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1. Introduction. The purpose of this paper is to characterize the well posed
Cauchy problem for a system of linear partial differential equations in a complex domain.
In particular, one of our interests is to investigate matrices of linear partial differential
operators normalizable in the time derivative, and another one is to show the necessity
of non characteristicness of the initial hyperplane for the well posed Cauchy problem.
For that purpose the determinant theory for matrices of linear partial differential
operators due to Sato and Kashiwara plays an important role. In particular,
characterizations of invertible matrices, which will be give in Section 2, play the most
crucial role.

For a (non commutative) unitary ring R, we denote by MN(R) the set of NxN
matrices with entries in R, and by GLN(R) the set of invertible matrices in MN(R).

Let x — (xu , xn) = (x1, xf) be variables in the complex ^-dimensional space C",
D = {DU " -, Dn) = (Dl9 D') be the usual symbol of differentiations, that is, Dj=d/dXj
(/=1, •**,«)• Let Ω and p be a domain and a point in Cπ, respectively. Then we denote
by @(Ω) (resp. @p) the non commutative ring of linear partial differential operators
with holomorphic coefficients in Ω (resp. at /?).

Let A(x9D) = (Aij)eMN(β(Ω)) and μ = (μ l9 -,μN) be an Λf-ple of non negative
integers. We consider the following Cauchy problem (A, μ)p at a point p = (pup

f)eΩ:

, 0<k<μj, \<j<N9

where Θp (resp. Θp) denotes the germ of holomorphic functions at p (resp. p').
The Cauchy problem {A, μ)p is said to be well posed if it has a unique solution

{uj(x)}eΘN

p for any {f^eO* and {wjk(x)}eΘp^ where | μ | = μ x + +μN.
The Cauchy problem (A, μ) is said to be well posed inΩ if {A, μ)p is well posed at

every point p in Ω.
The following fundamental theorem due to Wagschal motivates the research of

this paper. The notions appearing in the theorem will be defined in Section 2 below.

THEOREM 0 [21, Th. 4. 1]. Let A(x, D)eMN(β{Ω)) be a non degenerate matrix of
total order m (>0), with non characteristic initial hyperplane Xχ=Pχ at p = (p1,p')eΩ.
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Then there is at least one μ with \μ\ = m such that the Cauchy problem {A, μ)p is well posed.

Here arises a question whether we can give a relation between A(x, D) and μ for

the well posed Cauchy problem (A, μ)p. The purely combinatorial proof given in [21]

does not seem to answer this question.

A matrix A(x, D) e MN(S>(Ω)) is said to be reducible to a μ-normal matrix with respect

to Dx in Ω (resp. at p) if there is P(x, D) e GLN(β(Ω)) (resp. eGLN(@p)) such that PA

is of μ-normal type with respect to Dl9 that is,

ij(x9 D)),

where δ^ is Kronecker's delta and o r d e r l y denotes the order of b^ with respect to Dx.

In this terminology we first have the following theorem.

THEOREM 1. Let A(x, D) be as in Theorem 0. Then the Cauchy problem (A, μ) is

well posed in a neighbourhood of p if and only if\μ\=m and A(x, D) is reducible in a

unique way to a μ-normal matrix with respect to D1 at p.

Wagschal constructed such μ that the Cuachy problem (A, μ) is well posed in a

neighbourhood of/?, and hence Theorem 1 can be applied to his case. However, it must

be stressed that the well posedness of {A, μ)p does not imply the well posedness of {A, μ)

in a neighbourhood of/? in general. Such examples will be given in Example 4.3. We

shall meet there an example of the well posed Cauchy problem {A, μ)p such that it has

infinitely many formal power series solutions.

In the above theorem the non characteristicness of the initial hyperplane was

assumed apriori, but the following theorem guarantees its necessity for the well posed

Cauchy problem in general.

THEOREM 2. Let A(x, D)eMN(@(Ω)) be a non degenerate matrix of total order m

(>0). Then the Cauchy problem (A, μ) with \μ\ = m is well posed in a neighbourhood of

p = (pι,p) only if the initial hyperplane xx =pί is not characteristic for A(x, D) at p.

Although the assumption | μ | = ra seems to be excessive, the author does not know

whether we can remove it even for the case N= 1 (single equation).

Next, we give a characterization of reducible matrices for matrices in MN(@(Ω)).

THEOREM 3. Let n = 2. Then A(x, D) e MN(^(Ω)) is reducible to a μ-normal matrix

with respect to D1 in Ω if and only if the Cauchy problem (A, μ)p has a unique formal solution

P2,
(F) u/x) = f M*2>(*i ~Piflk\, ujk(x2)e Θ

fc = 0

(/= 1, 2, , N) at every point p = (pι,p2)eΩ.

Finally, combining the above theorem with a result by the author [12, Th. 2], we

obtain the following:
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THEOREM 4. Assume n — 2 and that the Cauchy problem {A, μ)p has a unique formal

solution (F) at every point peΩ. Then the Cauchy problem {A, μ) is well posed in Ω if

and only if \μ\ = orderσA and Xχ=Pι is not characteristic for A(x,D) at very point

that is, (detσΛ) (x, (1, 0))#0 in Ω.

In the above theorem (detσv4) (x, ξ) (eΘ(T*Ω)) denotes the determinant of A(x, D)
in the sense of Sato and Kashiwara [18], and orderσ^4 denotes the degree of homogeneous
polynomial detσA in the fibre variables ξ e C2, where T*Ω is the cotangent space of Ω.

Throughout this paper the determinant theory for matrices of linear partial
differential operators plays an essential role, so we give a brief summary of them in
Section 2.

In the case « = 2, we easily obtain results corresponding to Theorems 1 and 2 when
the matrix A(x, D) is not assumed to be non degenerate (see Remark 7.3).

We now briefly review relevant results. After the work of Wagschal, the author
[13], [14] and Adjamagbo [1] studied the case of ordinary differential equations, and
gave a proto-type of the results in this paper. As concerns the partial differential
equations, Kitagawa and Sadamatsu [10] developed WagschaΓs results and showed a
principle of reduction to a normal matrix, which will be used in this paper (see Section
3). After that Sadamatsu [16] studied the case of constant coefficients. Sadamatsu [17]
studied the case of variable coefficients, and proved a result similar to Theorem 1 under
more restrictive situations. He constructed there an inverse matrix for an invertible
matrix in the case n = 2. His idea will be developed in Sections 5 and 6 for the proof
of Theorem 3. Another useful result for our purpose is a characterization of invertible
matrices due to Adjamagbo [2] and Andronikov [5] (see Proposition 2.2).

Concerning Theorem 4, Mizohata [15] posed the problem of characterizing
Kowalevskian system from the viewpoint of the Cauchy-Kowalevski theorem. In other
words, it is the problem of proving the necessity of non characteristicness of the initial
hyperplane for the well posed Cauchy problem. It is a fundamental and very important
problem, but few results are known on this subject. For a matrix A of μ-normal type
with respect to Dί9 Mizohata gave a necessary condition for the Cauchy porblem (A, μ)
to be well posed in Ω, while the author [12] gave a necessary and sufficient condition
in the case n = 2 (see Theorem 7.2). Theorems 3 and 4 give a complete extension of the
author's result in the case where a matrix A is not given as a μ-normal matrix with
respect to Dx. These theorems make clear that the notion of characteristics for matrices
of partial differential operators must be understood by the determinant of Sato and
Kashiwara.

