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Abstract. We prove, under a certain condition on the dimension, the unirationality
of general complete intersections of hypersurfaces which are defined over an algebraically
closed field of characteristic p>0 and projectively isomorphic to the Fermat hypersurface
of degree q+ 1 where q is a power of p.

Introduction. The Fermat variety

of degree q + 1 (q = pv) defined over a field of characteristic p > 0 has a lot of interesting
peculiarities of positive characteristic, such as supersingularity (Tate [T], Shioda [Sh],
Shioda-Katsura [S-K]), unirationality (Shioda [Sh], Shioda-Katsura [S-K], Schoen
[Sch]), and constancy of moduli of hyperplane sections (Beauville [B]). On the other
hand, in characteristics p > 0, hypersurfaces which are projectively isomorphic to the
Fermat variety of degree q +1 constitute an open dense subset of a linear system #!
(See Beauville [B] and below.) Then it is very likely that the complete intersections
defined by linear subsystems of & also possess those interesting peculiarities. In this
paper, we shall study the unirationality of such complete intersections.

Let A: be a field of characteristic p> 0, k its algebraic closure, and q a power of p.
First we state our results over £ Let & denote the linear subsystem of | ΘP»(q+1) I

which consists of hypersurfaces whose defining equations are of the form

(0.1) Σ aμvXμX? = 0.
μ,v = 0

As is shown in Beauville [B], a hypersurface of degree q+l in Pi is projectively
isomorphic to the Fermat variety if and only if it is a nonsingular member of #!

THEOREM 1. Suppose n>r2 + 2r. Let Vl9...,Vr be members of J*. We put

W= Vγ n n Vr. If Vί9 ..., Vr are chosen generally, then there is a purely inseparable

dominant rational map P%~r -• W of degree qr{r+1)/2. In particular, W is unirational.
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Because there is a surjective morphism from the Fermat variety of degree q + 1 to

the Fermat variety of degree m if m\(q+1), our result implies the following:

COROLLARY. Suppose n>3. Then the Fermat variety

of degree m defined over an algebraically closedfield ofcharacteristic p>0 is unirational,

provided that px= — 1 (mod m) for some integer v.

Schoen [Sch] has also proved this Corollary. In case n is odd, this result had

already been shown in Shioda [Sh] and Shioda-Katsura [S-K], by means of the inductive

structure of Fermat varieties.

The same argument can be applied to the complete intersection of hypersurfaces

of diagonal type. We shall prove the following:

THEOREM 2. Suppose n>r2 + 3r. Suppose also that pv= — \ (modm) for some

integer v. Let Vi (i= 1, . . . , r) be hypersurfaces of diagonal type

biOχ%+- +binχ:=b

defined over k. If the coefficients biv are general enough, then the complete intersection

W— V1 n n Vr is unirational

Note that, since Theorem 1 states the unirationality only for general Vl9..., Vr9

Theorem 2 does not follow directly from Theorem 1 if r>2. We have to strengthen the

condition on n from >r2 + 2r to > r 2 + 3r, as far as we adopt the method of the proof

in this article.

In fact, we shall prove a stronger result. From now on, we work over k, which is

not necessarily algebraically closed. We fix an r-dimensional linear subspace L<^P£

defined over k. We denote by !FL the variety of all hypersurfaces which are defined by

equations of the form (0.1) and contain L. Then ϊFL is defined over k and isomorphic

to the projective space of dimension («+ I) 2 — (r-f-1)2— 1.

THEOREM 3. Suppose n>r2 + r + l . Then there is an open dense sub variety U of

3FL x x 3FL (Mimes) which has the following property. Let K\k be an arbitrary field

extension and let U(K) denote the set of K-valued points of U. Then, for every

( K l 9 . . . , Vr) e U(K)9 there is a purely inseparable dominant rational map of degree qr{r+1)/2

defined over K1/qr from the (n — r)-dimensional projective space to W= Vx n n Vr. In

particular, W is Kllqt-unirational.

