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Abstract. We prove, under a certain condition on the dimension, the unirationality
of general complete intersections of hypersurfaces which are defined over an algebraically
closed field of characteristic p >0 and projectively isomorphic to the Fermat hypersurface
of degree g+ 1 where ¢ is a power of p.

Introduction. The Fermat variety
XX+ X1 =0

of degree g+ 1 (g=p") defined over a field of characteristic p >0 has a lot of interesting
peculiarities of positive characteristic, such as supersingularity (Tate [T], Shioda [Sh],
Shioda-Katsura [S-K]), unirationality (Shioda [Sh], Shioda-Katsura [S-K], Schoen
[Sch]), and constancy of moduli of hyperplane sections (Beauville [B]). On the other
hand, in characteristics p>0, hypersurfaces which are projectively isomorphic to the
Fermat variety of degree ¢+ 1 constitute an open dense subset of a linear system #.
(See Beauville [B] and below.) Then it is very likely that the complete intersections
defined by linear subsystems of & also possess those interesting peculiarities. In this
paper, we shall study the unirationality of such complete intersections.

Let k be a field of characteristic p>0, k its algebraic closure, and g a power of p.

First we state our results over k. Let # denote the linear subsystem of | Opr(g+1)|
which consists of hypersurfaces whose defining equations are of the form

0.1) Y a,X,X1=0.

u,v=0
As is shown in Beauville [B], a hypersurface of degree g+ 1 in Pf is projectively
isomorphic to the Fermat variety if and only if it is a nonsingular member of .

THEOREM 1. Suppose n>r*>+2r. Let V,,...,V, be members of ¥. We put
W=V,n---nV,.If V..., V, are chosen generally, then there is a purely inseparable
dominant rational map Pg~"- - —>W of degree q""* V2, In particular, W is unirational.
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Because there is a surjective morphism from the Fermat variety of degree ¢+ 1 to
the Fermat variety of degree m if m|(q+ 1), our result implies the following:

COROLLARY. Suppose n>3. Then the Fermat variety
Xo+XT+- - +X7=0

of degree m defined over an algebraically closed field of characteristic p>0 is unirational,
provided that p®*= —1 (mod m) for some integer v.

Schoen [Sch] has also proved this Corollary. In case n is odd, this result had
already been shown in Shioda [Sh] and Shioda-Katsura [S-K], by means of the inductive
structure of Fermat varieties.

The same argument can be applied to the complete intersection of hypersurfaces
of diagonal type. We shall prove the following:

THEOREM 2. Suppose n>r?*+3r. Suppose also that p*= —1 (modm) for some
integer v. Let V, (i=1, ..., r) be hypersurfaces of diagonal type

b X3+ -+ by, X' =0

defined over k. If the coefficients b;, are general enough, then the complete intersection
W=V,n---nV, is unirational.

Note that, since Theorem 1 states the unirationality only for general Vy, ..., V,,
Theorem 2 does not follow directly from Theorem 1 if r>2. We have to strengthen the
condition on n from >r?+2r to >r?+3r, as far as we adopt the method of the proof
in this article.

In fact, we shall prove a stronger result. From now on, we work over k, which is
not necessarily algebraically closed. We fix an r-dimensional linear subspace Lc Py
defined over k. We denote by &, the variety of all hypersurfaces which are defined by
equations of the form (0.1) and contain L. Then %, is defined over k and isomorphic
to the projective space of dimension (n+1)2—(r+1)2—1.

THEOREM 3. Suppose n>r?+r+1. Then there is an open dense subvariety U of
FL X+ X Fy (r-times) which has the following property. Let K|k be an arbitrary field
extension and let U(K) denote the set of K-valued points of U. Then, for every
V4, ..., V,)e UK), there is a purely inseparable dominant rational map of degree q""* /*
defined over K@ from the (n—r)-dimensional projective space to W=V,n---nV,. In
particular, W is K% -unirational.

