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POINCARE SERIES FOR DISCRETE MOEBIUS GROUPS
ACTING ON THE UPPER HALF SPACE
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Abstract. Consider the Poincaré series of order ¢ for a discrete Moebius group
acting on the n-dimensional upper half-space. If the point at infinity is a horocyclic limit
point or a Garnett point, then the series diverges for any positive number . If the point
at infinity is an ordinary point or a cusped parabolic fixed point, then the series converges
for any ¢ which is greater than n—1. If the point at infinity is an atom for the
Patterson-Sullivan measure, then the series converges for any ¢ which is equal to or
greater than the critical exponent of the group.

1. Discrete Moebius groups. Let R” and R" be the n-dimensional Euclidean space
and its one-point compactification, respectively. We use the notation x=(x,, ..., x,) €
R" and when matrices act on x, we treat x as a column vector. The subspace
H'={xeR" | x,>0} of R" is a model for the hyperbolic #n-space and supports a metric
p derived from the differential dp=|dx|/dx,. We call H" the n-dimensional upper
half-space.

The (full) Moebius group M(R") is the group of Moebius transformations of R”,
which is generated by inversions in spheres and reflections in planes. Moebius
transformations are classified into three conjugacy classes in M(R") as follows. An
element in M(R") is said to be loxodromic if it is conjugate to a transformation of the
form

(1.1) yx)=ATx,

where 1>0, A1, and Te O(n), the group of n x n-orthogonal matrices, and parabolic
if it is conjugate to a transformation of the form

(1.2) Yx)=Tx+a,

where Te O(n), ae R" and Ta=a>x0. A non-trivial element is said to be elliptic if it is
neither loxodromic nor parabolic.

By 7'(x) we denote the Jacobian matrix of ye M(R") at xe R". For ye M(R") the
chain rule implies that y’(x) can be written as y’'(x)=v7T(x) with v>0 and Te O(n). We
denote by |y(x)| this positive number v and call it the linear magnification of y at x.
For ye M(R") with y(o0) % oo the set I(y)={xe R"||y'(x)|=1} is an (n— 1)-sphere with
center y~ !(o0). The sphere I(y) is called the isometric sphere of y. The action of y on
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R"is the composite of an inversion in I(y), followed by a Euclidean isometry. For xe R"
we denote by x* the image of the inversion of x in the unit sphere centered at the origin.
Let ye M(R") be an arbitrary element which does not fix 0. Then y can be written
uniquely in the form

(1.3) Wx)=AT(x—a)*+b,

where >0, TeO(n) and a, be R". In this expression 4'/? is the radius of the isometric
sphereWI(y) of y and a=y~'(00) (resp. b=y(0)) is the center of I(y) (resp. I(y~)). If
ye M(R") fixes oo, then y is written uniquely as a similarity of the form

(1.4) yx)=ATx+a,

where A1>0, Te O(n) and a€eR".

Denote by M(H") the subgroup of M(R") which keeps the subspace H" of R"
invariant. Let I be a discrete subgroup of M(H"). A point ¢ € R"~! =9H", the boundary
of H", is a limit point for I if there exist an infinite sequence of y,,€ I’ and a point
xecl(H"), the closure of H", such that y,(x)—¢ as m—oo. The set of all limit points
for I is the limit set A(I"). The set Q(I')=cl(H") — A(T') is called the region of discontinu-
ity of I'.

Points of the boundary dH"=R""! are classified into three kinds of subsets as
follows. A point £€ R"~ T is a horocyclic limit point for I if for every xe H" there
exist a sequence {y,}j=I and an element he M(H") such that A({)=oco0 and
t{hyh~1(x)} >0 as m— oo, where 1(y) is the n-th coordinate of ye H". The set of
horocyclic limit points for I' is called the horocyclic limits set H(I'). The horocyclic
limit set H(I") contains every loxodromic fixed point of I'. A point &£ € R*~! is a Dirichlet
point for I' if for every xe H" there exist elements y,eI’ and he M(H") such that
h(€)= oo and t(hyoh™'(x))=t(hyh~*(x)) for every yeI. The set of Dirichlet points for
I' is denoted by D(I') and is said to be the Dirichlet set for I. We say a point £€ R" !
to be a Garnett point for I' if there exist xe H", a sequence {y,,} = I', a transformation
he M(H") and a positive number r such that A(£)= co, t(hyh~ (x))<r for all yeI" and
t(hy,h~*(x))1r as m—oo. The set of Garnett points for I' is denote by Q(I'). These
three subsets H(I'), D(I') and Q(I') are invariant under the action of I'. Note that
the boundary OH"=R""' can be written in the disjoint union as R" T=
H(I)uDT)u Q).

