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Abstract. In this paper we try to classify those polarized surfaces (Λf, L) of
A -genus 3 and degree 5, for which the linear system \L\ has finite base locus and
defines a non-birational rational map. Then a surface obtained by the blowing up at a
point of M is a double cover of a desigularization of a quadric surface. Moreover, we
divide these surfaces into four types according to the shape of the fiber containing the
exceptional curve. Three of them are fiber spaces over the projective line and the other
is an irrational ruled surface. Conversely, we show the existence of polarized surfaces
in each of the four types.

1. Introduction. Fujita [3], [4] classified polarized surfaces of Δ -genus 1 or 2,
but those of Δ -genus 3 are not well-understood up to now. Our aim is to classify the
polarized surfaces (M, L) of Δ -genus 3 and degree 5 over the complex number field C.

In this paper, we only treat the case where the base locus of the linear system | L \ is

finite and the rational map ΦL is not birational.
In Fujita's theory of polarized varieties, regular rungs play an important role. We

assume that A(M, L)<g(M, L) and that Bs| L\ is finite. By Fujita's embedding theorem
(Theorem 1 in § 1 below), there exist nonsingular regular rungs for those surfaces
which satisfy L2>2Δ(M, L)-1. We are interested in the case L2 = 2A(M, L)-1.

The surfaces with A(M, L) = 1 and L2 = 1 or with A(M, L) = 2 and L2 = 3 are contained
in the classification by Fujita. Hence we try to classify the next class of the surfaces
which satisfy the above equality. For the surfaces with A(M, L) = 3 and L2 = 5, degΦL

is one or two. In this paper we classify the case degΦL = 2 in a method similar to that

in [4].
In this case, the base locus of | L \ is a point p, and by the blowing up at /?, we

obtain a surface M and a degree 2 morphism Φι\ M-»P3. Moreover, we lift it to a
morphism /0 to P1 x P1 or Σ2- We carry out the classification by dividing the surfaces
to four classes by the type of a divisor /0*ΓcM (cf. Theorem 2 in §2). We lift /0 to a

finite double covering to a surface obtained from either P1 x P1 or Σ2 by the blowing

up at one or two points (cf. Theorems 3, 4, 5, 6, 7, in §5, §6, §7, §7, §8). We describe
the branch locus of the double covering. Conversely, we show the existence of

polarized surfaces in each of the four types.
The author expresses his gratitude to Professor Takao Fujita for encouragement
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valuable advice.

2. Fujita's theory of polarized varieties. In this section, we recall necessary
results on polarized varieties which we need later. A polarized variety (M,L) is a pair
of an w-dimensional complete algebraic variety M and an ample divisor L on M. By
using the Hubert polynomial χ(tL\ we define integers χ/M, L) so that χ(tL) =

Σχj(M,L)t[j]/j\, where ί[0]: = l and /w : = f(f +!)(/ + 2) •(*+./ -1) for 7>0. The
sectional genus of (M, L) is defined as

If n= 1, the sectional genus of (M, L) is equal to the genus of M. If n = 2 and M is
non-singular, the sectional genus of (M, L) is equal to the virtual genus of L. The
A -genus of (M, L) is defined as

A(M9 L) : = n + L" - A°(Af ,

If a divisor Λ e | L | is prime, R is called a rung of (M, L). If rR:

H°(R, 0(L|κ)) is surjective, ({|L|} ( Λ = |L|R |, for short), then R is said to be regular. If
R is regular, then we have g(M, L) = g(R, L\p). A rung R is regular if and only if

LEMMA 1 . If (M, L) has a regular rung, then Bs | L \ = Bs \L\R \.

PROOF. By definition, we have {|£|}|Λ = |£|Λ|. For all R'e\L\R\, there exists
LΈ\L\ such that L n R = R. Hence we have Bs | L\R \ => Bs | L |. Consequently, we have
Bs|L| = Bs|L | Λ | .

