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Introduction. Let (X, x) be a germ of a normal isolated singularity of dimension
three and let ¢: Y — X be a minimal (partial) resolution, i.e., a relatively minimal model
of a resolution. The singularity (X, x) is called a simple K3 singularity if it is
quasi-Gorenstein and if the exceptional set of Y consists of a single normal K3 surface
D. Here we call D a normal K3 surface if the minimal resolution of D is a K3 surface.
Y may still have finitely many terminal singularities {y;} along D.

When a simple K3 singularity is defined by a quasi-homogeneous polynomial of
type (p, g, 1, s), the minimal (partial) resolution of the singularity is given by the so-called
a-blow-up (see Reid [R, p. 297]). In this case, the terminal singularities {y;} along the
exceptional set are all cyclic terminal singularities, and the minimal resolution is unique
(see Tomari [T, Corollary 4]). ‘

In this paper, we obtain a simple formula describing the distribution of terminal
singularities of the minimal resolution in terms of the type (p,q,r,s) of the
quasi-homogeneous defining polynomial for the simple K3 singularity:

1 +q+r+s
24—Z<ri——)=(p a )(pq+pr+ps+qr+qs+rs),
r; pqrs

i

where r; is the index of the terminal singularity y; (compare Theorem 4.4 and [KT,
Theorem 9, p. 360]).
For the simple K3 singularity (X, x) we define integers by
I'(Y, 0)

(X, x):=dim, s
I'(Y, O(—(m+1)D))

and the Poincaré series

0
P(t; X, x):= Y, e X, X)t™,
m=0
which is a formal power series in an indeterminate ¢. By the Riemann-Roch theorem
for normal isolated singularities (Watanabe [W3]), the Poincaré series can be expressed



276 K. WATANABE

in terms of the intersection numbers of the exceptional set on a good resolution
p: M->Y.

1. Definition of simple K3 singularities. In this section, we recall known results
and basic definitions together with examples.

DEerFINITION 1.1 (Reid [R]). A germ (X, x) of a normal singularity is said to be a
terminal (resp. canonical) singularity if the following two conditions are satisfied:

(1) There is an integer r>0 such that the multiple rK, of the canonical divisor
K, is a Cartier divisor (the smallest such r being called the index of (X, x)).

(i) Letw: M — X be an arbitrary resolution, and let E,, - - -, E, be the exceptional
divisors. Then rKy,=n*(rKx)+ ) ,a;E; with all a,>0 (resp. a;>0).

DerFNITION 1.2. If X is a normal analytic space, a partial resolution of the
singularity (X, x) consists of a normal analytic space Y and a proper analytic
map o: Y — X such that ¢ is biholomorphic on the inverse image of the set R of regular
points of X and that =~ *(R) is dense in Y.

DEerFINITION 1.3. A partial resolution ¢: Y > X of the singularity (X, x) is a
minimal resolution if the singularities of Y are terminal, and the canonical divisor Ky
of Y is numerically effective with respect to o (see [KMM, p. 291]).

By Mori [M, Theorem 0.3.12, (i)], there exists a minimal resolution of a normal
three-dimensional isolated singularity.

DEerFINITION 1.4. A normal compact complex surface S is said to be a normal K3
surface if the following three equivalent (see, e.g., Umezu [U]) conditions are satisfied:

(1) Its minimal resolution is a K3 surface.

(2) wg~0s, and S is birational to a K3 surface.

(3) ws~0s, H'(S, Os)=0and its singularities are at worst rational double points.

DerINITION 1.5 ([W1]). For each positive integer m, the m-genus of a normal
isolated singularity (X, x) in an n-dimensional analytic space is defined to be

8u(X, x)=dime (X — {x}, O(mK))/L*™(X —{x}) ,

where K is the canonical line bundle on X—{x}, and L*™(X—{x}) is the set of all
holomorphic m-ple n-forms on X—{x} which are L*™-integrable at x. Let
n: (M, E) - (X, x) be a resolution of the singularity (X, x). Then

6,(X, x)=dim (M — E, O(K))/T (M, O(K))=dimcH }(M, O(K))
=dimcH" ™M, O)=p /X, x),
where p (X, x) is the geometric genus, and the subscript ¢ represents compact support.

The m-genus §,, is finite and does not depend on the choice of a Stein neighborhood
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X.

DEerINITION 1.6 ([WI1]). A singularity (X, x) is said to be purely elliptic if
0.(X, x)=1 for every positive integer m.