The idea of the proof of Theorem 3 is as follows. We proceed by induction on

r. Suppose that Vl9..., Vre^L(K) are "general", by which we mean that they satisfy

certain open conditions. Let TηiL) w a Pί{L) be the tangent space to W at the gener-

ic point of L. Then there is a purely inseparable dominant rational map Tη{L)W(\

(WxκK(L))- -^W defined over K. We shall show that Tη{LhWn(WxκK(L)) is bira-
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tional over K(L)1/q to a complete intersection of r— 1 hypersurfaces V[l),..., V}ί\ c

P£α? r defined over a field K(1) which is a purely transcendental extension of dimension

r—\ over K(L)1/q, and each K/υ is projectively isomorphic over K(1) to the Fermat

variety of degree q+l, and contains a ΛΓ(1 ̂ rational (r— l)-dimensional linear sub-

space L ( 1 )czPJo? r . Moreover, if Kl9 . . . , F r are "general", then V[x\ . . . , K ^ are

also "general". Since (ΛΓ ( 1 )) 1 / 9 r l is a purely transcendental extension-of dimension

2 r - l over K1/έ*r, the (A:(1))1/^r"1-unirationality of K ^ n n Vr

(ί_\ implies the K1/qr-

unirationality of W= Vί n n Vr.

This paper is organized as follows. In §1, we give a finite set of open conditions

on Vu ..., VrE^L{K) which is sufficient for the # w-unirationality of W= Vx n n Vr.

In §2, we show the existence of an example of Vl9..., Vre^L{k) which satisfies those

conditions and thus complete the proof of Theorem 3. In §3, we prove lemmas about

linear subspaces contained in Wand derive Theorem 1 from Theorem 3. In §4, we shall

prove Theorem 2 by showing that there is such an element (Vl9 . . . , Vr) in U(k) that

each Vi is a hypersurface of diagonal type.

CONVENTIONS AND NOTATION. Let V be a variety over a field E and let F/E be a

field extension. Then V(F) denotes the set of F-valued points of V, VF denotes the fiber

product V x S p e c E Spec F, and F(V) denotes the function field of VF. Let E be the algebraic

closure of E. Then E1/q is the field {xeE\xqeE}, and Eq is the field {xq\xeE}. The

binary relation ^ means that varieties are birational, while ^ means that they are

isomorphic.

1. Open conditions sufficient for the unirationality. We start to prove Theorem

3. Let Vί9..., Vr be members of ^L(K). Suppose that

(Cl) W \= V1 n n Vr is a complete intersection of dimension n — r which is geo-

metrically reduced irreducible and nonsingular along L .

Let(T0> •••> Xn) be homogeneous coordinates of/*£ such that Lκ = {Xr+ί= = ^ = 0},
and let

n

X αiμvXμX
q = 0 where αiμγ = 0 if 0 < μ , v<>

μ, v = 0

be the defining equation of Vt. The tangent space to Vt at ( F o , . . . , Yn)e Vt is given by

μ=0

Let TL w be the variety {(β, R) e Lκ x P£ | ΓQ ^ 9 /̂ , where ΓQ w cz P£ is the tangent space

to Wat β}, which is defined by ( l . l ^ - O . l ) , with γr+1= - = Yn = 0. Let
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be the natural projections. The second projection φ is a surjection which is genetically
finite and purely inseparable of degree qr. Indeed, as is seen from (l.l) i5 the polar divisor
{QeVi\TQtV.3 R} of Vι with respect to R e P£ is a q-th multiple of a hyperplane section
P^Vi^Vh where PR,Vi *s t r i e hyperplane. Then φ'1^) is set-theoretically equal to
{(Q, R)\QePR Vιn r\PRtVrnL}, which is always nonempty. Hence φ is surjective,
and comparing the dimensions of TL w and P£, we see that φ is generically finite; that
is, the intersection PR Vί n n PR VrnL consists of one point for a general point R e P£.
Since each of r polar divisors has multiplicity q, the degree of φ is qr. Let Γw denote
the closed subset of P£ such that PP\ΓW is the maximal open subset over which φ is
finite. We suppose that

(C2) W is not contained in Γw, and the closure of φ ~~* (W\/V) is mapped surjectively
onto Lκ by the first projection.

We denote by Z the inverse image φ~i(W). Then (C2) implies that

(1.2) a geometrically irreducible component of the generic fiber of Z-* Lκ (that is,
the component which is obtained as the closure of φ~ 1(W\ΓW)) is mapped dominantly
onto W by a purely inseparable rational map of degree qr.

(It will turn out that, for general Vί9 . . . , Vr, the generic fiber of Z^LK is again
geometrically reduced irreducible unless n = 3 and r=\. If n = 3 and r = l , the generic
fiber is a union of a line φ~1{L^)xLκK{L) and a geometrically reduced irreducible
curve in P| (L).)

