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BUBBLING OUT OF EINSTEIN MANIFOLDS

SfflGETOSHI BANDO

(Received March 4, 1989)

In [1], [8], and [4] the following compactness theorem of the space of Einstein

metrics is obtained in the spirit of Gromov theory.

THEOREM A. Let (Xh g() be a sequence of n-dimensional (n>4) smooth manifolds

and Einstein metrics on them with uniformly bounded Einstein constants {ej satisfying

, v o l ^ , </,.)> F and [ \R9i\
nl2dVi<Rί I*J

for some positive constants D, V and R, where we denote the curvature tensor of a metric

g by Rg. Then there exist a subsequence {j} <= {/'} and a compact Einstein orbifold{X(Xi, g^)

with a finite set of singular points S={xx, x2, * * *, x^czX^ (possibly empty) for which

the following statements hold:

(1) (Xj9 gj) converges to (X^, g^) in the Hausdorff distance.

(2) There exists an into diffeomorphism Fji Xo0\S^Xjfor each] such that Ffgj

converges to g^ in the C°°-topology on Xa0\S.

(3) For every xaeS(a=\,2, , s) andj, there exist xaj e Xj and a positive number

rj such that

(3.a) B(xa p δ) converges to B(xa; δ) in the Hausdorff distance for all δ>0.

(3.b) lim^r-0.

(3.c) ((Xp rj 2gj), xaJ) converges to {(Ma, ha), xaa0) in the pointed Hausdorff distance,

where (Ma, ha) is a complete, non-compact, Ricci-flat, non-flat n-manifold which

is ALE, of order n—\ in general, of order n if(Ma, ha) is Kάhler or n = 4.

(3.d) There exists an into diffeomorphism Gj\ Ma-^Xj such that GJ(rj2g^

converges to ha in the Cx-topology on Ma.

(4) It holds that

lim ί IR9 j\
n'2dVj> f I R 9 M \ n l 2 d V « + Σ ί I*h a\

n l 2dVh a.
j ^ 0 0 JXj JXoo a JMa

Moreover if(Xit gt) are Kάhler, then (X^, g^) and (Ma, ha) are also Kάhler.

Here we call a smooth ^-dimensional complete Riemannian orbifold (X, g)

asymptotically locally Euclidean (ALE, for short) of order τ > 0 , if there exists a compact

subset KczX such that X\K has coordinates at infinity; namely there are R>0,0<α<l,

a finite subgroup Γ<^O(ή) acting freely on Rn\B(0; R), and a C°°-diffeomoφhism
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Jf: X\K-+(Rn\B(0; R))/Γ such that φ = ̂ "ίo proj satisfies (where proj is the natural

projection of Rn to Rn/Γ)

f o r

\z-w\

(For simplicity we assumed that (X, g) has only one end. In our Ricci-flat case this

assumption is satisfied.)

Kronheimer classified all ALE hyper-Kahler surfaces of order 4 in his thesis [6],

and called such manifolds ALE gravitational instantons. In particular, he proved the

following:

THEOREM B. An ALE gravitational ίnstanton is dijfeomorphic to a minimal

resolution ofC2/Γ, where Γ is a finite subgroup of SU(2).

We remark that a simply connected Ricci-flat Kahler surface is hyper-Kahler. Thus

in the case of Einstein-Kahler surfaces we have rather good understanding of the nature

of degeneration. Only missing point is the knowledge on the neck B(xa /, δ)\B(xaJ; r,),

i.e., how an instanton is glued to a singular point on X^. The purpose of this paper is

to clarify the situation, namely, we get the following theorem stated in terms of the

above notation.

THEOREM. Assume that the sequence (Xh gt) consists of Einstein-Kahler surfaces. If

we fix a sufficiently small constant <5>0, then for sufficiently large j, the geodesic ball

B(xa p δ) in Xj is diffeomorphic to a cyclic quotient of an ALE gravitational instanton.

REMARK. In the 4-dimensional case, for a compact Einstein manifold X the

curvature integral J x | R | 2 = const χ(X) is a topological invariant.