As to the existence of a regular rung, Fujita gave the following theorem:

THEOREM 1 (Fujita [1], [5]). Let (M, L) be a non-singular polarized variety.
Assume that Bs | L \ is finite and that Δ(M, L)<0(M, L). Then we have:
(1) (M, L) has a nonsingular regular rung, if Ln>2Δ(M, L)—\.
(2) Bs |L | = 0, ifLn>2Δ(M,L).
(3) Δ(M, L) = g(M9 L) and L is very ample, if Ln > 2Δ(M, L) + 1 .

3. Liftings of ΦL. In this paper from this section on we assume following two
assumption.

ASSUMPTION 1 . A (M, L) = 3, L2 = 5, g(M9 L) > 3 and Bs | L \ Φ 0.

This assumption implies Λ°(M, 0(L)) = 4. We now eliminate the base points in
Bs I L I of the rational map ΦL : M^P3 defined by the complete linear system \L\. Let
p be a base point of | L |.

ASSUMPTION 2. ΦL is not birational to its image.
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PROPOSITION 1. Bs |L | consists of the single point p. Moreover, any two general
members of \ L \ intersect each other transversely at p.

PROOF. Since A(M, L) = 3, L2 = 5 and g(M, L)>3, the surface (M, L) has a
nonsingular regular rung R by Theorem 1, (1). By Lemma 1, it is sufficient to show that
Bs I L\R I = {/?}. We set LR be a divisor on the curve R which satisfies | L)Λ | = | LR \ +p.
We have deg(L|Λ) = degLΛH-l. Hence we obtain Δ(R, LR) = A(R, L\R)— 1 = 2, since
Δ(M, L) = Δ(R, L|β) and degLR = deg(L)R) —\=L2 — \=4. Consequently, we have

degLR = 2A(R, LR). Moreover, we have g(R,LR)>Δ(R,LR) by the Riemann-Roch
theorem applied to the algebraic curve R. It follows that Bs|LR | = 0 by Theorem 1,
(2). Hence we have Bs| L)R | = {p}, and the coefficient for p of L\R—p is equal to 0 for
any general member L' of |L|. Therefore two general members of \L\ intersect each
other at p with the local intersection number one. q.e.d.

Let π: M-*M be the blowing up at /?, and denote by E the exceptional curve over
p. We denote by L the proper transform of a general member of |L|. Two general
members of | L | intersect each other at p transversely by Proposition 1. Thus we have
π*L = L + E, and two general members of | L | do not intersect each other on E. Hence
I L I has no base point because | L \ has only one base point p. Therefore the rational
map ΦL\ M->P3 is a morphism such that Φι = ΦL°π.

We set WQ\ = ΦL(M}. Since L has no fixed components and L2 = 4>0, we have
dim \V0 = 2. For a point xe WQ, we denote by Λ(x) the linear system of hyperplane

sections on WQ. Then Φll(x) is the base locus of Φ^Λ(x). Since we assume that ΦL is
not birational, WQ is a quadric surface in P3, and L is the pullback of a hyperplane

section of WQ. Then there are the following two cases.
Case (I) W0 is a nonsingular quadric surface in P3.
Case (II) WQ is a quadric cone in P3.
Now we study each of these cases.

Case (I) Let W\ = P\ x P\, and denote H=H^ + H2, where H1: = {pt} x P\ and
H2: = P\x{pt}. There exists a morphism /0: M^W such that ΦL = ΦH°/O Thus
we have L~f£H. By exchanging the indices if necessary, we may assume that
(f*H1) E=Q and (f*H2)Έ=l because 1 =L-E=(f^Hl)Έ^(f^H2)Έ, and f£H{

(/ = 1,2) are nef. Hence M is a fiber space over P1 through Φ/*//,: M^»W-+P\.
Moreover, Φf*Hι(E) consists of a point because f£HίΈ=Q. Thus £ is a component

of a fiber of Φ/*//,. Φε(E) is not a point since LΈ>0. Hence /oCE) is not a point.
Γ = f0(E) is a fiber of Φ H l : W-+P\. Consequently, we obtain Γ~H±.