Let £ be an arbitrary extension field of K, and let p: Spec E -» L κ be an £"-valued
point of Lx. (Later on in this section, p will be the g-th root of the generic point
Spec K(L)1/q -* Lκ, and in the next section, p will be a geometric point with respect to
K.) Then there are homogeneous coordinates, which we shall denote by (Xo,..., Xn)
again, of PI such that

= {Xr+1=---=Xn = 0} and

where Tp w is the tangent space to Wat p. Suppose that Econtains K1/q and p factors
as Spec E -• Spec is" -> Lx, which is satisfied in the two cases mentioned in the parenthe-
sis above. Then the defining equation of (F f)£ can be put into a form
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v = 0

where liv are linear forms over E. We put X—XJXQ (/= 1,. . . , n — r) and consider

(xί9 . . . , xn-r) as affine coordinates of Tp w with the origin p. Because Tp WV\{V^E is

singular at p, its defining equation in Tp w is of a form

v = l

where/ f and # ί v are linear forms in (xl9 . . . , xn-r) over £. For simplicity, we put

(1.3) ^ : = "Σ*v0?v.
v = l

We also put

Zp: = ZxLκSpecE=TP9WnlVE= f) TPtW(\(VdE9
ί = l

Lp : = (/>" \LK) xLκ Spec £c= ΓPi w .

Then Lp is contained in TPtW(\{V^E and hence in Zp. We assume that the following

condition is satisfied:

(C3.p) Zp is a complete intersection of codimension r in Γp w. Moreover, unless « = 3

and r=\, Zp is geometrically reduced irreducible. If n = 3 and r = 1, Zp is a union of

the line Lp and a geometrically reduced irreducible curve.

Let Dp^:Pl~r~ι be the variety of all lines on Tp w which pass through p, and let
π : Tp,w — * Dp ^ the natural projection. We may regard (xί9 . . . , xn_r) as homogeneous

coordinates on D p , and/) and /zf as defining equations of hyperplanes and hypersurfaces

in Dp. Then Lκ a V{ implies

(1-4) π(Lp) cz {/;• = 0} , π(Lp) c= {ht = 0} ,

where π ί L ^ ^ P ^ " 1 is the linear subspace of Dp defined by {xr+1 = = x Π _ r = 0}. Here

again we assume that the following are satisfied:

(C4.p) fl9 ... ,/ r are linearly independent, and

(C5.p) unless n = 3 and r = 1, at least one of/z/s is not constantly zero on {/x = =

/ r = 0} c D p if n = 3 and r = 1, t h e n / i 2 ^ . (Note that if n = 3 and r = 1, then (1.4) implies

Note that, unless/ f (a l 5 . . . , an__r) = hi(a1,..., tfn_r) = 0, a line

{((x1? . . . , xΠ_r) = (Λtf 1 ? . . . , λan.r) IA is an affine parameter} cz ΓPί w



384 I. SHIM AD A

intersects Tp wr\(Vt)E at λ = 0 with multiplicity q and at

with multiplicity 1. Thus, if /£ does not divide hh π gives a birational map over E
between TPtWr\(V^E and Dp. In particular, if r= 1 and «>3, then Zp is birational to
Dp^PnjΓ2 over E. When r = l and /ι = 3, then Zp\Lp is birational to Dp^PE. Hence
in case r = l , (C4.p) and (C5.p) imply (C3.p) automatically. Now suppose r>2. Let
Yp a Dp be the variety defined by

Then we see that

(1.5) Zp is mapped birationally by π to Yp.

Indeed, the lines contained in Zp and passing through p are parametrized by
{f1== - =fr = hί = =hr = 0}czDp. By dimension counting, (C4.p) and (C5.p) imply
that Zp is not a cone with the vertex p. Hence (1.5) holds. We denote by Uip

(i= 1,..., r— 1) the hypersurface defined in Dp by

Then F p =P)[ l ί ί/ifP is a geometrically reduced irreducible complete intersection of
codimension r—\ by (C3.p) and (1.5).

By (C4.p), {/i= * * =/Γ = 0} defines an (« — 2r— l)-dimensional linear subspace
MpczZ)p, which contains π(Lp) by (1.4). Let G ^ P J Γ 1 be the variety of all
(n — 2r)-dimensional linear subspaces containing Mp, and let

be the universal family. The morphism ft is a blow-up along the center Mp. From the
defining equation of UitP, we see that the total transform ft'H^.p) contains the
exceptional divisor b~1(Mp) with multiplicity at least q. We denote by V^J the effective
divisor b~ι(Uip) — q'b~1(Mp). The last condition we assume is~ι(U) — q'b~1(Mp). The last condition we assu

(C6.p) V$ does not contain the exceptional divisor b~\Mp) any more, and the
projection V^J -• Gp is surjective.