2. Cusped parabolic fixed points. Let I" be a discrete subgroup of M(H"). For
xecl(H"), the subgroup I',={yerl | y(x)=x} of I is called the stabilizer of x. Suppose
that I'' is a subgroup of I'. Then a subset X of cl(H") is said to be precisely invariant
under I'"in I, if y(X)=X for all yeI'" and y(X)nX=J for all ye'—TI"'. A parabolic
fixed point £€ R"~ ! of I' is called a cusped parabolic fixed point of I' if either

(1) I hasrank n—1 (in this case the quotient space [R"~ ' —{&}]/I"; is compact.),
or
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(2) there exist he M(H") and d>0 such that A({)=oc0 and A~ '[R""'—{R*x
B""*~(d)}] is precisely invariant under I'; in I', where k (1<k<n-2) is the rank
of I'; and B" *~'(d)={xe R""*!|| x| <d}. (in this case [R"~ ' —{¢£}]/I; is not com-
pact.)

Examples of non-cusped parabolic fixed points are known. See Apanasov [2] and
Ohtake [6]. Denote by C(I') the set of cusped parabolic fixed points of I.

First of all we prove the following:

LEMMA 1. Suppose that I is a non-elementary discrete subgroup of M(H") and o
is a cusped parabolic fixed point of I'. Then there exists a compact set Kc R 'coH"
such that if an element yeI' does not fix oo then h,yh,(c0)e K and (h,yh,)”}(0)eK
for some hy, hyeTl .

PROOF. Let y be an arbitrary element in I'—I" . Then y can be written uniquely
in the form y(x)=AT(x—a)*+b, where A>0, Te O(n) and a,be R" .

First we deal with the case where I', has rank n—1. Since I', acts on R"" !, there
exists a compact fundamental set K for I', in R"~!. We can choose elements h,, h,eT",
so that A7 '(a), h,(b)e K. Put h(x)=U,x+c; for i=1, 2. Then by simple calculation we
see (hyph )(x)=U,{AT(Ux+c;—a)*+b} +c,=AU,TU;(x— Ui 'a+ Ui 'c))*+ U,b+
¢ =AU, TU (x—hy '(a))* + hy(b). Note (h,yh,)(0)=hy(b) € K, (hyyh;) ™ (c0)=hi (a)e
K and we have the required result.

Next we suppose that the rank of I' _ is at most n—2. Conjugating I' by a suitable
transformation in M(H"), we may assume that R"~'—{R*x B""*~1(d)} is precisely
invariant under I', in I for some d>0. We can choose a compact set S in R* so that
Uner A(Sx B""*71(d))=R*x B""*~!(d). Put K= S x cl(B"~*~'(d)). Then we see that K
is a compact subset of R""' and |J, ., h(K)>R*xB"*"!(d). Since y*'(c0)e
A(I')— {0} = R¥x B"~*~1(d), we deduce that y~*(c0)=a and y(c0)=»b belong to R* x
B"~*~1(d). Thus we can choose h,, h,eI' so that h;*(a), h,(b)€e K. By an argument
similar to that in the former case we have the required result. q.e.d.

For ¢>0 define a subset H, of H" by H,={xe H"|t(x)>1}. We denote by R, the
radius of isometric sphere of yelI'—1I' . Suppose that co is a cusped parabolic fixed
point of I'. If I' , has rank n—1, then I' ,, contains a free abelian normal subgroup of
rank n—1. So I',, contains a translation. Hence the set R(I)={R,|yel —TI,} has a
positive finite supremum r. Note that any element of I', keeps H, invariant for any
t>0. Hence the set H, is precisely invariant under I' , in I'. (See Ohtake [6, Corollary
1] or Wielenberg [9, Proposition 4].) If the rank of I'  is less than n—1, then there
exist >0 such that R"~!'—{R*x B"~*~1(d)} is precisely invariant under I, in I". We
easily see that for any yeI'— I, the center of isometric sphere I(y) of y is contained
in R*x B"~*~1(d). If sup R(I') = o0, then R* x B""¥~1(s) is not precisely invariant under
', in I' for any s>0. So sup R(I') is positive finite. Take an arbitrary ¢>sup R(I').
Then H, is precisely invariant under I' in I". Hence we have the following:
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LEMMA 2. Suppose that oo is a cusped parabolic fixed point of a discrete subgroup
I' of M(H"). Then there exists a positive constant t such that the subspace H, of H" is
precisely invariant under I'  in I

