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Abstract. Let (<7,£,p, V) be a regular irreducible prehomogeneous vector space

defined over the real field R. We denote by P(x) its irreducible relatively invariant

polynomial. Let Vx u V2 u u Vt be the connected component decomposition of the set

V— {x e V; P(x) = 0}. It is conjectured by [Mr4] that any relatively invariant hyperfunction

on V is written as a linear combination of the hyperfunctions |P(x)|f, where | P{x)\\ is

the complex power of |P(x)| s supported on V{. In this paper the author gives a proof

of this conjecture when (G£, p, V) is a real prehomogeneous vector space of commutative

parabolic type. Our proof is based on microlocal analysis of invariant hyperfunctions

on prehomogeneous vector spaces.
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Introduction. Let P(x) be a homogeneous polynomial with real coefficients on a

real vector space V. We suppose that the determinant of the Hessian det(dP/dXidXj)

does not vanish identically. We set GR: = {geGL(V); P(gx) = χ(g)P(x)}, where χ(g) is

a constant depending only on g e GR. Then the function χ(g) is a character of GR. The

connected component of GR containing the neutral element is denoted by GR. We let

Vγ u V2 u u Vx be the connected component decomposition of the set V— {xe V;

P(x) = 0}. We suppose that each Vt is a GR -orbit, i.e., {GR, p, V) is a real prehomogeneous

vector space. Any relatively invariant polynomial is given by a non-negative integer

power of P(x). In this paper, we show that every relatively invariant hyperfunction is

necessarily obtained as a linear combination of the complex powers of P(x).

We shall explain our problem more precisely. Let

(\P(x)\s if xeVi,
\P(x) ?: = <

1 0 if xφVi.

Then I P(x) | ? is a continuous function when the real part Re(V) of s is positive, and can

be continued to the whole complex plane ί e C a s a hyperfunction with a meromorphic

parameter seC. A hyperfunction T(x) which is expressed in the form

(o.i) Άx)=tφ) \P(χ)\l\s=x,
i=l

satisfies T(g x) = χ(g)λ T(x) if af(s)'s are meromorphic functions defined near s = λ such

that the right hand side of (0.1) is holomorphic with respect to s at s = λ. We call a

hyperfunction T(x) a χλ-invariant hyperfunction if it satisfies T(gx) = χ(g)λT(x) for all

Our problem is the converse: is every χλ-invariant hyperfunction T(x) expressed in

the form (0.1)? The purpose of this paper is to give a new approach to this problem

via microlocal analysis, and give an affirmative answer for an important class of

prehomogeneous vector spaces — the case where P(x) is an irreducible relatively invariant

polynomial of a regular prehomogeneous vector space of commutative parabolic type.

Our class contains the cases of real symmetric matrix spaces, of Hermitian matrices

over complex and quaternion fields and so on. (See the list (4.1)-(4.5).) As a by-product,

it follows that the dimension of the space of ^-invariant hyperfunctions coincides with

the number of the connected components of V— {xe V; P(x) = 0} (Theorem 5.6,1) and

2)). Though we shall only deal with the cases of regular prehomogeneous vector spaces

of commutative parabolic type, our method is applicable to other examples provided

that they satisfy suitable conditions which would be verified by examining microlocal

structure of their holonomic system. See [Mr4].

The problem we treat in this paper seems to be dealt with at least implicitly by

several authors, for example, Rais [Ra], Rubenthaler [Rul], Stein [St], Weil [We], and

so on. In Ricci and Stein [Ric-St], almost the same problem was dealt with in the case
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where Fis the space of n x n complex Hermitian matrices and P(x) = det(x). They proved
that the dimension of the space of relatively invariant hyperfunctions corresponding to
χs equals the number of open orbits. These are all known partial answers to our problem.
The results in this paper are new except the cases (4.2) and (4.5).

The author expresses deep appreciation to Professor H. Rubenthaler for his
suggestion, encouragement and advice. Professor Kashiwara gave me useful advice.
Professor Wright's research [Wr] on prehomogeneous vector spaces from adelic point
of view was implicitly stimulating for me. The advice of the referee and the editor was
kind, accurate and helpful for improvement of this paper. The author wishes to thank
them and their excellent works.

1. Formulation of the main problem. In this section we formulate our problem
in an exact form and provide fundamental notions and notation used in this paper.

1.1. Preliminary conditions and some definitions. Let (Gc, p, Vc) be a pre-
homogeneous vector space of dimension n defined over a complex number field C: it
means that there exists a Zariski-open orbit in Vc. We put Sc: = Vc — p(Gc) x0, where
ρ(Gc) x0 is the necessarily unique open orbit in Vc.

We impose the following three conditions (1.1), l)-3). The first condition is:
(1.1), 1) Sc is an irreducible hypersurface in Vc.

Then Sc is written as Sc = {xe Vc; P(x) = 0} with an irreducible polynomial P(x) on Vc.
We call Sc the singular set and a Gc-orbit in Sc a singular orbit. Then the polynomial
P(x) is a relatively invariant polynomial with respect to geGc: P(β(g)x) = χ(g)'P(x)
with a non-trivial character χ(g) oΐGc. We say that P(x) is a relatively invariant polynomial
corresponding to the character χ. From the condition (l.Γ), 1), any relatively invariant
polynomial is written as P(x)m with a non-negative integer m.

The second condition is:
(1.1), 2) The relatively invariant polynomial P(x) has a non-degenerate Hessian, i.e.,

det^P/dXidXj) does not vanish identically.
The condition (1.1), 2) guarantees the regularity of the prehomogeneous vector space

{Gc,P,Vc).
Let (GR , p, V) be a real form of (Gc, p, Vc). Namely, G£ is the connected component

containing the neutral element of a real form GR of Gc; V is a real form of Vc satisfy-
ing p(Gi)czGL(V). We denote S: = ScnV and call it the real singular set. Let
^ u ^ u uFj be the connected component decomposition of V—S. Then each
connected component V{ is a GR -orbit. The final condition is:

(1.1), 3) The restriction of P(x) on V can be taken as a polynomial with real
coefficients.

We now give some definitions.

(1.2) DEFINITION (Relatively invariant hyperfunction). Let v(g) be a character of
G£. We call a hyperfunction (resp. microfunction) T(x) on F a relatively invariant
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hyperfunction (resp. micro function) corresponding to v, or simply, a v-invariant
hyperfunction, (resp. micro function) if it satisfies T(gx) = v(g)T(x) for all geG£.

A hyperfunction (resp. microfunction) u(s, x) on Cx V is said to be a hyperfunc-
tion (resp. microfunction) with a holomorphic parameter seC if it satisfies the
Cauchy-Riemann equation with respect to seC: (d/ds)u(s, x) = 0. If α(s) w(5, x) is a
hyperfunction (resp. microfunction) with a holomorphic parameter s e C for a
holomorphic function α(s), u(s, x) is said to be a hyperfunction (resp. microfunction)
with a meromorphicparameter seC.

(1.3) DEFINITION (Linear combinations). Let M^S, X), , Wj(s, x) be hyperfunc-
tions with a meromorphic parameter seC and let ^(s), -—9aj(s) be meromorphic
functions near .s = Λ,eC If w(5, x): = Σ | = 1 a£s)-uj[s9 x) is holomorphic at 5 = 2, then we
call T(x): = w(s,x)\s=λ a hyperfunction obtained as a /wear combination of uf(s, x)
(i=l, •••,/) αί,y=λ

1.2. Main problem. The hyperfunction |P(x)|J with a meromorphic parameter
seC, which we shall mainly deal with in this paper, is defined in the following way. Let

P(x)|s if xeVt,
(1.4)

t o if
for seC satisfying Re(^)>0. Then |P(x)|J is a continuous homogeneous function on
V and can be viewed as a hyperfunction on V. Clearly, | P(x) | J is a hyperfunction with
a holomorphic parameter s if Re(s)>0. It can be continued to the whole ί e C a s a
hyperfunction with a meromorphic parameter seC by the aid of Λ-function (see for
example [Sm-Sh, p. 139]). We also denote by |P(x)|? the hyperfunction with a mero-
morphic parameter seCby the analytic continuation of (1.4) to every seC.

Then we have:

PROPOSITION 1.1. Let λeC. Any linear combination of \P(x)\\ ( / = 1 , •*,/) at

s = λ in the sense of (13) is a χλ-invariant hyperfunction.

This proposition follows from the analytic continuation of the equation
\P(0'x)\i = Xiθϊ'Ip(χ)Ii f r o m t h e domain {seC; Rφ)>0}. The main problem that we
shall treat in this paper is the converse of Proposition 1.1.

MAIN PROBLEM. Let λeC. Is any χλ-invariant hyperfunction obtained as a linear
combination of\P(x)\\ at s = λ in the sense of (1.3)?

We shall solve this problem by translating it to a problem of estimating the
dimension of the solution space of a linear differential equation. Let &c be the complex
Lie algebra of the complex linear algebraic group Gc. Let dp and δχ be the infinitesimal
representations of p and χ, respectively. Consider the following system of linear dif-
ferential equations 9WS with one unknown function u(x) on the complex vector space Vc\
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(1.5) <ms;((dp(A)x,4-)-sδχ(A))u(x) = 0 for all As<§c.
\ \ dx/ )

Here <, > means the canonical bilinear form on Vc x V%, where V% is the dual space of Vc.

