. The converse is also true.

PrOOF. Let A(x, D)=(4;;). We take a system of integers {s;, ¢;} such that

4.1) orderpd;;<t;—s; and orderpA=|t|—|s]|.

We put

=i

Ai}'(x’ D): Z aijk(x9 D,)th Tk s

Ao(x)=(aij0(x))i,j= 1,2,,N>

where order a;3 <k by (4.1). Then the hyperplane x,=p, is not characteristic at
p=(py, p’) for A if and only if det 44(p)#0. Since 4,(x) is invertible in a neighbourhood
of p, order, A=orderpA in this case. By the above choice of {s;, #;}, the equation
A94u=A®f (5;>0, 1 <i< N) is rewritten in the form
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4.2) Ao(0)4%u+(Cyfx, D))u=A°F

where order,C;;<t; and orderp, C;;<t;. This is a usual system of Cauchy-Kowalevski
type, since Aq(x) is invertible in a neighbourhood of p. Every formal solution (F) of
.the Cauchy problem (4, p), is also a formal solution of (4.2). Hence it always converges
when ¢ varies in a neighbourhood of p. q.ed.

ProOF OF THEOREM 2. We divide the proof into Steps (1) through (6) under the
assumption that the Cauchy problem (4, u) is well posed in Q.

(1) |u|=orderp A(x, D).

Indeed, Lemma 3.2 asserts | p | < order), A. Therefore, the assumption | u|=order,4
(=orderp, 4) proves the equality.

Hence the matrix «/(x, D’) defined by (3.7) is a square matrix of size | s| (=] t|—| u}).
By (1), we can take a system of integers {s;, #;} as in (4.1). Then we have

(4.3) {AOEAO(x) >
det,. o/(p,, x', D')#£0 forany p,eQ,,
by Lemma 3.2, where it is assumed that Q=Q, x Q’.
(2) det Ay(x)#£0 in Q.
Indeed, if det Ay(x)=0, then we can take a non zero left null vector
q(x)=(q1, ", qn) € O3 \{0} of Ay(x), that is, g(x)A(x)=0. Without loss of generality,
we may assume that s, <s,<--- <sy and ¢,(x)#0. We define a matrix Q(x, D,) by

111 quslz—sn ........ qNDSIN—Sl
0 1 Q ------ 0
Q(x,Dy)=10 0 100

Then Q(x, D,) is invertible at a point where g, #0. By this construction of Q(x, D,), we
easily see that

orderp QA <orderp A=|pul.

Since the Cauchy problem (QA, u), is well posed at a point r where Q € GLy(2,), the
above inequality is a contradiction.

(3) det, A(py, x',D)=0a,(x") (#0) for such p; that det Ay(p)#0, where
p=(p1,p).

Indeed, since the hyperplane x, =p, is not characteristic for A(x, D) at such a point
p and the Cauchy problem (4, p) is well posed in @, the mapping

A(py, x', D): Ot — Ok

is bijective at every point ¢’ in a neighbourhood of p’. Therefore by Proposition 2.2,
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we see that det,.«/(p;, x', D')=a,,(x") and it does not vanish in a neighbourhood of p’.

(4) det,o/(x, D")=a(x)#0 and a(p,, x')#0 for any p, € Q;.

Indded, if det,.«/ =0, then det,./(p,, x’, D')=0 for any p, € 2, by Lemma 2.4, (i),
which contradicts (4.3). Moreover, Lemma 2.4, (ii) and 3) imply that det o/ =a(x)#0.
Next, by (4.3) and Lemma 2.4, (iii)) we get a(p,, x')#0 for any p, € Q,. Indeed, if
o(py, x)=0 for some p,, then

0=order,«/ >order,.«(p;, x', D’),

that is, det,.«/(p,, x’, D')=0, which contradicts (4.3).

(5) a(x)#0 in Q.

Indeed, if a(p)=0 at some p=(p,, p'), then &(p,, x’, D') has an inverse matrix
o ~'=42(x', D) with singular coefficients at p’. Therefore the mapping (3.9) is not
surjective. Indeed, the equation &/(py, x’, D')U(x’)=F(x") € O has no solutions in O)!
for such F(x") that #(x’, D')F(x') is singular at p’.

(6) det Ay(x)#0 in Q. Therefore the initial hyperplane x, = p; is not characteristic
for A(x, D) at every point p=(p,, p) €.

Indeed, note that 5) shows «/(p,, x’, D')e GL ,(2(Q")) for any p,, and hence the
mapping (3.9) is bijective at every point p’e Q’. Therefore the well posedness of the
Cauchy problem (4, p) in Q implies that the mapping

| Ag(py, X): O — O
is surjective at every point p’ € Q' for any p, € Q,, which implies immediately det 4,(x) #0
in Q.
Thus we have proved Theorem 2.