The difficulty of extending Theorems 3 and 4 to general dimension n lies in the
treatment of degenerate matrices (see Lemma 5.5, Lemma 6.2 and Theorem 7.2). Our
main idea for n = 2 is to reduce degenerate matrices to non degenerate ones in the
category of partial differential operators with meromorphic coefficients, but it is not
available in general dimension n.
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The author would like to express his thanks to the referees for their careful reading
of the manuscript and useful advices.

2. Determinant theory. We give in this section a brief summary of the
determinant theory of matrices of linear partial differential operators due to Sato
and Kashiwara [18] (see also Hufford [7]), and give characterizations of invertible
matrices.

Let A(x9 D) = (Aij) e MN(@(Ω)) and put

(2.1) niij=order^/x, D) (: = deg^0(x, ξ)),

where we define order^™ — oo if Λy = 0. Then the total order of A is defined to be

N

(2.2) orderD^4 = max £ miσ{i) e Nυ { — oo}.

Here N={0, 1, 2, •}, S N denotes the permutation group of {1, 2, , N} and we
define /+(—oo) = — oo for any lsNv{ — oo}.

A matrix A(x, D) of total order m (>0) is said to be non degenerate if

(2.3) m

In this case, the characteristic polynomial a(x, ξ) of A(x9 D) is defined to be

(2.4) the homogeneous part a(x, ξ) of degree m of det A(x, ξ) in ξ .

A hypersurface S: φ{x) = 0 (with grad φφO on S) is said to be non characteristic for
A(x, D) if

(2.5) φ , grad φ) 5*0 on S.

The determinant of matrices in the sense of Sato and Kashiwara was defined as
an extension of the characteristic polynomial. Let A(x, D) e MN{<2>(Ω)) and denote by
(detσvί)(jc, ξ) the determinant of A(x, D) in the sense of Sato and Kashiwara, which is
holomorphic in the cotangent space T*Ω of Ω, and is a homogeneous polynomial in
the fibre variables ξ e Cn.

THEOREM 2.1 (cf. [18]). The determinant above is well defined so that it has the
following properties:

(i) detσ(AB) = detσA detff£.
(ii) IfA(x9 D) is non degenerate, then άQίσA coincides with a(x, ξ) in (2.4).

(iii) A(x, D) e GLN{Q)(Ω)) if and only if detσΛ = a(x) Φ 0 in Ω.

(iv) If P(x,D)e@(Ω) commutes with A(x,D), then {σ{P\ detσΛ}=0, where σ(P)
denotes the principal symbol of P(x, D) and { , } denotes the Poisson bracket.

The detailed proofs were given by Andronikov [3].
We define order^ by
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(2.6) orders = degξ(detσΛ)(x, ξ)

and call it the order of A(x, D).

As an immediate consequence of this theorem, we can prove that A(x, D)e

GLN{β(Ω)) if A has a left or right inverse in MN(@(Ω)). Indeed, suppose that A has a

left inverse BeMN(β(Ω)\ that is, BA = IN. Then we have detσ^ det,Λ=l. The

determinants are holomorphic in T*Ω and are homogeneous polynomials in ξsCn.

Therefore, detσ^ = a(x) φ 0 in Ω.

The next proposition due to Andronikov (see also Adjamagbo [2] and Sadamatsu

[17]) gives a characterization of invertible matrices from the viewpoint of the unique

solvability of the equation.

PROPOSITION 2.2 (cf. [5]). Let P(x,D) be an NxN' matrix of linear partial
differential operators with holomorphic coefficients in Ω. If the mapping

ΘN

p3 u(x) i • P(x, D)u(x) GΘN

P

is bijective at every point peΩ, then N=N' and P(x,D)eGLN(^(Ω)). The converse is

obvious.

The next proposition gives a characterization of invertible matrices containing a

variable xx as a parameter.

PROPOSITION 2.3. Let Ω = ΩxxΩ' with Ω1ciC1 and Ω ' c Q " 1 . Then A{x,D')e

GLN(3)(Ω)) if and only ifA(pu x', D') e GLN(@(Ωf)) for any fixedp^Ω^ Moreover, the

inverse matrix is obtained in the form A~1=B(x, D').

This is an immediate consequence of the following lemma, which will be proved

in the Appendix.

Lemma 2.4. Let Ω be as in the above proposition. Let A(x,D')eMN(@(Ω)) and

put άQtσA = φ , O {see Th. 2.1, (iv)).

(i) If a(x, ξ') = 09 then άetσ,A(pu x', D') = 0 for any pί eΩu where detσ> denotes

the determinant for matrices in MN(@(Ω')).

(ii) Ifa(pu x', £')#0, then d e t , ^ , *', D') = a(pl9 x', ξ').

(iii) If α(x, ξ')=βθ and a(pl9 x', ̂ ) = 0, then order<T^>order<T,A(p1, x', D').

PROOF OF PROPOSITION 2.3. The necessity follows from Theorem 2.1, (iii) and

Lemma 2.4, (ii). Let us prove the sufficiency. Assume that A(pu x', D')eGLN{3}{Ω'))

for any px e Ωl9 that is, det σ^(p ί 9 x', D') = apx{x')φ$in Ω'. This assumption and Lemma

2.4, (i) imply άεtσA ^ 0 , hence detσA = a(x)φ0 by Lemma 2.4, (ii). For any fixed pί eΩu

we have a(pί9x')φ0. Indeed, if a(pux') = 0 for some p1eΩ1, then Lemma 2.4, (iii)

shows that

1, x', Df) ,
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that is, det σ ^( px, xf, D') = 0, which contradicts the assumption. Hence, again, by Lemma

2.4, (ii) we have a(pu x') = aPί(x')φ0 in Ωf for any p^sΩ^ Thus we have

A(x,D')eGLN(@(Ω)). Next, assume A-1=^k

j=0Bj(x, D')D{. Then the identity

AA'X = IN implies AB0 = IN and ABj=0 0 = 1 , 2, • , k). Therefore, B^A'^AB^O

(/= 1,2, •••,*). q.e.d.

The determinant theory relies essentially on the Ore property of Q)p, which is also

important in the following sections.

PROPOSITION 2.5 (Ore property). For any non zero two elements P(x, D) and Q(x, D)

in $)p, we have

that is, P(x, D) and Q(x, D) have non zero common left (resp. right) multiples.

Kashiwara [8] proved that <2)p is a Noetherian ring-without zero divisors, that is,

left or right ideals of <2)p satisfy the ascending chain condition. Therefore the above

proposition can be proved algebraically (Goldie [6, Th. 1]) or by the method of algebraic

analysis (see Andronikov [3] or Schapira [19, Remark 1.3.8, p. 65]).

As an immediate consequence of the Ore property of 3)p9 we have orderσ^4>0 if

the Cauchy problem (A, μ)p is well posed. Indeed, if detσ^4 = 0, then there exists a non

zero left null vector β(x, D) = (Qί, , QN)e@%\{0} of A, that is, QA = 0. Hence, the

equation Au = feΘp has no solutions ueΘ1^, for such / that QfφO, a contradiction.

Therefore, we always assume orderD^4 > o r d e r ^ > 0 if the Cauchy problem (A, μ)p is

well posed.

3. Reduction to normal matrices. Let A(x,D) = (Aij)eMN(@(Ω)) and put

/ίj = order1)l^4£i/. Then the total order of A with respect to Dλ is defined to be

N

(3.1) orderDlv4 = max £ / ίσ( i)e7Vu{-oo} .