F/y coincides with the
: = V[)p n n V^Up is the strict transform of Yp; hence ^ ^ -> Fp is birational.

Then F/y coincides with the strict transform of UitP, and the intersection
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Moreover, the projection Wp

(1)->GP is surjective. This implies that

(1.6) the generic fiber of JVp

(1)-^Gp is mapped birationally onto Yp.

Let FIE be an arbitrary field extension and let σ: SpecF-^G^ be an F-valued point,

(which will be the generic point later in this section, and a geometric point with respect

to ^ i n the next section). Noting that the restriction of an equation of-the form (0.1)

to a linear subspace still has the form (0.1), we see from (1.3) that the defining equation

of F/y σ : = V$ x G p SpecFin Hpσ\ = Hp x GpSpec F^Pn

F~
2r is of the form (0.1). More-

over we see from (1.4) that V^p\σ contains an (r— l)-dimensional linear subspace

Now we take p to be the q-ύv root of the generic point η: Spec K(L)1/q -> Lκ, and

σ the generic point ηr: Spec K(L)1/q(Gη) -> Gη. In this case, we omit the η in the conditions

and simply write (C3), etc. instead of (C3.τ/), etc. We also write K/υ and L ( 1 ) instead

of V$tη. and Lfy. The field F=K(Lη)
1/q(Gη) is a purely transcendental extension of

dimension 2r— 1 over the constant field K1/q, which we shall denote by K(ί).

We summarize the construction above:

When r = 1 and « > 3 (resp. « = 3), we get a dominant rational map Dη~Zη (resp.

Zη\Lη)- ^>W defined over K1/q and purely inseparable of degree q, assuming (Cl),

(C2) and (C3). (Note that when /i = 3, Zη\Lη- -+W is still dominant.) Since K(L)1/q

is a purely transcendental extension of dimension 1 over K1/q, Dη^P£[L*ι/q is birational

to Pχ7ιl. Hence Wis A:1/9-unirational.

When r > 2 , starting from hypersurfaces Vu . . . , VretFL(K) in P% and assuming

(C1HC6), we get V[ι\ . . . , K/i^ e^L(ί)(K(1)) in Pia, 2 r, where J ^ ( D is the variety defined

in the same way as 3FL with k replaced by K{1\ L replaced by L ( 1 ), and n replaced by

n — 2r. Moreover, putting W{1) : = V[l)r\ n V^\, we get a dominant rational map

W(ί)- -> Ŵ  defined over K1/q and purely inseparable of degree qr by composing

H ^ ( 1 ) ~ Yη ~ Zη' ^>W.

(1.6) (1.5) (1.2)

Let ( C l ) ( 1 ) , . . . , (C6) ( 1 ) be the conditions obtained from ( C l ) , . . . , (C6) by replacing K

by K{1\ n by n(ί): = n-2r,r by r ( 1 ) : = r - l , L by L ( 1 ) and F t ( i = l , . . . , r ) by K/^

0 = 1 , . . . , r α ) ) . Inductively, assuming (C1) ( V~1 )-<C6) ( V-1 ) ( ( C l ) ^ - ^ - ^ ) ^ - ^ when

v = r), we get r^^r^'^—l hypersurfaces K/v) (/= 1, . . . , r(v)) in a projective space of

dimension «(v) = /2 ( v " 1 ) -2r ( v - 1 ) such that each F/v ) is

(i) defined over the field Kiv), which is a purely transcendental extension of dimension

2 r ( v " υ - 1 over the constant field (^ v " 1 ) ) 1 / «,

(ii) defined by an equation of the form (0.1), and

(iii) containing an r(v)-dimensional linear subspace L(v) defined over K(v);

and moreover
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(iv) there is a dominant rational map W{y): = V[x) n n V$ -• W{v~ υ defined over
(^-(v-iy/ί a n d pU rely inseparable of degree ^ r + 1 ~ v .

Then we define the conditions (Cl) (v)-(C6) (V) in the obvious way. Note that if

Λ>r 2 + r + l , then n(v)>r(v)2 + r(v) + 1 for v = l , . . . , r . Thus if (C1)-(C6), (Cl) ( 1 ) -

(C6) ( 1 ) , . . . , (Cl) ( r " 2 ) -(C6) ( r " 2 ) and (Cl) ( r " 1 ) -(C3) ( r - 1 ) are satisfied, we get a dominant

rational map

defined over K1/qr and purely inseparable of degree qr(r+iv2. Noting that K(r) is a purely

transcendental extension over K1/qr of dimension r2 and that n(r) = n — r2 — r, we see that

PjTr) is birational to PJT/V over A'1/*r. Hence W is Λ:1Ar-unirational.