By using Lemma 1 and Lemma 2, we show the next result which is announced in
Nicholls [4] without proof.

THEOREM 3. If I is a discrete subgroup of M(H"), then C(I"y<= D(I').

PROOF. Assume the contrary. Let £ R"~! be a cusped parabolic fixed point of
I'. Conjugating I' by an element of M(H"), we may set £ =c0. Note that R*~1=0H"
is decomposed into a disjoint union as R"~'=H(I')u D(I')u Q(I'). Assume that oo is
a horocyclic limit point for I'. Then for any point xe H" there exists a sequence {y,,}
of I' such that t(y,(x)) T oo as m—o0. Since y,,€ M(H") and 7,,(c0) 2 c0, we may put
V(%) = A T X — @) * + b,,,, Where 4,,>0, T,,e O(n) and a,,, b, R *<dH" < R" for all
m. Then by elementary calculation we have

@.n (X)) = Apt(x)/| X~y |* .

Note that the denominators on the right hand side of (2.1) are bounded away from
zero. Hence we see 4,,— 00 as m— 0. It contradicts Lemma 2, so we have oo ¢ H(I').
Next we assume oo € Q(I'). Then there exist xe H", r>0 and {y,}=I'—TI,, such that
t(y(x))<r for all yeI' and t(y,(x))1r as m—oo. If sup{la,||m=1,2,...}=00,
then sup{/,, |m=1,2,...} =00 and it contradicts Lemma 2. Hence there exists a com-
pact set K; = R""! so that a,eK; for every m. Now from the proof of Lemma 1
there exist a compact set K, R" ! and a sequence {h,} =T, so that (h,y,) ()=
h,(b,,) € K, for every m. Note that (h,,y,,) }(0)=a,€ K, for every m. Put K=K, UK.
Then we have (h,y,)*'(0)eK for every m. Noting R, , =R, , we can put
(M) (X) = A Up(x — ,)* + B,., where a,,, B,€K and U,eO(n) for every m. So if
{h,;ym} contains infinitely many distinct elements, there exist a subsequence {hmjymj} of
{hmym}» 4>0,a, e K and Ue O(n) such that (h,,y, )x)>AU(x—a)*+p as jooo. It
contradicts the discreteness of I'. So it suffices to show that {h,y,} contains a sub-
sequence consisting of infinitely many distinct elements. Assume the contrary. Then
there exists {g; |j= 1,...,k}=I"<TI so that h,y,el"’ for all m. Hence we have
hyym=g; for some j and for infinitely many m. It follows that t(y,(x))=1(h,, 'g;(x))
is constant for infinitely many m. It cannot occur. Hence we have oo € D(I'). q.e.d.

3. Atoms for the Patterson-Sullivan measure. In this section we summarize some
properties of the Patterson-Sullivan measure. For definitions and details see Nicholls

[5] and Patterson [8].
Let I be a discrete subgroup of M(H"). For x, ye H" and 1> 0, consider the series
of the form
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(3.1) g(t, x, y)= ZF exp{—p(x, p())} -

The critical exponent 6=4(I') of I' is defined by d=inf{r>0 l g(t, x, y)<oo}. It is
well-known that the divergence or convergence of g(t, x, y) does not depend on x, y and
0<n—1.

For xe H" let M, be the collection of positive finite measures on cl(H") with the
base point x. Here each p, e M, is obtained by weak convergence of sequences of
measures derived from the series (3.1) and is said to be the Patterson-Sullivan measure
with the base point x. We summarize the properties of this measure in the following.
Any measure p, belonging to M, satisfies

(3.2) u, issupported on the limit set A(I).