Case (II) We can lift ΦL to a morphism to the Hirzebruch surface Σ2 by the
method in [7, p. 46] as follows. Let v be the singular point of WQ. We can choose a

basis {φ0, φ l 5 φ2> Φa} °f H°(M9 (9M(L}) satisfying φi = Φ 0 'Φι Let (φf) be the divisor

defined by φ Γ Then we have 2(φ2) = OPo) + (φι) Hence we have 0^(φ2) — (φι) =
(φ0) —(φ2) = 50 —(51? where δ0 and ^! are mutually prime effective divisors. Let G be

the common part of (φ0) and (φ^.
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LEMMA 2. In the above notation, we have

PROOF. Let (φ0) = G + ̂ 40»
 and let (φ1) = G + ̂ 41. We have A0 — A1 = (φ0) — (φί) =

2δ0-2δί. Hence A0 + 2δ± = A1+2δ0. It follows that A0 = 2δ0 and Aί=2δ1, because A0

and Aί are mutually prime and so are <50 and <5t. q.e.d.

Note that {φ0, φ l 9 φ2} is a basis of the linear subspace of HQ(M, Θ M(£))

corresponding to Φ*Λ(ι;), where A(v) is the linear system consisting of the hyperplane

sections of WQ which contain v. Since Bs |L | is empty, so is Gn(φ3). Hence we have

L G = 0. On the other hand, since <50 and δ1 are linearly equivalent and mutually

prime, we have δi'E>Q. Suppose that E is a component of G. Since L is nef and

L E=l, we have L G>0, a contradiction. Hence we have G E>0. Consequently,

we have δiΈ=0 and GΈ=l, because \=LΈ=2bi E+G E and δtΈ and G £

are integers. In particular, G is not zero. G is irreducible and reduced, since

L G = (L + E) G=l.

LEMMA 3. The variable part \ L — G \ ofΦ^A(v) has no base point.

PROOF. Since 4 = L2 = L (2δi + G) = 2L δh we have L δi = 2. Hence we have
2δf + G-δi = 2. Since δf = δ0-δl>0 and ^-G^O, we have the following two cases:

<52=1, <VG = 0 and (5f = 0, δi'G = 2. However, the first case does not occur, since it

implies G = 0 by the Hodge index theorem. Hence we have (L — G)2 = (2δf)
2 = 0, and

then I L — G \ has no base point. q.e.d.

In Case (II), we denote by W the Hirzebruch surface Σ2, by Hl a fiber and H2

the section with the self-intersection number —2, and we set H=2H1+H2. The
morphism ΦH\ Σ2-^WQ<^P3 is equal to the blowing up at i e W0. By Lemma 3, the

inverse image of v by Φι is the effective divisor G. Thus there exists a morphism

/0: M^W such that ΦL = ̂ H°/O by tne universality of the blowing up. Then we
get f£H2 = G and L~f£H9 and hence we have f£H1~δi by L~2δt + G. Thus

f<?H1 E=δi'E=Q and f£H2Έ=GΈ=l. Hence it follows that M is a fiber space
over P1 through Φ/*//, : M-tW-^P1. Since f£H1Έ=Q, the exceptional curve £" is a

component of a fiber. Since L E= 1, Φf(E) is not a point. Hence Γ = f0(E) is a fiber

of ΦHl : ίΓ^P}. Consequently Γ^H^

Note that we use common symbols in Cases (I) and (II) because of the similarity
of the situation. We describe over result in this common notation when we do not

need to distinguish the two cases.

