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QUANTUM MULTILINEAR ALGEBRA
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Abstract. We construct a quantized version of the theory of multilinear algebra,
based on Jimbo’s solution of Yang-Baxter equation of type A{ ;. Using this, we discuss
the polynomial representations of quantum general linear groups.
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Introduction. Quantum groups are mathematical objects which arose from the
study of the quantum inverse scattering method, especially the Yang-Baxter equation.
They are very remarkable Hopf algebras and can be considered as g-analogues of
Kac-Moody enveloping algebras or of coordinate rings of Lie groups. Not only have
they added new aspects to representation theory, but also they have brought to
non-commutative geometry a remarkable progress, i.e. the discovery of many new
examples such as quantum linear algebraic groups, quantum spheres and so on.

In this article, we study quantum analogues of some linear-algebraic objects such
as matrices, symmetric and alternating tensors, and determinants. We construct these
from Jimbo’s solution of Yang-Baxter (YB) equation of type 4!}, and investigate their
structure via the notion which we call Yang-Baxter bialgebras. As applications, we give
realizations and free bases of Weyl modules K; V" and their dual modules (Schur modules)
of quantum general linear groups GL,(N), and give a criterion for the irreducibility of
K,V. We also give an analogue of the straightening formula for quantum matric
bialgebras. We would like to emphasize that these objects are defined over any
commutative ring R and any unit element ge R™ and are compatible with extensions

1991 Mathematical Subject Classification. Primary 16W30.



472 M. HASHIMOTO AND T. HAYASHI

of the base ring R. Hence, we can get the representation theory of quantum general
group ‘defined over Z[Q, Q0 '7’, where Q denotes an indeterminate.

In Section 1, we introduce operations on YB operators (i.e. solutions of the YB
equation) called the product x, dual v, and fusion procedure. In Section 2, we associate
with a YB operator two algebras which we call the symmetric and the exterior algebras.
In Section 3, we apply these tools to the construction of bialgebras SEY which are
called quantum matric bialgebras (cf. [12]).

In Section 4, we construct two YB operators ¢ and ¥ on the symmetric and exterior
algebras of Jimbo’s YB operators of type 4§, using the fusion procedure. With the
YB operator ¢, we introduce unusual algebra structures into tensor products of these
algebras, and prove that these algebras have some structures which we call YB-bialgebras.
Though a YB-bialgebra has structures of an algebra and a coalgebra, it is not necessarily
a bialgebra in the usual sense. The ‘commutativity’ and the ‘cocommutativity’ of these
Y B-bialgebras are described in terms of the YB-operator .

In Section 5, we discuss an analogue of the theory of graded multilinear bialgebras.
Recall that divided power algebras have been important in the study of characteristic-
free representation theory (cf. [2], [3], [4]). Here we introduce divided power algebras
of the YB pairs treated in Section 4. They are defined to be graded duals of symmetric
algebras defined in Section 4. This concept enables us to define Weyl modules and Schur
algebras in a natural way without assuming that ¢ is not a root of unity.

From Sections 6 to 9, our interest is concentrated on the study of the representation
theory of quantum deformations of general linear groups.

In Section 6, we define (deformed) Weyl modules K,V and Schur modules L,V
associated to a partition 4, using the YB-bialgebra structure of the symmetric and
exterior algebras defined in Section 4. We prove that L;V and K,V are finite free
R-modules and that they are ‘defined over Z[Q, Q'] in the sense that they are
compatible with base extensions. This property is an analogue of the so-called universal
freeness. For the original version of this result, we refer the reader to [4]. Though our
definition of L,V is different from L}(B) in Taft-Towber [37], they will turn out to be
equivalent (cf. Proposition 9.7). Though our construction and argument in this section
are nothing but the deformed versions of those in [4, Chapter II], we include some
details, since they do not seem to be so obvious.

In Section 7, we introduce the deformed versions of the Schur algebra, weights,
and the contravariant dual functor in our language. We will show that (deformed) Weyl
modules are universal highest weight modules in the sense of Theorem 7.12.

In Section 8, we work over a base field K, and discuss the irreducibility and complete
reducibility of SEY-comodules. The notion of formal characters is introduced in this
section. Theorem 8.9 is a g-analogue of the hook length criterion for the irreducibility
of Weyl modules. In the proof, Gyoja’s g-analogues of Young symmetrizers [14] play
important roles.

In Section 9, we prove a g-analogue of the straightening formula using quantum de-
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terminants. Namely, we prove that the degree k component S,E¥ of SE" admits a filtra-
tion of ~SE ¥-subbicomodules whose associated graded object is @ ;|- (K;V)*® L;V,
where 4 is the transpose of A. This formula was originated by Doubilet-Rota-Stein
[11] in the case g=1. Our approach is a g-analogue of the treatment in [4].

Lastly, we remark on the relation between our construction and the quantum
enveloping algebra U,gl(N), or rather the “quantum hyperalgebra” such as that defined
in Lusztig [23]. Since these Hopf algebras satisfy the conditions in Theorem 3.3, there
are pairings of bialgebras between the quantum matrix bialgebra over Jimbo’s YB pair
of type A", and the quantum hyperalgebra. Hence, thanks to the general theory of
bialgebras, the quantum hyperalgebra acts on our Schur and Weyl modules. Moreover,
the criterion for the irreducibility (Theorem 8.9) is also valid when they are viewed as
representations over the quantum hyperalgebra.