Next we consider hyperfunction solutions on the real vector space V of the

holonomic system 9WS. We use the same notation x, d/dx on the real vector space V as

on the complex vector space Vc. Let ̂  be the real Lie algebra of G£. Then, since

'— \<& as a real Lie algebra, we have:

/dp(A)-χ,^-\-sδχ(A)

where A — Ax Λ-yj— \A1e
<Sc with Au A1e

(S. Then, if u(x) is a hyperfunction solution

on V to 9WS, then w(x) is a solution of the system:

dp(A) x, — ) - sδχ(A) )u(x) = 0 for all A e ̂
3x/ /

on the real vector space V. Hence if u(x) is χMnvariant, then u(x) is a solution to S0tλ

and vice versa. The vector space ^/(SO^) of hyperfunction solutions to 9Jlλ coincides

with the vector space of ̂ -invariant hyperfunctions.

PROPOSITION 1.2. For any fixed λeC, the dimension of the space of linear

combinations of \P(x)\f in the sense of (1.3) at s = λ is the number I of the connected

components of V—S. Consequently, dim(«9S^(9RA)) > /.

The proof of this propostion is not difficult. See for example Oshima-Sekiguchi

[Os-Se], Proposition 2.2.

Our problem is reduced to showing that dim(<9^(9Kλ)) < /. By Proposition 1.1 any

χλ-invariant hyperfunction is written as a linear combination of | P(x) | f at s = λ, since

the dimension of such linear combinations is > /. The rest of this paper is thus devoted

to the proof of dim(«9^<f(S0lλ)) < / for prehomogeneous vector spaces of commutative

parabolic type.

2. Regular prehomogeneous vector spaces of commutative parabolic type. In this

section we define prehomogeneous vector spaces of commutative parabolic type and

give the complex holonomy diagrams of the holonomic systems SDts defined by (1.5).

All the results in this section were obtained in [Ki].

2.1. Prehomogeneous vector spaces of parabolic type. The notion of pre-

homogeneous vector spaces of parabolic type was introduced by Rubenthaler [Ru2].
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For a semi-simple complex Lie algebra ^, he extracted a Z-graded structure,

(2.1) 9=(B9t
ieZ

satisfying [<&h y^yi+j. The Lie algebra ^ 0 acts on ^ by the adjoint action. Denoting
by Go the exponential group of ^ 0 , we naturally have a representation of Go on ^ .
He gave a general method to get a Z-gradation in the form (2.1) by using the root
system of the semi-simple Lie algebra ^. Then (Go, 9j) forms a prehomogeneous vector
space by Vinberg [Vi]. In [Ru2] such a pair (Go, &j) is called a prehomogeneous vector
space of parabolic type. [Ru2] first studied systematically Z-gradations of semi-simple
Lie algebras and classified regular prehomogeneous vector spaces of parabolic type.

Particularly, consider the case that ^ has a Z-gradation,

(2.2) » = a r - i Θ S o θ » i ,

that is to say, ^ = {0} for \j\>2. Then, elements of <8X commute with each other. We
call (Go, ̂ ) a prehomogeneous vector space of commutative parabolic type, which we
are interested in. Any irreducible prehomogeneous vector space of commutative
parabolic type is obtained by a Z-gradation in the form (2.2) of a simple Lie algebra
^. There are several kinds of irreducible prehomogeneous vector spaces of commutative
parabolic type, but they have common distinguished properties. We can deal with them
in a unified way.

Muller-Rubenthaler-Schiffmann [Mu-Ru-Sc] gave the complete list of irreducible
prehomogeneous vector spaces of commutative parabolic type. It consists of seven kinds
of prehomogeneous vector spaces. See Table I in [Mu-Ru-Sc]. Among them, type An

(nφ2k+\ and pφk+X) and type E6 are non-regular prehomogeneous vector spaces.
Type Bn and type Dnl are representations of a general orthogonal group of odd and
even degree, respectively. We may look upon them as prehomogeneous vector spaces
of the same kind. Here is the list of irreducible regular prehomogeneous vector spaces
of commutative parabolic type:

(2.3)
1) Type Cm (m=l,2, •). ([Mu-Ru-Sc, Table I, CJ, and [Ki, §2, 2-2]).

Gc = GLm(C), Vc = Symm(C). For (g, x)eGcx Vc, p(g): x f-> g x -ιg. An irreducible
relatively invariant polynomial P(x) = det(x). The corresponding character of P(x)
is χ(g) = det(#)2. Gc = SLJC). The dimension of Vc is n = m(m +1)/2. Here, Symm(C)
means the space of m x m complex symmetric matrices and det(x) is the determinant
of x.

2) Type Ak (k = 2m+1, m= 1, 2, •). ([Mu-Ru-Sc, Table I, Ak (k = 2m+ 1,
p = m+1)] and [Ki, §2, 2-1]). Gc = GLm(C) x SLJC), Vc = Mm(Q. For ((gl9 g2\ x)
eGcx Vc, p(g):x\-+ gί χ tg2> An irreducible relatively invariant polynomial is

) = det(x). The corresponding character of P(x) is χ(^) = de% 1)det(^ 2). Gc =
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SLm(C) x SLm(C). The dimension of Vc is n = m2.

3) Type D2m2 (m=l, 2, •). ([Mu-Ru-Sc, Table I, D2m,2 and [Ki, §2, 2-3]).

Gc = GL2m(Q, Vc = Alt2m(C). For (g, x)eGcx Vc, p(g):x^gx tg. An irreducible
relatively invariant polynomial is P(x) = Pff(x). The corresponding character of P(x)

is χ(g) = det(g). G^ = SL2m(C). The dimension of Vc is w = m(2m-1). Here, Alt2m(C)

means the space of 2m x 2m alternating matrices and Pff(x) is the Pfaffian of

xeAlt2 m(C).

4) Type £ 7 . ([Mu-Ru-Sc, Table I, E7] and [Ki, §6]). C c = GL 1 (C)x^ 6 C ,

F c = Her 3(£ c). For ( t e i ^ 2 ) ^ ) e G c x Vc, ρ(g)' x^gi(g2"*)• An irreducible rel-

atively invariant polynomial is P(x) = det(x). The corresponding character of P(x)

is χ{g) = g\. Gc = E6C. The dimension of Vc is rc = 27. Here, E6C is the complex

exceptional Lie group of type E6 and (£c is the complex Cayley algebra. Her3(£ c)

stands for the space of 3 x 3 Hermitian matrices over (£c. The group E6C acts on

Her3((£c) as the lowest dimensional irreducible representation of E6C and is defined

as the connected subgroup of GL(Her3((£c)) consisting of the elements which leave

P(x) invariant. We denote by gx the action of geE6C on xe Vc.

5) Type 3k (m = 2k+1) and Dk + l l (w = 2A:) with fe= 1, 2, . ([Mu-Ru-Sc,

Table I, Bk and £> k + l f l ] and [Sm-Ka-Ki-Os, Example 9.2]). GC = GL1(C) x SOm(C),

Vc = Cm. For ( ( ^ i , ^ 2 ) ^ ) e G c x Vc, p(g): x^gι{g2x). An irreducible relatively

invariant polynomial is P(x) = txx. The corresponding character of P(x) is χ(g) = g\.

Gc = SOm(C). The dimension of Vc is n = m.

Although [Mu-Ru-Sh] investigated their structure from a unified view point, we rather

follow [Ki] and [Sm-Ka-Ki-Os] which studied them on a case-by-case basis, since we

need individual information found in the latter. It is easily checked that they satisfy

the conditions (1.1), 1) and 2).

2.2. Holonomic systems 9ffls for prehomogeneous vector spaces of commutative

parabolic type. The prehomogeneous vector space (2.3), 1) (resp. (2.3), 2), (2.3), 3),

(2.3), 4), (2.3), 5)) were treated in [Ki, §2, 2-2] (resp. [Ki, §2, 2-1], [Ki, §2, 2-3], [Ki,

§6], [Sm-Ka-Ki-Os, Example 9.2 for m=\]) and its complex holonomy diagram and

its 6-function were computed there. We shall quote from them required results in a

slightly different form in Propositions 2.1 and 2.2. Since the proofs can be found in

[Ki] or [Sm-Ka-Ki-Os], or can be easily checked after direct computations, we omit the

proof.

PROPOSITION 2.1. (i) The prehomogeneous vector spaces (Gc, p, Vc) in (2.3),

1), 2), 3) and 4) have the Gc-orbit decompositions \)™=0SiC=Vc with Sic={xeVc;

rank(x) = /w-/}. In particular, SOC=VC-SC with Sc = {xeVc;P(x) = 0} and Sc =

Ui = i sic H e r e w e letm = 3 in the case o/(2.3), 4).

(ii) The prehomogeneous vector space (Gc, p, Vc) in (2.3), 5) has the orbit

decomposition \J f= 0 SiC = Vc, with Soc = {xe Vc; P(x) Φ 0}, SίC = {xe Vc; P(x) = 0} - {0},
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andS2C = {0}.

PROPOSITION 2.2. Let Ws{ssC) be the holonomic system defined by (1.5) for one

of the prehomogeneous vector spaces (2.3), l)-5). Then:

(1) Type Cn(m= 1,2, )

o

O

(2) Type >4k (k=2m+l, m = l , 2, )

o — • — c ^ — o — • — c ^ —o—•—o
( S + 1 ) ( + 0 ( + )
( S + 1 ) A A (5 + 0 A

A ι c A i C

 v AiΛ.