4. Classification of the fiber containing E. The pull-back of Γ by the morphism

/0: M-^W defined in Section 3 can be written as f£Γ = :εE+E* + D, where ε is the

multiplicity of E in /0*Γ, E* is the sum of those other components which are not
contracted by /0, while D is the sum of the components which are contracted by /0.
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The following proposition is a special case of [4, Lemma 1.5].

PROPOSITION 2. Let x be a smooth point of W$ such that X= Φ£ *(x) is of positive
dimension. Then X is irreducible and reduced with E-X=\. Moreover, X is a component
ofD.

PROOF. Let Lx be a general member of Φ^Λ(x). We can write Lx = X+ C, where
C is a divisor such that | C | has no fixed component. Since π*(tL) — E is ample for

sufficiently large t, it follows that tL X' + (t- l)E'X' = (n*(tL)-E}-X'>Q for any
divisor X' which is contracted by Φ/;. Hence we have E-X'>Q because L-X' = Q.

Moreover, we have X' E=\ and C E=Q by C E>0. If X=X' + X", then XΈ>\,

because X' E>\ and X"Έ>\, a contradiction. Consequently, X is irreducible and
reduced. On the other hand, we have Q = f<?Γ'X=ε + E*'X+D'X. Since E* X>0,
we have D- X<Q. Consequently, X is a component of D. q.e.d.

By the above proposition, we can write D = ΣXh where Xt is an irreducible

reduced curve. Let {jcj : =f0(Xi)e W and {*J : = Φ£ι(Xi)e WQ. Let Λ(x^) be the linear

system which consists of those divisors of the linear system \(l-\-e)Hί+H2\ on W
which contain xi9 where e = Q in Case (I) and e= 1 in Case (II).

LEMMA 4. Let C' and C" be general members of the linear system \L — Xι\ which
is the variable part of Φ^ίA(xi) = f^ίA(xi).

(i) If(L — Xj)
2 = 2, then C' and C" do not intersect each other onf*Γ. In particular,

(ii) If (L — Xi)2 = 3, then C' and C" intersect each other at one point on /0*Γ trans-
versely. Moreover, a base point of\L — Xί\, if it exists, is necessarily the point of

intersection.

PROOF. Case (I) Let S' and S" be general members of A(xt). By (ΦJS')'
(Φ£S"') = 2, φ*5" and Φ£S" intersect each other transversely at jc£ and another point

*;. Moreover, x is not on Γ because Γ'(Φ%S') = Γ'(Φ%S")= 1. Let Γ' be the fiber

which contains x't. Since the curves which are contracted by /0 are components of /0*Γ

by Proposition 2, the morphism /O |M\/O-IΓ : λf\f<Γ1Γ->W\Γ is a finite double
covering. Hence C' and C" which are variable parts of Φ*S" and Φ*S", respectively,
intersect each other transversely at two points on f0~

lΓf. Therefore if (L — Xi)
2 = 2,

then C and C" do not intersect each other on /0*Γ. If (L-Xί)
2 = 3, then C' and C"

intersect each other at one point on /0*Γ transversely. Since xj moves according to the

choice of S' and S", the inverse image of jcj is not a base point of f f A ( x t ) .
Case (II) Since JFf is a component of /0*Γ, we have Xi=£G = f$H2. Thus we

have XιφH2. Let 5" and S" be general elements of A(xt). Since (Φ%S') H2 =

(ΦJS") Ή2 = Q, we have (Φ£S") n 7/2 = (ΦflS") n #2 = 0. Thus 7f 2 is not a component

of (Φ£S") nor (ΦJ5") The rest of the proof is similar to that in Case (I). q.e.d.

Now we classify the fiber containing E.
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THEOREM 2. In both Cases (I) and (II), we have the following four types, where

E* is an irreducible reduced curve in (c) and (d):

(a) ffr=2E+xl+x2.
(b)
(c)

(d) f*Γ = E+E*, L E* = l, EΈ*=l.