After the submission of the first version of this work, the authors received preprints
by Dipper-James [10], Noumi-Yamada-Mimachi [29], Parshall-Wang [30], which have
some overlap with our paper.

Our special thanks are due to Professors Mitsuo Hoshino, Yukihiro Kanie, Hideyuki
Matsumura and Akihiro Tsuchiya for valuable advice.

1. Yang-Baxter operators. Let V' be a free R-module. A Yang-Baxter (or YB)
operator on V is an automorphism g, € Endg(V'® V') such that

(1.1) (ﬁv)1°(ﬁv)z°(ﬁv)1=(ﬁV)2°(ﬂV)1°(ﬁV)2 s
Byv) :=By®idy, (By),:=idy®By .
A Yang-Baxter pair V=(V, B,) is a free R-module V equipped with a Yang-Baxter

operator f§, on V.
Here we give some examples of Yang-Baxter pairs.

ExaMpPLE (1) (trivial twisting). Let V be a free R-module. Then the map 7, :=
1y defined by 7,(u®@u')=u' ®u is a YB operator on V. We call 7, the trivial twisting
on V.

ExaMpLE (2) (Jimbo’s operators of type A\ ,). Let V be a free R-module with

a basis {u;, u,,...,uy} and let g be an invertible element of R. Then Jimbo’s YB
operators of type AY , is the map defined by the following formula:

ui®ui (l zj) s
(1.2) Bru;®@u)=1 qu; ®u; @i<j),

We call {u;} the standard basis of (V, ). This operator also satisfies Iwahori’s quadratic
equation

(1.3) (idy gy —By)o(idygy+4~By)=0.
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As for Jimbo’s other operators, we refer the reader to [16] and [31].

ExaMPLE (3) (A ‘super symmetric extension’ of Jimbo’s type A\, operator). Let
V be a free module with a basis {u9,u, ..., uYy, ui,...,uy} and g an invertible ele-
ment of R such that g%+ 1 is also invertible. Then the following formulas define a YB

operator f§,, on V:
(1.4) B @ul)=uf@u, By(ui®@ui)=—q*ui@u;,
Byl ®@ui)=qui ®u?, PBy(ul @ud)=(1-q"ui@ui+qui@u; ,
(—1)*qui ®@u} (i<))
(=g ui@uj+(=D"quj®ui  (i>)).

The restriction of this operator to (@;Ru?)®? coincides with the operator in Example
(2) under the identification u? =u;. This operator also satisfies the relation (1.3).

By(ui® ul}) = {

ExaMPLE (4) (YB operators associated with distributive lattices). Let (L, A, V)
be a distributive lattice, i.e. a set together with two maps A, v: Lx L— L satisfying
the following laws:

(1.5) anb=baa, avb=bva, anbarc)=(anb)ac, av(bvc)=(avb)vc,

av(anb)=(avbyra=a, anbvc)=(anb)v(anc) (a,b,cel).

Let V' be the free R-module on L and define §,, e Endxg(V® V) by B (a®b)=arb®av b
(a, be L). Then B, satisfies the condition for a YB operator except the existence of 8, !.

Let B, be the E. Artin’s braid group. Namely, B, is a group generated by elements
{b;| 1 <i<k} with the following fundamental relations:

(1.6) bbi=bb; (1i—jl=2), bbis1b;=bir1bbiv; (1<i<k-2).

For each YB pair (V, B,), there is a representation of B, on the k-fold tensor product
T,V =V ®* defined by

(1.7 b (By):=(id,)® @ By ® (idy )+ i1

There is an important observation which is due to Iwahori in the Coxeter group case.
Let S, be the symmetric group of degree k. The length Z(o) of 6 € S, is the number of
the pairs (7, j) such that 1 <i< j<k and ¢i>gj. It is well-known that &, is generated
by the transpositions g;=(i, i+ 1) (1 <i<k) and that #(0) coincides with the minimal
number of factors needed to express o as a product of the g;’s. An expression g =55, * *s;
(515 ..., 5€S,) of 6 e S, is said to be reduced if £(6)=£(s,)+ - - - +£(s;). Then Iwahori’s
theorem says that there is a well-defined map &, —» B, which sends g€ S, in reduced
expression 6 =0,,0;," -0, (1<iy, ..., iys)<k) to the element b; b;," - -b;, of the braid
group. Combining this map with the homomorphism (1.7), we get a map from &, into
Endg(T,V). We denote the image of 0 S, by f,(0). Note that if 6=s5,---5; (5, ...,
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5;€ S,) is reduced, then B,(a)=pBy(s,)" - - By(s;). Let x;; (i,j=1) be an element of S, ;
defined by

12 3 - 0 41042 - itj
(1.8) Xij=(. . . . .J)-
JH1j+2j+3 - j+i 1 2 -

Then, By(x;;) defines a linear isomorphism from T,V ® T,V onto T,V ® T,V. By
Iwahori’s theorem we get:

ProposITION 1.1 (fusion procedure). The R-endomorphism TPy :=@; ;o Bv (ki)
(resp. TiBy :=Py(x:;)) defines a YB operator on the tensor algebra TV = @D, o T,V (resp.
V).