The author would like to express his thanks to Professor M. T. Anderson. He got

the idea of the proof in an enlightening discussion with him. He would also like to

thank Professors Furushima and Ohnita for helpful discussions. He would like to

acknowledge his gratitude to Max-Planck-Institut fur Mathematik for hospitality. This

work was done during his stay at MPI.

1. Preparation from analysis. Let M be a complete ^-dimensional (n>3)

Riemannian manifold with a fixed point oeM. For 0 < r 1 < r 2 we denote
β(°l ?2)\1KO1 ri) by D(rl9 r2). We assume that there is a domain D = D(r0, r^) in M

with 0 < r 0 < r o o which satisfies the following conformally invariant conditions:

j \v\ly\ γ<S\ \Vv\2 for all
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vol(Z)(rl9 r 2 ))< Vr\ for all r0 <r x <r2 <r^

with some positive constants S, V and γ = n/(n — 2). Let M be a non-negative function

defined on D which satisfies

Au>—fu on Z>

with a non-negative function / . Then we have the following lemmas. The proofs, which

are essentially the same as those for the corresponding lemmas in [4; §4], are omitted.

LEMMA 1. Suppose feLn/2, and ueLp for some pε[Po,P\\ where p o > l Then

ueLq for all q>p, and there exists ε1 = ε1(5, F,/?o,/?1)>0 such that if

ί
then we have

fnl2 < εx with r0 < r < 8r < r^ ,
D(r,8r)

i f υr>\'1<LCir-2\ u",
UD(2Γ,4Γ) J JD(r,8r)

where Cί = Ci(S, V,po) Moreover ifro = 0 and

ί fn/2<εί with 2 r < r 0 0 ,
B(o;2r)

then it holds that

j ί upλllγ<Cir-
2 ί up.

LEMMA 2. Suppose feLn/2, and ueLp for some pe[po,px] where po>y. Then

there exists ε2 = ε2(S', ^»/?o?/?i)>0 such that if

ID

then it holds that for ro<r1< 2rx <r2< 2r2 < ra

f

\ up<C2\ up,

where C2 = C2(S, V, po\ ε3 = ε3(S, V, p0) > 0.

LEMMA 3. If feLq for some q>n/2, ueLp for some p>\, and if
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IJD(r,8r)

with some constant A for any r such that r 0 < r < 8 r < r 0 0 , then we have

sup up<C3r~
D(2rAr) JD(r,8r)

where C3 = C3(A, S, V,p, q). Moreover ifro = 0 and

ί)B(o,2r)

then

sup up<C3r~
B(o;r)

1 ί UP .
JB(o;2r)

Let (M, g) be an w-dimensinal Einstein manifold. Then applying the Weitzenbόck
formula we get

Moreover, we have the following inequality using Yau's trick. For the proof see [2],
[4] and [9].

LEMMA 4. There exist positive constants δ = δ(ή) and C5 = C5(ή) such that

A\R\ι-δ>-C5\R\2-δ.

If n — 4 or if(M, g) is Kάhler, then we can take <5 = 4/(« + 2).

One can show the following lemma via ZΛHodge theory.

LEMMA 5. Let (X, g) be an n-dimensional (n > 4), complete, non-compact, Ricci-flat,
ALE orbifold. Then its first cohomology group H1(X; R) vanishes.

Here we recall the existence theorem of Ricci-flat Kahler metrics on open Kahler
orbifolds in [3], which is stated in the case of manifolds but whose proof works equally
for orbifolds.

DEFINITION. A complete ̂ -dimensional Riemannian orbifold (X, g) is said to be of
Ck>α-asymptotically flat geometry if for each point peX with distance from a fixed point
o in X, there exists a quasi-coordinate map φ: Bn^>X centered at p from the unit ball
Bn in the Euclidean space (i.e. φ gives a local uniformization and 0(0) =/?), such that
with respect to the standard coordinates x = (xx, x2, , x") of the Euclidean space it
satisfies the following conditions:

(i) If we write φ*g = Σgij{x)dxidxj, then the matrix (r2 + l)~1(gij) is bounded
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from below by a constant positive matrix independent of p.