The proof of Lemma 4.1 implies immediately the following:

PROPOSITION 4.2. Let A(x, D) be as in Theorem 1. Then the Cauchy problem (A, p),
is well posed if and only if the mapping (3.9) is bijective. In this case we have | u|=m.

ProoF. We prove only the fact | u|=m. We already know the inequality | u|<m
by Lemma 3.2. If |u|<m, then &/(p,,x’,D’) is an |s|x(|¢|—|u|) matrix with
|s|<[t]|—|u|. By the Ore property of 2, there exists a right null vector
R(x', D") e 2V~ {0} of #(p,, x', D'), that is, &(p,, x’, D')R=0. Hence by a choice
of f(x")e @, such that Rf #0, we obtain a contradiction to the injectivity of the mapping
(3.9). q.ed.

As mentioned in the Introduction, we give here examples which show that the well
posedness of (4, u),does not imply the well posedness of (4, y) in a neighbourhood of p.

ExAMPLE 4.3. Let n=2 and consider

D,  alx,D,)

4.4) A(x, D)=<b(x D) D
s 2 1

> (order a+order b=2),
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where a and b are differential operators with holomorphic coefficients in a neighbourhood
of the origin O of C?. Obviously, 4 is non degenerate of order,4 =2 and x, =p, is not
characteristic for any p,. We consider the Cauchy problem (4, y,), with ygy=(2, 0). In
this case, we can take {s;, #;} in (3.2) by

S1=2, S2=1, t1=3, t2=2.

Then we have

0 a 0
1 a
Ao(anz)=<O 1>6GL2(90), #(x,Dy)=| 1 [Dy,a] a |,
0 0 1

where [D,, a]=D,;a—aD, is the commutator of D, and a. It is easily seen that
det, o = —a(a)x, £,), where o(a) denotes the principal symbol of a. Therefore,
o eGL4(9,) if and only if a=a(x)#0 in a neighbourhood of the origin, and in this
case the Cauchy problem (4, u,) is well posed in a neighbourhood of the origin. Let
us consider the Cauchy problem (4, u,), at a fixed point p=(p,, p,). Note that the
bijectivity of the mapping (3.9) is equivalent to the bijectivity of the mapping

4.5) a(py, X2, D3): Oy — O, .

Hence, the Cauchy problem (4, ), is well posed if and only if the mapping (4.5) is
bijective by the above proposition. Now we consider the following three cases of operator
a, in each of which the Cauchy problem (4, uy), is well posed.

(1) a=x,D,+1: In this case, the Cauchy problem (4, p,), is well posed if and
only if p, =0, and when p; #0 the Cauchy problem has infinitely many solutions. It is
obvious.

(2) a=x,D,+1:In this case, (4, y,), is well posed if and only if p, =0, and when
p»#0 the Cauchy problem has infinitely many solutions. Note that the bijectivity of
the mapping (4.5) at p, =0 is obvious, since x, =0 is a regular singular point of a as
an ordinary differential operator.

(3) a=x3D%—D,+1: In this case, the Cauchy problem (4, p,), is well posed if
and only if p,=0, and when p, #0 the Cauchy problem has infinitely many solutions.
Since the operator a has an irregular singular point x,=0, the situation is more
complicated than Case 2. We denote by @, the set of formal power series of x,. By
Malgrange [11], for the mappings

a:(oo—"(po, a2@0—>(90,
have indices

x(a; 0p) :=dim¢ Ker a—codimg Ima=0 (Ker a={0}),
x(@, 0p)=1 (Kera=C).
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Therefore, they are surjective. These observations prove that the Cauchy problem
(4, o), with p,=0 has infinitely many formal power series solution u(x)=
Y2 o tlx2)(x; —py)¥/k! with u,(x,)€ @3, but has a unique holomorphic solution.

5. [Equivalent extension of matrices. Let 2,,(Q) denote the set of linear partial
differential operators with meromorphic coefficients in Q. The following proposition is
useful in proving Theorem 3.

PROPOSITION 5.1. Let A(x, D)e M\(2(Q)) and assume that the Cauchy problem
(A, w), has a unique formal solution (F) at every point pe Q. If P(x, D)e GL\(2 (<)) and
PA is of u-normal type with respect to D,, then P(x, D)€ GLy(2(Q)).