We denote the YB pair (TV, TB,) (resp. (T;V, T,8,)) by T(V, By) (resp. T(V, By)).

Now we will define a category # %y as follows:

(1) The objects of %%y consist of all YB pairs on free R-modules of finite rank.

(2) For Yang-Baxter pairs V'=(V, B,) and W=(W, By), the set of morphisms
Y BV, W) consists of all R-module maps f: V' — W satisfying the following com-
mutative diagram:

(1.9) vev L8, wew

L
vev L84 wew.
It is easy to see that T; is a functor from %%, to itself for i>0.

Now we will give more operations on #%y. Let V=(V, B,,) and W=(W, B ) be
Yang-Baxter pairs.

DerNITION 1.2.  The product By x By of B, and By is a YB operator on V® W
defined by the following commutative diagram:

(1.10) vergwe2 180l popevew

| sy | Aot
V®2®W®2 M, V® W® V@ w.
We denote the corresponding YB-pair by V'x W.

PROPOSITION 1.3.  The product defines a bifunctor Y Bg x Y B — Y B satisfying
the following conditions:
(1) associativity constraint

(UxV)xW=Ux(VxW)
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(2) existence of the identity object
(R,idrgr) X V=Vx(R,idggr)=V
(3) commutativity constraint
Tyw: VXWxWxV.
The proof is straightforward.
DEerINITION 1.4. Let (V, ) be an object of #%Br. We define a YB pair
W=(V*By) (resp. V"1, resp. V¥V =(V*, By)) by
(1.11) ev(B,(v® V)P U u))=ev(v® V)R B (uRu’) wveV*,w,weV).

(resp. V1=V, By Y), resp. By ='(By!)) and call it the transpose (resp. inverse, resp.
dual) of V.

It is important that the evaluation map ev: V*® V' — R gives a morphism of # %y
from V'V x V onto the unit YB pair (R, idg g g)- The following theorem shows that # %y
is a rigid tensor category (see [9]):

THEOREM 1.5. We have the following isomorphisms of functors.

a yvyy=vr, Q) WVxW)Y)y=VVxw,

(B) UBUXV, W)Y~HB(V,U" x W) (U, V, WeYBy).

Proor. Parts (1) and (2) are obvious. To see Part (3), we note that under the
isomorphism Homgx(U® V, W)~Homg(V, U*® W),amapf: U® V — W corresponds
to the composite

*®id, idy.
(1.12) £y Y neue v kg w

and the map f': V —» U*® W corresponds to the composite

idy®f’ UQU*®@ W ev®idy W

(1.13) f1U®Vv

Since ev*®id, e U Br(V, U¥ x Ux V) and ev@idy e ¥ Br(U" x U x W, W), the map
fis a morphism of #%y if and only if so is f’. Therefore (1.12) and (1.13) give the
desired isomorphim. O

2. Symmetric and exterior algebras associated with Yang-Baxter pairs. In this
section, we introduce two classes of algebras associated with YB pairs.

DEerFINITION 2.1. Let V'=(V, B,) be a YB pair. Define quotient graded algebras
SV=@s08Vand AV=@@;,,/;V of the tensor algebra TV = P, o ¥ ® as follows:
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(2.1) SV :=TV/(Im(idy gy —By)) ,
AV :=TV/(Ker(idy gy —By)) -
We call SV and AV the symmetric and the exterior algebra of V, respectively.

To distinguish elements of A ¥ with those of SV, we denote the product of g, be AV
by anb.

If By, is the trivial twisting 7y, then SV (resp. A V') coincides with the usual symmetric
(resp. exterior) algebra of the free R-module V. For Jimbo’s YB pair of type 4§ ,, the
fundamental relations of these algebras are given by
(2.2) SV=(u1,...,uN|u,-uj=qujui i<y)y,

AV=Luy, ..., uy|u; Au;=0, quinuj+u;Au;=0 (<)) .
Hence, in this case, we have:
(2.3) If iy, ..., ie[1, N] has a repetition, then u; A -+ Au, =0in AV.
(24) Ifl<ij<---<i<NandoeS,thenu, A Auy=(—q) " Du, A Au,
for ke N.

The R-modules S,V and A,V are free with respective bases
(2.5) {wj,u;,"u; |1<j, <jp <+ <j, <N},
(2.6) {u nupyn - Au | 1<), <jp,< - <j,<N}.

For the YB pair associated with a distributive lattice L, the symmetric algebra is

the commutative algebra generated by elements of L with the fundamental relations
a-b=(aAb)-(avb)(a belL). This algebra was introduced by Hibi [16] to study lattices
by means of commutative ring theory.