(ii) The Ck'α-norms of (r 2 + \)~1gij,
 a s functions in x, are uniformly bounded.

On such an orbifold we can define the Banach space Cfa of weighted C*'α-bounded

functions: The norm of a function ueC*'a is given by the supremum of the Ck'α-norms

of (r2 4- l)δ/2u with respect to the coordinates x.

THEOREM C. Let {X, ω) be an n-dimensional (n>2) complete open Kάhler orbifold

of Ck0'-asymptotically flat geometry with k>2, 0 < α < l . Assume that the singuralities

sit in a compact set and there exists a barrier function p.IfX admits a Ricci-flat volume

form V such that ωn = efV with feCf+2 and δ>0, then X admits a complete Ricci-flat

Kάhler metric asymptotically equal to ω.

Here a barrier function p means that outside a compact set p satisfies the following

conditions:

(i) p is compatible with the distance function d from o; that is, there exists a

positive constant c1 such that cxd<p<c^xd.

(ii) The function p~δ belongs to C j + 2 ' α .

(iii) There exists a positive constant c2 such that

(iv) There exists a positive constant c 3 such that for any positive number K and

sufficiently large d

-\dΰKp-δ)n<{\-c3Kp-2-δ)ωn

2. Einstein manifolds. Let (Xp gj) be a sequence of Einstein manifolds which

enjoyes the properties stated in Theorem A. Then by [5] we have the Sobolev inequality

on (Xp gj) with uniform Sobolev constants, and the following proposition holds. For

the proof see [1], [8].

PROPOSITION 1. There exist constants p, C 6 and ε4 such that if

I D \nl2<TpI)B(x;2r)

with 2r<p, then we have

Uu(*;2r>B(x;r)

Now we take a positive constant r^<p sufficiently small, so that we can assume

that for all a
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sup \Rgj\
2 = \Rgj\

2(xaJ)^co as
B(xa,j',r co)

and

1)B(xa,roo) ^

with a positive number ε<εJ2 to be determined later. From now on we fix an arbitrary

singular point xa and look at the blowing up process. Since (Xpgj) converges to

(^oo? 0oo) i n C00-topology except at the singular points, for sufficiently large j we can

find a positive number r0 = r0J such that

L
where we denote the subset B(xatj; r2)\B(xaj; rx) in Xj by D(rl9 r2). Then we get

ro-»0 as j

PROPOSITION 2. There is a subsequence {k} c: {j} such that the sequence of pointed

Einstein manifolds ((Xki ΓQ 2gk), xak) converges to ((Y, h\y^) in the pointed Hausdorff

distance, where (Y, h) is a complete, non-compact, Ricci-flat, non-flat n-orbifold only with

finitely many isolated singular points. (Y, h) is ALE of order n—\ in general, and of order

nifn = 4or(Y,h) is Kάhler. The convergence is actually in C00-topology except at the

singular points.

The proof is the same as that of Theorem A. We refer to [1], [8] and [4].

Thus we know that for large \<K1<K2 the two subsets D(Kίr0,K2r0) and

D(K2

1rao, Kϊ1rO0) in Xk are very close to portions of flat cones Rn/Γ0 and RnIΓ^

respectively. To show that ro = r^ and D{Kxr0, K2

1rao) is also close to a portion of

the flat cone, we need the following curvature estimate.

PROPOSITION 3. There exist positive constants Cη and ε5 such that for

4 r o < r < 4 r < r o o it holds that

P R O O F . First apply Lemma 1 to the equation Δ | Λ | > — C 4 | R \ 2 on R = J

assuming C 4

/ 2 ε < ε 3 . Then we get that for 2 r o < r < 2 r < r o o

\R\n/2<Ar-(2q-n)

D(r,2r)
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with a constant A and q = γn/2. Next we apply Lemmas 2 and 3 to the equation
Δ|/? | 1 - < 5 >-C 5 |/ ί | 2 ~ < 5 with p = (l-δ)~1n/2>y. If Cπ

5

/2ε<ε2, we get that for
4r o <r<4r<r o o

r2\ R9j I < C l ' n ^ IR I"'2J2/Λ<C2/»(3C22-)2/" m a x j ( ^ J * , ^ J * J

with ε5 = 2ε3/n. We choose ε = min{ε3C4fl/2, ε2C7n / 2, ε4/2}, and the proof is complete.