When X is a two-dimensional analytic space, purely elliptic singularities are
quasi-Gorenstein singularities, i.e., there exists a nowhere-vanishing holomorphic 2-
form on X —{x} (see Ishii [12]). In higher dimension, however, purely elliptic singu-
larities are not always quasi-Gorenstein (see [WY]).

In the following, we assume that (X, x) is quasi-Gorenstein. Let n: (M, E) - (X, x)
be a good resolution. Then

KM=TC*KX+ZImlEl_ijEJ’ With m,ZO, m]>0, Iﬂ.]=@,
ie JjeJ
where E=|J E; is the decomposition of the exceptional set E into irreducible compo-

nents. Ishii [I1] defined the essential part of the exceptional set E as E;=) jesMiEjs
and showed that if (X, x) is purely elliptic, then m;=1 for all je J.

DEerINITION 1.7 (Ishii [11]). A quasi-Gorenstein purely elliptic singularity (X, x)
is of (0, i)-type if H"~'(E,, 0) consists of the (0, i/)-Hodge component H%(E,), where

n—1
C~H""\(E,, 0)=GrlH" \(E,)= (_JBO H% (E;)

in the sense of Deligne’s canonical mixed Hodge structure.

ExampLE 1.8. Consider the singularity x of the affine cone over an abelian surface.
Then (X, x) is a purely elliptic singularity of (0, 2)-type, which is a quasi-Gorenstein
singularity, but not Gorenstein singularity.

DerNITION 1.9. A three-dimensional singularity (X, x) is a simple K3 singularity
if the following two equivalent (Watanabe-Ishii [WI]) conditions are satisfied:

(1) (X, x) is a Gorenstein purely elliptic singularity of (0, 2)-type.

(2) (X, x)is quasi-Gorenstein and the exceptional divisor D is a normal K3 surface
for any minimal resolution a: (Y, D) - (X, x).

DerFiNiTION 1.10.  Suppose that (rq,ry, ---,r,) are fixed rational numbers. A
polynomial f(z,, z,, - * -, z,) is said to be quasi-homogeneous of weight (ry, ry, * <, 1)
if it can be expressed as a linear combination of monomials zi¢z% - - - zi» for which
igro+iyri+ -+ +ir,=1.

Let d denote the smallest positive integer so that rod=gq,, rid=q,, - - -, r,d=gq, are
integers. Then

f(thZO’ tqlzb T, tqnzn)=t‘ff(20, Z1, "7, Zn)

and fis said to be of type (go, 41, * * *, Gus 4).
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ExampLE 1.11. Let f(x,y,z, w) be a quasi-homogeneous polynomal of type
(p,q,r,s; h) with p+q+r+s=h, and suppose f(x,y,z, w)=0 defines an isolated
singularity at the origin in C*. Then the origin is a simple K3 singularity.

REMARK 1.12. For a simple K3 singularity, we have p (X, x)=1.

ExaMmpLE 1.13. In the notation of Example 1.11, take the weighted projective
space P(p,q,r,s) with weighted homogeneous coordinates (x,y,z, w) and the
hypersurface S P*(p, g, r, s) given by f(x, y, z, w)=0. Then S is a normal K3 surface.

2. Poincaré series of simple K3 singularities. Let (X, x) be a simple K3 singularity.
Consider a composite of partial resolutions (M, E)—2-(Y, D)—%-(X, x), where o is a

minimal resolution and p is a good resolution. Let E, be the proper transform of D.
Thanks to the existence of minimal resolutions we get the following basic lemma:
Let A=) a;4; be a Q-divisor on M, written as a sum of distinct prime divisors.
We define the round-up [ 4] of 4 to be the divisor ZbiAi, where b; is the smallest integer
>a;.

LEMMA 2.1. For any nonnegative integer m

(M, 0) N ey, o) _I(M—E, O(K+[mL1))
I'(M, O(—(m+1)Ey)) I'(Y, O(—(m+1)D)  I'(M, O(K +[mL1))

where L=p*K,.

Proor. Since I'(M, Op(—(m+1)Ey))~T(Y, Oy(—(m+1)D)), it suffices to show
that I'(Y, O(—(m+1)D)) can be identified with I'(M, w,([ —p*mD1)) by fi—-fo.
For any feI(Y, Oy—(m+1)D)), we have fwel(M, p*wy(—mD)). Therefore fwe
I'(M, wp([ — p*mD7)), because p*wy=w,(— 4) for some 4>0.