3. Quantum matrices. Let V" be a finite free R-module. Then, the dual coalgebra
of End(V) is identified with V*® V as an R-module. With this identification, V*® V
is an R-coalgebra with the coproduct

1®ev*

G.1) 5 v @VaV*@RQV-2VOL prare vt v

and the counit e=ev: V*® V' — R. More explicitly, these maps are expressed as
N
(3.2) S(Xij)=kz X @ Xyj 5 é(xij):(sij >
=1
where {uy, ..., uy} is a free basis of V, {v, ..., vy} is its dual basis and x;;=v;@u;,

and 9;; is Kronecker’s delta.
The R-module V' is a V*® V-comodule with the coaction
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_ ev*® 1 N
(3.3) @: V=RV VRV*QV; uj— Y, u;®x;;.
i=1
The maps & and & are extended to the (unique) algebra maps §: T(V*® V) —
TV*QV)YRT(V*®V) and é: T(V*® V)— R, respectively, and T(V*® V) is a
bialgebra. Hence, ¥V ®* is a T(V *® V)-comodule with the coaction @& given by

(.4 O, ® - @u)= Y (@ ®u)®(x,;,®  ®xy) -
Let A be an R-coalgebra, and V an A-comodule with coaction w,: V-V ® 4. We
define a coalgebra homomorphism cfy,: V*® V— A4 by cf,=(ev®id,)-(idy @ wy)
and call it the coefficient map of V. The coaction w,, is determined by cf}, by the formula
wy=(idy ® cfy ) o @.

Now we consider a YB operator 8, on V. The YB pair (E, fg) :=(V, By) x(V, By)"
is called the internal End of the YB pair (V, /). The R-module E (resp. E V) is nothing
but V® V* (resp. V*® V). By Theorem 1.5, EV is identified with the internal End
VY x (VY)Y of VV. Since ev*e U Br(R, V' x V) and eve HBR(V'x V¥, R), the maps
5, ¢ and @ are contained in U BR(EV,EY XE"), WBR(E”,R) and Y B(V,VXE"),
respectively. It is easy to see that f. is a coalgebra map. Hence, by [34, Proposition
1.4.8], Im(idg- g g+ —PBgv)) is a bi-ideal of TEY. Thus the symmetric algebra SE
becomes a quotient bialgebra of the bialgebra (TE", §, &). We call this the quantum
matric bialgebra for the YB pair (V, /) and denote its coproduct and counit by d5 and
es, respectively. Note that the exterior algebra A E" also becomes a quotient bialgebra
of (TE", 9, e).

Let us write down the fundamental relations of SEY and AE" for Jimbo’s YB
pair of type A4} ,. For Jimbo’s YB pair of type 4 ,, the internal End YB operator
BE- is given by

(3.5) Be(xu® Xa) = X5 ® X, Be(xa® x3) =(1—¢*)x3 ® Xy + x5 ® Xy
Be(xu ® xi) = qxy @ Xy , BE(xjk®xik)=q_ 1xik®xjk s
BeCxa® x3)=(1—q" x5 @ Xje+ ¢~ x5 ® xy
BE(le®xik)=(q_l _q)xil®xjk+xik®le s ﬁE(xjk®xu)=xu®xjk s
Be(xy ® xj) = —(q_q_l)zxu®xjk+xjk®xu+(‘1“q_1)(sz®xik—xik®xjt) s
Be(xu®x;)= _(q_q_l)xil®xjk+xﬂ®xik , (<i<j<N,1<k<I<N).
Hence, the fundamental relations of SEV are
(3.6) XigXia=qXjgXig 5 XieXjp =X X 5  XXjx=Xjy Xy »
XpXg—XaXy+(q—q Dxyx; =0, (1<i<j<N,1<k<I<N),

and those of AEY are
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3.7 Xg AXpe=0, Xp AXy+qxyAxy=0, XpAXp+gxpnx=0,
X; /\xjk+xj,,/\xi,—(q—q‘l)x,.k/\xj,=0 s X AXjyt+XyAxy=0,
(1<i<j<N, 1<k<I<N).

Using [5], one can easily see that S,EY and A,E" have the following R-free bases,
respectively:

(ilajl)s(iZ’jZ)S e —<—(lr’jr)} ’
(1,00 <))< <(pjp)} -
Here < denotes the lexicographic ordering of {1, ..., N}2.
In the remainder of this section, we will consider representations of the quantum
matric bialgebra SEV for an arbitrary YB pair (V, 8,). Since V is a comodule for the

bialgebra SE Y with the structure map wg(u;) =) ,u; ® x;;, the k-fold tensor power T,V
of V is also an SE"-comodule with the structure map

(3.8) (X1, X100 " Xij,

{xil.il A Xisj,

AN X,

(3.9 ws(u;, ® - - '®ujk)=_

PropPoOSITION 3.1.  The coaction of SEY on T,V commutes with the action of the
braid group B,. In other words, the following diagram is commutative for 1 <i<k:

(3.10) TV —25 ., TV®SE"
l ®), 1 ®,),®id
TV —25 ., TVRSE".

ProoOF. Clearly, it is enough to consider the case k=2. Let @ be the coaction of
(TEY,8) on TV. Since 0¥ BR(V, Vx E"), we have

(3.11) (ﬁV®BEV)°(D|V®V=a_)|V®V°ﬁV'
Let p be the projection from T, E ¥ onto S, E " . Since wS|V®V =(dy gy ®p)oa‘)|,,®,,, we get
(3.12) wS|V®V°BV=p®idV®V°BE®ﬁV°Cb|V®V

=P®BV°CD|V®V=idss®ﬁv°ws|V®V .

a

THEOREM 3.2 (Universal mapping property of SEV). Suppose there is a bialgebra
(4, 6,) and coaction w,: V- V& A such that the coaction of A on T,V commutes with
the action of the braid group B,. Then there exists a unique bialgebra homomorphism
f: SEY — A such that the following diagram is commutative.
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(3.13) TV T,V® SE"

- e

TV —21, Tred.