The idea of the proof of Theorem 3 is as follows. We proceed by induction on
r. Suppose that V,, ..., V,e #.(K) are “general”’, by which we mean that they satisfy
certain open conditions. Let T, w< Pk, be the tangent space to W at the gener-
ic point of L. Then there is a purely inseparable dominant rational map T, wn
(W xgK(L))- - > W defined over K. We shall show that T,;, wn (W xgK(L)) is bira-
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tional over K(L)' to a complete intersection of r—1 hypersurfaces V¥, ..., V), c
P22 defined over a field K which is a purely transcendental extension of dimension
r—1 over K(L)'4, and each V") is projectively isomorphic over K to the Fermat
variety of degree g+1, and contains a K“-rational (r— 1)-dimensional linear sub-
space LV< Pr#". Moreover, if V,, ..., V, are “general”, then V{1, ... VY, are
also “general”. Since (KV)¢"' is a purely transcendental extension of dimension
2r—1 over K'4 the (KV)4~'_unirationality of ¥{"'n---n V1), implies the K'/7-
unirationality of W=V,n---nV,.

This paper is organized as follows. In §1, we give a finite set of open conditions
onV,, ..., V,e#(K)which s sufficient for the K/ -unirationality of W=V,;n---nV,.
In §2, we show the existence of an example of V,, ..., V,e %, (k) which satisfies those
conditions and thus complete the proof of Theorem 3. In §3, we prove lemmas about
linear subspaces contained in W and derive Theorem 1 from Theorem 3. In §4, we shall
prove Theorem 2 by showing that there is such an element (V,, ..., V,) in U(k) that
each V; is a hypersurface of diagonal type.

CONVENTIONS AND NOTATION. Let V be a variety over a field E and let F/E be a
field extension. Then V(F) denotes the set of F-valued points of V, V' denotes the fiber
product V' x g, p Spec F, and F(V') denotes the function field of V. Let E be the algebraic
closure of E. Then E' is the field {xe E|x?e E}, and E? is the field {x?|xe E}. The
binary relation ~ means that varieties are birational, while =~ means that they are
isomorphic.

1. Open conditions sufficient for the unirationality. We start to prove Theorem
3. Let V4, ..., V, be members of %;(K). Suppose that

(Cl) W:=V;n---nV,is a complete intersection of dimension n—r which is geo-
metrically reduced irreducible and nonsingular along L .

Let (X, ..., X,) be homogeneous coordinates of Pg such that Ly ={X,,,="--=X,=0},
and let

w=0 if 0<pu,v<r

Y @, X, Xi=0  where g
u,v=0
be the defining equation of V. The tangent space to V; at (Y, ..., Y,)eV; is given by

(L., Y (Z aiuer>Xu=o.

u=0 \v=0

Let T,  be the variety {(Q, R) € Lk x P,'2| Ty, w3 R, where T, y < Py is the tangent space
to W at Q}, which is defined by (1.1);—(1.1), with ¥,, ;=---=Y,=0. Let
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¢

J

Lg

be the natural projections. The second projection ¢ is a surjection which is generically
finite and purely inseparable of degree ¢". Indeed, as is seen from (1.1);, the polar divisor
{QeVi| Ty, v,3 R} of V; with respect to Re Py is a g-th multiple of a hyperplane section
Pg.y,nV;, where Pgy, is the hyperplane. Then ¢~ '(R) is set-theoretically equal to
{(Q, R)|QePR,V1 n---nPgy nL}, which is always nonempty. Hence ¢ is surjective,
and comparing the dimensions of T , and Pg, we see that ¢ is generically finite; that
is, the intersection Pg y N - - - n Py, _n L consists of one point for a general point Re Pg.
Since each of r polar divisors has multiplicity ¢, the degree of ¢ is ¢". Let I'y, denote
the closed subset of Pg such that Pg\ I'y, is the maximal open subset over which ¢ is
finite. We suppose that

(C2) Wisnot contained in I'y, and the closure of ¢ ~}(W\ I'y) is mapped surjectively
onto Ly by the first projection.

We denote by Z the inverse image ¢ ~'(W). Then (C2) implies that

(1.2) a geometrically irreducible component of the generic fiber of Z — L (that is,
the component which is obtained as the closure of ¢ ~!(W\ I'y)) is mapped dominantly
onto W by a purely inseparable rational map of degree ¢".

(It will turn out that, for general V,,..., V,, the generic fiber of Z— Ly is again
geometrically reduced irreducible unless n=3 and r=1. If n=3 and r=1, the generic
fiber is a union of a line ¢~ '(Lg) %, K(L) and a geometrically reduced irreducible
curve in Pg,.)