PrROOF. Let Z be the analytic set where the singularities of the coefficients of P
are located. We first consider the case PAe My(9,) (peZ). In this case, we choose
f(x)e O} so that Pfis singular at p, or more precisely, so that Pf does not have formal
series expansion as (F). Then the Cauchy problem (4, p), for the equation Au= f has
no formal solutions (F), since PA € My(2,). Next, we consider the case where P4 has
singular coefficients at pe Z. In this case, we consider the Cauchy problem (4, ), for
the homogeneous equation,

Au=0,
é.1)

Druy|, = p=wi(x)e0, (0<k<p,1<j<N).
Then the coefficients {u;(x'); k>p;, 1<j<N} in the formal solution (F) are obtained
uniquely from the equation PAu=0 by induction on k (> p;). Since PA is of y-normal
type with respect to D;, we may assume PA to be written in the form

PA=D\I,—B(x,D"),  B(x,D)eM,(Du(Q),

where m=|pu|.
We consider the case where Z$ {x, =p,}. We set

0

B(x, D’)=k20 (1 —p1)*B(x', D")
and put k,=min {k; B, has singular coefficients at p'}. Then by choosing the Cauchy
datum wo(x")=Wulx")o<k<pu, 1<j<n SO that By (x’, D')wo(x’) is singular at p’, we see
that the Cauchy problem (4, y), has no formal solutions (F), a contradiction. Hence
we may assume that Zc {x;=p,} and that B(x, D) has holomorphic coefficients at
X, #p; in a neighbourhood of p. Therefore we can write

Bt D)= 3 (vi—py)'Bix', D)

for some / (>1) with B_;#0. Hence by choosing the Cauchy datum wy(x’) so that
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B_wo(x")#0, we see that the Cauchy problem (4, u), has no formal solutions (F), a
contradiction. Thus we have proved P(x, D)€ My(2(2)) n GLy(2,(R)). In order to prove
P~ e My(2(8)), we note that the Cauchy problem (P A, u), has a unique formal solution
(F) at every point pe Q. Hence P~ e My(2(RQ)) in the same way as that for the first
case. q.ed.

DEerFINITION 5.2. Let B(x, D)e M{(2(2)). Then a matrix C(x, D)e M,(2,(2))u
M, (2,/(Q))is called an equivalent extension of B(x, D)if with some R € SL(2,,(2))

(5.2 C(x, D)=R(x, D)B(x, D)

or

(5.3)

C(x, D)= (*€24(Q)) .

Moreover, E(x, D)e M,;, (D (R2)) (k=0) is said to be equivalent to B(x, D) if E is
obtained by repeated use of equivalent extensions from B.

Here SL(2,(Q)) denotes the set of unimodular matrices, that is, it is the subset
of GL(2\(£2)) which is generated by matrices of the form I,+a®;; (i,j=1, - - -, I, i#},
ae 2y(2)), where ©@;;=(0,).,=1,.-,1- It is obvious that det,B=det E for equivalent
mafices B and E, since det,R=1 for any Re SL(D(Q)).

Let E(x,D)e My, (24(22)) (I=0) be equivalent to A(x, D)e M(2(R)). If the
- Cauchy problem (4, p), is well posed or has a unique formal solution (F) at every point
peQ, then the Cauchy problem (E, 1), is well posed or has a unique formal solution
(F) at a generic point pe Q, where g=(u,, - -, Uy, 0, - - -, 0) an (N +1)-ple of integers.

PROPOSITION 5.3. Assume n<2. Then for aﬁy matrix A(x, D)€ M (2 (RQ)) with
det,A#0, there exists a non degenerate matrix E(x, D)e My . (2 () (I=0) equivalent
to A(x, D). In the case n=1, we can take 1=0.

PROPOSITION 5.4. Assume n<2. Then A(x,D)eGLN(Z\(R)) if and only if
det,A=a(x)#0 in Q.

To prove above propositions, it is sufficient to consider the case of degenerate
matix A4, that is,

5.9 orderpA(x, D)>order,A(x, D) .
Let A(x, D)=(4;;) and take a system of integers {s;, ;} such that

(5.5) orderpA;;<t;—s;, orderpA=|t|—|s|.
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Let a;;0(x, D) be the homogeneous part of order ¢;—s; of 4;;, and put

(5.6) Ao(x, D)=(a;jo(x, D)) .
Then (5.4) is equivalent to
5.7 det Ay(x, £)=0.

The following lemma due to Sadamatsu is important in our argument.

‘ LEMMA 5.5. (cf. [17, Prop. 2]). Assume n=2. If the condition (5.7) is satisfied,
then there is a matrix B(x, DYe My , (2 () (I>0) equivalent to A(x, D) such that

order,4 <orderp,B<orderp4 .