ProOOF. The coalgebra map cfy, : EY =V *® V' — 4 uniquely extends to a bialgebra
map f: TEY — A. By (3.10), it is easy to see that f(Im(id — B+ ))=0 and that the theo-
rem follows. O

Similarly, we get:

THEOREM 3.3. Suppose there is a bialgebra (U, éy) and an action 0y: UQ V>V
such that the action of U on T,V commutes with the action of the braid group. Then there
exists a unique bilinear pairing {, >: U® SE" — R satisfying

(1) X, ab)=({,a>®, b)(6X),

(2 <XY,a)=(X, >®&{Y, })(4s9),

3) (X ®w)=(idry,® (X, >)(ws(w)) (X,YeU,a,beSEY,weTV).

In particular, the bialgebra U acts on SEY by Xa=(idgg ®<X, >)ods(a) (XeU,
ae SE).

4. Symmetric algebras, exterior algebras and the fusion procedure.

DEerFINITION 4.1. Let A=(A4, m4, n,) (resp. C=(C, 4, ¢c)) be an R-algebra with
product m, and unit 5, (resp. an R-coalgebra with coproduct 4. and counit ¢:). Let
@4 (resp. @c) be a YB operator on A4 (resp. C). We call (4, ¢,) (resp. (C, ¢c)) a YB
algebra (resp. YB coalgebra) if the following diagrams (4.1) (resp. (4.2)) are commutative:

40404 %), 4404 24N | 40404
j m,®id, l id,®m, l m,®id,
@.1) A® A 9a A® A i AR A
I n,®id, I id,®n, I n,®id,
R®A4 = AQ®R R®A,
cecec %), cocge %, cocgc
] 4,®id, T id, ®4, [ 4,.®id,
4.2) C®C %e C®C Ge c®C
l £, ®id, 1 id,®¢, J £ ®id,
R®C = C®R RRC.
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ProrosiTION 4.2. (1) For a YB algebra (4, ¢,), the YB pair T(A, ¢ ) (see
Proposition 1.1) becomes a YB algebra with product my 4 :=m%'o¢ (w;) and unit
()% : R~R® > T.A, where w; is the element of S,; defined by

123... 7 5 1 2.2
43 e 'z i+1i+ l>
135---2i—1 2 4 ---2

(2) For a YB coalgebra (C, ¢¢), the YB pair T(C, ¢c) becomes a YB coalgebra
with coproduct Apc:=@c(w; *)°A&" and counit (¢c)®': T,C > R® ~R.

Proor. By (4.1), we have
4.9 (PA(Xij) o(mr,,® id,?j) = (id@j ® m,?i) ° (pA(XZi,j) o(@ (W) ® idfj) .

Since both sides of the equality XZ,-; wixlg,)=(lg,xw;)x,;,; are reduced, the right
hand side of (4.4) becomes

(d® @ m%Y) o (id$'® ¢ 4(w;))° 0 4(X2:,5)

hence we have

4.5) (PA(Xij) o(mr 4 ® id;?j) = (id@j@ mTiA) ° (PA(Xzi,j) .
Similarly
(4.6) ©4(xji)° (d$'® mr4)=(mp ,® id;?j) °® (X, 2i) -

Taking j=i, we find the commutativity of the upper two diagrams of (4.1) for T,A4.
Now we will prove the associativity of my 4. Since (1 x 1 xw;)(1 x x;; x 1) is a reduced
expression for w;, ;, we have

4.7 My, a=m@mr 4)°(d, @ ¢ 4(xi1) ®idr,,) .

Hence by (4.5), (4.6), we get

(4.8) mr,, ,Ao(mT,-+1A ®idr.~+ .A)=((mA°(mA®idA))®(mT,-A°(mT,~A®idT,-A)))°§0A(0') s
my,,,a°(dr,, 4 ®@mr,, ) =((m,°(d, @m))® My 4°(dr 4@ mr 4)))°P4(0),

where 0=(lg, X x2:,1 X 1g,)(1g, X xi1 X 1&,,,,)- Hence the associativity of my, , , fol-

lows from that of m, and my 4. The rest of the proof is similar and easy. O

ExampLE. For an arbitrary algebra A4, the YB pair (4, 7,) becomes a YB algebra
(cf. §1 Example (1)). The product of Ty(4, t,)is givenby m; 4(a; ® @ a) @ (b, ® - - -
®b))=a,b,® - ®ab,.

DEFINITION 4.3. A sextuple A=(A4,4,, &4, M4, N4 ©4) is called a graded YB-
bialgebra over R, if:
(1) (A4, my ny @4)is an YB algebra over R and (4, 4,4, €4, ¢ 4) is an YB coalgebra
over R. '
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(2) The R-module A is a direct sum of submodules A4; (i=0) such that
my(A;®A;)=A; ) AA(Ak)CZi+j=kAi®Aj and @4(4;® 4;)c4;® A;.