It is obvious that (C1)-(C6), (C1) ( 1 ) -(C6) ( 1 ) , . . . , (Cl) ( r " 2 ) -(C6) ( r - 2 ) and ( C l ) ( r - 1 } -

(C3) ( r~1 ) impose open conditions on the initial choice of Vl9..., VretFL(K). Moreover,

these conditions are independent of the field K. Thus there is such an open sub variety

C / c ^ x x J ^ that for arbitrary K/k and (Vί9..., Vr)e U(K), W= Vx n n Vr is

ΛΓ1/ήfΓ-unirational. Our next task is to show that U is dense, or equivalently, U(Ic) is

nonempty.

2. Non-emptiness of U(k). In showing U{k) φ 0 , we may assume that k itself is

algebraically closed. Therefore we will asume k = Ic = Kin this section.

Let p: Spec£->L be a closed point of L. It is easy to see from the openness of

the conditions that

(2.1) if (C3.pHC6.p) hold, then (C3)-(C6) also hold.

Moreover, let σ: Speck-+GP be a closed point of Gβ, and let (C1) ( 1 )-(C6) ( 1 ) be the

conditions obtained from (C1) ( 1 )-(C6) ( 1 ) replacing Kil) by Jfc, L ( 1 ) by l}£δ9 and
1 , . . . , F/i^ by V[%δ9..., K r

(i }

l fp t s. It is also easy to see that

(2.2) if (C1) ( 1 )-(C6) ( 1 ) hold, then (C1) ( 1 )-(C6) ( 1 ) also hold.

Now we replace (C1) ( 1 )-(C6) ( 1 ) by (CΪ) ( 1 )-(C6) ( 1 ), fix closed points of l}£& and G%,

and repeat the whole process above again to check (C1) (2)-(C6) (2).

Thus, making repeated use of the stability (2.1) and (2.2) of the conditions under

generizations, we can prove the non-emptiness of U(k) by induction on r, provided that

we prove the following two statements:

(a) For general Vl9..., Vre^L(k), (Cl), (C2) and (C3, p)-(C6, p) hold.

(b) If Vl9 . . . , Vre^L(k) are general, then V^δ9..., V?\βtδ are also general.

Let us state (b) more precisely. We fix the following data:

(i) homogeneous coordinates (Xθ9...9Xn) of Pζ such that p = (l, 0, . . . , 0) and
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(ii) an (n — r)-dimensional linear subspace T={Xn_r+i= - - =Xn = 0} of P£, which

contains L,

(iii) the variety D^Pk~
r~ι of lines on T passing through p, equipped with homo-

geneous coordinates xv = XJX0 (v= 1, . . . , n — r),

(iv) an (n — 2r— l)-dimensional linear subspace M ={jcπ_ 2 r+i = * * * = x π _ r = 0} of D

containing π(L) = {xr+ι= = x π _ r = 0}, where π: Γ •->£> is the natural projection,

(v) the variety G^Pk~
ι of all in — 2r)-dimensional linear subspaces of D containing M,

and

(vi) the closed point σ of G corresponding to H={xn-2r + 2= ''' =xn-r = fy

Let ^ c J ^ x x # L (r-times) be the subvariety consisting of all (V x , . . ., KΓ) such that

(α) W= Vί n n Vr is nonsingular at p and 7^ ^ coincides with T, and

(j8) (K l 5 . . . , FΓ) satisfies (C4.p) and M^ coincides with M.

Let J^ ( 1 ) be the variety of hypersurfaces in H^Pk~
2r containing π(L) = Pr

k~
λ and defined

by the equations of the form (0.1). We have a rational map

(r— l)-times

The precise meaning of (b) is that

(b') Ψ is dominant.

Now we start to prove (a). Invoking the openness of the conditions again, it is enough

to show that

(a') for each of the conditions (Cl), (C2), (C3.p)-(C6.p), there exists (Vu . . . , Vr)

which satisfies it.