Once we get the curvature estimate, we can construct coordinates as in the proof
of the existence theorem of coordinates at infinity [4]. We need only minor changes, so
we omit the proof of the following proposition.

PROPOSITION 4. If one takes IKK^^ sufficiently large, then the subset

DiK^Q, K^r^) is close to a portion of aflat cone Rn/Γ for large j .

Thus if (Y, h) has no singularity, then the ball B(xak; #•„) is diffeomorphic to the
smooth manifold Y which bubbles out of Xk.

If (Ύ, h) has a singular point ys, then we choose a sufficiently small number r'^ and
the corresponding point xsk in Xk so that

L.
sup

sχ, ror '

Choose r'o = r'Otk so that

ί. \nl2 —

with Z)Xrl5 r2) = 5(xsjk; r2)\B(xsk; rx), and consider a sequence of pointed Einstein
manifolds ((Xk, (r0r'0)~2gk), xsk). Then we have the same situation as before, and we get
a complete, non-compact, Ricci-flat, non-flat, ALE w-orbifold ( F , h') only with finitely
many isolated singular points. In the same way we can show that the neck is diffeomorphic
to a flat cone. If ( F , h') again has a singular point, we repeat the argument. We also
apply the same process at every singular point which appears at each repeated step.
Since each singular point contributes at least ε to the curvature integral \\R\nl1, the
process terminates in finite steps. In this way we get a picture of the small ball B(xaj; r^).

DEFINITION. Let X and Y be complete, non-compact, ALE w-orbifolds such that
X has a point x which has a neighborhood diffeomorphic to B(β; R)/Γ and Y has an
end which is diffeomorphic to (Rn\B(0; R))/Γ with the same Γ<=O(ή). Since
dB(0; R)/Γ is diffeomorphic to d(Rn\B(0; R))/Γ, we can glue X and Y along them
and get a new ALE «-orbifold X#Y, which we call an IS-connected sum of X and Y
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around x and the end of Y.

THEOREM 1. The small ball B(xaj; r j in Xj corresponding to a singular point xa

of the limit orbifold X^ is diffeomorphic to an IS-connected sum of finite number of

complete, non-compact, Ricci-flat, non-flat, ALE n-orbifolds only with finitely many

isolated singular points, where all singular points are glued to the ends and we end up with

an ALE manifold.

REMARK. We may also use the following gap theorem to show that the process

terminates in finite steps.

THEOREM 2. Let (X, g) be an n-dimensional (n>4), complete, non-compact,

Ricci-flat Riemannian orbifold which satisfies

MM1
| | V ι ; | 2 for all

with a constant S>0. Then there exists a constant ε6 = ε6(n, S)>0 such that the inequality

IJx

implies that (X, g) is the Euclidean space.

PROOF. Apply Lemma 1.

3. Einstein Kahler surfaces. In this section we assume that all manifolds (Xj9 g^)

are Einstein-Kahler surfaces. Since the limit space X^ is an orbifold, there is a neiborhood

U of the singular point xa which is biholomorphic to a quotient B/Γ of the unit ball

BczC2 with a finite subgroup ΓaU(2) acting freely on C 2 \ { 0 } . Let det: ί / φ + S 1

be the group homomorphism defined by the determinant. Then the image det(Γ) is a

finite cyclic group, say, Zm. Then U has a branched Zm-covering: t/-* U with a branch

point xa such that 0 has trivial canonical line bundle Ky. Namely, set Γ =

(kerdet)nΓcSU(2). Then we have a natural projection U=B/Γ^U and the non-

vanishing holomorphic 2-form ω = dz1 Adz2 descends to U, where (z1, z2) is the stan-

dard coordinates in C 2 . We have the corresponding result on xaJeXj for large/

PROPOSITION 5. There exists a positive constant δ such that for j large there is a

smooth Zm-covering: Uj-* Uj => B(xa f, δ) with Oj having topologically trivial canonical line

bundle KQ..