Proposition 5.3 is an immediate consequence of this lemma. Since the “only if”
part of Proposition 5.4 is trivial, we have to prove the ““if”” part. We first note that the
assumption det,4=a(x)#0 implies that 4 has an inverse matrix 4~! of partial
differential operators with singular coefficients in Q. Hence we have to show
A~ e My(2,/(Q)). For that purpose we use the following:

LEMMA 5.6. Let E(x,D)e My, (2:,(RQ)) be equivalent to A(x, D). If there exists
O(x, D)e GLy , (2 (£2)) such that QE is of ji-normal type with respect to D,, then there
exists P(x, D)e GL\(2y(RQ)) such that PA is of u-normal type with respect to D,.

Proor. 1t is sufficient to prove our lemma in the case where E is an equivalent
extension of 4. When E= R4 with R e SLy(2,/9Q)), there is nothing to prove. Otherwise,
since QF is of (uy, - - -, uy, 0)-normal type with respect to D,, it is written as

N
0 0
N Q11 Qi RA B
QE= 0 = 0 s
0,5, |Q22 *---*|1 *---*ll

where *€2,(Q), Re SLy(2,/(R)) and B is of u-normal type with respect to D,. By
the above expression, we have Q,,="0, ---0) and Q,,=1. Therefore, P=Q,,Re€
GL(24(R)) and PA=B. _ q.e.d.

THE PROOF OF PROPOSITION 5.4 CONTINUED. Let B(x, D)=(B;;)€ My .; (24(R2)) be
a non degenerate matrix equivalent to A(x, D). Hence 0 =order,B=order,B=order,4.
We may assume Bj;=B;{(x)#0 (j=1,2, ---, N+[) by a suitable change of rows and
columns, respectively. Therefore, for any 1<i; <i, << <N+I (1<k<N+I) it
holds that

k
Y orderpB;

i=1

<0 forany ceS,.

jle ()
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Then by Volevi¢’s lemma (cf. [12], [20]), there exists a system of integers {¢;} Y/ such that
Ol'derDBijSt-—ti (i,j=1,2, RS N+l).

Without loss of generality we may assume ¢, <t,<--- <ty,,. Hence B(x, D) is written
in the form

B(x’ D)= triang{cl l(x)’ Y Crr(x)} 1)

i.e., Bis a blockwise triagular matrix with the\j—th diagonal block C;{(x) of square matrix
with entries of meromorphic functions in Q. Since +det, 4 =det, B= ]_[;= det C;(x)#0,
each C;{x) has an inverse matrix C;*(x) with meromorphic functions as entries. This
implies B(x, D)€ GLy . (2 (). Since B"!B=1,,, is nothing but a (0, - - -, 0)-normal
matrix with respect to Dy, we have A(x, D)e GLy(2,(2)) by Lemma 5.6. q.ed.

6. Proof of Theorem 3. Throughout this section, it is always assumed that n=2.
By using the results in the previous section, we prove Theorem 3 by reducing the Cauchy
problem (4, p), to (E, j1),.for a matrix E(x, D)€ My , (2 4(R2)) equivalent to A(x, D) to
which Theorem 3.1 or Proposition 3.3 is applicable.

Since the necessity of Theorem 3 is obvious, we prove the sufficiency. Hence, in
what follows, we assume that the Cauchy problem (4, u), has a unique formal solution
(F) at every point pe Q.

Recall the matrices 4(x, D,) and «/(x, D,) defined by (3.3) and (3.7), respectively.
By Lemma 3.2 we have

(6.1) |nl<orderp A(x,D)  (=|t|—]|s]),
(6.2) rank /(py, x,, Dy)=|s| forany p;, (p=(p1,p2)€Q).
By the definition of ordery, 4, it always holds that order,4,>0.

LEMMA 6.1. Assume that the Cauchy problem (A, p), has a unique formal solution
(F) at every point pe Q\\Z, where Z is an analytic set. Then we have:

(i) If |u|=orderp A4 and order,of > 1, then det,A,=0.

(i) If |u|<orderp, A, then det,A,=0.