Suppose orderDlv4>0. Then by Volevic's lemma (cf. [12], [20]), there is a system of

integers {sh tj}iJ=lt2t...fN satisfying

(3.2) /y < tj-st and orderDlΛ = | /1 - \s | ,

where | /1 = tx + 1 2 + + tN, etc. Now we put

Aij{x,D)= £ aijk(x, D^D'i Si k

and

( 3 3 ) A0(x9 D') = (aij0(x, D'))iJ=U2i...tN .
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The purpose of this section is to show the following:

THEOREM 3.1. Assume A0(x, D')e GLN(@(Ω)). Then at every point p e Ω the Cauchy

problem (A, μ)p has a unique formal solution (F) with x2 in Theorem 3 replaced by x' if

and only if

(i) I μ I = orderDlv4(x, D),

(ii) A(x, D) is reducible in a unique way to a μ-normal matrix with respect to Dγ in Ω.

Since the "if" part is obvious, we have only to prove the "only if" part. Let us

fix the notation for the proof.

For an JV-ple v = (v l5 , vN) of non negative integers, we define two matrices Aiv)

and J£?(v) by

(3.4) Aiv) = diag {D\\ , D\N} (NxNmatrix),

1 (\ D1'"D\1~1 0 0 ϊ

0 0 I D1 - Dl2'1 0 0(3.5)

o o l

(I v I x iV matrix), where diagjα^ , αN} denotes the diagonal matrix with the j-ih.

diagonal entry α,-, and \ ) denotes the transposed .matrix of ( ).

For the Cauchy problem {A, μ)p, we may assume

(3.6) t 3 > \ i 3 a n d s t > 0 f o r a n y i j = 1 , 2 , - - 9 N 9

since we can replace {sh tj} by {$,• + /, tj+l} (leN). Applying 5£{s) (s = (sl9 -,sN)) to

the equation Au = f from the left, we have an equation

By the above choice of {sh tj}, we see that the left hand side of this equation depends

only on

where μ + 1 = (μx + 1 , , μN 4-1), etc., and ι( ) denotes the transposed vector of ( ).

Therefore the above equation is rewritten as

A{μ)

where ja/(x, D') is an | s \ x (| t \ — \ μ |) matrix and J^(x, Df) is an | s \ x | μ \ matrix. Note that

is a known vector by the Cauchy data.
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Next, applying Δ{s) to the equation Au=f from the left, we have

(3.8) A0(x, D')A(t)u + <g(x, D')£>(t)u = A(s)f

in view of (3.3). Here #(x, D') is an Nx \ t\ matrix. Let

a3) Φ) = Σ M*') ( X l7f l ) f c (M
* o k\

be a formal solution of the Cauchy problem {A, μ)p. Then {ujk(xr); k>μj, 1 <j<N} are

determined by the equations (3.7) and (3.8).

LEMMA 3.2. If the Cauchy problem {A, μ)p has at least one {formal) solution, then
the mapping

(3.9) j*{pux\Dy.Gψ-M + 0$

definedby 0j/J~|μ| st/(x')h-* ί*(Pi> *'> D')^^')6^!?1 issurjective. More precisely, we have:

(3.10)

ranks/(p u x', Dr) = \s\, that is, s/(p1, x', D') has at least one non-vanishing

5.11) minor of degree \s\ in the sense of Sato and Kashiwara.

PROOF. Restricting the equation (3.7) to xγ =pί9 we see that

\Xi=pι and ^ ( s ) / | , 1 = P l

are known vectors by the Cauchy data and / . It is obvious that the mapping

Θ^3f{x)\-^^{s)f\Xι=PιeΘp

s^ is surjective. Hence, the existence of a (formal) solution

of {A, μ)p implies the surjectivity of (3.9). Let assume the inequality | j | > | /1 — | μ |. Then

by the Ore property of @)p, (cf. Proposition 2.5), there exists a left null vector

of $4{px,x',D'X i.e., Q(x', D')^{p1, x', Df) = 0. Hence, in this case the equation.

^(pu x', D')U(x') = F(x')eΘp

s>1 has no solutions for such F(x') that Q(xf, D')F(x')Φ0, a

contradiction to the surjectivity of (3.9). Thus we have proved | Λ Ί < | / | — |μ | . Next,

we assume that every minor of degree | s | of s^(pu x', D') vanishes. Then again by the

Ore property we see the existence of a left null vector of ^(px, x\D') as above, which

contradicts the surjectivity of (3.9). q.e.d.

The next proposition due to Kitagawa and Sadamatsu plays a crucial role in our

proof.

PROPOSITION 3.3 (cf. [10, Prop. 4]). We consider the Cauchy problem {A, μ)p with

|μ|=orderD l^(x,D). If rf(x,D')εGLU\(βp) and A0{x,D')eGLN(@p), then there exists

P(x,D)eGLN(β)p) such that PA is of μ-normal type with respect to Dί. Moreover, the

matrix P(x, D) is given by
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(3.12) P(x, D) =

where H = [IN \ 0] w an N x 151 matrix.

PROOF. We give here a proof in a form slightly different from that of [10], since
it is most fundamental in this paper. Without loss of generality, we may assume
.s/(x,D')εGL|s|(^(Ω)) and A0(x9D

r)eGLN(&(Ω))9 and hence sf(pl9x',Dt) and
A0(pί9 x', Df) are invertible for any fixed px. These assumptions imply immediately the
unique existence of the formal solution (F) of the Cauchy problem (A, μ)p at every
point peΩ. Let P(x, D) be the matrix given by (3.12). Then obviouly PA is of μ-normal
type with respect to Dl9 that is,

(3.13) PA = J<"> + (Cy(x, D)), order^Q/x,

By the above observations, we see that the Cauchy problem for two equations

y and PAu = Pf

with the same Cauchy data have the same (unique) formal solution (F). Note that the
equation ^(t~μ)PAu = ̂ (t~μ)Pf is rewritten in a form similar to (3.7),

(3.14) ^(x,

where s& is a square matrix of size \s\ (= | ί | — I μI) and J is an |s\ x |μ\ matrix. Since
PA is of μ-normal type with respect to Dl9 we see that the mapping

is injective at every point/?' with p = (pί9 p'). The surjectivity of is obvious, and hence
J ' , Df) is invertible for any px by Proposition 2.2. Therefore, Jrf(x9 D')e

Proposition 2.3. Now we have the following two equations

(3.16)

These equations determine the same coefficients {ujk(x'); μj<k<tj9 \<j<N} in the
formal solution (F). By choosing / = 0 , we have {^~1i^)\x^pχ = {β-γ^)\x^^ for any
pl9 and hence e β/~ 1 ^ = j ? " 1 J . Therefore,

for any feΘN

p and any px. This implies j/"1Jίf(s) = jJr"1Jί?(f"' ι)P, i.e.,
&{t~μ)P. We take an TVx | j | matrix 0t such that
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This proves P(x, D)eGLN(@(Ω)\ since P(x,D) has a left inverse

eMN{β(Ω)). q.e.d.

PROOF OF THEOREM 3.1. As mentioned at the beginning, we only prove the

necessity. We assume Ω = Ω1xΩ' (ΩtczCXί9 Ω ' c Q Γ 1 ) without loss of generality.