Conversely, any ne I'(M, w,([ — p*mD1)) has a zero of order at least m at E,. Then
the holomorphic function f=#n/w, on M, has a zero of order at least m+1 at E,.

q.e.d.

We now defined the Poincaré series associated with a simple K3 singularity. We
then compute the series as an application of the following result in [W3].

DEerFINITION 2.2. Let (X,x) be a normal three-dimensional isolated singularity, and
suppose that X is a sufficiently small Stein neighborhood of x. Let n: (M, E) — (X, x)
be a resolution. Then, for any line bundle F on M, the Euler-Poincaré characteristic
can be defined as

I (M —E, O(F))

(M, O(F))=dim¢ (M, OF))

+dim H'(M, O(F))—dim H*(M, O(F)) .

Under a certain condition, y(M, O(F)) depends only on the first Chern class of F.
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THEOREM 2.3 ([W3]). Let A be an integral divisor whose support is contained in
the exceptional set E. Define the intersection number of c,(M) with A=Y a,E; to be

(M) A=Y a{cy(E)+cy(E)ey(Ng)}
where Ny, is the normal bundle of E; in M. Then

1 1 1
XM, O([A])= —EA:’ +ZA2KM_EA(CZ(M)+ K3

+dim H'(M, 0)—dim H*(M, 0) .
THEOREM 2.4 ([W3]). In the same notation as above, if (X, x) is quasi-Gorenstein,
then
— Ky c2(M)

Y } =dimH (M, 0).

2 {pg(X’ X)—

For the simple K3 singularity (X, x) we define integers by
Iy, o)
I(Y, 0(—(m+1)D))’

(X, x):=dim¢

and the Poincaré series

Pt; X, x):= Y. culX, x)t™,

m=0
which is a formal power series in an indeterminate t.

In our case it is moreover possible to prove that H(M, O(F)) vanish for all i>0.
Then, using Theorem 2.3 of Riemann-Roch type, we obtain

PROPOSITION 2.5. Let L=p*Ky. Then
1 1 1
en( X, x)= —g(meP)—Z(KF mLV)—E [mL](co(M)+K?*)+1.

PROOF. Ky is g-nef and o-big, since o: (Y, D) - (X, x) is a minimal resolution;
then mp*Ky is also oop-nef and gop-big for any nonnegative integer m. Hence
H{(M, O(K ,;+[mp*Ky]))=0 for i>0 by the Kawamata-Viehweg vanishing theorem
(for example, see [KMM, p. 306]). Therefore by Theorem 2.3 we have

(M —E, O(K +[mL1))
(M, O(K +[mL1))

img¢

= —%(K +[mL17)* + %‘— (K+[mL])*K — % (K +[mL)c, +K?)

+dim H(M, 0)—dim H*(M, 0)
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1 1 1 1
= —T(rmLP)—?(K [ mL12)—E rmL1(cz+K2)_EKCZ

+dim H'(M, 0)—dim H*(M, 0) .
On the other hand, a simple K3 singularity is purely elliptic and Cohen-Macaulay,
50 p,(X, x)=h*(M, 0)=1 and h*(M, ©)=0. Thus
1
—EKCZ +dim HY(M, 0)—dim H¥ M, 0)=1,

by Theorem 2.4. We are done by Lemma 2.1. q.e.d.
COROLLARY 2.6. Let r be the least common multiple of the indices of the terminal
singularities along D. Then c,, is a polynominal of degree three in k:

1
Cor= s (rL)3k? —% K(rL)*k?— lli (rL)(c, + Kk +1,

where L=p*K,.

DErFINITION 2.7. Let f():=).7_ c,.™ be a formal power series. We define the
r-invariant part of f(¢) to be

1 =)
— O+ @)+ -+ 1)} =k§ockrt“' ,

where  is a primitive r-th root of unity.

From Corollary 2.6 we obtain the r-invariant part of the Poincaré series of simple
K3 singularities.

PROPOSITION 2.8.