ProoF. (i) The condition |u|=order, A implies that & is a square matrix of
size |s|. Suppose det,4,#0. We put det, o =a(x)(7 (a(x)#0, m>1) and put
det, 4, =a(x)¢} (a(x)#0, [>0). Take a point p=(p,, p,)€ 2\ Z such that «(p)#0 and
a(p)#0. Then by Lemma 24 we have det, o(p,,x,, D;)=0a(py, x,)E5 and

det,,Ao(py, X2, Dy)=a(p,, x,)&5. Therefore, by a result of the author [14, Th. 5), for
the mappings

(6.3) A(py, X3, Dg): Ol M —— 051 (11]—|u|=]|s]),
(6.4) Ao(pl, x2, Dz): 01:2 —_— @N

P2
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we have dim¢ Ker &/ =m (>1), codim¢ Im o/ =0 and (6.4) is surjective. These imply
that the Cauchy problem (4, u), hasinfinitely many formal solution (F), a contradiction.
(ii)) Suppose det,4,#0. Hence we may assume that the mapping (6.4) is surjective
at a generic point p € Q. Note that &/(x, D,)isan|s| x (| 1| —| p#|) matrix with | s| <| ¢|—|u|.
By the assumption (6.2) we can conclude that the mapping (6.3) is surjective and
dim¢ Ker & = oo ata generic point p € Q. Indeed, put o/ = (¢;(x, D)) and assume that

detaz(ai](pla X2 DZ))i,j= 1,,s]| ¢0

without loss of generality. Then by Proposition 5.3 there exists P(x,, D,) € GL, (2 (22))
such that

P(x,, Dz)(“u(l’l, X2, Dz))i,j= 1,2,-,1s]

is a non degenerate matrix, where it is assumed that Q=Q, x Q,. This observation
leads us to the assertion. Hence we obtain a contradiction as in (i). q.e.d.

LeMMA 6.2. Assume det,A,=0 and put orderp,A,=n>0. Then there is a matrix
E(x, D) equivalent to A(x, D) such that:
(i) If n>0, then either ordery, E <order, A or
orderp, E=orderp, A and orderpEy<n
holds, where Ey(x, D,) is defined similarly to Ay(x, D).
(ii) If n=0, then ordery E <ordery A.

Proor. (i) We put n;;=orderpa;jo(x, D,), where Ay(x, D,)=(a;;0). We take a
system of integers { p;, ¢;} such that

6.5) n;<q;—p; and n=|q|—|p|.
We denote by d;jo(x, &,) the principal symbol of a;;, of order g;—p;, and put
A(x, D)=(dyjo(x, D)D) .
The assumption det,4,=0 implies
det(d;;o(x, £2))=0 and det A(x, &)=0.

Let I(x, £,)=(/y, - - -, ly) be a non zero left null vector of (d;jo(x, £,)), where I{(x, &,) are
monomials in ¢, with meromorphic coefficients. We can take it so that at least one of
l; is a non zero function of x. By a suitable change of rows, we may assume
§1=>5,> " >sy. Then

r(x, §)=(116311_8Na ey 1531N_‘ )
is a left null vector of A(x, £). We set
(6.6) io=max{i; ;=I(x)#0} .

We may assume /=1, since we consider the problem in the category of 2,,().
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We first consider the case where i, =max{i; /;#0}. Let us define a lower triangular
matrix R(x, £), which is different from the identity matrix only the i,-th row, by

1
0 1 0
6.7) R(x,&)= ip) | * -+ -+ 1 0 --- 0],
1 0
0
1

where the iy-th row is given by
(-1 0...0)=('11§s11—s10, oy by Efe1 TS0, 1,0, - ¢+, 0) .

In our case, this is also a left null vector of A(x, ). Since R(x, D)e SLy(24,(R2)) and
orderp A>order;, RA, RA is the desired equivalent extension of A4.

Next, we consider the other case, i.e., io <max{i; ;#0}. By the definitions of r(x, &)
and R(x, &), we have

(6.8) e, ORTHx, ) =(0, =+, 0, E3o ™, Ly 1 EFo* 175N, - Iy).
We put R(x, é)fi(x, é)=(di1{x, £)). Then we have

''''' dyjolx, E)EF™ (o),

Gioj=biox, E)E ™ (j=1,2,---,N),

where deg,.b;, j=q;—p;, or —oo, and (b;;, " -, b;x)#0, because the vector
(*---1 0---0) in the definition of R(x, &) is not a left null vector of A(x, £). Note that
r(x, )R~ Y(x, &) is a left null vector of R(x, é),i(x, ).

In the following, it suffices to consider the case where

orderp, R(x, D)A(x, D)=orderp A(x, D) and
orderp(RA)(x, D,)=orderpAy(x, D,) .