From the above proposition, it is sufficient to show that | μ | = order^^ ( = 11 \ — \ s |) and

s/(x, D')e GL\S\{3>{Ω)). For that puφose it suffices to show the bijectivity of the mapping

(3.9) for any fixed pίeΩ1 by Propositions 2.2 and 2.3. We have only to prove the

injectivity by Lemma 3.2.

Let {ujk(x'); μj<k<tp \<j<N} be the coefficients of the formal solution (F),

which are determined by the equation (3.7). Then by induction on k, {ujtj+k{x')\ 1 <j<N)

(& = 0, 1, 2, ) are determined uniquely by the relations

since A0(x,D')eGLN(9(Ω)) implies A0(pu x\ D')eGLN(β(Ω')). Therefore the unique

existence of the formal solution (F) assures the injectivity of the mapping (3.9).

The uniqueness of the reduction of A(x, D) to a μ-normal matrix with respect to

Dx is proved by the same reasoning as that for s^~1^{s) = ̂ f~x^{t~μ)P in the proof of

the above proposition. q.e.d.

4. Proof of Theorems 1 and 2. Theorem 1 is an immediate consequence of the

following lemma and Theorem 3.1, since orderDlv4 = orderzy4 in this case.

LEMMA 4.1. Let A(x, D) be as in Theorem 1. Then the Cauchy problem (A, μ) is

well posed in a neighbourhood of p only if the Cauchy problem (A, μ)q has a unique formal

solution (F) at every point q in a neighbourhood of p. The converse is also true.

PROOF. Let A(x, D) = {A^. We take a system of integers {s(, t}) such that

(4.1) orderDv4y < tj — s{ and orderD^4 = 11 \ — \ s \ .

We put

j

= (aij0(x))iJ=ί>2t...>N,

where order aijk<k by (4.1). Then the hyperplane J C 1 = / ? 1 is not characteristic at

p = (Pi,pf) for A if and only if det A0(p) Φ0. Since A0(x) is invertible in a neighbourhood

of /?, orderDl^4 = όrderDv4 in this case. By the above choice of { sί5/,-}, the equation

A(s)Au = Δ(s)f (Si>0, \<i<N) is rewritten in the form



CAUCHY PROBLEM 241

(4.2) A0

where order^C^ < (,- and order^C^/, . This is a usual system of Cauchy-Kowalevski
type, since A0(x) is invertible in a neighbourhood of p. Every formal solution (F) of
the Cauchy problem (A, μ)q is also a formal solution of (4.2). Hence it always converges
when q varies in a neighbourhood of/?. q.e.d.

PROOF OF THEOREM 2. We divide the proof into Steps (1) through (6) under the
assumption that the Cauchy problem {A, μ) is well posed in Ω.

(1) I μ μ o r d e r ^ ^ D ) .
Indeed, Lemma 3.2 asserts | μ \ < orderDl^4. Therefore, the assumption | μ | = orderD^4

(>orderDlv4) proves the equality.
Hence the matrix «s/(x, D') defined by (3.7) is a square matrix of size | s | ( = 11 \ — \ μ |).

By (1), we can take a system of integers {si9 tj} as in (4.1). Then we have

(4.3)
U ^ ( / Z ) / ) # 0 for any px€Ωl9

by Lemma 3.2, where it is assumed that Ω = Ωίx Ω'.
(2) d e t ^ o W # 0 i n Ω .
Indeed, if det^40(x) = 0, then we can take a non zero left null vector

g(x) = (^l9 , ̂ ) e ^ \ { 0 } of A0(x), that is, q(x)Ao(x) = 0. Without loss of generality,
we may assume that sί<s2<" ' <sN and q^xjφO. We define a matrix Q(x, Dx) by

0 1 0 0
0 0 1. O O

v o o Ί

Then Q(x, Dx) is invertible at a point where qί φθ. By this construction of Q(x, Dx), we
easily see that

oτdcvDίQA < orderDl^4 = | μ \ .

Since the Cauchy problem (QA, μ)r is well posed at a point r where Q e GLN(β^), the
above inequality is a contradiction.

(3) detσ,j/(pux',D') = 0Lpι(x') (#0) for such px that det^ o(p)#0, where

P = (PuPΎ
Indeed, since the hyperplane xx =px is not characteristic for A(x, D) at such a point

p and the Cauchy problem (A, μ) is well posed in Ω, the mapping

is bijective at every point q' in a neighbourhood of/?'. Therefore by Proposition 2.2,
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we see that detσ.s/(pl9 x'9 D') = otPί(x') and it does not vanish in a neighbourhood of/?'.
(4) detσ^(x, D') = (x(x)φO and α(/?1? x')φθ for any p^Ω^
Indded, if detσj/ = 0, then detσ.s/(pl9 xf, D') = 0 for any px eΩx by Lemma 2.4, (i),

which contradicts (4.3). Moreover, Lemma 2.4, (ii) and 3) imply that detffts/ = a(x)#0.
Next, by (4.3) and Lemma 2.4, (iii) we get α(/?l9 Λ: ' )#0 f°Γ a n v Pi^Ωv Indeed, if
α(Pi» xf) = 0 for some pί9 then

O = orderσjtf>oτdeτσ,stf(pu xr

9 D'),

that is, dttσ.s/(pu x\ D') = 0, which contradicts (4.3).
(5) α(x)/0inΩ.
Indeed, if α(p) = 0 at some p = {pl9p

f), then s/(pl9 x'9 D') has an inverse matrix
s/~1=Λ(x'9D') with singular coefficients at p'. Therefore the mapping (3.9) is not
surjective. Indeed, the equation srf(pu x'9 D')U{x') = F{x')eΘp^ has no solutions in Θp

sϊ
for such F{xf) that 0&(x\ D')F(x') is singular at pr.

(6) det AQ(x)Φΰ in Ω. Therefore the initial hyperplane xί =px is not characteristic
for A(x, D) at every point p = (p1,p')eΩ.

Indeed, note that 5) shows s/(pu xf, Df)eGL\s\(@(Ω')) for any pί9 and hence the
mapping (3.9) is bijective at every point p'eΩ'. Therefore the well posedness of the
Cauchy problem (A9 μ) in Ω implies that the mapping

A0(pux'):ΘN

p, >0£

is surjective at every pointp' e Ωr for any px eΩu which implies immediately det A0(x) #0
in Ω.

Thus we have proved Theorem 2.

The proof of Lemma 4.1 implies immediately the following:

PROPOSITION 4.2. Let A(x, D) be as in Theorem 1. Then the Cauchy problem {A, μ)p

is well posed if and only if the mapping (3.9) is bijective. In this case we have \μ\=m.

PROOF. We prove only the fact \μ\ = m. We already know the inequality \μ\<m
by Lemma 3.2. If \μ\<m9 then <$/(pu x\ Dr) is an | s | x ( | / | — |μ|) matrix with
| s | < | ί | — |μ|. By the Ore property of 2fp> there exists a right null vector
R ( x ' , D ' ) e ^ ' " | μ l \ { 0 } of s/(pl9 x', D'\ that is, s/(pί9 x\ D')R = 0. Hence by a choice
off(x') e Θp, such that Rf φ 0, we obtain a contradiction to the injectivity of the mapping
(3.9). q.e.d.

As mentioned in the Introduction, we give here examples which show that the well
posedness of (A, μ)p does not imply the well posedness of (A, μ) in a neighbourhood of/?.