PROOF. We may assume that the domain UaX^ has smooth boundary dll. Then

there exists a sequence of neighborhoods UJCXJ of xaJ which have smooth boundaries

dUj = Fj(dU). We take δ so small that B(xaJ; δ)aUj. Then it is sufficient to show that

for large j there are sections 0,- of K$™ on Uj such that
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C g ^ l θ ^ C g , and |V0,.|<C9

with positive constants C8, C9.
Define an operator Π = Dj acting on the space of sections of K$™ by

where we decompose the covariant differentiation V = V' -I- V" into (1,0)- and (0, l)-parts.
Let ψ be the local holomorphic uniformization φ: B-+B/Γ^U and η be a radial
cut-off function on B such that η.=0 on B(0; 1/3) and η= 1 on B\B(0; 2/3). Through
φ the section ηω®m of Kfm defines a section of K$m, which we still denote by ηω®m.
For 7 large we define sections ΘO = ΘOJ of K$™ on £/,- by θ O J = proj(iΓ

J"
1)*^ω(8>m, where

proj = projj is the projection map for tensors to Kf™. (Note that the maps Fj: X^ \S->
Xj need not be holomorphic, but become closer and closer to be holomorphic as j
tends to oo). We solve the following equation for a section θ = θj of Kf™ on Uf.

D 0 = O and θ\dUj = θ0\dUj.

Then θ satisfies

Set θ' — θ—θ0. Then θ' has vanishing boundary value and satisfies

Aθ'=-2meβ' + ζ

with ζ = ζj on which we have good control. We have

with the first eigenvalue λ = λj of the Laplacian acting on functions on Uj with the
Dirichlet condition. If we choose U9 hence Uj9 sufficiently small so that λ>2m\ej\ + l,
we get L2-estimates for θ' and V0', hence, for θ and V0. We apply Lemma 3 to the
inequality Δ| 01 > — 2m\ ej || 01, and get C°-estimate for 0.

As for C 1 -estimate we differentiate the equation on 0 and get the following
equations:

| 2 = 2|VV/0|2-f-2^.|V'0|2,

|V//0|2 = 2|VVr/0|2 + 2 ( - 4 w + l ) ^ |V//

Δ|V0|2>2|VV0|2-2(4m-l)|^.| |V0|
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Then again applying Lemma 3, we get C^-estimate away from boundaries. As for one
near boundaries, we have good control on the smoothness of the boundaries, the
boundary values and the equations. We also have C°-estimate for θ. So there is no
trouble in getting C°°-estimate on Uj\B(xa /, r) for any fixed r>0.

Now consider the sequence {proj ψ*Ffθj} on 2?\{0} which has uniform
C°°-estimate away from the origin 0. Thus it has a convergent subsequence with limit,
say, θ defined on 2?\{0}. # satisfies the equation Π^=0 and has C1-estimate, so it
extends to a smooth solution of the equation across the origin. It must coincide with
the unique solution ω 0 π . Hence the sequence {proj φ*Ffθj} itself converges to ω 0 m ,
and there is a positive constant C 1 0 such that for fixed r>0 we have that for
large y>y(r)

|0 ; |>C 1 O on Uj\B(xaJ;r).

By Theorem 1 there exists a constant Clί such that every point in B(xa /, r) can be
connected to the boundary dB(xaJ; r) with a curve of length at most Cxlr. Thus for
j>j{r) with r = C10/2C9C11 we have |0, |>C l o /2 on Uj.

REMARK. One can also show that K§p is complex analytically trivial for large/

From now on we work on the covering space 0j9 and denote it simply by Uj. Then
we have m= 1. We made a trivialization θ of Kυ. with uniform C ̂ estimate. Thus if
we conformally change it, the triviality is preserved in the process of bubbling out of
complete, Ricci-flat, ALE orbifold Kahler surfaces. Hence the local fundamental groups
of the singular points and the fundamental group at infinity of each bubble are contained
in SU{2).