Since I{(x, £,) (i>i,) has the factor &,, we see that b; (x, £,;) (j=1, - - -, N) also has
the factor &, (see (6.8)). Therefore, 4;,; is written as

a~i0.i= éZCioj(x9 62)6 Ii-&o (j'__ 1, Y N) .
We define an equivalent extension B(x, D) of Afx, D) by
0

R(x, D)A(x, D)
B(x, D)= 0 (R(x, D)e SLy(Zu(Q))) ,
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where
(% %) =(Cio1(x, D)D", - - -, ¢; M(X, D)D) .
Let
N+1
- \
- 0
Cx,D)=i»|0 - 0 1 0 -+ 0 —D, |B(x,D) € My, (2,,4(Q)).
1
0 1

Then it is easy to check that order, C=order, A. By taking a system of integers
{S;, t_li}i,j= 1, N+1 deﬁned by

S;=si’ t_’]=t](i9j=1a ”"N,i¢i0), S§o=s,~o+1 N
Sy+1=8, and fy,,=s5,+1,

we easily see that order,Cy(x, D,)=orderp44(x, D,). More precisely, by taking a system
of integers { p;, ¢} defined by

Pi=Di, 4}=4j G,j=1,-+,N,i#ip), Py+1=Pi,+1,
gn+1=Pi,+1, where p; is given suitably,

we see that

dijolx, E)E5 ™

é(x, &= iy Q v 0|-¢& |,

where
(* T *)=(ciol(x9 62)&‘1‘ _Sioa Y cioN(x, 62)6‘1N—Si0) .
Therefore, det C(x, £)=0 and the left null vector of C(x, &) is given by
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i i
(0, - 0 '0+1551i0+1-szv .. lN Sig SN).

’ s }) Ty T 1
¢ <2

Hence, by repeating these operations, we finally obtain a matrix equivalent to A(x, D)
to which the first case is applicable.

(i) It is obvious, since in this case order, E=order, A and order,E, <0 does
not occur (see the remark stated before Lemma 6.1). q.e.d.

PROOF OF THEOREM 3. If the Cauchy problem (4, u), has a unique formal solution
(F) at every point pe Q, then by repeated use of Lemmas 6.1 and 6.2, we finally obtain
an equivalent matrix E(x, D) to which Theorem 3.1 or Proposition 3.3 is applicable
in the category of 2,/(Q). Hence by the results in Section 5, we see that A4 is reducible
to a u-normal matrix in the category of 2(Q2), which proves the sufficiency. The necessity
is obvious. q.ed.

7. Proof of Theorem 4. Thruoghout this section, we assume n=2. By Theorem
3 it suffices to prove the theorem for a u-normal matrix A(x, D), that is,

A=(4;)=(D"é;;+a;{x, D)),

(7.1 uj -~
a;;= 2 a;j(x, D)D" k.

_ Without loss of generality, we may assume p;>1 (j=1, - - -, N) and introduce an
unknown function U(x) by

(72) U(x)=t(u1: Y D‘lu_lula Ty UNy, T, D’;N_luN) .
For simplicity, we restrict ourselves to the case N=2. It is obvious that the Cauchy

problem (4, p) is well posed in Q if and only if the following Cauchy problem is well
posed in Q:

LU=(D,1I,,+B(x, D,))U(x)=F(x)e Oy,

7.3
(7.3) U| =Uy(x)eO™ ,

X1=p1

where m=|pu| and
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0 -1 ]
0
131
0 -1
B(x, DZ): ail‘“ o alll a12[l2 ...... alzl
0 -1
0 Ha
0 -1
A21p, 11! Qazp, " T 7 7T 321 J
Hq 2%}
LemMa 7.1. det,4=det,L.
PrOOF. Note that the determinant is invariant by operating unimodular matrices .

(e SL,(2(R2))) from the left or right to L(x, D). We have the following sequence of

matrices by operating unimodular matrices from the left or right:

L——

0 —1.

. .. O
0 -1

Ay % e *| Ay, % e *

0 —1.
0
0 —1
Ay % oooeeee * | Ay, ® e *

(*e2(Q))
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0 —1
- 0
0 —1
‘A11 0 ........ 0 AlZ 0 ........ 0
0 -1
0 -
0 —1
A21 0 ........ 0 A22 0 ........ 0
L 0 0
1
0 1411 O ...... 0A12
1.
0
0 '1
0 ~+---- 0 4,1 0 .. 04,,
1 0
0
— 0 1
0 l A(x, D)

g.ed.

We now recall a terminology used in Mizohata [15] or [12]. We set B(x, D,)=(B;)).
Then the matrix L= D, I, + B(x, D,) is said to be Kowalevskian in Volevié’s sense if there
is a system of integers {¢;}7-, such that

(7.4) orderpB,;<ti—ti+1,  ij=1,"",m.

In this case the matrix L(x, D) is non degenerate and the hyperplane x,=p, is not
characteristic for L(x, D) at every point peQ. Precisely, det,L is equal to the
homogeneous part of degree m in £ of det L(x, £), and has the form

(7.5) det,L=Y I{x,&)ET  with [y=1.
j=0

The following theorem by the author is fundamental.
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THEOREM 7.2 (cf. [12, Th. 2]). The Cauchy problem (1.3) is well posed in Q if and
only if there exists P(x, D,) € GL\(2,(R)) such that P~'LP is Kowalevskian in Volevi¢’s
sense.