EXAMPLE 4.3. Let n = 2 and consider

(4.4) A(x9D) = (
\b(x, D2)
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where a and b are differential operators with holomorphic coefficients in a neighbourhood

of the origin O of C 2 . Obviously, A is non degenerate of orderD^4 = 2 and xί =pt is not

characteristic for any px. We consider the Cauchy problem (A, μo)p with μo = (2, 0). In

this case, we can take {si9 /,} in (3.2) by

^ = 2 , s 2 = l , ί 1 = 3 , t2 = 2.

Then we have

1

where [Dl9 a] = D1a-aD1 is the commutator of Dt and a. It is easily seen that

det σ j^= — σ(α)(x, ξ2), where σ(a) denotes the principal symbol of a. Therefore,

s/eGL3(<2)o) if and only if a = a(x)φθ in a neighbourhood of the origin, and in this

case the Cauchy problem (A, μ0) is well posed in a neighbourhood of the origin. Let

us consider the Cauchy problem (A, μo)p at a fixed point p = (Pι,p2). Note that the

bijectivity of the mapping (3.9) is equivalent to the bijectivity of the mapping

(4.5) a(Pl,x29D2):ΘP2 >ΘP2.

Hence, the Cauchy problem (A, μo)p is well posed if and only if the mapping (4.5) is

bijective by the above proposition. Now we consider the following three cases of operator

a, in each of which the Cauchy problem (A, μ0)o is well posed.

(1) a = x1D2+ 1: In this case, the Cauchy problem (A, μo)p is well posed if and

only if pγ = 0, and when px ΦQ the Cauchy problem has infinitely many solutions. It is

obvious.

(2) a = x2D2 + 1: In this case, (A, μo)p is well posed if and only if p2 = 0, and when

p2 φ 0 the Cauchy problem has infinitely many solutions. Note that the bijectivity of

the mapping (4.5) at p2 = 0 is obvious, since x2 = 0 is a regular singular point of a as

an ordinary differential operator.

(3) a = xlDl — D2 + \: In this case, the Cauchy problem (A, μo)p is well posed if

and only if/?2 = 0, and when/? 2 #0 the Cauchy problem has infinitely many solutions.

Since the operator a has an irregular singular point x2 = 0, the situation is more

complicated than Case 2. We denote by Θo the set of formal power series of x2. By

Malgrange [11], for the mappings

n - (Q v (Q n (Q • ίθ
U . \JQ *• \JQ , U . \JQ + UQ ,

have indices

χ(a; Θo): = dim c Ker a — codimc Imα = 0 (Ker a = {0}),

χ(a;Θo)=\ (Kerα^Q.
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Therefore, they are surjective. These observations prove that the Cauchy problem
(A, μo)p with p2 = 0 has infinitely many formal power series solution u(x) =
Σk = ouk(x2)(xi-Pι)k/kl with uk(x2)e$l, but has a unique holomorphic solution.

5. Equivalent extension of matrices. Let Q)u(Ω) denote the set of linear partial
differential operators with meromorphic coefficients in Ω. The following proposition is
useful in proving Theorem 3.

PROPOSITION 5.1. Let A(x, D)e MN(@(Ω)) and assume that the Cauchy problem
(A, μ)p has a unique formal solution (F) at every point peΩ. IfP{x, D) e GLN(@)M(Ω)) and
PA is of μ-normal type with respect to Du then P(x, D)eGLN(@(Ω)).

PROOF. Let Z be the analytic set where the singularities of the coefficients of P
are located. We first consider the case PAeMN(@p) (peZ). In this case, we choose
f(x)eΘp so that Pfis singular at/?, or more precisely, so that P/does not have formal
series expansion as (F). Then the Cauchy problem (A, μ)p for the equation Au = f has
no formal solutions (F), since PAeM^(βp). Next, we consider the case where PA has
singular coefficients at peZ. In this case, we consider the Cauchy problem {A, μ)p for
the homogeneous equation,

(0<k<μpl<j<N).

Then the coefficients {ujk(x')\ k>μp 1 <j<N} in the formal solution (F) are obtained
uniquely from the equation PAu = 0 by induction on k (>μ, ). Since PA is of μ-normal
type with respect to Du we may assume PA to be written in the form

P^ = /)1/M-B(x, D), B(x, D')eMJβM{Ω)),

where m = \μ\.
We consider the case where Zφ{x1=p1}. We set

and put A:0 = min {k; Bk has singular coefficients at p'}. Then by choosing the Cauchy
datum wo(x') = K fc(^/))o<fc<MJ,i<J<N so that Bko(x',D')wo(xr) is singular at />', we see
that the Cauchy problem (A, μ)p has no formal solutions (F), a contradiction. Hence
we may assume that Za{χ1=pί} and that B(x, D') has holomorphic coefficients at
xt φpγ in a neighbourhood of p. Therefore we can write

B(x,D')= Σ {x.-p.fB^x^D')
k=-t

for some / (>1) with B_tΦQ. Hence by choosing the Cauchy datum H>0(X') SO that
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B_ιwo(xf)φ0, we see that the Cauchy problem (A, μ)p has no formal solutions (F), a

contradiction. Thus we have proved P(x, D) e MΉ(Q)(Ω)) n GLN(@M(Ω)). In order to prove

P~1 e MN(^(Ω)), we note that the Cauchy problem (PA, μ)p has a unique formal solution

(F) at every point peΩ. Hence P'1 eMN(@(Ω)) in the same way as that for the first

case. q.e.d.

DEFINITION 5.2. Let B(x,D)eMι(9M(Ω)). Then a matrix C ( x , D ) e M ^ M ( Ω ) ) u

Mx + x(βM(Ω^) is called an equivalent extension of B(x, D) if with some R e SLt(@M(Ω))

(5.2) C(x, D)

or

(5.3)
C(x,D) =

RB

\ * *

0 ^

0

1 J

Moreover, £ ( x , D ) e M / + k ( \ ( Ω ) ) (fc>0) is said to be equivalent to B(x, D) if £ is

obtained by repeated use of equivalent extensions from B.

Here SLt(βM(Ω)) denotes the set of unimodular matrices, that is, it is the subset

of GL f(^M(i2)) which is generated by matrices of the form /, + αθy (*,; = 1, •••,/, iΦj,

ae&M(Ω)), where Θij = (δik'δrj)kr=lf...tl. It is obvious that detσJ? = det σ £ for equivalent

maryices B and E, since detσi£= 1 for any ReSL^^Ω)).

Let E(x,D)eMN+ι(@M(Ω)) (/>0) be equivalent to A(x,D)eMN(@(Ω)). If the

Cauchy problem (A, μ)p is well posed or has a unique formal solution (F) at every point

p G Ω, then the Cauchy problem (E, μ)p is well posed or has a unique formal solution

(F) at a generic point peΩ, where β = (μ1, * *, μN, 0, , 0) an (7V+/)-ple of integers.

PROPOSITION 5.3. Assume n<2. Then for any matrix A(x,D)eMN(@M(Ω)) with

dQtσAφ0, there exists a non degenerate matrix E(x, D)eMN+ι(@M(Ω)) (/>0) equivalent

to A(x, D). In the case n=\, we can take 1=0.

PROPOSITION 5.4. Assume n<2. Then A(x,D)eGLN(@M(Ω)) if and only if

in Ω.

To prove above propositions, it is sufficient to consider the case of degenerate

matix A, that is,

(5.4) orderD,4(x, D) > orderσ,4(x, D).