Let E be an arbitrary extension field of K, and let p: Spec E — Ly be an E-valued
point of L. (Later on in this section, p will be the g-th root of the generic point
Spec K(L)'/" — Ly, and in the next section, p will be a geometric point with respect to
K.) Then there are homogeneous coordinates, which we shall denote by (X, ..., X,)
again, of Pg such that

p=(1,0,...,0),
Li={X,,,= " -=X,=0} and
Tyw={Xy s1= " =X,=0},

where T, y is the tangent space to W at p. Suppose that E contains K'/ and p factors
as Spec E — Spec E1 — L, which is satisfied in the two cases mentioned in the parenthe-
sis above. Then the defining equation of (¥;)g can be put into a form
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X0 (Xos ..., X,)1=0
0

v=

where /;, are linear forms over E. We put x;=X;/X, (i=1,...,n—r) and consider
(xy, ..., x,-,) as affine coordinates of T, y with the origin p. Because T, 5 n(V))y is
singular at p, its defining equation in 7,  is of a form

n—r
fi+ ) xg4=0,
v=1

where f; and g,, are linear forms in (x,, ..., x,_,) over E. For simplicity, we put

(13) b=y xgh.

v=1

We also put
Z,:=Zx; SpecE=T, yo W= T, wn (Vg
i=1

L,:=¢ "(Lg) X, Spec EcT, y .
Then L, is contained in T, y n(V;); and hence in Z,. We assume that the following

condition is satisfied:

(C3.p) Z,is a complete intersection of codimension r in T, . Moreover, unless n=3
and r=1, Z, is geometrically reduced irreducible. If n=3 and r=1, Z, is a union of
the line L, and a geometrically reduced irreducible curve.

Let D,~Pp™"~' be the variety of all lines on T, w which pass through p, and let
n: T, w- - — D, be the natural projection. We may regard (x,, ..., x,_,) as homogeneous
coordinates on D,, and f; and 4; as defining equations of hyperplanes and hypersurfaces
in D,. Then Ly < V; implies

(14) n(Lp)C {f;:o} B n(Lp)C{hl=0} B

where n(L,)= Py~ is the linear subspace of D, defined by {x,,,=""-=x,_,=0}. Here
again we assume that the following are satisfied:

(C4.p) fi,...,f, are linearly independent, and

(C5.p) unless n=3 and r=1, at least one of A;’s is not constantly zero on {f; ="+ =
f,i=0}cD,;ifn=3andr=1, thenflz,{’hl. (Note that if n=3 and r=1, then (1.4) implies
filhy)

Note that, unless f(ay, ..., a,_,)=hJ(ay, ..., a,_,)=0, a line

{((xys -y xp-)=(ay, ..., Aa,_,)

A is an affine parameter} = T, y
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intersects T, y N (V) at A=0 with multiplicity g and at
_ﬁ(ala L] an—r)q

hi(alﬂ AR an—r)

A=

with multiplicity 1. Thus, if f; does not divide A;, m gives a birational map over E
between T, yn (V) and D,. In particular, if r=1 and n>3, then Z, is birational to
D,~Pi* over E. When r=1 and n=3, then Z,\ L, is birational to D,= P;. Hence
in case r=1, (C4.p) and (CS5.p) imply (C3.p) automatically. Now suppose r>2. Let
Y,< D, be the variety defined by

Then we see that
(1.5) Z, is mapped birationally by = to Y.

Indeed, the lines contained in Z, and passing through p are parametrized by
{fi="+-=f,=h;=---=h=0}cD,. By dimension counting, (C4. p) and (CS. p) imply
that Z, is not a cone with the vertex p. Hence (1.5) holds. We denote by U, ,
(i=1,...,r—1) the hypersurface defined in D, by

Sih,—f3h;=0.

Then Y p=n§;: U, , is a geometrically reduced irreducible complete intersection of
codimension r—1 by (C3.p) and (1.5).