PrOOF OF THEOREM 4. The “only if” part is obvious by the above theorem and
Lemma 7.1. Indeed, in the above theorem det,L=det,P~'LP. Let us prove the “if”
part of the theorem. Let E(x, D)e M,,, (2 ,(2)) be a non degenerate matrix equiva-
lent to A(x, D). Then the hyperplane x,=p, is not characteristic at a generic point
p=(py, P2)€Q. At such a point, the unique existence of the formal solution (F) of the
Cauchy problem (4, p), implies the unique existence of the formal solution (F) of the
Cauchy problem (E, ji),. Moreover, the formal solution (F) always converges by Lemma
4.1. Therefore the Cauchy problem (4, u), is well posed at a generic point pe Q. This
observation concludes that the Cauchy problem (4, u) is well posed in 2 (see the proof
of Theorem 7.2 in [12, Section 3]). q.ed.

AN ALTERNATIVE PROOF OF THE SUFFICIENCY. We first note that the proof below
does not depend on the dimension n. We shall prove the well posedness of the Cauchy
problem (7.3) instead of the Cauchy problem (4, ). Let M be a system in the sense of
Kasiwara [8], [9] defined by

(7.6) M=9™/P"L

where 2 denote the sheaf of a linear partial differential opertors with holomorphic
coefficients on Q. We denote by Ch(IR) the characteristic variety of 9, i.e.,

Ch(M)={(x, &) e T*L; (det,L)(x, {)=0} ,

(see Andronikov [3], [4]). By the assumption of the sufficiency, the hyperplane x, =p,
is not characteristic for M at every point p=(p,,p)eQ. Let Y be a hyperplane
in Q defined by x, =p,, and

f:Y3x'—(p,x)eQ.

Then the system M, on Y induced by M is given by

(7.7) wty:=0y®f—lof_lmlg®.@y(l@ej),
j=1
where Oy (resp. 2y) denotes the sheaf of holomorphic functions (resp. linear partial
J

differential operators with holomorphic conefficients) on Y, and {¢;=(0, ---,0, 1,0,
-++,0)} 7, are the usual generator of M. Note that the last isomorphism follows from
the fact that L is of (1, - - -, 1)-normal matrix with respect to D,.

The Cauchy-Kowalevski-Kashiwara theorem (cf. [8], [9], [19]) implies the following
isomorphisms of sheaves:
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(7.8) Homg(M, O) |y = H omg (My, O) =0T,

(7.9) Exth(M, O)|y=E2t5, My, 0)=0  (j=1),

(see [4]). Ex¢L(M, O) |y=0 means that the equation

Lix, D)U(x)=F(x)e 0y (peY)
' has always solutions U(x)e O} for any F(x), since det,L#0, (see [4]). Since
Homg(M, O)={U(x)e O™, LU=0},
the first isomorphism in (7.8) is given by
{U(x)e O™, LU=0}3U(x)+— U(p,, x") €0y

by (7.7), which gives a correspondence between the solution of the homogeneous equation
and its Cauchy data. qg.ed.

REMARK 7.3. When n=2, the results corresponding to those in Theorems 1 and

2 hold without the non degeneracy assumption on the matrix A(x, D). _
~ (1) In Theorem 1, the assumptions imposed on A(x, D) should be replaced by

(det,4)(p, (1,0)) 20 and order,4=m.

(2) In Theorem 2, the assumption imposed on A(x, D) should be replaced by
order,A=m (>0).

These can be proved in the same way as Theorems 3 and 4. We have only to note
that Proposition 5.1 holds if we replace the assumption of the unique existence of
formal solution (F) by the well posedness of the Cauchy problem (4, p) in Q, too.

Appendix. Proof of Lemma 2.4. In order to prove Lemma 2.4, we need to employ
the determinant theory in the category of microdifferential operators asin [3], [4] and [18].

Let =0, x Q' as in the lemma and let Uc T*Q be an open set. Let &'(U) be the
set of microdifferential operators not depending on D, defined in U. Then Lemma 2.4
is a special case of the following:

ProroSITION A.1. Let A(x,D")=(4;)e My(8'(U)) and put det,A=a(x,¢’).
(e O(U)). Then we have:

(i) If a=0, then det, A(p,, x', D')=0 for any p, eQ,.
@) If a(p,, x', £")#£0, then det, . A(py, x', DY=a(p,, x', &).
(iii) If a0 and a(p,, x', £')=0, then
order,4 >order,.A(p,, x', D') .
Proor. Note first that it suffices to prove the assertions outside analytic sets.