(3) Type/>2 m > 2(m= 1,2, )

(m-iχ2m-3) m(2m-l)_v ^ _ m s _

o — • — c ^ — o — • — c ^ —o—•—o
( + 1 ) ( + X+l) ( + 2 l )

c ^ o c ^ o
(s+1) A A (s + X+l) A A (s + 2m-l)

Aιc AiC Ai+ίC

 Λm-\c

(4) Type£ 7

-j-y -25-5 U+l)s

( + ! ) ( + 5) (s + 9)

(5) Type * k (m = 2 * + l , * = 1,2, ) Type Z)k + 1,k (m = 2(/c + l), k = l , 2, •)

- y

FIGURE 1.
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(i) The characteristic variety ch(5[Rs) is given by

(2.4) C

with

ΛiC=TtcVc.

where, we let m = 3 for the case 4) and m = 2 for the case 5). Each ΛiC is a Lagrangian

irreducible component o/ch(9Ks), hence (2.4) gives the irreducible component decomposition

(ii) Their holonomy diagrams are as in Figure 1. Type Cm (m= 1, 2, •) is Figure

1,(1); Type Ak(k = 2m+l,m=l92, ) is Figure 1,(2); Type D2m2 ( m = l , 2, •) w

Hgwre 1, (3); 7>/?e £ 7 w F/gwre 1, (4); Type Bk (m = 2k+ 1) and Type Dk+11 (m = 2(k+ 1))

with k=l,2, - - - are Figure 1, (5).

PROOF, (i) is a direct consequence of the argument in [Sm-Ka-Ki-Os] and

Proposition 2.1.

(ii) See [Ki, § 2, 2-2], [Ki § 2, 2-1], [Ki, § 2, 2-3], [Ki, § 6] and [Sm-Ka-Ki-Os, Exam-

ple 9.2 (m= 1)], respectively. We add arrows for convenience, although the original ho-

lonomy diagrams in [Ki] or [Sm-Ka-Ki-Os] do not contain them. The orders and the

"factors of 6-functions" are computed from the definition of [Sm-Ka-Ki-Os]. q.e.d.

[Sm-Ka-Ki-Os] and [Ki] computed the ό-functions of the complex powers of the

relatively invariant polynomials of some regular irreducible prehomogeneous vector

spaces by utilizing this holonomy diagrams. A έ-function is, by definition, a polynomial

b(s) satisfying Q(d/dx) P{x)s+ x = b(s) P(x)s where P{x) and 6(3;) are irreducible relatively

invariant polynomials on Vc and the dual space V%, respectively. The Z?-function is a

polynomial in s, and is determined uniquely up to constant multiple. One of the main

theorems of [Sm-Ka-Ki-Os] is that fe-functions of prehomogeneous vector spaces are

obtained as the products of all "factors of ^-functions". We give the £>-functions of the

prehomogeneous vector spaces in (2.3) for later reference. See [Ki] and [Sm-Ka-Ki-Os].

PROPOSITION 2.3. The b-functions of regular prehomogeneous vector spaces (2.3),

l)-5) are given by:

2) 6(s)=Π(*+0.

3)
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4) b{s) = fl (s+(4i- 3))=(s + l)(s + 5)(s + 9).

5) b(5)

3. Holonomic systems on the real locus and its solutions. In this section we study

real micro-local strucrure of SOΪS near a normal intersection of two Lagrangian

sub varieties of codimension one. There is a simple relation between microfunction

solutions on the two Lagrangian sub varieties (Proposition 3.3). It will help the

determination of hyperfunction solutions of $RS in §5.

3.1. Solutions with a holomorphic parameter s. Let u(s, x) be a hyperfunction

or microfunction solution to 50ls with a holomorphic parameter ssC. Then u(s, x) can

be restricted to the subset {(s, x ) e C x V;s = λ, xeV} and the restriction u(s,x)\s=λ

is a solution to 9Jlλ. If u(s, x) is a solution with a meromorphic parameter seC and if

u(s9 x) has a pole at s = λ of order ra, then (s — λ)mu(s,x)\s=λ is well-defined and is a

solution to 9MA. Namely, the lowest order coefficient of the Laurent expansion of u(s, x)

at s = λ is a solution to SDΪλ. For example, |P(x)|? is a hyperfunction with a mero-

morphic parameter seC.

We now consider the support or the singular spectrum of the solutions.

PROPOSITION 3.1. Let λ be a fixed point in C. Let f(x) be a hyperfunction (resp.

microfunction) solution to the holonomic system 9Mλ on V(resp. on T* V). Then we have:

(3.1) SS'ifix)) cch(2Rλ) n T* V, (resp. supp(/(x)) cch(9Mλ) n Γ* V),

where S.S. stands for the singular spectrum on T* V. In particular, iff{s, x) is a hyperfunction

(resp. microfunction) solution with a holomorphic parameter seC, then the hyperfunction

(resp. microfunction) f(x): =f(λ, x) for each λeCsatisfies (3.1).

This porposition is well known. We omit the proof. See [Ka2], [Ka3] or [Ka4].

The real locus ch(3Rs) n T* Vis denoted by ch(9Ms)R and is called the real characteristic

variety. The characteristic variety ch(9Ms) has the irreducible component decomposition:

ch(SRs) = |JΓ=i Λic We denote by ΛiR the real locus ΛiCnT*V. Then ΛiR may not be

of real dimension n while ΛiC is always of complex dimension n. In other words, it may

not be a real conic Lagrangian subvariety in T* V, i.e., a subvariety of dimension n in

Γ* V on which the real canonical 2-form £ " = t dxt A dξt vanishes. So we have to assume

the following condition:

(3.2) Each ΛiR is a real Lagrangian subvariety in T*V.

Then each ΛiR is a real form of ΛiC.

Recall that the set ofgeneric points of ΛiC in ch(9Ms) is denoted by Λ°iC: = {p e ΛiC; (1)
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ΛiC is non-singular near /?, (2) p is not contained in any other irreducible components

ΛjC (Jφi)}. Since Λ°iC is a non-singular open dense subvariety in ΛiC, its real locus

Λ°ic: = Λ°cn T*V is a non-singular open dense subvariety in ΛiR. The subvariety Λ°iR

decomposes into a finite number of connected components. Let Λ?R = ]J* ι

= 1 Λ{ be the

connected component decomposition. Let U be an open set in T*V such that

Unch(yJls)R= UnΛ{ with a connected component Λ\ of yt?Λ. Then the support of a

microfunction solution on U is contained in ΛjnU. We call it a microfunction

solution on A{ by abuse of language. We have the following theorem on a microfunction

solution on A{\

PROPOSITION 3.2. For each fixed λsC and for any point peΛj, there is a

one-dimensional microfunction solution space to 9MA near p. In particular, if there exists

a non-trivial global microfunction solution on Λj

h then it is uniquely determined up to

constant multiple, and non-vanishing on Λ{.

PROOF. By definition, 9Mλ is a simple holonomic system on Λ{. Therefore its

microfunction solution space on Λ{ is one-dimensional. For a detailed proof, see for

example the proof of Theorem 4.2.5 in [Sm-Kw-Ka]. q.e.d.

3.2. Real holonomy diagrams. The aim of this subsection is to introduce the

real holonomy diagrams of the holonomic system 9WS on V. We have given the complex

holonomy diagram of a holonomic system 9Pΐs in order to see the geometric configuration

of intersections of codimension one among the Lagrangian irreducible components of

ch(9ϊis). We would like to do the same for the real locus ^ ( 5 0 1 ^ . Since, it is too

complicated to describe all the intersections of all the real Lagrangian subvarieties in

ch(9Ws)Λ, however, we confine ourselves to writing down intersections between two

irreducible components in ch(SWs)n. Let ΛaC and Abc have a regular intersection of

dimension n—l. The intersection is necessarily transversal. Let Σc be an irreducible

component of ΛaC n ΛbC. Then we have the complex holonomy subdiagram Figure 2,

(1). In Figure 2, (1), (p(s)-{- l) = qa(s)-qb(s) + (l/2). Here qa(s) and qb(s) are the orders of

SDΐs on AaC and ΛbC, respectively, and (/?(s)+l) is the factor of b-function from ΛaC

to Λbc. See [Sm-Ka-Ki-Os].

Recall that we denote by Λ°aR and ΛlR the sets of generic points of ΛaR and ΛbR

in ch(9ERs)R, respectively. Let ]J pylJ = yl2R and JJ^/Lg = Λ£R be the connected component

decompositions of Λ°aR and Λ°bR, respectively. We denote by (£c)reg t n e s e t of non-singular

points of Σc. Then (Σc)reg is an (n — l)-dimensional non-singular complex algebraic

subvariety and its real locus (ΣR)τeg: = (Σc)τegr\T*V is an (n— l)-dimensional real

algebraic subvariety by the condition (3.2). Let U ε ^ ε = ( ĵι)reg be th e connected

component decomposition of (ΣR)reg.

Take a connected component Σε and let p e Σε. Then we have TpΛaR n TpΛbR = TpΣ\

that is to say, ΛaR and ΛbR have the (n— l)-dimensional regular intersection Σε in a

neighborhood of p, which is transversal. Since ΛaR and ΛbR are w-dimensional, Σε divides
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AaR and AbR into two connected parts near /?, i.e., AaR — Σε and AbR — Σε have two

connected components in a sufficiently small neighborhood of p. On the other hand,

we have AaR — Σε = A°aR and AbR — Σε = AbR. Hence there exist two connected

components, Aa

a and Aβ

a in A°aR, and, A\ and Aδ

b in Λ£R, which are the connected

components near p. Namely,

(3.4) ^R-Σε = Al\JAβ, and ΛftR-£ε

in a neighborhood of/?. The indices α, /?, y and <5 do not depend on the choice of the

point peΣε. In order to describe such a geometric situation in ch(9Jls)Λ, we express each

connected component of A°aR and AbR by a circle and write the situation (3.4) by Figure

2, (2). In the diagram Figure 2, (2), each circle stands for a connected component in

A°aR or A°bR and the cross means an (n— l)-dimensional intersection in (ΣR)reg. Thus by

representing each connected component by a circle and each connected component of

(ΣR) r e g by a cross, and by connecting circles, we obtain a diagram consisting of circles

and crosses like Figure 2, (2).