(Cl): Note that we have n>3r. Consider the complete intersection of hypersur-

faces ViE^L(k) (/= 1,. . . , r) given by

which contain L = {Xr + 1= = ̂  = 0}. The singular locus of W= Vγ n n Vr is

Sing W={X0= = ^ = 0}, hence PFis nonsingular along L. Moreover Wis a reduced

complete intersection of codimension r at least locally around L. Let W be the strict

transform of W by the blow-up of Pk along Sing W. Then W has the structure of a

smooth fiber space over the variety of all in — r)-dimensional linear subspaces con-
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taining Sing W with every fiber isomorphic to an (n — 2r)-dimensional linear space.
Hence W is irreducible.

(C2): Recall that for a closed point ReP£ and a member V of ̂  the reduced
part of the polar divisor of V with respect to R is a hyperplane section PR vnV. Hence
we see that

Suppose that Re W\ΓW, and let Q be the intersection point PRtVi n • nPRVrf\L. If
WΠTQ W is a complete intersection of codimension r in 7^,^ locally at R, then, by
dimension counting, we can conclude that the closure of φ~1(W\Γw) is mapped
surjectively onto L. It is not difficult to construct such an example of R and W.

(C3. p)-(C6. p): We use the data (i)-(vi) above. Suppose that Vt e &L(k) is defined by

with I ) ) * - ' i f

Then Γp ^ coincides with Γ, and fi9 ht are given by

n—r n—r

v = 1 μ, v = 1

We can choose the coefficients (aiμv) arbitrarily except for the condition (*) above.
Hence (C4.p) and (C5.ρ) hold obviously. Thus (C3.p) also holds when r= 1. Suppose
r > 2. To construct an example for which (C3. p) holds, we choose the coefficients such that

fi = 0 for / = l , . . . , r a n d

Then Zβ is a cone with the vertex p over the variety {hx = =ΛΓ = 0} czD ,̂ which can
be seen to be a reduced irreducible complete intersection of codimension r by blowing
it up along {;cr+1 = =xM_ r = 0}. Hence (C3.p) holds. Now we check (C6.p). Again
by the openness of the condition, if V^δ is a hypersurface in H and does not contain
the hyperplane MczH, then (Cβ.p) holds. We choose (aiμv) so that/ ί = xn_ r + 1_ ί for
/= 1, . . . , r. Then Mp coincides with M. We consider (JC1? . . . , xn-2r+ I) a s homogeneous
coordinates of H. Then the defining equations of M and V[^d in H is given by

M={xn_2r+1=0}9

C π-2r+l

Vίh = )hi(X^ * ' Xn-2r+l, 0, . . . , 0)= X fl<μv*μXv« =

because/j = 0 on H except for ί = r, and/ r = 0 is the equation of M.
We can choose the coefficients (aiμv)i<μ,y<n-2r+i of the equation of V$δaH still

arbitrarily except for the condition aiμv = 0 for l<μ, v<r, which is equivalent to
F ^ ^ . Hence (Cβ.p) holds.
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The paragraph just above says nothing but the surjectivity of Ψ. Hence (b') is true,
and the proof of Theorem 3 is completed.

3. Linear subspaces in the complete intersections. In this section we prove the
following two lemmas. We still assume k = Ic.

LEMMA 1. Suppose that n>sr + s + r. Then, for every Vt, ..., Vre^, the
intersection Vx n n Vr contains an s-dimensional linear subspace.

LEMMA 2. Suppose that n>sr + s + 2r. Then, for every Vί9..., Vre.^ and every
closed point Q e Vx n * n Vr, there is an s-dimensional linear subspace contained in
Vx n n Vr and passing through Q.

Theorem 1 follows immediately from Lemma 1 and Theorem 3. Lemma 2 will be
used in the next section.

PROOF OF LEMMA 1. Let / be the incidence correspondence

the base locus WΛ of a linear)
(3.1) UN,Λ)eGrass(Ps,Pn)xGτass(P ,. ,

system A contains N
with the natural projections

β

Since dimα"1(iV) = dimGrass(i)Γ"1, &)-r(s+ I)2 for Ne Grass (Ps, Pn), we have

dim/-dim Grass (P1""1, &r) = (s+l)(n-sr-s-r).