PROPOSITION 6. Let (X, g) be a complete, Ricci-flat, ALE orbifold Kahler surface.
If its canonical line bundle Kx is topologically trivial, then (X, g) is hyper-Kάhler.

PROOF. By assumption Kx is flat and defines an element in H\X; S1). The exact
sequence

H\X; R)^H\X; S^H^X; Z)

and Lemma 5 imply that the topologically trivial Kx has a trivial connection.

Thus our bubbles are all hyper-Kahler. Hence if there is only one bubble coming
out, the proof of the main theorem is complete.

THEOREM 3. If we take (5>0 sufficiently small, then for sufficiently large j , the
geodesic ball B(xa /, δ) in Xj is diffeomorphic to a cyclic quotient of an ALE gravitational
instanton.

REMARK. It is likely that B(xatj; δ) is biholomorphic to a domain of a cyclic
quotient of an ALE gravitational instanton.
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We can prove Theorem 3 by applying the following theorem inductively.

THEOREM 4. Let (X, g) be a complete, hyper-Kάhler, ALE orbifold surface which

has a singular point o with local fundamental group ΓaSU(2), and (Y, h) be an ALE

gravitational instanton which is biholomorphic to the minimal resolution of C2/Γ. Then

an IS-connected sum X% Y around o and the end of Y also admits a structure of a complete,

hyper-Kάhler, ALE orbifold surface.

PROOF. First fix a Kahler structure (X, ωx) on X, where ωί is its Kahler form.

We can take a holomorphic local uniformization ψ1: 2?(0; δ)czC2-+Uso so that

φ J ω\ = lίyf^Λdz1 A dz^iJ^Λdz2 Adz2).

Let φ2: C2\B(0; K)-> 7be the holomoφhic local uniformization of F a t infinity. Then

by Kronheimer [6] the Kahler form ω2 of ( Y, h) satisfies the following properties (cf . [3]):

φ\ω\ = liJ^Λdz1 A dzγ\J^Λdz2 A dz2) .

For sufficiently small positive numbers δl9 δ2, by the map φ(z) = z/δ1δ2 we identify

two subsets φί(D(δ1,4δί))czX, φ2(D(δ2 \ 4δ2

ί))a Y, and get an orbifold surface

Z=X%Y.\τi this construction the parallel holomorphic 2-forms on X and Y are glued

to give a holomoφhic 2-form on Z. We define a Kahler metric ω on Z as follows:

ω =

ωx on

i + 0 - i J ^ X W W 2 } on φx(D(δl9 4δx))

{δγδ2)
2ω2 on

where ηδ(z) = η(z/δ) is a cut-off function. Since </>i — | z | 2 and (δίδ2)
2φ*φ2 — \z\2 are

small on φ1{D{δ1, 4<52)), it is easy to see that ω actually defines a Kahler metric on Z.

By assumption there is a coordinate φ^: /?4\2?(0; A^-^X at the infinity of X such

that

Then it is easy to see that p = \ x \ makes a barrier function on X, hence on Z. Thus

(Z, ω) satisfies the assumption of Theorem C, that is, Z admits a complete, Ricci-flat,

ALE orbifold Kahler metric. Z is hyper-Kahler, since the holomoprhic 2-form on Z is

easily seen to be parallel.

Now we prove Theorem 3. Assume that the blowing up process of orbifold singular

points terminates in / steps. Then the bubbles coming out at the /-th step are all smooth

ALE gravitational instantons. So they are diffeomorphic to the minimal resolutions of
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C2/Γ, ΓczSU(2). We replace their structrues by those comming from minimal
resolutions. Then by Theorem 4 we can glue them to the bubbles of the (/— l)-th step,
and get smooth ALE gravitational instantons. Repeating this argument we finally get
a smooth ALE gravitational instanton which is given by all bubbles glued. This implies
Theorem 3.

For examples of bubbling out of ALE gravitational instantons we refer to [7].
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