(3.5) DEFINITION (Real holonomy diagram). We call the diagram thus obtained

(i)

O—-O

(2)

o
O

(3)

FIGURE 2.
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a real holonomy diagram of the intersection of AaR and ΛbR at ΣR, or of the complex

holonomy diagram Figure 2, (1).

In §4.2 we draw real holonomy diagrams of 9MS for several real forms, which were

partly obtained in [Mrl].

3.3. Relations of microfunction solutions. Now we prove that there exist some

linear relations among the microfunction solutions on Λl, Aβ

a and Ay

b, A
δ

b.

(3.6) DEFINITION (Critical points of SRS). Suppose that SRS has a holonomy

subdiagram Figure 2, (1). We say that λeC is a critical point o/SDΪs, or 9WS is critical

at s = λ, from AaC to AbC, if p(λ) is a negative integer. Otherwise, we say that λ is

non-critical from AaC to AbC.

REMARK. When we look upon the above holonomy diagram Figure 2, (1) as the

one with the inverse arrow Figure 2, (3), the critical points of 9KS are λeC satisfying

—p(λ) G {0, — 1, —2, }. Namely the set of critical points from AaC to A^ and those

form Aw to AaC are disjoint and their union is {seC;p[s)eZ}.

PROPOSITION 3.3. Let λeC. Let AaC and ΛbC be two irreducible Lagrangian

subvarieties in ch(S[Rs) having the complex holonomy diagram Figure 2, (1). Let Aa

a, A
β

a

and Ay

b, A\ be two pairs of connected components of A°aR and AbR, respectively, having

the real holonomy diagram Figure 2, (2).

(1) For each seC, the space of microfunction solutions to $RS near p is

two-dimensional.

(2) 7jΓ9Ks is not critical at s = λfrom AaC to A^, i.e., p(λ) φ — 1, — 2, — 3, , then

the microfunction solutions to 99lλ on A\ and Ab are determined by the microfunction

solutions on Aa

aand Aβ

a. If *$flsis not critical at s = λ from AbC toAaC, i.e.,p(λ)φθ, 1, 2, ,

then the microfunction solutions to 9Mλ on A\ and Aβ

a are determined by the microfunction

solutions on Al and Ab.

(3) Suppose that ΪRS is critical ats — λfrom AaC to Abc, i.e.,p{λ) = — 1, — 2, — 3,

Let v(x) be a microfunction solution to 95ls. The φOUs ^ determined by v(x)\Λβa and vice

versa. If the support ofv(x) is contained in AbR, then v(x)\Λό is determined by v(x)\Aι and

vice versa.

PROOF. The holonomic system 9MS is transformed to the following holonomic

system 2r(s)p{s) through a real quantized contact transformation.

(3.7) £,r(s),p(s) -
d

p(s))u(x)
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with

d d d
-—u(x) = —-u(x)= -—
dx3 dx4 dxn

= {(x,y)eT*V;xί=x2=y3=- =yn =

Here, (xu , xn, yl9 , yn) means real coordinates of T* V. This fact is proved as a
special case of Theorem 6.3 in [Sm-Ka-Ki-Os ]. Though the proof given in [Sm-Ka-Ki-Os]
is the one for holonomic systems in the complex domain, it works well in the real
domain by real analytic contact transformation instead of holomorphic contact
transformation. Namely, that the real version of Theorem 6.3 in [Sm-Ka-Ki-Os] is easily
justified.

Therefore the problem is reduced to showing Proposition 3.3 for the holonomic
system fir(S),p(S) defined in (3.7). Namely what we have to show is the following; let u(x)
be a microfunction solution to 2r{λ)p{λ) defined near the point p = (0, + dxγ) e T* V\ if u(x)
is zero on Λ°aR: = {(x,y)eT*V;x1=y2= =Λ = 0, x2φ0}, then u(x) is zero near/?.
We need the following obvious Lemma 3.3.1.

LEMMA 3.3.1. Let Xι and X2 be two real analytic manifolds. Let

) = 0 0 = 1 , •••,*!)

, k2)

be holonomic systems on Xx and X2, respectively. We denote by 9&£{$Sl^), <9^(SR2) the
spaces of hyperfunction or microfunction solutions. Consider the holonomic system on
Xλ x X2\

( d\
x ® ^ : Pλ xl9 M(X1,X2) = 0 ,

V SxJ

2>τ—W*i>*2) = 0, 0 = 1 ,
\ SxJ

Then the solution space ̂ ^(^ ®9M2) is given by e9^

We setp(λ): = v and r(λ):—μ. By Lemma 3.3.1, the holonomic system £ μ v is given
by £ μ j V = 9M1(g)SER2(8)aR3 with
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: [x1 μ )u(x1) = 0 near (0, +dx1)eT*R,

: ί *2 —— Λtei) = 0 near (0, 0) e T*R ,
V S )

m3: -^-w(x3, , xn)= '' = ^ - w ( x 3 , , xn) = 0 near (0, 0)e T*Rn~2 .
dx3 dxn

We now examine the space of microfunction solutions to 2μ>v near p. We have

(3.8) ^/(SRO = α (χ± + iΰf 'Γ(-μ), with α e C .

) = a'\x2\\+b'\x2\l- , with β,fteC when v # - l , - 2 , - 3 , ••• .

= α (;c2 + iΌ)v + Z? (x 2 -ϊΌ) v with a,beC when v^O, 1,2, ••• .

3) = a, with a constant function aeC.

The microfunction (xx + /0)μ Γ( — μ) defined near (0, dx^eT* V is the boundary value

of the holomorphic function Γi — μ)'!^ from the upper half plane {z1=xΐ+yJ — \yx;

xί9 yx eR, yγ >0}. Here we take a suitable branch of the holomorphic function z\ on

it. Regarded as a microfunction defined near (0, ί/x 1)eΓ*F, it is well defined for all

μeC. The microfunction \x2\\ (resp. | x 2 1 -) is a hyperfunction on R defined by

f| jc 2 | v on x2>0

0 on

resp.|x2 |
v_:H

0 on x 2 > 0.

which is a hyperfunction with a holomorphic parameter v e C obtained by the analytic

continuation from Re(v)»0 and is well-defined for vΦ — 1, —2,

We set

for vφ-l, - 2 , ••• .

for v # 0 , 1,2, •••.

When v is not an integer, the vector space spanned by w+(x) and u~(x) coincides with

that generated by w+(x) and w_(x). The pairs of microfunctions {w+(x), w_(x)} or

{u+(x\ U~(X)} give a basis for the space of microfunction solutions for 2μ v near p by

Lemma 3.3.1. Thus the proof of (1) is completed.

Next we prove (2). First we suppose that vΦ — 1, —2, . Let w(x) be a micro-

function solution of 2μfV defined near p. Then u(x) is written as a + u+(x) + a _ u _ (x) with
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α+, a_eC. We set A? : = ΛaRn{x2>0} and Λ~ :=ΛaRn{x2<0}. Then A°aR = Af uΛ~

near the point p. Since w+(x)|^-=0, U_(X)\Λ:=0 and u+(x)\Λ+Φ09 u_{x)\Λ-Φ^

we have w(x)|̂ + =a+-u+(x)\Λ+ and w(x)|^- = α _ u_(x)\Λ-. Thus the values of a+ and α_

are determined by the restrictions tφc)^* and M(X)|Λ-. This means that a microfunc-

tion solution u(x) of SRλ is determined by the data of u(x) on Λ°aR. Thus the data of

u(x) on Λ°bR are determined by those on Λ°aR if v=p(λ)φ — 1, —2, . Next we sup-

pose that v^O, 1, 2, . Then u(x) is written as b+ «+(x) + ft_ w~(x) with b + , b__ eC.

We put At : = ΛbRn{y2>0} and Λb~ : = Λ « n {j;2<0}. Since u+(x)\Λb- = 0, t Π * ) L = 0

and w + (x) |^ # 0 , M~(X)|^- ^ 0 , w e h a v e φ ) ^ = £+ -u+(x)\ΛΪ and w(x)|Λ- =b_u-(x)\Λ-.

Thus the values of b+ and 6_ are determined by tφc) !^ and M(X)|^-. This means that

a microfunction solution u(x) to SERΛ is determined by the data of u{x) on Λ°bR. Thus

the data of u(x) on Λ°aR are determined by those on A°bR if v=/7(A)^0, 1,2,

As in the proof of (3), suppose that v= — 1, —2, —3, . By (3.8), the space of

microfunction solutions of SDΐ2 is given by

where δ{ι\x2) is the z-th derivative of the delta-function for the variable x2. Indeed, we

have (const.) x<5(~v + 1)(x2) = (x2 + Λ))v —(x2 —ΪΌ) V . The space of microfunction solutions

of SOtj and 9Jl3 are the same as those of (3.8). Then, by Lemma 3.3.1, the microfunctions

«1(x) = (jc1 + Λ)μ Γ ( - μ ) 5 (" 1 '+ 1 )(x 2) and u2(x) = (xl+i0)fl Γ{-μ)'(x2 + i0)v give a basis

of the space of microfunction solutions of fiμ v near p. It is clear by the definition that

supp(w1(x)) = yl^uyl^ and supp(M2(x))=^iii/t£ near/?. In particular, ux(x) and w2(x)

generate the solution space. Therefore, for any microfunction solution v(x), ΦC)|Λ*UΛS

is written as a u2(x)\Λ«υΛβ with aeC. Thus the value of v(x) on Aa

a is determined by

the value on Λβ

a and vice versa. If the support of v(x) is contained in ΛbR, then v(x) is

a constant multiple of ut(x) and hence the value of v(x) on A\ is determined by the

value of φc) on Λb and vice versa. q.e.d.