PROOF. Case (I) Since 2 = L f^Hl = & + LΈ*, there are two cases (i) ε = 2,
LΈ* = Q and (ii) ε=l, £•£* = !. We first treat the former case (i). If E*=£Q, then

ΦL(£*) is a point by L £* = 0, a contradiction. Hence £* = 0. Since Q = f£HlΈ=
— 2 + DΈ, we have D E=2. By Proposition 2, /)•£" is equal to the number of

irreducible components of D. Therefore we have (a) D = Xί + X2 or (b) D = 2X{. Let
us treat the latter case (ii). If E* = Ef + Eξ, then we have LΈf>0 and L E2*>0,
because any component of E* is not contracted by /0, a contradiction to L E* = l.

Thus E* is irreducible and reduced. On the other hand, we have DΈ=l—E*Έ by

0 = ffH1Έ=-l+E*Έ+DΈ. Consequently, there are two cases (c) E E* = Q,

D = X1 and (d) E Έ* = l, D = 0 by Proposition 2.

The proof in Case (II) is similar. q.e.d.

5. Classification of Type (a). From this section on, we use the same notation
for a divisor and its total transform, when it does not cause confusion. In this section,

we assume that /0*Γ is of Type (a). Then the morphism /0 : M-> W is not finite. Hence

we lift it to a finite morphism. We first study the inverse image of jc, by /0.

LEMMA 5. The variable part \ L — Xi \ off^Λ(x^ has no base point.

PROOF. The curves X1 and X2 are contracted to distinct points by /0. Thus

we have XίnX2 = 09 and we get AV^2 = 0. Therefore we have Q = f£Γ X~
(2E+X1 + X2)'Xi = 2 + X?, and hence X?=-2. Thus we get (L-Xi)

2 = 2. Then the
linear system | L — Xt \ has no base point by Lemma 4. q.e.d.

Let σ: W-*W be the blowing up at Xι=fo(Xι) and x2 = /o(^2)» and ^et ^i and
Z2 be the exceptional curves over x1 and x2, respectively. We denote by Γ the proper

transform of Γ. The inverse image of xt by /0 is Xt. Hence by the universality of the
blowing up, there exists a morphism / : M-> W such that f0 = σ° /and f*Zt = Xt. Then
/is a finite double covering. Since Pic(fϊθ= ZH^@ZH2®ZZ^@ZZ2, the branch

locus is linearly equivalent to 2cnHl-\-2βH2 — 2y^Zl—2y2Z2 for a unique quadruple

(α, β, 7i,y 2) of integers.

THEOREM 3. Let σ: W-+W be the blowing up at the two points Xι=f0(Xι) and

X2 = fo(X2) with tne exceptional curves Zx and Z2 over x1 and x2, respectively. Then M
is a finite double covering of W. The branch locus B is linearly equivalent to

— 2γ1Zl—2y2Z2. The integers α, /?, y l s y2? satisfy the following conditions:
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Case (I) α>y,, α + j8>4,
COH? (II) α>2β, α>4,

Conversely, for each quadruple (α, /?, y1? y2) satisfying these conditions, there exists a
polarized surface (M, L) giving rise to the quadruple.

Case (I) Let F=aHί+βH2-yίZ1-y2Z2. Then clearly £e|2F|. Since /*f =
f*Γ-f*Zl-f*Z2 = 2E, the curve f is a component of £. Then we have B = B' + Γ,

where 5' is a nonsingular curve. Since the branch locus B is nonsingular, we have

£'nf=0. Hence we have B' Γ = (2F-Γ)'f=2(β-yl-y2 + l) = Q, and obtain
β = yι+y2 — l. Let //2 be the unique member of \H2 — Zi \. If this is a component of
B ', then B'-H2 = H2 = — 1, since 5' is nonsingular. Otherwise, B'-H2>Q, so in either
case we have - 1 <B' H2 = {(2z- \)Hl + (27l- l)(7/2-Z1) + (2y2- l)(7/2-Z2)}