By (C4.p), {fi="'"=f,=0} defines an (n—2r— 1)-dimensional linear subspace
M,=D, which contains n(L,) by (1.4). Let G,~Pp"' be the variety of all
(n—2r)-dimensional linear subspaces containing M, and let

be the universal family. The morphism b is a blow-up along the center M,. From the
defining equation of U, ,, we see that the total transform 5~ '(U;,) contains the
exceptional divisor b~ *(M,) with multiplicity at least g. We denote by V(1) the effective
divisor b~ '(U; ,)—¢q-b~'(M,). The last condition we assume is

(C6.p) V) does not contain the exceptional divisor 5~ (M,) any more, and the
projection V(%) — G, is surjective.

Then V(! coincides with the strict transform of U, and the intersection

WO =V"na---aPY), s the strict transform of Y,; hence W > Y, is birational.
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Moreover, the projection W — G, is surjective. This implies that
(1.6) the generic fiber of W{" > G, is mapped birationally onto Y,.

Let F/E be an arbitrary field extension and let ¢: Spec F— G, be an F-valued point,
(which will be the generic point later in this section, and a geometric point with respect
to K in the next section). Noting that the restriction of an equation of -the form (0.1)
to a linear subspace still has the form (0.1), we see from (1.3) that the defining equation
of Vi .=V )% SpecFin H, ,:=H,x g Spec F= Pp~?" is of the form (0.1). More-
over we see from (1.4) that V! contains an (r—1)-dimensional linear subspace
LY, :=b"Y(n(L,)) X 6, Spec F.

Now we take p to be the g-th root of the generic point #: Spec K(L)'/? — Ly, and
o the generic point ' : Spec K(L)'/%(G,) — G,. In this case, we omit the 1 in the conditions
and simply write (C3), etc. instead of (C3.7), etc. We also write V) and L") instead
of V{1V, and L{!). The field F=K(L,)"/%(G,) is a purely transcendental extension of
dimension 2r— 1 over the constant field X*/4, which we shall denote by K*.

We summarize the construction above:

When r=1 and n>3 (resp. n=3), we get a dominant rational map D,~Z, (resp.
Z\L,)--— W defined over K'/* and purely inseparable of degree g, assuming (Cl),
(C2) and (C3). (Note that when n=3, Z,\ L, - — W is still dominant.) Since K(L)'
is a purely transcendental extension of dimension 1 over K4, D, = P§ %, is birational
to PLil. Hence W is K'/4-unirational.

When r>2, starting from hypersurfaces V,, ..., V,e #.(K) in P and assuming
(C1)~C6), we get VIV, ..., VI e .0 (KV) in PLLE, where Z,, is the variety defined
in the same way as %, with k replaced by K*), L replaced by L), and n replaced by
n—2r. Moreover, putting W :=yMn---nV Y, we get a dominant rational map
WM. . W defined over K/ and purely inseparable of degree q" by composing

wh >y ~Z7 - --->W.
(1.6) (L.95) (1.2)
Let (C1)Y, ..., (C6)") be the conditions obtained from (C1), ..., (C6) by replacing K
by KU, n by n'¥:=n—2r,r by r'Y:=r—1,L by L™ and V; (i=1,...,r) by V¥
(i=1,...,r'Y). Inductively, assuming (C1)®~V—C6)*~ 1 ((C1)®*~VHC3)*~ Y when
v=r), we get r"=r""1—1 hypersurfaces V" (i=1,...,r™) in a projective space of
dimension n™=n®"1—2"~1 gych that each ¥V is

(i) defined over the field K™, which is a purely transcendental extension of dimension
2r"~Y_1 over the constant field (K~ V)14,

(ii) defined by an equation of the form (0.1), and
(ili) containing an r-dimensional linear subspace L™ defined over K;

and moreover
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(iv) there is a dominant rational map W™ :=V{"n---n VY- - > W~V defined over
(K®¥~)a and purely inseparable of degree g" 17",

Then we define the conditions (C1)™—(C6)™ in the obvious way. Note that if
n>rt+r+1, then n™>r" 441 for v=1,...,r. Thus if (C1)~C6), (C1)V-
(C6)WV, ..., (CH"~D(C6)"~? and (C1)"~V«C3)"~ 1 are satisfied, we get a dominant
rational map
Py W

defined over K'/4" and purely inseparable of degree ¢""* /2. Noting that K is a purely
transcendental extension over K7 of dimension r? and that n® =n—r? —r, we see that
P, is birational to P4/ over K4, Hence W is K/ -unirational.