Hence it is enough to show that when n = sr + s + r, the second projection β is generically
finite. Let (N, A) be a general closed point of /. Let k[ε\ be the ring of dual numbers
with ε2 = 0. In order to show that β is generically finite, it is enough to show that any
deformation of the first order iVε->SpecA:[ε] of N which keeps N being contained
in WΛ is trivial. We fix homogeneous coordinates (Xo,..., Xn) of Pi such that
N= {Xs+ι = * * * = Xn = 0}. Let Vl9..., Vre A be hypersurfaces which span A and let

n

X aiμvXμX* = 0 where aiμv = 0 if 0<μ,v<s
μ,v = 0

be the equation of V{. A deformation of N given by

+ 1 = (^tQ Xxc*,^ ε,...,Xm = ^ Σ o Xλcλ)j ε j
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keeps N being contained in WΛ if and only if

where C denotes the (s + 1) x (n — s) matrix (^Λμ)o<λ<s,s+i<μ<« a n d A( denotes the

(n—s)x (s+\) matrix (aiμv)a+ί <,,<„, 0< v<s When n = sr + s + r, the matrix 4̂ : = (Al9...,

Ar) is a square matrix of size n-s, and by the generality of the point (N, A) e /, we can

choose coefficients (^v)s+i<μ<n,o<v<s s o that d e t ^ ^ O . Hence if iVε is contained in

» ^ , w e g e t C = 0 . D

PROOF OF LEMMA 2. Let (Xo,..., Xn) be homogeneous coordinates of P% such

that β = (l, 0, . . . , 0), and let X^XJXQ (I = 1,...,«) be affine coordinates of P£ with

the origin Q. Then the equation of Vt is of the form

where / f,^ and giv are linear forms in (xl9..., xn). Regarding ( x l 9 . . . , JCW) as homogene-

ous coordinates of the variety EQ of lines in P£ passing through Q, we see that the

reduced part of the variety W'Q c EQ of lines in W passing through Q is given by

n n

ll=-'=!r=fl='-=fr= Σ Xvθlv='-= Σ *vS?v = 0 ,
v = l v = l

which is an intersection of r hypersurfaces of the form (0.1) in P£ι = {l1= =lr =

/ i = * ' ' =L = tyclEQ = Pk~1i where m>n — 2r— 1. By Lemma 1, W'Q contains an

(s— l)-dimensional linear subspace. Hence W contains an ^-dimensional linear subspace

passing through Q. •

4. Complete intersections of diagonal type. In this section, we shall prove Theorem

2. It is enough to show it when m = q + 1. We still work over k = It.

We fix homogeneous coordinates (Xo,..., Xn) of P% once for all and denote by 2

the linear system of hypersurfaces of diagonal type

(4.1) boXS+1+ -+bnX« + 1=0.

Let IQ, <= Grass (Pr, Pn) x Grass (Pr~x, $)) be the incidence correspondence defined in the

same way as in (3.1). We shall prove the following five statements:

(1) For general Vl9...9 Vre@, (Cl) holds. Moreover, there is an r-dimensional

linear subspace L contained in W= V1 n n Vr such that (C2) holds with respect to L.

(2) For general Vl9..., Vre@, there is a closed point Qe W= Vx n n Vr such

that ( C 3 . 0 holds.

(3) We fix a closed point

( 2 r + l )-times
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Let $)R c <& be the linear subsystem of 2 consisting of hypersurfaces passing through

R. Then there are members Vί9..., Vre2R which satisfy (C4.R)-(C6.R).

Note that by Lemma 2 and the assumption « > r 2 + 3r, for any closed point Qe W of

an intersection of any members Vl9 ...,Vre@, there is always an r-dimensional linear

subspace contained in W and passing through Q. Note also that I® is irreducible, and

that the conditions (C1)-(C6) are open not only on (Vl9..., Vr) but also on L. Then,

combining (1), (2) and (3), and invoking the openness of the conditions, we see that if

(L, Λ)elg is general, WΛ satisfies (C1)-(C6) with respect to L. Now the following two

statements allow us to show by induction on r that if (L, A) e /^ is general, then WΛ is

a member of U(k) with respect to L. Hence Theorem 2 will be proved.

(4) Let R be as in (3) and let Vί9..., Vre@R be general members. By (3), we can

construct the variety DR and GR as in Section 1 taking p to be R. Let SeGR be the

closed point corresponding to the (n — 2r)-dimensional linear subspace HR s c DR defined

by f1= - - = / r _ i = 0 . We shall show that there is a canonical identification between

HRS and an (n — 2r)-dimensional projective space Pΐ~2r, equipped with canonical

homogeneous coordinates (x2r,..., xn) which are independent of Vί9..., Vr, such that

the equations of V[)R^S,..., Vr

{ί\ R saHR s with respect to these coordinates are of

diagonal type (4.1).

(5) Let ^ ( 1 ) be the variety of hypersurfaces in P£~2r of diagonal type with respect

to the homogeneous coordinates in (4). We get a rational map

r-times (r— l)-times

3)R x

This map is dominant.