(3) The unit n, and the counit ¢, give an isomorphism 4y~ R.

(4) Both 4,: A—> T,(A,m,,ny, @4) and ¢, are algebra maps.

Note that in general, 4 is not a bialgebra in the usual sense. But the following lemmas
still hold.

LEMMA 4.4. Under the conditions (1), (2), (3), the condition (4) in Definition 4.3 is
equivalent to

(4") Both n4 and m, are coalgebra maps, where the coalgebra structure of A® A
is as in Proposition 4.2 (2).

LemMA 4.5. For a graded YB bialgebra (A, ¢ 4), the tensor product T(A, ¢ 4) (i>0)
becomes a graded YB bialgebra with a product my 4 and a coproduct Ay 4 (see Proposition
4.2).

Let (4, ¢,) and (B, @) be YB algebras (resp. coalgebras, resp. bialgebras), and
f: A—> B a homomorphism of algebras (resp. coalgebras, resp. both algebras and co-
algebras). We say that fis a homomorphism of YB algebras (resp. coalgebras, resp. bi-
algebras) when (f® f) o= @go(f®f) (cf. (1.10)). For a homomorphism f: (4, ¢ ,) —
(B, pg) of YB algebras (resp. coalgebras, resp. bialgebras), T,f: (T4, Tip,)—
(T:B, T;pp) is again a homomorphism of YB algebras (resp. coalgebras, resp. bialgebras)
for i>0.

Let B, and y, be YB operators on a free R-module V. We call (V, By, 7y,) a YB
triple if the following two conditions are satisfied.

4.9) (idygy —By) (idy gy —1v)=(dy gy — By) (ildy gy — 1) =0,

(4.10) BioB2ovi=v3°B1°B2, vi°¥20B1=B2°y1°72,
B2oBiov2=v1°B2°B1, v20v1°B2=B1°y2°7: -

For a YB triple V=(V, By, yv), we set SV=S(V, By) and /\V=/\(V, By). There exist

two important examples of YB triples.

ExampLE (1). Let (V, By) be Jimbo’s YB pair of type A\, for a fixed ring R
and its invertible element ¢g. By (1.3), the YB operator y, := —q~ 2, satisfies the
equation (4.9).

ExampLE (2). Let (V, By,) be as in Example (1) and let (E, 8;) be its internal
End YB pair Vx V. Set yg=By x'pp. It is easy to verify that (E, B, yz) is a YB
triple.

Let ¢, and y , be YB operators on an algebra 4. We call (4, ¢ 4, ¥ ,) a YB algebra
triple if (1) both (4, ¢,) and (4, ¥ ,) are YB algebras and (2) f=¢, and y=y , satisfy
(4.10).
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ProposITION 4.6. (1) Let (V, By) be a YB pair. Then the tensor algebra TV =
@iV ® becomes a graded YB bialgebra with a YB operator TB, and a coproduct
Ary: TV T,(TV, TPy,) defined by A(u)=u®@1+1Q@uueV). Q) If (V, By, yv)isaYB
triple, then (TV, T(+ By), T(F7yy)) is a YB algebra triple.

Proor. By Proposition 1.1, (TV, T, ) is a YB algebra. By the universal mapping
property of the tensor algebra, there exists a unique algebra map 4, : TV — T,(V, Thy)
such that AW)=u®1+1®u for ueV. The commutativity of (4.2) follows from
Proposition 4.8 below. Next, we show the coassociativity of 4,. Because the restrictions
of Apy®idodyy and id® A7y o41y on V coincide, it suffices to show that these are
algebra maps. Since A, is an algebra map, this follows easily from the commutativity
of (4.2). Part (2) follows from the following lemma. O

LEMMA 4.7. For a YB triple (V, By, vy), we have
4.11) B(Xij)oﬁk=Bk+j°B(XEj)s V(Xij)oﬂk=ﬂk+j°?(1ij) (I<k<i),
ﬁ(Xij)oﬂk+i=ﬁk°ﬁ(Xij) > ?(Xij)°ﬂk+i=ﬁk°'}’(Xij) (I<k<j).

Proor. Since

4.12) Xij=0e, X)) (e, X xi1 X ls, )01 X 1g,_,)

is a reduced expression, we have

(4.13) ) =ve, X x:) ¥, X xi1 X Le, ) 7001 X 1s,_,) -

Hence the second identity follows from

4.14) V(e X it X Loy ) Brm=Berms 171 e, X it X gy, ) -

The other identities are obtained similarly. O

To give an explicit formula for 44, we need some notation. Let k>1 and let
oa=(xy,...,%) be a sequence of non-negative integers with o, +---+a;=k. Let
C=@®,,,C; be a graded coalgebra. We denote by A% the composite map C — C®—»C,
of the s-th iteration of 4. and the projection, where C,=C, ® - ®C,_. If a and C in
consideration are clear by context, then we will drop them, and simply denote it by 4.
Let &, be the Young subgroup S, x - -+ xS, of &,. We denote by &* the following
complete set of representatives of S,/S, in S,.