(3.3) Forany x, ze H", u, and p, are absolutely continuous with respect to each other
and the Radon-Nikodym derivative is {du,/du,}({)={P(x, {)/P(z, C)}" where
{edH" and P(x, () is the Poisson kernel on H".

(3.4) For any Borel set E of cl(H") and any ye I, we have pu (y~'(E)) = p,(E).

A point £e R"~ ! is said to be an atom for u.e M, if u (&)>0. The set of atoms
is denoted by

(3.5) A(N)={EeR"™ | u(&)>0 for some u e M, and some xe H"}.

It is known that A(I') e D(I')n A(I") and A(I')n C(I')= . (See Bowditch [3] and
Nicholls [5].) It is obvious Q(I')n R"~*< D(I'). So we deduce from Theorem 3 and
(3.4) the following:

PrROPOSITION 4. Let I' be a discrete subgroup of M(H"). Then the three sets
AN R"~1, C(I') and A(I') are disjoint, invariant subsets of D(I') under T .

It is not known whether the set D(I")—[{Q(I')n R~} u C(I')u A(I)] is empty or
not.

4. Poincaré series. For ye M(H") we calculate the linear magnification |y'(x)|
of y. If y(c0)= o0, then y is a similarity of the form (1.4) and we easily see |y'(x)|= 4.
If y(c0) % o, then chain rule implies |y’(x)|=4/| x—a|? from (1.3). Hence (2.1) implies
the following:

LemMmA 5. For ye M(H") and x€ H" we have t(y(x)) =t(x)|y'(x)|.

Let I" be a non-elementary discrete subgroup of M(H") with the critical exponent
0. Suppose that oo is not fixed by any loxodromic element of I'. We denote by S a
system of left coset representatives of I' \I'. For xe H" and t>0, we consider the
Poincar¢ series of the form
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(4.1 Ox, )= [y .

yeES
Since I',, does not contain loxodromic transformations, we see |h'(x)|=1 for every
hel', and every xeH". So for every yeI' and hel, chain rule implies
[(hy) (x) [=1H' () ] y'(x) |=|y'(x)| for every xe H". Hence we have the following:

LEMMA 6. Let I' be a non-elementary discrete subgroup of M(H"). Suppose that
I’ , does not contain loxodromic elements of I'. Then the value of the series (4.1) does not
depend on the choice of coset representatives.

Next we suppose that I', contains a loxodromic element 4. We may assume that
oo is an attractive fixed point of 4. So 4 can be written in the form A(x)=ATx+ «, where
4>1,TeO(n)and a € R"~!. Since | #'(x) | = A for any xe H", we see | (h™y)"(x) | =A™y’ (x) |
for any ye S and any integer m. So it follows that | (A™y)'(x)|— o0 (resp. 0) as m— o0
(resp. —o0). Note that A™y and y belong to the same coset. Hence we conclude that
the value of @(x, t) may be finite or infinite according to the choice of a system of coset
representatives. From now on we consider the series @(x, t) only in the case where I
does not contain loxodromic transformations.

The purpose of this section is to prove the following theorem.

THEOREM 7. Let I' be a non-elementary discrete subgroup of M(H™). Suppose that
o0 is not fixed by loxodromic elements of I'. Then the following hold.

(1) If oe H(I'), then O(x, t)= oo for all xe H" and all t>0.

(2) If 0oeQ(I), then O(x, t)= oo for all xe H" and all t>0.

(3) If 0oeQI)uC(I), then O(x, t)y<oo for all xe H" and all t>n—1.

(4) If oe A(I), then O(x, t)< oo for all xe H" and all t=.

ProoF. First we show (1). By the definition of horocyclic limit points, there exists
a sequence {y,,} of I such that 7(y,,(x)) T co as m— oo for all xe H". Any ye I, is written
uniquely in the form

4.2) y(x)=Tx+a,

where Te O(n) and ae R"~ ! < dH". Since | y,,(x)|=1(y,(x))/t(x) from Lemma 5, we get
| 7m(x)| T 00 as m—o0. Assume that for some j, k (j<k), y; and y, belong to the same
coset. Then we have y;=hy, for some hel,. So we have |y}(x)|=](hy) (x)|=]7i(x)|
by (4.2). It contradicts the definition of horocyclic limit points. Hence any two elements
of {y,,} belong to distinct cosets. So it follows that O(x, )= *__ |y,(x)['=co for all
xe H" and t>0 and we have the required result.