(//2 — ̂ i) = 2(α — y i), hence α — y x > 0. Similarly we have α > y2. Since Z£ Γ = 1 , we have
H2nZ^0. Hence Zt is not a component of £'. Thus we have 5/ Zl = 2y ί-l >0.
Consequently, we obtain yt> 1 since y f is an integer. By the assumption #(M, L)>3, we

have α + β>4, since (̂M, L) = α + jS— 1 by the virtual genus formula.
Case (II) Similarly we have β = yl+y2-\ and 7 f > l . By Hί H2 = l, H2 is

not a component of 5', and so we have B'Ή2 = 2cc — 4β— 1 >0. By the assumption

0(M, L)>3, we have α>4, since 0(M, L) = a— 1 by the virtual genus formula.

In the rest of this section, we prove the existence part of this theorem. We take

two distinct points jc l 5 x2 on a fiber Γ of W. Let σ : W-+ W be the blowing up at these

points with the exceptional curves Zt and Z2 over xx and jc2, respectively. We denote
by Γ the proper transform of Γ.

PROPOSITION 3. Let α, /?, y1 ? y2, be the integers satisfying the conditions, and let
ylZι—y2Z2. The linear system \2F\ has a nonsingular member.

PROOF. Case (I) The divisor 2F—Γ is linearly equivalent to (2α—
(2y1 - l)(H2 - ZO + (2y2 - \)(H2 - Z2). Since Bs | H1 + H2 - Z{ \ = 0 and α > γi9 we have

Bs I (2α -!)//!+ (2yj - l)(//2 - Z4) | = 0. Thus we get Bs 1 2F- Γ\e(H2- Z£). It follows
that Bs|2F-f | = 0 by (H2-Z1)r\(H2-Z2) = 0. Then the general member B' of

|2F-f I is nonsingular. Moreover, since B''f=(2F-Γ)-Γ = Q, we get B'nΓ = 0.
Thus the divisor B = B' + Γ is a nonsingular member of 1 2F\.

Case (II) The divisor 2F-Γ is linearly equivalent to (2a-4β-l)Hί +

(2γl-l)(2Hl + H2-Zl) + (2γ2-l)(2Hl + H2-Z2). \2F-Γ\ has no base point, since

2α-4j3-l>0 and Bs\Hl + H2-Zί\ = 0. For a general member £r of \2F-Γ\, the

divisor 5 = B' -f Γ is a nonsingular member of 1 2F \. q.e.d.

Hence there is a finite double covering / : M-> W branched along B, where B is a

nonsingular member of \2F\. Since Γ is a component of the branch locus, we set

f*Γ: = 2E. By f2—— 2, we get E2= — \. Hence we obtain a surface M and a

morphism π : M->M by the blowing down of EaM.

We now show the existence of an ample divisor L.
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LEMMA 6. Let M1 be a nonsingular algebraic surface, and let L± be a divisor on
M±. Denote by π: M1->M1 the blowing up of M1 at a point pi with the exceptional
curve El^Mί. Suppose that L± satisfies π*Lί=L1+E1 and Bs\Lί\ = 0. If any
exceptional curve C± on M± for Φ^ί satisfies C1Έi>0, then L1 is ample.

PROOF. Let C1 be any curve on Ml other than Eί. If C\ is not contracted by
Φ£1? then L1 C1>0. On the other hand, we have C1Έ1>0. If C1 is contracted by
Φ£P we have L1 C1=0. Let Q be any curve on Mx. We can write π*Cί = Cί+μE1

with €l^E1. Hence it follows that L1 C1=π*L1 (C1+μJE'1) = π*L1 'C1=L1 -CΊ +
CV£i>0. On the other hand, we have (L1+£I

1)
2 = (L1-h£'1) L1=L^ + l>0. Con-

sequently, the divisor Lί is ample by the Nakai criterion. q.e.d.