4. Real forms of prehomogeneous vector spaces of commutative parabolic type. In

this section we give the list of the real forms of prehomogeneous vector spaces of

commutative parabolic type and write down their real holonomy diagrams.

4.1. The list of real forms. We consider the following real forms.

(4.1) Type C m ( m = 1,2, )•

0 (Gi,V) = (GLm(R)\Symm(R)).

Here, Symm(/?) stands for the space of m x m symmetric matrices over R.

(4.2) Type Λ(fc = 2 m + l , m = 1,2, •••)•

0 (Gί, V) = (GL1(R)+ x SLm(C), Herm(C)).

Here Herm(C) is the space of m x m complex Hermitian matrices,

ii) (G£, V) = (GLm(R)+ x SLm(R), Mm(R)).

Here Mm(R) is the space of m x m real matrices.



PREHOMOGENEOUS VECTOR SPACES 179

(4.3) Type Z)2 m,2(m= 1,2, •••).
1) (Gi, F) = (GL1(Λ)+ x SLJH), Herm(//)).

Here H stands for the quaternion field over R and Herm(//) is the space of
mxm quaternion Hermitian matrices,

ii) (Gi,V) = (GL2m(R)+, Alt2m(J?)).
Here A\t2m(R) stands for the space of 2m x 2m alternating matrices over R.

(4.4) Type£7.
0 (<?*, F0 = (G£i(*)+ x El Her3(β;i)).

Here, (ίR is the space of division Cayley number field over R and Her3((£^)
means the space of 3 x 3 Hermitian matrices over £d

R. The group E% is the
subgroup of GL+(Her3((££)) consisting of the elements which leave P(x) = det(x)
invariant.

ϋ) (Git, F) = ( ^ i W + x ^6, Her3((Ei)).
Here, dR is the space of split Cayley number algebra over R and Her3((£j|)
means the space of 3 x 3 Hermitian matrices over &R. The group E% is the
subgroup of GL+(Hά3(<lR)) consisting of the elements which leave P(X) =
det(x) invariant.

(4.5) Type Bk (m = 2k+ 1) and Dk+1 t (m = 2(fc+1)) with k= 1, 2, .
0 (G +, F) = (GL1(*)+ x SO(p, q; R), Rm), (p, q>0 and p + q = m).

It is easy to check that the above real forms satisfy the condition (1.1), 3) in addition
to (1.1.), 1) and 2). The restriction of P{x) to V can be taken to be a polynomial with
real coefficients.

REMARK. 1) T. Kimura determined all the real forms of irreducible regular
prehomogeneous vector spaces in 1975, although the result was not published.

2) For the cases (4.1), (4.2) and (4.5), there are other real forms which do not
satisfy the condition (3.2).

4.2. Real holonomy diagrams of 9MS. For the real forms listed in (4.1)-(4.5), we
now give the real holonomy diagrams of all the intersections of codimension one in
the complex holonomy diagrams of 9MS in Proposition 2.2. The same result was ob-
tained by [Su].

Let 50ls be the holonomic system defined in (1.5) for one of the prehomogeneous
vector spaces (2.3), l)-5). The number m is defined there. We set n to be the dimension
of Vc. By Proposition 2.2, 1) the characteristic variety ch(5Rs) has the irreducible
component decomposition given by (2.4): ch(9Ms)=(J^=0/lίC with ΛiC=T%iCVc where
SiC are Gc-orbits defined in Proposition 2.1. Note that each ΛiC is a <jc-invariant subset
in Γ* Vc when we identify T* Vc with VcxV%. The action of Gc on the dual space V%
is through the contragredient representation. Let (GjJ,p, V) be a real form of the
prehomogeneous vector space (Gc, p, Vc). In the same way as in the complex case, Γ* V
is naturally identified with Vx V*, on which G£ acts. The real locus ch(50ls)R of the
characteristic variety ch(9Ms) is given by
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(4.6) ch(9Ms)R= 0

with ΛiR = ΛiCn T*V. Each ΛiR is a G£ -invariant subset.

In particular, we suppose that:

(4.7) each orbit SiR = SiCn V is a real form of SiC .

Naturally, we have

ΛiR = T*SiCVcn T* V= T*SicnVV= T*SiRV .

Here, Tξ.κ V is the real conormal bundle of the subvariety SiR in V. Thus the real locus
of ΛiC is a real form of ΛiC, and hence the condition (3.2) is satisfied if so is (4.7). We
show that the condition (4.7) is satisfied in all real forms of (4.1)-(4.5) by the case-by-case
calculations in the following. Furthermore, we construct ΛiR as a union of some
GR -orbits in Vx V* and calculate the real holonomy diagrams.

The first case. Consider the cases i) in (4Λ)-(4A). The vector space V is (4.1)
Symm(fl), (4.2) Herm(C), (4.3) Herm(#) or (4.4) Her3(G;£), respectively. The real locus
SiR of the G,ι-orbit SiC in Vc is

SiR = SiCf\ V={xe F rank(x) = m-i} , (i'=0, 1, - ,/w).

The subset SiR is a GR -invariant subset and decomposes into the following GR -orbits:
Sm=\J™~lSJ

i9 where S{ is the G£-orbit generated by

L o.J
Each S{ is a real form of SiC because the real dimension of S{ coincides with the complex

dimension of SiC. Therefore, the condition (4.7) is satisfied.

By the inner product <x, y>: = Re tr(x *y) for x9yeV, we identify V with its dual

space V*. The group GR acts on V as the dual space by the contragredient repre-

sentation and the orbit decomposition of V as the dual space is the same as that for V.

We denote by Σf'? = the G* -orbit in VxV* generated by the point

^L o,J Lo,
where i+j>m, 0<p<m — i and 0<q<m—j. Then we have:

PROPOSITION 4.1.

(4-8) ΛiR=



PREHOMOGENEOUS VECTOR SPACES 181

(4-9) Λ°aι= U £f,m-i
0<p<m-i

0<q<i

These propositions can be verified by a routine but a little complicated computation.

See the method in [Sm-Ka-Ki-Os]. In [Mrl], the author has carried out the orbit

decomposition (4.8) in the cases i)-iii). We omit the proof here.

We denote by Λf'q the GR -orbit £f/£_ί, which is a connected component of A°iR.

By computing the action of the Lie algebra ^ R , we see that A?* (0<p<m — i, 0<q<i)

are GR -orbits in VxV* and hence real Lagrangian subvarieties. The other orbits in

AiR are strictly less dimensional than n. In particular, we may write

(4.10) Λ " i R =
0<p<m-/

0<q<i

By Proposition 4.1, we have

AίRπAi+iR= I)
In I T 1 If >»•

l,O<p<m-k

The non-singular locus of AiRnAi+1R is given by

u- U
0<p<m-i-l

0<q<i

By computing the action of the Lie algebra ^ Λ , we see that each orbit ΣfΓiVm-i+i

(0<p<m — i— 1, 0<q<i) is a connected component of (AiR(\Ai+ίR)τcg> and is an

(n— l)-dimensional GR -orbit. Thus we have the following proposition.

PROPOSITION 4.2. The (n — ί)-dimensional intersection of AiR and Ai+1R is re-

presented by the real holonomy diagram as in Figure 3, (1). Here l<p<n—i,0<q<i.

The second case. Next we consider the cases ii) in (4.2)-(4.4). Then V is (4.2)

Mn(R), (4.3) Alt2n(i?) and (4.4) Her3(£j ι), respectively. The real locus SiR of the orbit

SiC is SiΛ = S1cnV={xeV;τ3ήkx = n-i}9 for (4.2) and (4.4), S i Λ = S ί cn V={xe V;

rank x = 2(n — i)} for (4.3). The subset SiR is GR -invariant and decomposes into the

following G£ -orbits: S0R = SQUSQ with S£ = {x e V; P(x) > 0} and SQ={XG V;

P(x)<0}, and SiR (i>l) is a single GR -orbit. By the inner product <x, y}: = tr(x *y)

for x j e ^ o n V, we identify V with its dual space V*. The group GR acts on F* by

the contragredient action. The vector space V* has the same orbit decomposition by

the contragredient action of GR. We denote by A\ the GR -orbit in VxV* generated

by the point,

/Γm-i Ί . Γ » - ' f i Ί\ for (4.2)and(4.4),
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(1)

o
Λf'<

Q *•-.-•

o
/I f" 1 "

(2)

(>•-,

o Ό

(3) when/?=l

o
Q,!-

•o α
A\ A\

o o

when p > 1

Ό σ
ό-

-o
ό

FIGURE 3.

and

with ι = 0, 1, * * , m and ε= ± 1. Here

, for (4.3),

' • [ - . ' ]
and ® means the tensor product of matrices. Let Σitj be the G£ -orbit in Fx F* generated

by the point,
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and

with i +j>m, m>i>0 and m>j>0. Then we have:

PROPOSITION 4.3.

(4.11) ΛiR = {ΛΐυΛ7)υ( (J

(4.12) i4fc = i4 l

+uΛ l .

We omit the easy proof. The GR -orbits Λf and Λf are w-dimensional. The other
orbits in ΛiR are of dimension strictly less than n. By Proposition 4.3, we have
ΛiRr\Λi+ίR=\Jk>i+1ΣkJ. The non-singular locus of ΛiRnΛi+ίR is Σi+lm_h which is

an (n— l)-dimensional Gί -orbit.