Let A(x, D) = (Aij) and take a system of integers {st, t3) such that

(5.5) order^Λ y < t3 — st, orderD^4 = | f | — | j | .
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Let aijO(x,D) be the homogeneous part of order tj—Si of Aip and put

(5.6) A0(x,D) = (aij0(x,D)).

Then (5.4) is equivalent to

(5.7) detAo(x,ξ) = 0.

The following lemma due to Sadamatsu is important in our argument.

LEMMA 5.5. (cf. [17, Prop. 2]). Assume n = 2. If the condition (5.7) is satisfied,

then there is a matrix B(x, D)eMN+ι(<3M(Ω)) (/>0) equivalent to A(x, D) such that

order^Λl < orderDl? < orderDΛ .

Proposition 5.3 is an immediate consequence of this lemma. Since the "only if"

part of Proposition 5.4 is trivial, we have to prove the "if" part. We first note that the

assumption dQtσA = a(x)ψ0 implies that A has an inverse matrix A'1 of partial

differential operators with singular coefficients in Ω. Hence we have to show

A ~ * G MN(βM(Ω)). For that purpose we use the following:

LEMMA 5.6. Let E(x,D)eMN+ι(@M(Ω)) be equivalent to A(x,D). If there exists

Q(x, D)eGLN+ι(βM{Ω)) such that QE is of μ-normal type with respect to Du then there

exists P(x, D)eGLN(&M(Ω)) such that PA is of μ-normal type with respect to Dί.

PROOF. It is sufficient to prove our lemma in the case where E is an equivalent

extension of A. When E= RA with R e SLN(@M(Ω)), there is nothing to prove. Otherwise,

since QE is of (μl9 , μN, 0)-normal type with respect to Du it is written as

N

N

QE=
Qu

. 021

Q 1 2

Q?,7.

RA

, * •*• *

0 N

0

1 J
=

B

* *

0 ^

0

1

where *eΘM(Ω), RGSLN(@M(Ω)) and B is of μ-normal type with respect to Dx. By

the above expression, we have β 1 2

 = t(0, 0) and β 2 2 = l. Therefore, P=Q11Re

GLN(@M(Ω)) and PA = B. qe.d.

THE PROOF OF PROPOSITION 5.4 CONTINUED. Let B(x, D) = (Btj) eMN+ι (@M(Ω)) be

a non degenerate matrix equivalent to A(x, D). Hence 0 = orderσ Jβ=orderD^=orderσv4.

We may assume Bjj = Bjj{x)φO (/= 1,2, -,N+l) by a suitable change of rows and

columns, respectively. Therefore, for any 1 ̂ i 1 < ι 2 < * ' <ik<N+l (\<k<N+l) it

holds that

k

Σ orderDBijiσU) < 0 for any σ € S k .
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Then by Volevic's lemma (cf. [12], [20]), there exists a system of integers {tj}*=l such that

order D £ l 7 < tj- tt (i,j= 1, 2, , N+1).

Without loss of generality we may assume tί < t2 < * * < tN+i. Hence B(x, D) is written

in the form

B(x, D) = triang{C11(x), , Crr(x)} ,

i.e., B is a blockwise triagular matrix with the>th diagonal block Cj/x) of square matrix

with entries of meromorphic functions in Ω. Since ± det, A = detσ B = \\r

j= χdet Cj3{x)ψ 0,

each Cjj{x) has an inverse matrix CJ^ ί(x) with meromorphic functions as entries. This

implies B(x<D)eGLN+ι(@M(Ω)). Since B~1B=IN+ι is nothing but a (0, , 0)-normal

matrix with respect to Dl9 we have A(x, D)eGLN(@M(Ω)) by Lemma 5.6. q.e.d.

6 Proof of Theorem 3. Throughout this section, it is always assumed that n = 2.

By using the results in the previous section, we prove Theorem 3 by reducing the Cauchy

problem (A, μ)p to (E, μ)pfoτ a matrix £(x, D)eMN+ι(@M(Ω)) equivalent to A(x, D) to

which Theorem 3.1 or Proposition 3.3 is applicable.

Since the necessity of Theorem 3 is obvious, we prove the sufficiency. Hence, in

what follows, we assume that the Cauchy problem (A, μ)p has a unique formal solution

(F) at every point p e Ω.

Recall the matrices A0(x9 D2) and J/(X, D2) defined by (3.3) and (3.7), respectively.

By Lemma 3.2 we have

(6.1)

(6.2) rank^(p 1 ? A: 2 ,/) 2 ) = |^ | for any p1 (p = (pi,p2)eΩ).

By the definition of orderD l^, it always holds that orderDy40>0.

LEMMA 6.1. Assume that the Cauchy problem {A, μ)p has a unique formal solution

(F) at every point peΩ\Z, where Z is an analytic set. Then we have:

(i) If \μ\ = order D l ^ and o r d e r ^ > 1, then detσv40 = 0.

(ii) If I μ I < orderDly4, then άtίσA0 = 0.

PROOF, (i) The condition | μ | = orderDlv4 implies that stf is a square matrix of

size \s\. Suppose d e t σ ^ o # 0 . We put detσ<*/ = oc(x)ξ2 (α(x)#0, m>\) and put

detσAo = a(x)ξι

2(a(x)ψ0J>0). Take a point p = (pup2)eΩ\Z such that α(p)^0 and
a{p)Φ0. Then by Lemma 2.4 we have detσ2s/(pl9 x2, D2) = 0L{pux2)ξ^ and

detσ 2i40(Pi5

 xi> Di) = a{Pu ^2)^2- Therefore, by a result of the author [14, Th. 5], for
the mappings

(6.3)

(6.4) A0(pl9x29D2)\G»P2
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we have dimcKer s/ = m (>1), codimc Im si = 0 and (6.4) is surjective. These imply

that the Cauchy problem (A, μ)p has infinitely many formal solution (F), a contradiction.

(ii) Suppose detσ^40 ψ 0. Hence we may assume that the mapping (6.4) is surjective

at a generic point/? e Ω. Note that s/(x, D2) is an | s | x (| /1 — | μ |) matrix with | s \ < \ t | — |μ |.

By the assumption (6.2) we can conclude that the mapping (6.3) is surjective and

dim c Ker si = oo at a generic point/? e Ω. Indeed, put si = (α, /x, D2)) a n d assume that

d e t ^ / P i , x29 D2))iJ=u...Aslψ0

without loss of generality. Then by Proposition 5.3 there exists P(x2, D2) e GL\s^βM(Ω2))

such that

is a non degenerate matrix, where it is assumed that Ω = Ω 1 x Ω 2 . This observation

leads us to the assertion. Hence we obtain a contradiction as in (i). q.e.d.

LEMMA 6.2. Assume de t σ ^ o = 0 and put orderD^40 = « > 0 . Then there is a matrix

E(x, D) equivalent to A(x, D) such that:

(i) If « > 0 , then either orderDl£
I<orderz>l^4 or

orderD l^=order I ) l^4 and orderDE0<n

holds, where E0(x, D2) is defined similarly to A0(x, D).

(ii) If n = 0, then order1)lJ£
l<order i ) ly4.

PROOF, (i) We put « i j =orderDα i j Ό(x, D2), where A0(x,D2) = (aij0). We take a

system of integers {ph q^\ such that

(6.5) "ij^qj-Pi and n = \q\-\p\.

We denote by άij0{x, ξ2) the principal symbol of aij0 of order q}-ph and put

The assumption detσ^40 = 0 implies

det(άijO(x,ξ2)) = 0 and deti(x,£) = 0.