PROPOSITION 4. Let L: = f*H and L : = π^L. Then the divisor L is ample.

PROOF. Case (I) From 2L E=(f*Hί+f*H2) f*Γ=l, we have LΈ=\.
Hence π*L = L + E. By the construction of M, the curves which are contracted by Φι
are components of /*Zί. The curves Zi and Γ intersect each other transversely by
Zί Γ=l. On the other hand, B' intersects Zf transversely because B' is a general
member of \2F—Γ\. Thus f*Zt is irreducible. Moreover, by Γ Zt.= l, we have
(f*Zi)'E= 1. Consequently, L is ample by Lemma 6.

Case (II) By construction, the curves which are contracted by ΦL are compo-
nents of f*H2 or /*Zj. The rest of the proof is similar to that in Case (I). q.e.d.

We calculate the invariants. The canonical divisor KM of M is linearly equivalent
to (a-2)f*Hl + (β-2)f*H2-(yι-\)X1-(γ2-\)X2. Hence we have

in Case (I), and

in Case (II).

LEMMA 7. We have

Hl(W,0(-F)) = 0 for

PROOF. By Kawamata's vanishing theorem, it is sufficient to show that F—(l/2)f
is nef and big. The divisor B'~2F—Γ is nef since \B'\ has no base locus. Hence
F-(l/2)Γ is nef. Moreover, it is big because (F-(l/2)f )2 = (jg-2)2-f 2y^2 -3/2 >0.

q.e.d.

Since the morphism / is a finite double covering branched along B~2F, we have

H\M, ΘM) = H\W, %)Θ#

Since W is a rational surface, we have by Lemma 7
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pg(M) = h\ W, %(-/-)), q(M) = 0 .

By Lemma 7 and the Riemann-Roch theorem for algebraic surfaces, we have

Hence we have

in Case (I), and

in Case (II).

6. Classification of Type (b). In this section, we treat Type (b) namely the case
f£Γ = 2E + 2Xl. We lift the morphism /0 : M-> W to a finite covering. We first study

the inverse image of xl by /0.

LEMMA 8. The variable part \ L — X^ \ off^Λ(xl) has a base point, which is on Xl.

Moreover, two general members of \L — X±\ intersect each other transversely at this
point.

PROOF. Since 0 = f^H1 Xl = (2E + 2XJ X1 , we have Xl = - 1 . Thus (L - XJ2 =

3. Let C0, C\ and C2 be general members of \L — Xί\. By Lemma 4, Ct and Cj
intersect each other transversely at a point on f^lΓ. Since CiΈ=(L — Xl)Έ=Q, we

have CiΓ(E=0. Thus the point of intersection of Ct and Cj on /0~
 1Γ is on X1. If the

point of intersection of C0 and Q is different from that of C0 and C2, then we have
C0 X± > 2, a contradiction to C0 ̂  = (L - XJ - Xl = 1 . q.e.d.

Thus the inverse image of x1 by /0 has an isolated part. Let y be the base point
of \L — Xl \. Denote by p: M^M the blowing up at y with the exceptional curve Y
over y. Let Xl be the proper transform of X±. By Lemma 8, the fixed part of

P* °/<M(*i) is ρ*Xi + Y=X1+2Y9 and the variable part is | p*L-X1-2Y\. Moreover,
I p*L — X1 — 2Y \ has no base point. Thus the inverse image of x1 by /0 o p is the divisor

Xί + 2Y. Let σ^\ W^W be the blowing up at jc l 9 and let Zx be the exceptional

curve over xί and Γ the proper transform of Γ, respectively. By the universality of

the blowing up, there exists a morphism f{ : M^W satisfying /o°p = 0Ί°/ι and

PROPOSITION 5. The image of X1 by f^ is equal to the intersection z of Zv and Γ,

and the morphism fι\γ'. Y^^Z1 is an isomorphism.