(4.15) S :={0eC,|ol < <on;, 0(a, + 1)< - <o(oy +0a,), "+,
oo+ o+ 1)< - <o(ay+ o)}

Any o € S, is uniquely expressed as 6 =¢'¢” with ¢’ € * and ¢ € S,, and this expression
is reduced.

PROPOSITION 4.8.  ForaYB pair (V, By ), the coproduct of the YB bialgebra T(V, B)
satisfies the following formula.
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(4.16) = Z BV(0—1)~

ge G
Proor. We prove this formula for a=(i, j) by induction on k=i+j. Let w and u
be elements of T;, ;¥ and V, respectively. Since A7y is an algebra map, we have
@.17) A4 V(0 @ )= Mg,y (A~ 1T D) ® (UG 1)) + Mgy (A*P (W) ® (1 @ 1))
By the induction hypothesis, the right hand side of (4.17) is
(id9i_1®ﬁV(Xj+1,l))°< Z ﬁV(a—1)®idV>(w®u)

ceGSi-1,j+1)

+ Y B HRid,(w®u).

ge S, )

Since
S (@I L, x sy, 4 DS

we obtain

467 0= T a7,

ceSl,i+1)

O

Now we fix a YB triple V'=(V, By, yy) such that S;V and A,V are free R-modules
for each i>0. The next lemma follows easily from Lemma 4.7.

LemMA 4.9. (1) Thereexist YB operators sy and sy on SV (resp. ¢ py andy gy
on A\V) which satisfy

(4.18) Psyo(p@P)=(p®p)-T(—yy), Ysyo(P®p)=(p@p)Thy,
eAve(P®P)=(p®p)-T(—By), YAr-(p®p)=(p®p)-Tyy,

where p denotes the projection from TV onto SV (resp. \V).
(2) Both (SV, sy, Ysy) and (\V, ¢ Avs Y Av) are YB algebra triples.

Let A be either SV or A V. Then we have the following:

THEOREM 4.10. (1) There exists a unique algebra map A,: A—> A® A such that
AW)=u®1+1®u for ue A,~V, where the algebra structure of A® A is given by
Proposition 4.2 in terms of the YB operator ¢ ,.

(2) Defineamape,: A— Rby e, (Y a;)=a, (a;€ A;). Then (A, my, 0y, Ay, €45 9 4)
becomes a graded YB bialgebra.

ProOF. We prove this theorem only in the case 4=SV. By Proposition 4.6 (1),
it suffices to show that the ideal (Im(id—p,)) is a coideal of TV. By (4.11),
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(Im@id—B,)) @ TV + TV ® (Im(id — f,)) is a two-sided ideal of T,(TV, T(—7vy)). On the
other hand, by (4.9) and (4.16),

Ar((i[d—By) (W) =(d = By) (W) ® 1 + 1 ® (id — By ) (W)
e(Imid—By) @ TV+ TV (Im(id—By))
for we T,V. O
PROPOSITION 4.11. Let A be as above. Then, (1) myoty y=m,. Q) If A: A;— AL is
injective for any i>0, then, Y ,oA4,=4,.
Proor. We show this proposition only for 4 =S¥. Using (4.2), we obtain
(4.19) Am)@A(lj)°l//sv°A(i’j)°Pi+j=B(Xij)“A(li)®A(U)°A(i'j)°Pi+j
=B(Xij)°A“”j)°pi+j >
where (19=(l, ..., 1)e Z'. By (4.16), the right hand side of (4.19) is B(x;))°) , c &,(— v )(0).
Since
(Bv), Z (=) (@) =(By), Z (id—=@y)) (=)o) = Z (—yv)(0)
ge Gk £(e)<{((r, r+1)0) ce Sy
for 1<r<i+j, we get
AV Q@ A oy, 0 A4Pop,, =A@ Ao AGDop, ..
This proves Part (2). Part (1) follows from

mA°l//Aopi®pj=mA°pj®pi°B(Xij)=pi+j°ﬂ(%ij)=pi+j=m,{°pi®pj .
O

Now we shall look at the representation-theoretical aspects of the YB algebras we
discussed so far.

DEerFINITION 4.12. Let H be an R-bialgebra, and 4 =(4, ¢,) be a YB algebra with
a H-comodule structure. We say that A is H-equivariant YB algebra when m,, n, and
¢, are homomorphisms of H-comodules. We define H-equivariance of YB algebra
triples, YB coalgebras, and YB bialgebras similarly. All of the structure morphisms
(including YB operators) are required to be homomorphisms of H-comodules.

If (4, ¢4) is a H-equivariant YB algebra (resp. coalgebra, resp. bialgebra), then
T(A, ¢,) is also H-equivariant for any i>0.