It is obvious that (C1)~(C6), (C1YV~(C6)Y, . .., (C1)*~P—(C6)*~2 and (C1)*~ V-
(C3)"~ Y impose open conditions on the initial choice of V1, ..., V,€ #.(K). Moreover,
these conditions are independent of the field K. Thus there is such an open subvariety
Uc%, x -+ x %, that for arbitrary K/k and (V, ..., V,)eUK), W=V n---nV, is
K _unirational. OQur next task is to show that U is dense, or equivalently, U(k) is
nonempty.

2. Non-emptiness of U(E). In showing U(k)# &, we may assume that k itself is
algebraically closed. Therefore we will asume k=k=K in this section.

Let p: Speck — L be a closed point of L. It is easy to see from the openness of
the conditions that

(2.1) if (C3.5)~(C6.p) hold, then (C3)~(C6) also hold.

Moreover, let 6: Speck - G; be a closed point of G, and let (C1)"—<C6)™" be the
conditions obtained from (C1)V—(C6)") replacing K by k, LY by L(,;l,)d, and
viv ..., v by Vl(,l,;’&, e V,(_l_)l,ﬁ’&. It is also easy to see that
2.2) if (C1V<C6)™ hold, then (C1)V~(C6)™ also hold.
Now we replace (C1)V~(C6)) by (C1)VC6)"V, fix closed points of L} and G5,
and repeat the whole process above again to check (C1)?—(C6)®.

Thus, making repeated use of the stability (2.1) and (2.2) of the conditions under

generizations, we can prove the non-emptiness of U(k) by induction on r, provided that
we prove the following two statements:

(a) For general Vy, ..., V,e #.(k), (Cl), (C2) and (C3, p)~«C6, p) hold.
(b) IfVv,,...,V,e#. (k) are general, then Vl‘,lg,,;, cees V,“_) 1,5,6 are also general.
Let us state (b) more precisely. We fix the following data:

(i) homogeneous coordinates (Xg,...,X,) of P{ such that p=(1,0,...,0) and
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L={Xr+1 =" =Xn=0}’
(i) an (n—r)-dimensional linear subspace T={X,_,,,="- =X,=0} of Py, which
contains L,

(iii) the variety D=P; "~ ! of lines on T passing through p, equipped with homo-
geneous coordinates x,=X,/X, (v=1,...,n—r),

(iv) an (n—2r—1)-dimensional linear subspace M={x,_,,,,="""=x,_,=0} of D
containing n(L)={x,,,;="-"*=x,_,=0}, where n: T--— D is the natural projection,

(v) thevariety G= Py~ ! ofall (n— 2r)-dimensional linear subspaces of D containing M,
and

(vi) the closed point 6 of G corresponding to H={x,_5,+,="""=x,_,=0}.

Let9 % x - - - x Z (r-times) be the subvariety consisting of all (¥4, ..., V,) such that
(0) W=V,n---nV,is nonsingular at p and T} y coincides with T, and

B (Vy,...,V,) satisfies (C4.p) and M coincides with M.

Let #,M be the variety of hypersurfaces in H= P}~ %" containing n(L)= P; ' and defined
by the equations of the form (0.1). We have a rational map

(r—1)-times

Y. G FVx - x F
(2PN A TSN 2 S At
The precise meaning of (b) is that
(') ¥ is dominant.

Now we start to prove (a). Invoking the openness of the conditions again, it is enough
to show that

(a’) for each of the conditions (Cl1), (C2), (C3.p)—~(C6.p), there exists (Vy,...,V,)
which satisfies it.

(Cl): Note that we have n>3r. Consider the complete intersection of hypersur-
faces Ve #. (k) (i=1,...,r) given by

Xorir X§+ X g v X+ + X540 X7=0,

which contain L={X,,,;="---=X,=0}. The singular locus of W=V,n---nV, is
Sing W={X,= - =X,=0}, hence W is nonsingular along L. Moreover W is a reduced
complete intersection of codimension r at least locally around L. Let W be the strict
transform of W by the blow-up of P} along Sing W. Then W has the structure of a
smooth fiber space over the variety of all (n—r)-dimensional linear subspaces con-
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taining Sing W with every fiber isomorphic to an (n—2r)-dimensional linear space.
Hence W is irreducible.