Let /(x, ξ2) = (li, ", IN) be a non zero left null vector of (άij0(x, ξ2)), where /f(x, ξ2) are

monomials in ξ2 with meromorphic coefficients. We can take it so that at least one of

lι is a non zero function of x. By a suitable change of rows, we may assume

sί>s2> - - >sN. Then

r ( Ύ PΛ — (I PSί-sjsr . . . / Z s N - i - s N i \

is a left null vector of A(x, ξ). We set

(6.6) /o = max{/;/ί = / ί(x)#0}.

We may assume / i o = l , since we consider the problem in the category of ®M(Ω).
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We first consider the case where io = max{ί; / f #0}. Let us define a lower triangular

matrix R(x, ξ), which is different from the identity matrix only the zo-th row, by

(6.7) R(x,ξ) =

1
0 1

1

. . . J 0

1

0

0

0

0
1 J

where the /0-th row is given by

( • • • • 1 0 - o ) = ( / 1 £ r « o , - Λ - i Ή 0 - 1 " ' 1 0 * 1 > Q > " * ' ° )

In our case, this is also a left null vector of A(x9 ξ). Since R(x, D) e SLN(βM(Ω)) and

orderD l,4>orderD liL4, RA is the desired equivalent extension of A.

Next, we consider the other case, i.e., io<max{i; ^ # 0 } . By the definitions of r(x, ξ)

and R(x, ξ), we have

(6.8) r(x, ξ)R-\x9 ξ) = (0, , 0, ξ ? o " ^

We put R(x, ξ)A{x, ξ) = (άiJ{xi ξ)). Then we have

J J ^2)ίV"Si° 0 = 1, 2, -, N) ,

where degξ2Z>ίoJ = ̂  -/? i o or - oo, and (Z>ίox, , bioN) φ 0, because the vector

(* 1 0 0) in the definition of R{x9 ξ) is not a left null vector of A(x9 ξ). Note that

r(x, ξ)R~\x, ξ) is a left null vector of R(x, ξ)A{x, ξ).

In the following, it suffices to consider the case where

orderDlR(x, D)A(x, D) = orderDlA(x, D) and

orderD(iL4)0(x, Z)2) = orderD^0(x, D2).

Since /t(x, ξ2) (i>io) has the factor ξ2, we see that bioJ(x9 ξ2) (j'= 1, —

the factor £ 2 (see (6.8)). Therefore, άioj is written as

-9N) also has

We define an equivalent extension B(x, D) of Afc D) by

0 ϊ
R(x, D)A(x,,

ό
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where
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••••) = (ciol{x, D2)D*rs% , cioN(x, DJDψ-^o) .

N+\

C(x,D) =

0
0 -D2 B(x,D) G MN+ί(@M(Ω)).0 1 0

1

0
Then it is easy to check that order D l C=order D l Λ. By taking a system of integers

{s'h t'j}ιj-i,-,N+i defined by

we easily see that orderDC0(x, D2) = orderD^0(Λ:, D2). More precisely, by taking a system

of integers {p[, q)} defined by

we see that

Pι=Pi> 4j = 4j (iJ=h -',

q'N+! =p'io + 1 , where p'io is given suitably,

0

0

where

Therefore, det (?(x, ξ) = 0 and the left null vector of C(x, ξ) is given by
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i I l

(o o ίo+1 ^ o + i - 5 * . . . N p S i o ~ s * \

Hence, by repeating these operations, we finally obtain a matrix equivalent to A(x, D)

to which the first case is applicable.

(ii) It is obvious, since in this case order D l £= orderly! and orderDis0<0 does

not occur (see the remark stated before Lemma 6.1). q.e.d.

PROOF OF THEOREM 3. If the Cauchy problem {A, μ)p has a unique formal solution

(F) at every point peΩ, then by repeated use of Lemmas 6.1 and 6.2, we finally obtain

an equivalent matrix £(x, D) to which Theorem 3.1 or Proposition 3.3 is applicable

in the category of ΘM(Ω). Hence by the results in Section 5, we see that A is reducible

to a μ-normal matrix in the category of ^(Ω), which proves the sufficiency. The necessity

is obvious. q.e.d.

7. Proof of Theorem 4. Thruoghout this section, we assume n = 2. By Theorem

3 it suffices to prove the theorem for a μ-normal matrix A(x, D), that is,

(7.1)

Without loss of generality, we may assume μ, > 1 (j=l, — -,N) and introduce an

unknown function U(x) by

(7.2) U(x) = \uu , D^'xul9 '-,uN9 ΊD*?-1^) .

For simplicity, we restrict ourselves to the case N=2. It is obvious that the Cauchy

problem (A, μ) is well posed in Ω if and only if the following Cauchy problem is well

posed in Ω:

where m = \μ\ and
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/ 0 - 1

B(x,D2) = flllμ

0 - 1

• a111

0

0

lί2μ2

0 - 1

0 - 1

LEMMA 7.1. detσ̂ 4 = det(TL.

PROOF. Note that the determinant is invariant by operating unimodular matrices
( G SLJiβ{Ω))) from the left or right to L(x, D). We have the following sequence of
matrices by operating unimodular matrices from the left or right:

/ 0 - 1

0 - 1

0

\A 21

0

A12 *

0 - 1

A22 *
0 - 1

* /
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/ 0 -1

A,* 0

\A2ί 0

0 - 1
.... o

0

0

Aί2 0

0 - 1

A22 0

0 - 1

o /

1 .

0

0

0

1

• 0

0

A2λ

0

1

0

0

0

Ί
0

12

0

^ 2 2

n .

0

0

0

• l

0

A(x, D) ,

q.e.d.

We now recall a terminology used in Mizohata [15] or [12]. We set B(x9 D2) = (Bij).
Then the matrix L = D1Im-\-B(x, D2) is said to be Kowalevskian in Volevic's sense if there
is a system of integers {(, }7=i s u c h that

(7.4) o r d e r ^ </,— /;+ 1 , ij= 1, • , m .

In this case the matrix L(x, D) is non degenerate and the hyperplane xx =px is not
characteristic for L(x, D) at every point p e Ω. Precisely, detσL is equal to the
homogeneous part of degree m in ξ of det L(x, ξ), and has the form

(7.5)
7 = 0

with / 0 = l .

The following theorem by the author is fundamental.
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THEOREM 7.2 (cf. [12, Th. 2]). The Cauchy problem (7.3) is well posed in Ω if and

only if there exists P(x, D2)eGLN(@M(Ω)) such that P~1LP is Kowalevskian in Volevic's

sense.

PROOF OF THEOREM 4. The "only if" part is obvious by the above theorem and

Lemma 7.1. Indeed, in the above theorem detσL = det< τ i
)" 1LP. Let us prove the "if"

part of the theorem. Let £ ( X , D ) G M M + I ( @ M ( Ω ) ) be a non degenerate matrix equiva-

lent to A(x, D). Then the hyperplane xγ =px is not characteristic at a generic point

P = {ViiPi)e&' At such a point, the unique existence of the formal solution (F) of the

Cauchy problem (A, μ)p implies the unique existence of the formal solution (F) of the

Cauchy problem (E, μ)p. Moreover, the formal solution (F) always converges by Lemma

4.1. Therefore the Cauchy problem (A, μ)p is well posed at a generic point peΩ. This

observation concludes that the Cauchy problem (A, μ) is well posed in Ω (see the proof

of Theorem 7.2 in [12, Section 3]). q.e.d.