Next we deal with (2). Since oo € Q(I'), by Lemma 5 there exist ye H", a>0 and
{ymp =T such that |y,(»)|Ta as m—oo and |y'(y)|<a for all yeI'. Since I, cannot
contain loxodromic elements, we may assume that any element y,, can be written in the
form y,(x)=4,T.(x—a,)*+b,. Let x be an arbitrary point in H". Since
1)1 7)) | =y —am |*/| x—a,, |>, there exists a positive constant ¢ such that
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[y /I Ym() | >c for all m. By an argument similar to that in the case oo € H(I'), we
see that any two elements of {y,} belong to distinct consets. Hence we have
O, NZY 7 |y Zc Y7 |ym(»)['=c0 for all xe H", all >0 and we prove (2).

Suppose that o0 is a cusped parabolic fixed point of I'. Take and fix an arbitrary
point x, € H". Hence we put S={y,,}. Now we show the following. By taking a suitable
system of coset representatives S’ = {n,,}, we see that there exist a compact set K< R"~*
and f>0 so that n,,(B(x,, 2)) = K x (0, §) for all m and a sufficiently small o >0, where
B(x,, 0)={ye H"| p(xo, y)<a} and (0, B) is an open interval.

Suppose that I', has rank n—1. Let T be a compact fundamental set for I', on
R"~1. Then for each m there exist h,eI", and B,>0 such that h,7y,(x,)e T x (0, B,).
By putting #,,=h,,y,, we easily see that S'={5,,} is a system of coset representatives of
' \T. Hence for a sufficiently small « >0 there exist a compact set K (> 7T) in R" and
B (> PB,) so that n,(B(xy, a))= Kx (0, f) for all m. If k, the rank of I', is less than
n—1, there exists d>0 so that R""!—{R*x B""*~1(d)} is precisely invariant under
I', in I'. Note that the Euclidean distance between the plane R*x {(0,...,0)} in R"
and 7,,(x,) remains bounded for every m. Since the quotient of R* by 'the restricted
action of I', is compact, there exist y,,el’,, fo>0 and a compact fundamental
set T for I', on R* so that h,y,(x,)e Tx B" *~1(8,) x (0, B,) for some B,>0 and
every m. Put n,,=h,y,,. Hence for sufficiently small «>0 there exist a compact set K
(oTxB" % }(B)) in R""! and a positive number B (>f,) so that #,(B(x,, &))<
Kx (0, p).

Here we put B,,=n,,(B(x,, ®)). We may set 7,,(x) = A, Tu(x — ap)* + b, If x4 is not
fixed by any non-trivial element of I', then for a sufficiently small >0, {B,,} is the set
of disjoint balls. But if x, is fixed by an elliptic element of order p, then all B,, overlap
p times. Take a positive number N and consider the integral

4.3) > J j (e LB
m=1 B (X,,)

Then there exists a positive constant ¢; which depends only on x, and I" such that

(4'4) 1§Cl j - J‘ (x")t—ndxl ceodx
Kx(0,a)

Note that if t—n> —1, then the right hand side of (4.4) converges to a positive num-
ber M which does not depends on N. In each integral of (4.3), we make the change
of variable x=n,(y). By simple calculation and Lemma 5, we see |n,(»)|=
Anlly —a, |> =1(x)/1(y) for every m. Using this equality we get from (4.3)

4.5) I= Z f f ) [y P D
B(xo,a) (¥n)

where y=(yy, ..., ). Since |n,(»)/I1(x0) |=|Xo—an|*/| y—a,|?, then for every m
there exists a positive number c, which depends on x, o« and I' such that



42 K. INOUE

[ MmO || 1m(X0) | Z ¢, for all y € B(x,, o). From (4.5) it follows that
N
(4.6) I2c, Zl [1(X0) I’f J () ""dyydy, 2 ey Z [Mm(X0) s
m= B(xo,a)

where ¢; is a positive constant which does not depend on N. Hence by (4.3), (4.4) and
(4.6) we have

N
(.7 Y Innro) 'S Mies

for t>n—1. Note that the right hand side of (4.7) does not depend on N. Since x, is
an arbitrary point in H", we get

4.8) i () < o0

for every xe H" and t>n—1. Since #,, and y,, belong to the same coset I' .7, we have
[ 7m(X) | =]ym(x)| for every m. Hence we get O(x, t):ZyeS [ 7m(X) ' < o0 for every xe H"
and t>n—1if coe C(I).