(C2): Recall that for a closed point Re P} and a member V of %, the reduced
part of the polar divisor of ¥ with respect to R is a hyperplane section Py ,,n V. Hence
we see that

FW={R€P,:'|dim(PR,Vlﬂ ttt nPR,V'_nL)Zl} .

Suppose that Re W\ I'y, and let Q be the intersection point Py, n---nPgy NL. If
Wn Ty w is a complete intersection of codimension r in T y locally at R, then, by
dimension counting, we can conclude that the closure of ¢~ (W \I'y) is mapped
surjectively onto L. It is not difficult to construct such an example of R and W.
(C3.p)(C6.p): Weuse the data (i)—(vi) above. Suppose that V; e %, (k) is defined by

=0 if OS#,vSr}

Z aiquu X7=0 with (%) {aiuv 5

u,v=0 ain i,u—n+r

Then T; y coincides with 7, and f;, A; are given by

f Z atvav ’ h = Z aluv p
p,v=1
We can choose the coefficients (a;,,) arbitrarily except for the condition (*) above.
Hence (C4.0) and (CS5. p) hold obviously. Thus (C3.p) also holds when r=1. Suppose
r>2.To construct an example for which (C3. p) holds, we choose the coefficients such that

f;=0 for i=1,...,rand
—_ oy . PR .
hi=X; X} 1+ X X+ +Xitn2r—1"Xp— -

Then Z; is a cone with the vertex p over the variety {h, =+ =h,=0} < D;, which can
be seen to be a reduced irreducible complete intersection of codimension r by blowing
it up along {x,,,="""=x,_,=0}. Hence (C3.p) holds. Now we check (C6.p). Again
by the openness of the condltlon if V) ; is a hypersurface in H and does not contain
the hyperplane M < H, then (C6.p) holds. We choose (a;,,) so that f=x,_,,_; for
i=1,...,r. Then M, coincides with M. We consider (x, ..., - 2r+1) as homogeneous
coordmates of H. Then the defining equations of M and V3 ; in H is given by

M={x,_3,+,=0},

n—2r+1

V,‘};’€={hi(xl, s Xp_2p4 150, 0= Y 1 iy X, X1 —0}
U, v=
because f;=0 on H except for i=r, and f,=0 is the equation of M.
We can choose the coefficients (a;,,); <., v<n-2-+1 Of the equation of V{3 ;< H still
arbitrarily except for the condition g;,,=0 for 1<pu,v<r, which is equivalent to
n(L)=LS; < V{3 ;. Hence (C6.p) holds.
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The paragraph just above says nothing but the surjectivity of ¥. Hence (b’) is true,
and the proof of Theorem 3 is completed.

3. Linear subspaces in the complete intersections. In this section we prove the
following two lemmas. We still assume k=k.

LEMMA 1. Suppose that n>sr+s+r. Then, for every V., ...,V,e%, the
intersection Vyn - - - nV, contains an s-dimensional linear subspace.

LEMMA 2. Suppose that n>sr+s+2r. Then, for every V,,...,V, e and every
closed point QeV,n---nV,, there is an s-dimensional linear subspace contained in
Vi,n---nV, and passing through Q.

Theorem 1 follows immediately from Lemma 1 and Theorem 3. Lemma 2 will be
used in the next section.

ProoOF OF LEMMA 1. Let I be the incidence correspondence

the base locus W, of a linear}

3.1 {(N, A)eGrass (P*, P") x Grass (P" ™!, %) X
system A contains N

with the natural projections

1 _k, Grass(P'~ 1, %)

d
Grass (P*, P") .
Since dim o~ !(N)=dim Grass(P' "1, #)—r(s+1)? for Ne Grass (P*, P"), we have
dim I—dim Grass (P" !, #)=(s+ )(n—sr—s—r) .
Hence it is enough to show that when n=sr+ s+ r, the second projection f is generically
finite. Let (N, A) be a general closed point of /. Let k[¢] be the ring of dual numbers
with ¢2=0. In order to show that f is generically finite, it is enough to show that any
deformation of the first order N, — Speck[¢] of N which keeps N being contained

in W, is trivial. We fix homogeneous coordinates (X,,..., X,) of P; such that
N={X;,,=""=X,=0}. Let V,, ..., V,e A be hypersurfaces which span A and let