A N ALTERNATIVE PROOF OF THE SUFFICIENCY. We first note that the proof below

does not depend on the dimension n. We shall prove the well posedness of the Cauchy

problem (7.3) instead of the Cauchy problem (A, μ). Let SOί be a system in the sense of

Kasiwara [8], [9] defined by

(7.6) m=g>m/@mL,

where & denote the sheaf of a linear partial differential opertors with holomorphic

coefficients on Ω. We denote by Ch(9W) the characteristic variety of 9W, i.e.,

Ch(SR) = {(*, ξ) e Γ*Ω; (detσL)(x, ξ) = 0} ,

(see Andronikov [3], [4]). By the assumption of the sufficiency, the hyperplane xί =p1

is not characteristic for SPΪ at every point p = (pup')eΩ. Let Y be a hyperplane

in Ω defined by xx =/?1? and

Then the system SSRy on Y induced by 90Ϊ is given by

m

(7.7) yJlγ: = Θγ®f-iφf'1^^: © 2Y(\®e^,

where Θγ (resp. Θγ) denotes the sheaf of holomorphic functions (resp. linear partial

I
differential operators with holomorphic conefficients) on Y, and {^ = (0, ,0, 1,0,

• *, 0)} JL! are the usual generator of SER. Note that the last isomorphism follows from

the fact that L is of (1, , l)-normal matrix with respect to D1.

The Cauchy-Kowalevski-Kashiwara theorem (cf. [8], [9], [19]) implies the following

isomorphisms of sheaves:
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(7.8)

(7.9) | r

(see [4]). <£W (̂50l, 0 ) | y = O means that the equation

L(x,D)U(x) = F(x)eΘΐ (peY)

has always solutions U(x)e(9™ for any F(x), since det^L^O, (see [4]). Since

JfomgφR, Θ)^{U(x)eΘm; LU=0} ,

the first isomorphism in (7.8) is given by

{U(x)sΘm; LU=

by (7.7), which gives a correspondence between the solution of the homogeneous equation
and its Cauchy data. q.e.d.

REMARK 7.3. When n = 2, the results corresponding to those in Theorems 1 and
2 hold without the non degeneracy assumption on the matrix A(x, D).

(1) In Theorem 1, the assumptions imposed on A(x, D) should be replaced by

σ^)( p, (1,0)) φ 0 and orderσΛ = m.
(2) In Theorem 2, the assumption imposed on A(x, D) should be replaced by

These can be proved in the same way as Theorems 3 and 4. We have only to note
that Proposition 5.1 holds if we replace the assumption of the unique existence of
formal solution (F) by the well posedness of the Cauchy problem {A, μ) in Ω, too.

Appendix. Proof of Lemma 2.4. In order to prove Lemma 2.4, we need to employ
the determinant theory in the category of microdifferential operators as in [3], [4] and [18].

Let Ω = Ωγ x Ω' as in the lemma and let C/c T*Ω be an open set. Let $\U) be the
set of microdifferential operators not depending on D1 defined in U. Then Lemma 2.4
is a special case of the following:

PROPOSITION A.I. Let A{x, D') = (Ay)eMN(g'(U)) and put detσΛ = a(x, ξ')
(eΘ(U)). Then we have:

(i) If a = 0, then detσ,A(pl9 xf, D') = 0 for any pxeΩv

(ii) If a(pu x', <T)#0, then detσΛ(P l, x', D')^a(pu x\ ξ%
(iii) If aφQ and a(pu x\ ξf) = 0, then

order^ >oτάeτσ.A(pl9 x\ D').

PROOF. Note first that it suffices to prove the assertions outside analytic sets.
Therefore we ignore these sets and we take a point px as px =0 in the following.

The assertions are obvious when N=\. In general, we define an integer rtj for
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σiAtJ)(x9 ξ') = xψgij(x, ξ'), ^ U = o#0 ,

and put r = min {ro; i,j= 1, '—,N9 Ai}φύ] and denote it by r = r(A). We may assume
r11=r(A) without loss of generality.

When-rn—0, Aίί(x, D') is invertible as a microdifferential operator at a generic
point in Un{x1=0}9 and hence we may regard A1X as invertible in S"(U). Obviously,
Aϊi does not depend on Dί. For i,j=2, , N, let

(x9 Df),

Then we have

1 0

P2 1

KPN

, D')= -An(x, Dr)

0 1 .

0 0 ^

B(x,D')

with Bix^
Let us consider the case r(A)>0. By Spath-Weierstrass' division theorem (see, for

example, [19, Th. 2.2.1]), we have for z,y = 2, , N

r - l

An = - , D') , Rt= £ Rik(x', D')x\ ,

Then we

/ 1

B2

have

0

1.

0

• ON

0 A

Λ

0

c 2

1

r - l

k = 0
Sk&', D')x\ .

R2

RN

$2 ' ' ' &N

= B(x,D').

In the above transformation of matrices, it holds that r{A)>r(B), detσA = detσi? and
detσ^(0, x\ D/) = deVB(O, x',D') By repeating the above transformations, we finally
obtain matrices P(x, D') and Q(x, Dr) in SLN(S\U)) such that

, , Tk, 0, , 0} , Γ/x, Df
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for some k (1 <k<N). By this construction of P and Q, we have
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and P(0, x', D') and β(0, x', Df) belong to SL^W)), where U'aT*Ω'.

detσA = 0 is equivalent to k<N, which implies (i). When k = N,we have

= Π <KΓ,) and detσΛ(0, x', D') = Π σ'(Γ/0, x\ /)')),

which proves (ii) and (iii). q.e.d.

DIRECT PROOF OF LEMMA 2.4 FOR « = 2. In this case we can prove the lemma

without using microdifferential operators. Let Ω = ΩxxΩ2 (i^.cC.^, ι '=l,2) and

i4(x,D2) = (AiJ)eMN(@(Ω)). If >l(x,D2) is non degenerate or orderD^4= — oo, our

assertions are obvious. Otherwise, set wfJ = o r d e r l y and orderD^4=m > 0. Take a system

of integers {si9 tj} so that

iij^tj—Si a n d m = \t\ — \s\.

We put

and
fc = O

Then A(x, D2) is degenerate if and only if det Ao(x) = 0. Let /(x) = (/1(x), , l^x)) be a

non zero left null vector of A0(x) with holomorphic entries in a neighbourhood of the

origin, where it is assumed that OeΩ. We define an integer rf for / ^ O by

x?ftx), ζ(0,x2)#0,

and put r = min{rf; i— 1, , iV, /, # 0 } . Let ̂  0 = r. Then

f

also is a left null vector of A0(x) and its entries are meromorphic functions. By the

above construction, 1^(0, x2) (/=1, ''',N) are also meromorphic functions in x2-

Without loss of generality we may assume sί>s2>- - - >sN. We define a matrix P(x, D2)

by

r l

P(x,D2)= io

0
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Then

detσP=ξ^-Ns», orderDPA<orderDA + (\s\-NsN)-l ,

detσv4 = detσPA -ξψN ~'s' and

det.2Λ(O, x2, Z)2) = detff2(PA)(0, x29 D2) ξN

2

s«~^ .

Therefore, when detσAψ0, by continuing the above operations, we can reduce the

problem to the non degenerate case. We have only to note that, when detσA = 0, we

stop the above operations in at most m +1 times (m = orderDA). q.e.d.
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