Next suppose that oo is an ordinary point. For any x,€ H" and any m there exist
positive numbers a, § and a compact set K in R"~! such that y,(B(x,, ®)) = K x (0, B).
By an argument similar to that in the case oo e C(I), it follows that @(x, 1)< oo for
every xe H” and t>n—1, and the statement (3) is proved.

Finally we show (4). Suppose that oo is an atom for a measure u, e M,. It suffices
to show @(x, d) < oo for every xe H". Note that for y;, y;€ S we have y;*(c0)=y; (0)
if and only if i =j. Hence by (3.4) we get ) _ciy(00)=) sy ()=
U, (cl(H")) < co. By (3.3) we see

P(y(x), 00)j|"
4.9 »(00)= ——————— | ty(00).
@9) % tentoo)= | 0D e
Note that the Poisson kernel P(x, oo) for the upper half-space is given by P(x, c0)=1(x)
for all xe H". Since oo is an atom for u,, the value u (o0) is positive finite. Put ¢ = p,(c0).
Then the right hand side of (4.9) is ¢}, _[t(y(x))/t(x)]°=c)., s17'(x)|° by Lemma 5.
Therefore we get O(x,d)=) s7'(x)|°<co and this is the required result. q.ed.

5. Radii of isometric spheres. In this last section we describe a property of radii
of the isometric spheres of discrete groups.

Let I' be a discrete subgroup of M(H") and I'" a subgroup of I'. We say that
elements y;, ;€ I’ are equivalent with respect to I'" if there exist 4y, h,€I"" such that
vi=hyyh,.

For a non-elementary discrete subgroup I' of M(H"), let {y,,} be an enumeration
of '—T . For each m we denote by R,, the radius of the isometric sphere 1(y,,) of y,,.
It is well-known that liminf,,, , R,,=0. We show the following:
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THEOREM 8. Let I' be a non-elementary discrete subgroup of M(H"). Then the
following holds:

(1) If coe H(I') then limsup,,_, ,R,,= c0.

(2) If weQ(I) then limsup,,_, ,R,>0.

(3) If veQ) then lim,_, R, =0.

4) If weC(I') then for any subsequence {y,}, which consists of inequivalent
elements of {y,,} with respect to I, it follows that lim;_, R, =0.

Proor. Foreachmlety, el —I be of the form y,(x) = 4,,T,.(x —a,)* + b,,. Since
[72X) | = Apf] X — @y |*, We see R, =AY>=|y.(x)|"?| x—a,| for all xe H". Note that a,,
belongs to R"~' (cdH") for every m. Then there exists a positive number ¢ which
depend on x and I such that |x—a,|>c for all m. Hence the statements (1), (2) are
immediate consequences of definitions of horocyclic limit points and Garnett points.

Now we show (3). Since oo is an ordinary point, there exist a compact set W< R~ 1
and a positive integer N such that yZ1(co)e W for all m= N. Assume that there exists
a subsequence {y,, } of {,} such that lim;_, ,R,, =a. If = co, then there exists a point
x € H" such that y,, (x)— 00 as j—o0. This means that oo is a limit point, a contradiction.
Next we consider the case where a is positive finite. By taking a subsequence {y,, }, if
necessary, we have (A, Ymgm,) Yoo)=leW, (P Ym,Gm)(0)—>ne W and T, —Te O(n)
as j—co. It follows that (A, Ymgm )(x)>a*T(x—{)*+¢ as j—>oo for all xe H". Then I
is not discrete, a contradiction. Hence we have a=0.

Finally we deal with (4). Assume that there exists a subsequence {y,, } of {y,} so
that lim;_, ,R,, ;= R>0. Since co € C(I'), there exists d>0 such that the subspace H, is
precisely invariant under I' , in I by Lemma 2. So R is positive finite. Then by Lemma
1 there exist a compact set K in R*™! and A, , g, € ', such that (h,, y, gm)* (0) €K
for every j. By an argument similar to that in (3), we have a contradiction. Hence the
statement (4) is proved. g.e.d.
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