PROPOSITION 4.4. The (n—ΐ)-dimensional intersections of ΛiR and Λi+1R are
represented by the real holonomy diagrams Figure 3, (2).

The third case. Finally we consider the case i) of (4.5). We may suppose that
q>p>0. The vector space V is Rn. Without loss of generality we may assume that V
is a vector space having the inner product:

(4.13) < x , y } = * x - I - y w h e r e Ipq = I *p I withP -J
The group SO{p,q;R) is the subgroup of GL(V) consisting of elements leaving the
inner product invariant. We can identify V* with V by the inner product. Thus the real
contangent space T*Vis naturally viewed as Vx V*. We set:

(4.14) p°0 = (\, 0, , 0; 0, , 0) , />J = (0, 0; 1, 0, , 0) ,

p2

0 = (-\,0, •• ,0;0, •••,0),

/>? = ( l ,0, •••,(); 1,0, •••,<)), p ί = ( l ,0, •••,<>;-1,0, •••,<)),

p§ = (0, •• ,0;0, , 0 ) .

The expression (Λ^; X2) means the coordinate in i? π = Vwith x1eRp and x2eRq. When
p=\, the points in (4.14) generate mutually different GR-orbits. When p> 1, the orbits
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generated by /?£ and pi (resp. /?? a n d p\) are the same. We denote by Σff'ε--

GR -orbit in Vx V* generated by the point (/?f, spf), (ε= +) . Then we have:

PROPOSITION 4.5.

1) When p=l, we have the following disjoint decompositions of AiR and A°iR.

(4.15) Λ0R = ( U Σξ'°Aυ( \J Γ? ° +

\ = 0,l,2 / \

γ A ι ι ( I I Γ l ι ι ί I I y , y O , O , +Δ 1 Λ } U \ U ^ 1 , 2 l U l U Δ 2 , ί I U ^ 2 2
p , / \p = O,l / \q = O,l /
ε = ±

-( I I Σ°'«'+hjί II Σ°'«'+ l u Σ 0 ' 0 ' +

— I U ^ 2 , 0 l U l U Z 2 , l I U Z ' 2 , 2
\« = 0,l,2 / \<ϊ = 0,l /

(4.16) ^

Λ =( u *ϊrY
±

1R

ε= ±

2) Wλew /?>1, w^ Aαve the following disjoint decompositions of ΛiR and Λ°iR

0 = 0,1,2).

(4.17)
0RJ U 2;g;°2'Λu2:?;§'+uΣ^+.

\P = O,1 /

A —I I I y"°»9' +

(4.18) Λ°0RJ U

Λ\Λ- — ( I I Σ ° « + I

'ΛΆ
 2-°)

We omit the easy proof. We set
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(4.19)

when p = 1 and set

(4.20)

Λι

0 =

Ar-

Λ]

A\

_yi,i,ε
~ ^ 1,1

Σ0'it +

) = ^ ό,i

I = 2* 2'ή

0=0,1,2),

(i=0,1 andε=+),

(i=0,1,2),

(ί=0,1),

(ε=±),
(ί=0, 1),

when p>\. The orbits in (4.19) and (4.20) are w-dimensional and the other orbits in

ΛiR are of dimension strictly less than n. By Proposition 4.5, we have

Λ0RnΛ1Λ=( U ΣΊ °AυΣr +
' 2 , 2

where p = 1 and we have

/ l OJl n / l lR — ^1,2

A nA _ yO,O,+ ,, yO,O,+Λ l R n y l 2 R - Z 2 , l U Z 2 , 2 »

where p> 1. The real holonomy diagrams are given by the following proposition.

PROPOSITION 4.6. The (n—l)-dimensional intersections of ΛiR and Λi+1R are

represented by the real holonomy diagrams Figure 3, (3).

5. Proof of the main theorem. In this section we prove the main theorem for the

real forms listed in (4.1)-(4.5) of regular prehomogeneous vector spaces of commutative

parabolic type.

5.1. Critical points for P(x)s. Let (G^, p, V) be one of the real forms of the

prehomogeneous vector spaces in (4.1)-(4.5). We always suppose that a relatively

invariant polynomial P(x) on V is taken to be with real coefficients. Let b(s) be the

^-function of the complex form (Gc, p, Vc) of (GR, p, VR). The explicit form is given

in (2.5).

(5.1) DEFINITION (Critical points). We set Crit(P(x)s): = {λ e C; b(λ + k) = 0 with

some non-negative integer k}. We call an element of Crit(P(x)s) a critical point for P(x)s.

We may express the 6-functions as b(s) = ΠΓ= i ( s ~ ^«) w ^^ 0 > 2 1 = — 1 > λ2 > >
Am where Al9 , λm are negative integers or negative half-integers by Proposition 2.3.
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Definition (5.1) says that λ = λi—p with a non-negative integer p and an integer i if

AeCrit(P(x)5).

PROPOSITION 5.1. Let λ be a complex number.

(1) If λφCήi(P{xf\ then 9WS is not critical at s = λ from ΛiC to Λi+lc for

i = 0, 1, '-,m-l.

(2) IfλeCrit(P(x)s), then λ<λ,.

(3) If λ<λm, then SDls is not critical at s = λ from Λi+ic to AiC for /=0, 1, ,

m-\.

(4) Suppose that λ e Crit(P(x)s) and λm<λ<λ1. Let k be a positive integer <m—\.

Ifλk+I<λ<λk, then 9MS is not critical at s = λfrom ΛiC to Λi+lcfor any i>k andSERS is

not critical at s = λfrom Λi+lc to ΛiCfor any i<k—l.

PROOF. (1) By Definition (5.1), if λ e Crit(P(x)s), then there exist a root λt of b(s)

and a non-negative integer/? such that A = Af—/?. Each (s—λi) is the factor of 6-function

of 9MS from A( _ 1 C to ΛiC. We set p(s) + 1 = (s—A;). Then p(λ) =—p—\ and it is a negative

integer. By Definition (3.6), $RS is critical from Λ f_ l c to ΛiC at s = λ.

(2) If λ e Crit(P(x)5), then there exist λt and a non-negative integer p such that

λ = λi—p. Thus A=A f—p^A^Ai.

(3) Note that the factor of 6-function of 9WS from Λi+lc to ΛiC is — ̂  + Aί+1 + 1.

Then we have (—^ + A ί + 1 H-l) | s = λ = — A + A i+1 + 1> — Am + Λί+1 + l > l , since A<Am<

λi+1 for all Ϊ. The 50ls is not critical at s = λ from Λi+ίC to ylίC.

(4) The factor of 6-function of SDΪS from ΛiC to Λi+ίC (resp. from Λi+ίC to yl/c)

is (s—λi+1) (resp. (—5-hAi+1 +1)). Thus, if i>k, then we have s—λi+1\s=λ = λ —

Aί+1 > λ k + 1 — Aί+1 >0, and hence ΪRS is not critical at s = λ from ΛiC to Λf+ic If i<k— 1,

then we have ( - ^ + A i + 1 + 1 ) | S = A = -A + Aί+1 + 1> -λk + λi+1 + \> -Ak + A k +l = l,

and hence 9MS is not critical at s = λ from y l ί + l c to ΛiC. q.e.d.

5.2. Proof of the main theorem at non-critical points.

PROPOSITION 5.2. Let A£Crit(P(x)5). Then the dimension of the space of χλ-

invariant hyperfunctions is the number I of the connected components of V—SR.

PROOF. It suffices to prove that the dimension of the space of ^-invariant

hyperfunctions is at most /, since it is at least / by Proposition 1.2.

Let u(x) be a χA-invariant hyperfunction. Then u(x) is a solution to the holonomic

system 9Mλ (see § 1). The function u(x) is real analytic, since 9MA is an elliptic system

on V—S, i.e., the characteristic variety is (V— S)x{0}. Thus we have w(x)|F_s =

Σ!=i α ί* I <P(χ)l?| F-SJ because any χλ invariant real analytic function on a connected

component Vt is written as a constant multiple of | P(x) \f.

Consider the hyperfunction ι;(x): = u(x)—YJ

l

i=ίai-\P(x)\f on V. Then v(x) is a

hyperfunction solution of 9Kλ and is zero on V—S. Now look upon v(x) as the

microfunction sp(v(x)) on T*V. Then the support of sp(υ(x)) is contained in
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= ch(9Ms)nΓ*F. The real characteristic variety ch(2Rs)Λ has the irreducible

component decomposition ch(<ϋls)R=\Jt!ί

=0ΛiR (see (4.6)). Among the irreducible

components, Λ0R is the zero section VRx {0}. The set ΛQR of generic points has the

connected component decomposition Λ°0R= Vx x {0} u V2 x {0} u u Vι x {0}. Since

the hyperfunction v(x) is zero on each connected component Vh the microfunction

sp(v(x)) is zero on each V{ x {0} (i— 1, , /).

LEMMA 5.2.1. For an arbitrary complex number λ, let v(x) be a hyperfunction solution

to SDlλ. Suppose that SDls is not critical at s = λfrom ΛiC to Λi+ίC (resp. Λi+ίC to ΛiC). If

the microfunction sp(v(x)) is zero on Λ°iR (resp. Λ°i+1R), then it is zero on Λ°i+1R (resp.

Λ°iR) as well.

(1)

o
O

Λ*

Ό

(2)

o- o

(3)

σ -o
o

FIGURE 4.
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PROOF. Let ΛJ+1 be a connected component in Λ°i+1R. Then there exist two

connected components Λ°[, Λf of A°iR and Λf+1ofΛ°i+1R which form the real holonomy

diagram Figure 4, (1). This easily follows from the real holonomy diagrams calculated

in Proposition 4.2, 4.4 and 4.6.