Y a,X,X!=0  where a,,=0 if 0<u v<s

u,v=0

be the equation of V;. A deformation of N given by

S S
N£={Xs+1=< Z X}.cls+1>3’ cees Xn=< Z chln>8}
i=0 A=0
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keeps N being contained in W, if and only if
C- Ai =0 N

where C denotes the (s+1)x (n—s) matrix (c;,)o<i<ss+1<u<n and A; denotes the

_____

w,, we get C=0. O

PROOF OF LEMMA 2. Let (X,, ..., X,) be homogeneous coordinates of P; such
that 9=(1,0,...,0), and let x;=X;/X, (i=1, ..., n) be affine coordinates of P; with
the origin Q. Then the equation of V; is of the form

n

li+j;q+ Z xvglqv=0 ’
v=1
where /,, f; and §,, are linear forms in (x,, ..., x,). Regarding (x,, ..., x,) as homogene-
ous coordinates of the variety E, of lines in Py passing through Q, we see that the
reduced part of the variety W< E, of lines in W passing through Q is given by

n n
ll=. =lr=fl==j:'= Z xvglllv=”'= Z xvggv=09
v=1 v=1

which is an intersection of r hypersurfaces of the form (0.1) in P'={l;="--=l=
f'l=~-~=f:=0}cEQg %!, where m>n—2r—1. By Lemma 1, W, contains an
(s— 1)-dimensional linear subspace. Hence W contains an s-dimensional linear subspace
passing through Q. O

4. Complete intersections of diagonal type. In this section, we shall prove Theorem
2. It is enough to show it when m=gq+ 1. We still work over k=k.

We fix homogeneous coordinates (X, ..., X,) of P} once for all and denote by 2
the linear system of hypersurfaces of diagonal type

(4.1) boXd* '+ +b, X1 =0.

Let I, = Grass (P, P") x Grass (P" ™', 9) be the incidence correspondence defined in the
same way as in (3.1). We shall prove the following five statements:

(1) For general V,..., V,e2, (Cl) holds. Moreover, there is an r-dimensional
linear subspace L containedin W= ¥, n - - - n ¥, such that (C2) holds with respect to L.

(2) For general V4, ..., V,e2, there is a closed point Qe W=V;n---nV, such
that (C3. Q) holds.

(3) We fix a closed point

R=(1,...,1,0,...,0).
N ——
(2r + 1)-times
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Let 9x< 2 be the linear subsystem of 2 consisting of hypersurfaces passing through
R. Then there are members V,, ..., V,e D which satisfy (C4. R)—-(C6. R).

Note that by Lemma 2 and the assumption n>r?+3r, for any closed point Qe W of
an intersection of any members V, ..., V,€ 2, there is always an r-dimensional linear
subspace contained in W and passing through Q. Note also that I, is irreducible, and
that the conditions (C1)—(C6) are open not only on (V, ..., V,) but also on L. Then,
combining (1), (2) and (3), and invoking the openness of the conditions, we see that if
(L, A)e I, is general, W, satisfies (C1)-(C6) with respect to L. Now the following two
statements allow us to show by induction on r that if (L, A) eI, is general, then W, is
a member of U(k) with respect to L. Hence Theorem 2 will be proved.

(4) LetRbeasin(3)andlet V,..., V,e P be general members. By (3), we can
construct the variety Dg and G as in Section 1 taking p to be R. Let Se Gy be the
closed point corresponding to the (n — 2r)-dimensional linear subspace Hy s Dy defined
by fi="--=f,_,=0. We shall show that there is a canonical identification between
Hg s and an (n—2r)-dimensional projective space Py~?, equipped with canonical
homogeneous coordinates (x,,, ..., x,) which are independent of V,, ..., V,, such that
the equations of V{lk s, ..., VU p s Hpg s with respect to these coordinates are of
diagonal type (4.1).

(5) Let 2V be the variety of hypersurfaces in P~ 2" of diagonal type with respect
to the homogeneous coordinates in (4). We get a rational map

r-times (r—1)-times

Drx - XxDrg—>PVx - x PV’

(V19 R Vr)H(Vl(.I;(,S’ ] Vr(l)l.R.S) .
This map is dominant.