—r3L3 —4rL3+rKL*? 1

C = - .
k;o TR 2 (1—r)
= 14r3L3 +92KL> —r(c,L+ K*L) |
12 (1—1)?
~2r°L3+3r?KL? —r(c,L+K*L)—12 1
12 1—7°

where L= (1/r¥)(rL)>.
ProoF. It follows immediately from the equality

i(ak3+bk2+ck+d)t"= 6a  2(6a—b) 7a—3b+c_a—b+c—d'
k=0 1-=0* (1—0? (1—1)? 1—t¢
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3. Arithmetic Poincaré series of simple K3 singularities defined by a quasi-
homogeneous polynomial. Let f(x,, x,, x5, X,) be a quasi-homogeneous polynomial
of type (pi, P2» P3» Pas P)- Suppose that f defines a simple K3 singularity (X, x) at
the origin, i.e., f defines an isolated singularity at the origin and p, +p,+p;+p.=p,
i, (1, 1,1, 1) is contained in the interior of the Newton boundary of f (see [W2]).
Yonemura [Y] (see also Fletcher [F]) classified such quadruples of integers, which
have the special properties:

LemMMA 3.1 (Yonemura [Y]). Let py, p,, D3, P4 and p be positive integers such that
gcd(py, P2, 3, Pa)=1. We denote by A the convex hull of {ve Z¢|Y }_,vip;=p} in RS,
and suppose that (1, 1, 1, 1)eInt A. Then

(1) py+p2+ps+pa=p;

(2) ged(ps, pj, P)=1 for any distinct, i, j and k;

(3) a;;:=ged(p;, p)) divides p.

Proor. (1) Since (1, 1, 1, 1)e 4, we have p, +p,+p3+p,=p.

(2) Suppose not. Then there would exist p,, p, and p; such that ged(py, p,, p3)=
d>1. Since gcd(py, p2s P3, P4) =1, wWe have ged(p,, d)=1, and hence ged(p, d)=1.

Thus, for any (v, v,, v3, v4) such that Zf=1v,-pi=p, the inequality v, >1 holds;
indeed, if there is a 4-tuple (v,, v,, v3, 0) with p=v,p, +v,p, +v;3p;, then we have d|p.

Therefore

AC{(XU X2, X3, x4)€R4|x421} 5
and so
(1, 1,1, I)GIUtAC{(xl,xz, X3, x4)ER4|x4>l} ,

which is a contradiction.

(3) Suppose not. Then there would exist a,, such that a,,tp. Therefore any
element v=(vy, v,, v3, v,) in {ve Z§|Y. ! vip;=p} satisfies either v;#0 or v,#0, for
otherwise, p=v,p, +v,p, for some v, and v,, and a,,|p, which is a contradiction.

Consider the hyperplane H={x;+x,=2} through (1, 1, 1, 1). Since (1,1, 1, 1)e
Int 4,

{x3+x,>2}n{4nR*} # X
and
{x3+x,<2}n{4nZ*}# X,

so there exist v=(v,, v,, V3, v,) € 4n Z* such that v;+v, <2. Therefore we have a point
of the form

v=(vy, V5, 1,0) or v=(v{,v,,0,1).

Let the point be of the form v=(v,, v,, 1, 0). Then
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ViPL+ VP =p—P3 .

Thus a,,|p—ps, i.e., ay5|py+ P2 +Pa, 50 a5 | ps. Since ged(ay ,, ps)=1, we have a;, =1,
a contradiction. q.e.d.

DEerFINITION 3.2, Let S=C[x,, x,, * - -, x,] be the polynomial ring in » variables
over C. Introduce a filtration {FS)},., on S by putting degrees on each monomials
as deg(x)=p; for 1<i<n, and induce a filtration {F¥R)},», on R=S/(f) by
F¥(R)=F*S)R for k>0. For the graded ring R=S/(f) we define integers

d,(R):=dimR/FXR),

and the arithmetic Poincaré series
Put:X,x):= Y, d,(Rt".
m=0

Now consider the Poincaré series of a simple K3 singularity (X, x) defined by a
quasi-homogeneous polynomial f(x, y, z, w) of type (p, g, 1, s; h). Then the arithmetic
Poincar¢ series of the simple K3 singularity is given as

1—¢* 1
(1—) 1 —t)1—t)1—¢) 1—t

Pt X, x)=

REMARK 3.3. This definition is different from the ordinary one. For example,
Stanley [S] uses the arithmetic Poincaré series for a graded ring C[x, y, z, w]/(f(x, y,
z, w)) of type (p, g, 1, s; h) given by

1—¢
(=1 =1 =11 —1)