PROOF OF (1) AND (2). It is easy to see that if Vl9..., Vr e2 are general members,

then W= F x n • n Vr is nonsingular of codimension r, hence (Cl) holds. Let Qj

C / = 0 , . . . , r) be a point of the intersection of W and the r-dimensional linear subspace

defined by

Xγ = 0 unless j(r+ l ) < v < / r + l) + r .

Since each Vt is diagonal, W contains the r-dimensional linear subspace L spanned by

Qo, . . . , Qr. Before showing that a general (Vl9 . . . , Vr) satisfies (C2) with respect to

this L, we make an observation about certain special points on W. We take a point

on W such that n — 2r of its homogeneous coordinates are zero; for example

Qo = (ζo, ξ i , . . . , ^Γ, 0 , . . . , 0). Then it is easy to see that TQoW and the intersection

PQO, W ' = PQO, VJ. n ' ' ' n PQO, vr °f polar hyperplanes coincide and they are both given by

Xo : Xx: : Xr = ξ0 : ζ1: : ζr.

Let Q' be a point on Wwith coordinates
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(ζ0,oli:^o,ζuo,...,o,ζ2,o, ,o,cr,o, ,0).

r-times r-times

Then it can be easily checked that PQ, wnL consists of one point Q'\ hence WφΓw.

By the generality of (Vl9..., Fr), we see that dim(TQ, wn TQ> w) = n — 2r, which shows

that TQ>.fW(\ W is codimension r in TQ,. w at Q. Hence, by dimension counting, (C2)

holds. (By coordinate change of the type X^c^ {ctΦϋ), which preserves 3t, we may

assume that nonzero coefficients of Q( and Q are all 1. Then the point PQ, wr\L is

β" = ( l , . . . . . . , l , 0 , , 0 ) .

(r+l)2-times

This will make the checking considerably less cumbersome.) Now we shall show that

(C3.ρ 0 ) holds. Let Vt be defined by Y?x=QbixX«+l = 0, and let (Yn . . . , Yn) be the ho-

mogeneous coordinates of TQoW such that TQoWc^P^ be given by (Yr,..., Yn)\-^

(ζ0Yn...,ξrYr, r r + 1 , . . . , Yn). Then Γ Q θ t l F n ^ is given by Σ ^ Γ + A I 7 + 1 = 0 (i =

l , . . . , r ) . (Note that f ί 9 . . . ,fr are constantly zero at p = Q0, and hence TQθtWnW

is a cone with vertex Qo = (\, 0 , . . . , 0)e ΓQo „,.) Since we can choose (biv) arbitrarily,

TQo wn W is a reduced irreducible complete intersection of codimension r in TQoW.

Hence (C3.β 0 ) h o l d s

PROOF OF (3), (4) AND (5). We consider VieQ)R{i=\,.. .,r) which are defined by

- ( α I + jβί + 7 ί ) ^ + 1 + α i x r l + j 5 ί ^ + V + ? ^ ! r + 1 + Σ bivX*+1=0,
v = 2 r + l

where the coefficients αf, /?t (/= 1, . . . , r), yf (/= 1, . . . , r— 1) and 6 i v are general enough.

(We put γr = 0). We put

l ( i = l , . . . , 2r),

and, as before, regard (;cl9 . . . ,x π ) as affine coordinates of P£ with the origin R or

homogeneous coordinates of the variety ER of lines in P£ passing through R. Then

TR misgiven by

/ 1 = =/ r = 0 where ^

and / f and h( are the restrictions to TR w of

I _ I _ V 0 C 4 + I _ L - y b x q + 1

v = 2 r + l

respectively. Since αf, βi9 γt and biv are general, it is easy to check (C4.R) and (C5.R).

The (n — 2r)-dimensional linear space HR s(czDRciER) is given by
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/i= =/,=/i= =/,-i=0,

which is equivalent to

Xj = λjX2r for y = l , . . . , 2 r - l ,

where

«ι fit YΊv,
W )«f WJ \vPJ f°r i = 1 ' - - ^ - l a n d ^ = - ^ -

Hence we can regard (x2r,..., xn) as homogeneous coordinates of // R S . These are the
canonical coordinates mentioned in (4). The hypersurface ^ ^ c ^ j is given by

(4.2) (*ιλ1+1 + βlλϊϊl+γdxX1+ Σ « + 1 = 0.
v = 2r+l

Thus (C6. Λ) holds and hence the proof of (3) is completed. The statements (4) and (5)
are obvious by (4.2). q.e.d.
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