Therefore we ignore these sets and we take a point p; as p; =0 in the following.
The assertions are obvious when N=1. In general, we define an integer r;; for
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A;#0 by

U(Aij)(x, é,)=xr1ijgij(xs &), gij|x1=o¢0 s
and put r=min {r;; i,j=1, - - -, N, 4;;#0} and denote it by r=r(4). We may assume
ri; =r(A) without loss of generality.

When r;; =0, A,,(x, D’) is invertible as a microdifferential operator at a generic
point in Un{x, =0}, and hence we may regard 4,, as invertible in &'(U). Obviously,
A7 does not depend on D,. For i,j=2, -+, N, let

Py(x, D')= —A;;(x, D)A1{(x, D"),
Qfx, D)= —A1{(x, D)4, (x, D") .

Then we have

l 0 P 0 1Q2 “ e QN A11 0.0
P 1 0 1. |l o

_ 0 |4 .0 =1 " By |
. 0 . . . .

Py 1 o O "1 0

with B(x, D")e M,_(&'(U)).
Let us consider the case r(4)>0. By Spath-Weierstrass’ division theorem (see, for
example, [19, Th. 2.2.1]), we have for i,j=2, -, N

r—1
A;;=—B{x, D)4, +R(x,D"), R;= Z Ry(x', D’)xli ,
k=0

r—1
A;j=—A4,,C{x,D")+S{x,D’), Sj:kZ:O SfAx', D')xt .

Then we have

10 - 0 1C, - Cy A | S, Sy

1?2 L 4 9 1.' 0 _ R'z . =B(x, D).
' 0

By 1 0 1 Ry

In the above transformation of matrices, it holds that r(4)>r(B), det,4 =det,B and
det,.A(0, x’, D") =det,.B(0, x’, D’). By repeating the above transformations, we finally
obtain matrices P(x, D) and Q(x, D’) in SLy(&'(U)) such that

PAQ=diag{T,, -+, T;,0,--,0},  Tfx,D")e&'U),
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for some k (1 <k<N). By this construction of P and Q, we have
(PAQ)|x,=0=P|s=0"4]5,=0"Qlx1=0
and P(0, x’, D’) and Q(0, x’, D') belong to SLy(&(U")), where U' < T*Q'.
det,A=0 isequivalent to k<N, which implies (). When k=N, we have

N N
det,A=[] o(T;) and det,4(0,x’,D")=[] o'(T{0, x', D)),
j=1 ji=1

which proves (ii) and (iii). q.ed.

DIRECT PROOF OF LEMMA 2.4 FOR n=2. In this case we can prove the lemma
without using microdifferential operators. Let Q=Q, xQ, (,cC,, i=1,2) and
A(x, D,)=(4;)e My(2(Q)). If A(x,D,) is non degenerate or orderp,4= —o0, our
assertions are obvious. Otherwise, set m;;= orderp4;;and order,4 =m>0. Take a system
of integers {s;, ;} so that

We put
=i

A=Y, ap()Dy™* ™% and  Ay(x)=(a;(x)) .

k=0

Then A(x, D,) is degenerate if and only if det A4(x)=0. Let I(x)=(/,(x), - - -, [y(x)) be a
non zero left null vector of Ay(x) with holomorphic entries in a neighbourhood of the
origin, where it is assumed that O e Q. We define an integer r; for ;%0 by

I(0)=x7l(x), 1(0,x;)#0,
and put r=min{r;; i=1, - -+, N, ;#0}. Let r,, =r. Then
1}
Li(x 2 Ly(x
Loy=({, o L My
liy(x) li(x)

also is a left null vector of 4,(x) and its entries are meromorphic functions. By the
above construction, L,(0, x,) (i=1, -+, N) are also meromorphic functions in x,.

Without loss of generality we may assume s; >s,> - - - >sy. We define a matrix P(x, D,)
by

P(x,Dy)= | L, 1 -+ Ly diag{sz—sn,D;z—sn’...’1}_
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Then

det,P=¢L1"Nsv - orderp,PA<orderpd+(|s|—Nsy)—1,
det,4 =det,PA-EY~~Isl and
detQZA(O’ X2, DZ) =deta‘z(PA)(09 X2, DZ) : élgsn—lﬂ .

Therefore, when det,4#0, by continuing the above operations, we can reduce the
problem to the non degenerate case. We have only to note that, when det,4=0, we
stop the above operations in at most m+ 1 times (m=orderpA4). q.ed.
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