ExAMPLE 3.4. Let f(x,y,z,w)=x>+)y>+z"+w*?. The type of this quasi-
homogeneous polynomial is (21, 14, 6, 1; 42). Let ¢, be the cyclotomic polynomial of
degree k. Then

1—x%2 1
(1—x?1 )1 —x )1 —x*)1 —x") (1—x)
¢42¢21¢14¢7¢6¢3¢2¢1 1 ¢42

T (Ga1010301)(D1007020)bedsbab)b1) b1 Drbabadt

Lemma 3.5. Let o; be the i-th elementary symmetric polynomial in p, q, r and s.
Then the Poincaré series P 4(t; X, x) has the following expression in terms of the partial
fractional expansion:

_o( 1 _3) 1 Loet6 1 _o2) 1 %
g(t)—o'_4<(l—t)4+< 2>(1_t)3+ 12 (1—t)2+< 24>1—t>+;t—ﬁi
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such that

0'10'2 0'10.2 Oti
+)0,=1 and —-) —X=1,
240, 2 240, 2 B;

where B; is a pole different from 1, and a; is the residue of g(t) at t=p,;.

ProoF. By Lemma 3.1, the Poincaré series has only simple poles except t=1,
hence it has the desired expansion. Thus it suffices to show only the latter half of the
lemma. Since p+q+r+s=h, the residue of the meromorphic form g(t)dt at infinity is

Res< - 1 dt;oo)
(1=t (1 —=t)1 -1 —¢) (1—12)

= Res 1_<%>h 1 d(i);oo
(=G =C0-Ge-C) (=)
- es((u”—1)(u“—i‘}l,)—(ul'—l)(us——l).(uzl)'%; °°)= -

Thus the sum of the other residues is 1, and so

0.0,
+ (xi= 1 .
240, 2::
Since 1=c,=¢(0),
0,0, & 1
2464 i Bi

q.e.d.

As a consequence of this lemma, one can easily calculate the r-invariant part of
PA(t’ Xa X)Z

PROPOSITION 3.6.

ict"’—ol( rs _4r3—r2. 1 +14r3—9r2+(0'2+1)r. 1
o e \(I—t 2 (1—r)? 12 (1—1)?
_{2r3—3r2+(62+1)r_02} 1 )_‘_Z(ﬂl)""oc)L
12 81-r) T r=@y

ie.,
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1 1 1
=21 {_ (kr)® +— (k2 + 2210 (kr)} +1.
g, (6 4 12

PrROOF. Denote temporarily the r-invariant part of a formal power series

f(t)e C[[t]1] by r-inv[f(t)]. Then
r-inv [IL] =r-inv [ i t":| = i &)= L
n n=0

—1 =0 1—t’

r-inv[ ! 2]:r—inv[i(n+l)t"]= i(nr+1)t"’=rin(t’)"+ i(t’)”
(1—1p) n=0 n=0 n=0 n=0

rt 1

+,
A—2 1—¢

8

r-inv [ﬁ] =r-inv [ i (n+)(n+ 2)t"] =Y (nr+ D)(nr+2)t"
- n=0 n

=r2 Y n} ()" +3r Y, nt)" +2 ). ()"
n=0 n=0 n=0

:,2.’(t+1) . " 2
=3 T U=m2 1=r

’

r-inv [(1 —6t) 4:| =r-inv [ i (n+1)(n+2)n+ 3)["] = i (nr + 1)(nr 4 2)(nr + 3)™

=0 n=0
=Y n3(e)+ 1112 Y n2Ey +6r Y n(e)" +6 Y ()"
n=0 n=0 n=0 n=0
" 2r r r(+r r
_ 3. " +4t+1) r2.t(t+l) .. t N 6 .
(1—m)* (1—1)3 T

The rest part of the proof easily follows from these equalities.

REMARK 3.7. The sum of the residues of the Poincaré series of a graded simple
K3 singularity is 1, the proof of which was suggested by M. Tomari.

In what follows we show the following proposition:

PROPOSITION 3.8. The o-blow-up gives a minimal resolution of simple K3
singularities defined by a quasi-homogeneous polynomial.