Let v(x) be a hyperfunction solution to the holonomic system 9Jlλ such that sp(v(x))

is zero on Λ°iR. Then sp(v(x)) is zero on A\ and A\. Since 9MS is not critical at s = λ from

ΛiC to Λi+lc by assumption, sp(v(x)) is zero on ΛJ+1 and Λδ

i+ί in a neighborhood of

the intersection of ΛiR and Λi + ίR by Proposition 3.3, (2). Moreover sp(v(x)) is zero on

ΛJ+ί and ylf+1 globally. Thus sp(v(x)) is zero on A?+ί fror every index p. Thus means

that S/J(Γ(X)) is zero on all the connected components of Λ°i+1R. When 9HS is not critical

at s = λ from Λi+ίC to ΛiC, we can show the converse in the same way and complete

the proof of Lemma 5.2.1.

By Proposition 5.1, (1), if λ φ Crit(P(x)s), then 9RS is not critical at s=λ from Λic

to Λi+lc for all ί = 0 , 1, , m— 1. Therefore, by induction on /, if ^Wx)) | y l g J t =0, then

)\Λh=0 f or all ί = 0 , 1, , m.

LEMMA 5.2.2. For an arbitrary complex number λ, let v(x) be a hyperfunction solution

to the holonomic system 9Kλ. If the microfunction sp(v(x)) is zero on Λ°iR for all i = 0, ,

m, then υ(x) = 0 as a hyperfunction on V.

A theorem more general than Lemma 5.2.2 was proved in [Mr3], which would be

an interesting result in itself. We omit the proof.

Consider the hyperfunction solution v(x) in the form u(x)—Yj

ι

i=ιai \P(x)\f again.

Since sp(v(x)) is zero on Λ°0R, it is zero on A°1R, A°2R, * , A°mR by induction from Lemma

5.2.1, and hence it is zero on \)™=1A°iR. By Lemma 5.2.2, we have φc) = 0, which means

u(x)=£!=1 at I P(x) I f. Thus we see that any ̂ -invariant hyperfunction u(x) is expressed

as a linear combination of |P(x)|f (/= 1, , /) if λφCήt(P(x)s). Hence the dimension

of the space of ^-invariant hyperfunctions is at most /. Thus we have the desired

result. q.e.d.

COROLLARY 5.3. Let λφCήt(P(x)s). Then any χλ-invariant hyperfunction is written

as a linear combination of\P(x)\\ at s = λ in the sense o/

PROOF. We have seen in Proposition 5.2 that the space of linear combinations of

|P(x)|f at s = λ coincides with the space of χMnvariant hyperfunctions. Thus we have

the desired results. q.e.d.

5.3. Proof of the main theorem at critical points.

PROPOSITION 5.4. Let λ e Crit(P(x)s). Then the dimension of the space ofχλ-invariant

hyperfunctions is /, the number of the connected components of V—SR.

PROOF. It suffices to prove that the dimension of the space of χMnvariant

hyperfunctions is at most /. When λεCrit(P(x)s), we may suppose that λ<λx by
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Proposition 5.1, (2). First we prove Proposition 5.4 when λ<λm.

LEMMA 5.4.1. Suppose λ<λm. Then the dimension of the space of χλ-invariant

hyperfunctions is at most I.

PROOF. Let 5^(951^ be the space of hyperfunction solutions of 2Rλ on T* V. We

denote by «£&^(9KA) Ufr t n e space of the restrictions to Λ°iR of the .sp-image of elements

of ^/(SPΪ t). Recall that Λ°mR decomposes into / connected components by Proposition

4.1, 4.3 and 4.5. Then 6&S(9Rλ)\ΛomR is at most /-dimensional because ^ ( S R J is one

dimensional on each connected component of Λ°iR by Proposition 3.2.

Let v(x) be a hyperfunction solution of 9Jlλ on Fsuch that sp(vix))\Λ^R—0. Then

(5.2) sp(v(x))\ΛoR = Q for all i = 0, 1, , m .

Indeed, since 9KS is not critical at s=λ from Λi+ιc to Λic for all i=m — 1, m — 2, , 0,

by Proposition 5.1 (3), sp(v(x))\Λo+1R = 0 implies that sp(v(x))\ΛoR = 0 for i=m— 1,

m - 2 , , 0 by Lemma 5.2.1. Thus, by induction on i, we have (5.2). Moreover, (5.2)

means that v(x) = 0 as a hyperfunction on F b y Lemma 5.2.2. Thus, for two solutions

Ό±(X)9 v2{x)etf?f(<mλ\ if sp(v(x))\ΛomR = sp(v2(x))\ΛomR, then ^ ( x ^ i ^ x). Therefore any

hyperfunction solution v(x) of 9Mλ is uniquely determined by the data sp(υ(x)) \Λ^R. Hence

the dimension of the hyperfunction solutions of 9Wλ is at most /.

LEMMA 5.4.2. Let λeCrit(P(x)s) and suppose that λm<λ<λ1. Then the dimension

of the space of χλ-invariant hyperfunctions is at most l-dimensional.

PROOF. We show Lemma 5.4.2 by reducing it to the following sublemma.

SUBLEMMA 5.4.2.1. Let λeCήt(P(x)s) and suppose that λk + 1<λ<λk. Then

Met(501A) I Λo _ i κ u ΛOR is at most l-dimensional.

Sublemma 5.4.2.1 implies Lemma 5.4.2. Indeed, let v(x) be a hyperfunction solution

of aRλ on F such that sp(v(x))\Λo IROAOR=0. Then

(5.3) sp(v(x))\ΛoR = 0, for all i = 0, 1, , m .

Since 9KS is not critical at s = λ from ΛiC to Λi+lc for all i=k9 k+l9 , m — 1 , by

Proposition 5.1 (4), sp(v(x))\ΛoR = 0 implies that sp(v(x))\Λo+iR = 0 for ΐ = fc+l, k + 2,

'—9m—l by Lemma 5.2.1. Similarly, since $RS is not critical at s = λ from Λi+lc

to Λic for all i = k — 2, k — 3, ,0, by Proposition 5.1 (4), sp(v(x))\Λo+ίR = 0 implies that

sp(v(x))\ΛoR = 0 for i = k — 2, k — 3, , 0 by Lemma 5.2.1. Thus, by induction on /, we

have (5.3). Moreover, (5.3) means that φc) = 0 as a hyperfunction on V by Lemma

5.2.2. Therefore any hyperfunction solution υ(x) of 9Mλ is uniquely determined by the

data sp(v(x))\Λo IRUΛOR. This implies that the dimension of the hyperfunction solutions

of StRλ is at most / if λm < λ < λx. Thus we complete the proof of Lemma 5.4.2 if Sublemma

5.4.2.1 is proved.
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PROOF OF SUBLEMMA 5.4.2.1. We consider the cases of i) in (4.1>-(4.4). The num-

ber / coincides with m+1 in these cases. The connected component decompositions of

Λ°k-ίR and Λ°kR were given in Proposition 4.1. The real holonomy diagrams of the

(n— l)-dimensional intersections between Λk_1R and ΛkR is given by Figure 4, (2) with

1 <p<n—k+1 and 0<q<k— 1 (see Proposition 4.2).

We set W:=<&mx)U-ίltuΛ°kκ, W, : = {υ(x)e W; υ(x)\Λo_1Λ = 0}. We would like

to prove

(5.4) 1) dimW^m-k+l,

2) dim (W/WJ^k,

which means that dim W=m+\=l.

As for (5.4), 1), let v(x) be an element of Wx. Thus v(x) is zero on Λζtlί and Λp

kZ\Λ

in the real holonomy diagram Figure 4 (2). Since SDΪS is critical at s = λ from Λk_lc

to ΛkC, the value of v(x) on Λζ~lfq+1 is determined by the value of v(x) on Λζ~ltq

by Proposition 3.3, (3). Therefore, by induction on q, the values of v(x) on Λζ~ltq

(<7 = 0, 1, , k) are determined by the value of v(x) on Λ{~lf0. Hence the values v(x) \ΛoR

is completely determined by the data tKx)|(j^p^M_k+lylj-
10 because ΛkR consists of the

connected components in |J 0 < p < m _ k Λ £'* (see (4.10)). Since the dimension of the solution
0<q<k

space on the connected component A{ ~ 1 > 0 is one for each />= 1, 2, , m —fc+1, we

have (5.4), 1).

To show (5.4), 2), let vγ{x) and v2(x) be elements of W. Iΐv1(x)-v2(x)e Wl9 then v^x)

and v2(x) coincide with each other in W\Wγ and vice versa. Namely, the representative

of v^x) in W/WΊ coincides with that of v2(x) if and only if vί(X)\Λo_ίR=v2(x)\Λo_ίR.

Therefore the dimension of the space e9^/(9MA) \Λ°_ίR is the dimension of (W/WJ.

Let v(x) be an element of W. In the real holonomy diagram Figure 4 (2), the value

of v(x) on Λ{Ίι is determined by the value of v(x) on Λζl{'q by Proposition 3.3 (3),

because 9WS is critical at s = λ from Λk_ίC to ΛkC. Therefore, by induction on p, the

values of υ(x) on Λ\*l 1 (p = 0, 1, , m — k+1) are determined by the value of v(x) on

A^l^. This means that the values ^ W | ^ 1 Λ

 a r e completely determined by the data

^MlUosflsfc-Mk''- The dimension of the solution space on the connected component

Λζ-q is one for each q = 0, , k-1 and hence we have (5.4), 2): dimiW/WJ^k.