PrOOF OF (1) AND (2). Itiseasy to see thatif V,, ..., V,e 2 are general members,
then W=V, n---nV, is nonsingular of codimension r, hence (C1) holds. Let Q;
(j=0, ..., r) be a point of the intersection of W and the r-dimensional linear subspace
defined by

X,=0 unless j(r+1)<v<jir+1)+r.

Since each V; is diagonal, W contains the r-dimensional linear subspace L spanned by
Qo ..., Q,. Before showing that a general (V,, ..., V,) satisfies (C2) with respect to
this L, we make an observation about certain special points on W. We take a point
on W such that n—2r of its homogeneous coordinates are zero; for example
Q0=(0,¢15--+5,¢,0,...,0). Then it is easy to see that T, » and the intersection
Py w:=Pg, v, N - nPy , of polar hyperplanes coincide and they are both given by

D. O, CREREID. (- S SRR S

Let Q' be a point on W with coordinates
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o, 0,...,0,£,,0,...,0,(,,0,...... ,0,¢,,0,...... ,0).

r-times r-times

Then it can be easily checked that Py y n L consists of one point Q”, hence W& Ty,
By the generality of (V3, ..., V), we see that dim(Ty. y n Ty y)=n—2r, which shows
that Ty yn W is codimension r in T, y at Q'. Hence, by dimension counting, (C2)
holds. (By coordinate change of the type X, c;X; (c;#0), which preserves &, we may
assume that nonzero coefficients of Q; and Q' are all 1. Then the point Py, yn L is

(r+1)2-times

This will make the checking considerably less cumbersome.) Now we shall show that
(C3.Q,) holds. Let V; be defined by ZL NID & *1=0, and let (Y,, ..., Y,) be the ho-
mogeneous coordinates of T, y such that T, w s P; be given by (Y,,..., Y,)—
oY, s &Y, Yoiy, ..., Y,). Then Ty wnW is given by D" _ b, YI*'=0 (i=
1,...,r). (Note that f;,...,f, are constantly zero at p=Q,, and hence Ty wn W
is a cone with vertex Qo=(1,0,...,0)e Ty, w.) Since we can choose (b;,) arbitrarily,
Ty,,wn W is a reduced irreducible complete intersection of codimension r in Ty .

Hence (C3.Q,) holds.
PROOF OF (3), (4) AND (5). We consider V;€e 9y (i=1, ..., r) which are defined by

— (B P)XE o XA B XA i XS+ Y b X =0,
v=2r+1
where the coefficients «;, §; (i=1,...,r), y; i=1,...,r—1) and b,, are general enough.
(We put y,=0). We put

{Xi/Xo—l @(i=1,...,2r),
Xi/Xo (i>2r),
and, as before, regard (x,..., x,) as affine coordinates of P; with the origin R or

homogeneous coordinates of the variety Ex of lines in P; passing through R. Then
Ty, w is given by

li=-=[=0 where [=ax;+Bix, i+ 72,
and f; and h; are the restrictions to Tg y of

-i:=ail/qxi+ﬁi1/qxr+i+yi1/qx2r ’
};;=dix?+1+ﬂix;1:il+))ixg:_l+ Z bivx3+l )
v=2r+1
respectively. Since a;, f;, 7; and b;, are general, it is easy to check (C4.R) and (C5.R).
The (n—2r)-dimensional linear space Hy (= Dg< Ep) is given by



UNIRATIONALITY 393

11=..'=lr=>fl=‘-.=r_l=0’
which is equivalent to
X;j=A;x,, for j=1,...,2r—1,

where

4; o; Bi \ (v .
<lr+i>=_<ai1/q ﬁilhl) ('yillq for l=l""’r_1 and j'r=_ﬁr/ar'

Hence we can regard (x,,, ..., x,) as homogeneous coordinates of Hy s. These are the

canonical coordinates mentioned in (4). The hypersurface V{{ s= Hy g is given by

4.2) (AP P+ BAZT 4y x4+ Y bx?t1=0.

v=2r+1

Thus (C6. R) holds and hence the proof of (3) is completed. The statements (4) and (5)
are obvious by (4.2). q.e.d.
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