PrOPOSITION 3.9. Let f(x,, X5, X3, X4) be a quasi-homogeneous polynomial of type
(P1,P2> D3> Pas D), and suppose that f(x,, X,, X3, Xx4)=0 defines an isolated singularity at
the origin in C*. Denote by X the hypersurface { f=0}. Then there exist mutually distinct
x; and x; such that {x;=x;=0}n X consists of a finite number of affine curves.
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PROOF.  Otherwise, the union | J,, ;{x;=x;=0} of planes in C* would be contained
in X, and so there are polynomials g; (i=1, 2, 3, 4) such that

Sf(xy, x5, X3, x4)=zxixjxkgl 5

which contradicts the assumption that f(x,, x,, x3, x,) defines an isolated singularity at
the origin. q.e.d

CoOROLLARY 3.10. Let the notation be as above. Take the weighted projective space
P(p,, Py, D3, P4) With weighted homogeneous coordinates y, ¥, V3, ¥4, and the hypersurface
S<P*(py, P2y P3» Pa) 8iven by f(y1, V2, V3, ¥4) =0. Then there exist mutually distinct y; and
yj such that {y,=y;=0}nS consists of a finite number of points.

LeMMA 3.11. Let f(x, X,, X3, X4) be a quasi-homogeneous polynomial. Suppose that
f defines a simple K3 singularity (X, x). Let o: (Y, D) - (X, x) be a partial resolution
obtained by the a-blow-up of C*. Then Ky is numerically effective with respect to o.

PrOOF. Let C be any curve in D. Take coordinate functions x; and x; as above.

Then, there exist positive integers m; and m; such that
(c*x;)=m;D+ B;, (6*x)=m;D+ B;,
where B; and B; are non-compact divisors on Y, i.e., proper transforms of (x;) and (x;).
Since Ky~ —D as a Q-Cartier divisor,
m;C-Ky=C{B;—(6*x;)}=C"B;.

If C# B;, then mC+ Ky >0. If C< B;, then C¢B;, because B;n B;n D consists of a finite
number of points. Therefore m;C+Ky=C-B;>0. q.e.d.

LEMMA 3.12 (Yonemura [Y, Corollary 3.5]). Let f(x,, X,, X3, X,) be a quasi-
homogeneous polynomial. Suppose that f defines a simple K3 singularity (X, x). Let
o: (Y, D) > (X, x) be the partial resolution obtained by the a-blow-up of C*. Then the
singularities of Y along D are all cyclic terminal singularities.

REMARK. Lemmas 3.11 and 3.12 are special cases of results in Tomari [T].

4. Comparison. The Poincaré series P(t; X, x) and the arithmetic Poincaré series
P (t; X, x) agree (see [TW, Remark 2.4, p. 694]) as the following consequence of
Proposition 3.8 shows:

ProposiTION 4.1. P(t; X, x)=P (t; X, x).

Then, comparing the r-invariant part of P(t; X, x) (in Proposition 2.8) with the
r-invariant part of P ,(¢; X, x) (in Proposition 3.6), we have:

THEOREM 4.2. In the same notation as above,
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1) Z= — (oK),
04

o

(2) }i(o'z‘i‘ D)= —{ca(M) p*Ky+ K3y p*Ky}.
4

COROLLARY 4.3.

—cy(M)-p*Ky="12

4

PrOOF. By the projection formula, we have (p*K)* = Ky, (p*Ky)? = K& p*Ky.
q.e.d.

REMARK 4.4. ro,/0, is an integer, since r’c,/o,=(p*rKy)>=rKy(rp*Ky)*=
r’K% - (rp*Ky) and K%-(rp*Ky) is an integer.

Let (V, p) be a germ of a terminal singularity of dimension three, and let u: W -V
be a good resolution such that u: W—u~'(p) 3 V—{p}. We write Ky =p*K, + E and
E=) a,E; where E; are exceptional divisors of u. Let

N d et
AV, p):=—(E-c)(W)) .
THEOREM 4.5. In the same notation as above,
1
7172 =24—2{r(y.~>—v} :
G4 r(y)

where the summation Y is taken over all terminal quotient singular points of indices r(y;)
onY.

Proor. From Corollary 4.3,

0.0
— (M) Ky + (M) {Kpy— p*Ky] =2

4

and so
0.0
_CZ(M)'KM_ZA(Y,yi)z ; 2.

4

By a result of Reid or Kawamata [K, Lemma 2.2],

ACY, yi)=r(yi>—r(iy).

Thus
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6162:24—2{"()%)_#} S

04 r(y)
by Theorem 2.4. q.e.d.

ExAMPLE 4.6. Consider the singularity x*+)*+z’+w*?=0. The minimal
resolution of this singularity is unique and has three terminal singularities, which are
of indices 2, 3 and 7. Then

R L
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