By (5.4), 1) and 2), we have dim H^=dim(W7^1) + dim W1<m+\=l. Then we

complete the proof of sublemma 5.4.2.1 in the cases of i) in (4.1)-(4.4).

Next we consider the cases ii) in (4.2)-(4.4). The number 1=2 in these cases. The

connected component decompositions of Λ°k_ 1R and Λ°kR were given in (4.12) as /=k— 1

and A:. The real holonomy diagrams of the (n— l)-dimensional intersections of Λk_1R

and ΛkR is given by Figure 4, (3) as proved in Proposition 4.3. The holonomic system

9WS is critical at s = λ from Λk_lc to ΛkC, hence 9MS is not critical at s = λ from ΛkC to

Λk_ίC. Therefore, &f(Wλ)\Λo ig is determined by the data S^(3R^)\AoM. Since Λ°k_ίR
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has only two connected components, the dimension of 5&<f(9Hλ) \Λ°_ίK is two and so is
\the dimension of £fa£($Jlx) \Λo

Lastly, we consider the case (4.5). In Proposition 4.6, the real holonomy diagram

of (4.5) was proved to have the same form as that in the first case (resp. second case)

when /?=1 (resp. ρ>\). Thus we can prove this sublemma for the third case in the

same way as in the first case or the second case. Thus we complete the proof of Sublemma

5.4.2.1.

By Lemma 5.4.1 and Lemma 5.4.2, we obtain the result claimed in Proposition 5.4.

COROLLARY 5.5. Let λeC be a critical point for P(x)s. Then any χλ-invariant

hyperfunction is written as a linear combination of\P(x)\\ at s = λ in the sense o/(1.3).

This corollary is proved in the same way if we use Proposition 5.4 instead of

Proposition 5.2.

5.4. Conclusions and a remark.

THEOREM 5.6. Let (GR, p, V) be a one of the real forms in (4.1)-(4.5). Let λ be

an arbitrary comlex number. Then:

1) The dimension of the space of -^-invariant hyperfunctions coincides with the

number of the connected components of V— {xe V; P(x) = 0}.

2) Any χλ-invariant hyperfunction is a tempered distribution and is written as a

linear combination of\P(X)\\ defined in (1.4) at s — λ in the sense 0/(1.3).

The claim 1) is the direct consequence of Proposition 5.2 and 5.4. The claim 2)

follows from Corollary 5.3 and 5.5.

As an application of Theorem 5.6, we have the following:

THEOREM 5.7. Let (G£, p, V) be a real form in (4.1H4.5). We put GR:

χ(g)= 1}. Then any GR-invariant tempered distribution whose support is contained in the

real singular set SR = {xe VR; P(x) = 0} is obtained as a linear combination of negative

order Laurent coefficients of \ P(x) | J (/= 1, , /) at poles.

PROOF. [Mr2, Theorem 2.7] proved that the theorem is valid if the singular set

Sc = {xe Vc; P(x) = 0} decomposes into a finite number of G£-orbits. Here,

Gx

c: = {g eGc; χ{g)= 1}. It is easily checked by calculating the action of the Lie algebra

&c on Vc that any Gc-orbits in the singular set Sc is actually a G^-orbit. The finiteness

of the Gc-orbit decomposition was proved in Proposition 2.1. q.e.d.

REFERENCES

[Da-Wr] B. DATSKOVSKY AND D. J. WRIGHT, The adelic zeta functions associated to the space of binary

cubic forms, Part II: Local theory, J. Reine Angew. Math. 367 (1986), 27-75.

[Kal] M. KASHIWARA, ^-functions and holonomic systems, Invent, math. 38 (1976), 33-53.



192 M. MURO

[Ka2] M. KASHIWARA, Systems of microdifferential equations, Progress in Math. 34, Boston, Birkhauser,

1983.
[Ka3] M. KASHIWARA, Microlocal calculus of simple microfunctions, in 'Analysis and Algebraic Geometry',

Papers in honor of Professor K. Kodaira, W. L. Baily and T. Shioda eds., Iwanami Shoten, Tokyo,

1977, 369-374.

[Ka4] M. KASHIWARA, Micro-local Analysis, in Proc. Intern. Congress of Math., Helsinki, 1978, O. Lehto

ed., Academia Scientiarum Fennica, Helsinki, Vol. 1, 1980, 139-150.

[Ka-Kw-Ki] M. KASHIWARA, T. KAWAI AND T. KIMURA, Foundations of Algebraic Analysis (in Japanese),

Kinokuniya, Tokyo, 1980, English translation (Princeton Mathematical Series No. 37), Princeton U.P.,

Princeton, 1986.

[Ki] T. KIMURA, The ^-functions and holonomy diagrams of irreducible regular prehomogeneous vector

spaces, Nagoya Math. J. 85 (1982), 1-80.

[Mrl] M. MURO, Microlocal analysis and calculations on some relatively invariant hyperfunctions related

to zeta functions associated with the vector spaces of quadratic forms, Publ. Res. Inst. Math. Sci. 22

(1986), 395^63.

[Mr2] M. MURO, Singular invariant tempered distributions on regular prehomogeneous vector spaces, J.

Funct. Anal. 76 (1988), 317-345.

[Mr3] M. MURO, On uniqueness of hyperfunction solutions of holonomic systems, Ark. Mat. 26 (1988),

305-314.

[Mr4] M. MURO, The dimension of the space of relatively invariant hyperfunctions on regular pre-

homogeneous vector spaces, Proc. Japan Acad. 63 (1987), 66-68.

[Mu] I. MULLER, Decomposition orbitale des espaces prehomogenes reguliers de type parabolique commutatif

et application, C. R. Acad. Sc. 303 (1986), 495^98.

[Mu-Ru-Sc] I. MULLER, H. RUBENTHALER AND G. SCHIFFMANN, Structure des espaees prehomogenes associes

a certaines algebres de Lie graduees, Math. Ann. 274 (1986), 95-123.

[Os-Se] T. OSHIMA AND J. SEKIGUCHI, Eigenfunctions of invariant differential operators on an affine symmetric

space, Invent, math 57 (1980), 1-81.

[Ra] M. RAIS, Distributions homogenes sur des espaces de matrices, Bull. Soc. Math. France, Memoire 30

(1970), 5-109.

[Ric-St] F. RICCI AND E. M. STEIN, Homogeneous distributions on spaces of Hermitian matrices, J. Reine.

Angew. Math. 368 (1986), 142-164.

[Rul] H. RUBENTHALER, Distributions bi-invariantes par SLn(k), in Analyse Harmonique sur les Grupes de

Lie, Seminaire Nancy-Strasburg 1973-75, Springer Lecture Note in Math. 497 (1975), 383^93.

[Ru2] H. RUBENTHALER, Espaces prehomogenes de type parabolique, in Lectures on Harmonic Analysis

on Lie groups and related topics, Lee. in Math., Kyoto Univ. No. 14 (1981), 189-221.

[Ru3] H. RUBENTHALER, Classification infinitesimale de forms reeles de certains espaces prehomogenes.,

C. R. Acad. Sc. 295 (1982), 55-57.

[Ru4] H. RUBENTHALER, Forms reeles infmitesimales prehomogenes de type parabolique, Ann. Inst. Fourier

36-1 (1986), 1-38.

[Sk-Fa] I. SATAKE AND J. FARAUT, The functional equations of zeta-distributions associated with formally

real Jordan algebras, Tόhoku Math. J. 36 (1984), 469-482.

[Sm-Kw-Ka] M. SATO, T. KAWAI AND M. KASHIWARA, Microfunctions and pseudo-differential equations,

in 'Hyperfunctions and pseudo-differential equations', Springer Lecture Note in Math. 287 (1973),

263-529.

[Sm-Ki] M. SATO AND T. KIMURA, A classification of irreducible prehomogeneous vector spaces and their

relative invariants, Nagoya Math. J. 65 (1977), 1-155.

[Sm-Sh] M. SATO AND T. SHINTANI, On zeta functions associated with prehomogeneous vector spaces,

Ann. of Math. 100 (1974), 131-170.



PREHOMOGENEOUS VECTOR SPACES 193

[Sm-Ka-Ki-Os] M. SATO, M. KASHIWARA, T. KIMURA AND T. OSHIMA, Micro-local analysis of pre-

homogeneous vector spaces, Invent, math. 62 (1980), 17-179.
[Sh] T. SHINTANI, On Dirichlet series whose coefficients are class-numbers of integral binary cubic forms,

J. Math. Soc. Japan 24 (1972), 132-188.
[St] E. M. STEIN, Analysis in Matrix spaces and some new representations of SL(n, C), Ann. of Math. 86

(1967), 461^90.
[Su] T. SUZUKI, Fourier transforms of relative invariants of prehomogeneous vector spaces, (in Japanese),

Master Thesis, Nagoya University (1975).
[Vi] E. B. VINBERG, On the classification of the nilpotent elements of graded Lie algebras, Soviet Math.

Dokl. 16 (1975), 1517-1520.
[We] A. WEIL, Fonction zeta et distributions, Seminaire Bourbaki, no. 312, juin (1966), also published in

Andre Weil, Collected papers, Springer, Vol. 3, (1979), 158-163.
[Wr] D. J. WRIGHT, The adelic zeta function associated to the space of binary cubic forms, Part I: Global

theory, Math. Ann. 270 (1985), 503-534.

FACULTY OF GENERAL EDUCATION

GIFU UNIVERSITY

YANAGITO 1-1, GIFU, 501-11

JAPAN