Let (V, B, y) be a YB triple such that SV and AV are free, that V is a H-comodule,
and that § is a homomorphism of H-comodules. Then it is easy to see that (TV, T(+ f))
is a H-equivariant YB algebra. Themap V> V@ RO®RQ@V; u—u® 1+ 1 ®u s clearly
a H-homomorphism. Since T,(TV, T(+ B)) is a H-equivariant YB algebra, the coproduct
Ay of (TV, T(+ B)) is also a H-homomorphism. Hence, (TV, T(+ f)) is a H-equivariant
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YB bialgebra. Since the ideals (Im(1—f)) and (Ker(1—f)) are subcomodules of TV,
we see that SV and AV are quotient comodules of 7V. The YB bialgebra structure of
(A\V,@av) is induced by the structure of (TV, T(—p)). Hence, AV is also a
H-equivariant YB bialgebra. Though my,, nsy, &y, and Yg, are H-homomorphisms,
Asy, @sy and Y 5 y may not be H-homomorphisms.

The most important example of H is the quantum matric bialgebra SE" (see
Proposition 3.1 and Theorem 3.2). If y is also a H-homomorphism, then (TV, T(+7))
is also a H-equivariant YB bialgebra. It is easy to see that (AV, ¢ Avs Y Ar) and
(SV, @gy, ¥sy) are H-equivariant both as YB algebra triples and as YB bialgebras in
this case. Jimbo’s YB triple of type 4§, and its matric bialgebra satisfy this condition,
since yy=—q 2 By. '

5. Divided power algebra. For a graded R-module M =@, ,M,, the graded
dual M" of M is @, M* by definition. The graded dual f/* of a homogeneous map
f:M—>N=@ N, is defined to be Y, fi*, where f, is the degree k component of f.

Let A=(A4, 44, ¢4, My, 1y, @4) be a graded YB-bialgebra with each homogeneous
component A4; being free of finite rank for each i>0. We introduce into A" a structure
of a graded YB-bialgebra. There is a canonical isomorphism A'® AT ~(4 ® A4)' via the
pairing

1 1
R1T® A;"®A,-®A}"®Aj ev®ev

AR AT A,® A, R®R=R,

where 7 is the trivial twisting. The structure morphisms 4 41, €41, m 41, 74+ and ¢ 4+ are
defined to be m}, n, 4%, ¢l and o, respectively. For example,

®1
@A 4,040 rear@ 4,04 R
is equal to
1
AR AIDA,® AP A3 @ AF@ A,® AR,

Thus, for k>0 and o € S,, the graded transpose (¢ 4(0))" of ¢ 4(0) is equal to @ 41(a ™).
With these definitions, A" is a graded YB-bialgebra. In fact, it is well-known that
(A', m 41, n 41) is an R-algebra, and that (4%, 44, £ 41) is an R-coalgebra (see e.g., [28]).
Taking the dual of the diagram (4.1), we easily see that 4t is a YB coalgebra. Similarly,
taking the dual of the diagram (4.2) for 4, we see that 4! is a YB algebra. It is clear
that the conditions (2) and (3) in Definition 4.3 for 4 imply the conditions (2) and (3)
for A*, respectively. By the condition (4) in Definition 4.3 for 4, we have the condition
(4) in Lemma 4.4 for A%,

Let V=(V, B,y) be a YB triple. We assume that V is a free R-module of finite
rank and both SV and AV are free. As in Section 4, the exterior algebra AV=
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T(V, —p)/(Ker(1 —p)) and the symmetric algebra SV=T(V, —y)/Im(l —pB)) has a
structure of YB bialgebras. By (4.16), we have:

(5.1) ANy Pwi A Aaw)= Y, (=B HW @ @ wy)
Geek
(5.2) A% Ow - wd= Y (=N ® - @wy)
G'EGk

for any k>0 and w,, ..., w,eV.

We denote the YB triple (V*, '8, 'y) by 'V, where ' (resp. ) : V*Q V*->V*Q V'*
is the transpose of f§ (see Definition 1.4). We assume that S% and A’V are free. Let
A= @04, be either AV or SV. Note that the i-fold product m,: V' ® g 4% > 4, is
nothing but the projection map p: T;V'=V ® - 4,. We denote by 4'= @, , 4; the YB
bialgebra A'V or SV, according as A=AV or A=SV. For a non-negative integer i,
we denote the pairing T,V T V* > R,w, @ @w,® ¢, ® - @ @;—>0,(wy) " - - @i(w))
by Ev?”. We define a pairing ev®: 4,® A;— R by the commutativity of the diagram

1®4,
TVve4 —24 ., TyeTw
lp@l lEW’
(i)
AI®A; i R s

where p: T,V — A; is the natural projection. This pairing ev® is well-defined, since
EvO(Ker(1 —8,) ® Im(1—',))=0 for 1</<i—1 (the case 4=AV) and Ev®(Im(l —
B)®Im(1—*,))=0 for 1 </<i—1 (the case 4=SV).

LeEMMA S5.1. In the notation above, the diagram

4 1
A,QT'V 4® TVRT'V
l 1®p lEv“’
evld
A4,® 4; R

is commutative, where p': T,'V — A} is the natural projection.

ProoF. First, we consider the case A= A V. It suffices to show that ev?o(p® p') =
Ev®?o((4% - Yop)® 1), since p: T,V — 4, is surjective. By (5.1), we have

EVOo (4 ”op)®1)=Ev""o<< ) (—ﬂ)(cf‘))@l)

oceC;

=Ev(i)o<1 ®< Z (_tﬁ)(a)>>=EV(i)o(l ®(A£41, ..... 1)op:)) )

ae@;

Since Ev?o(1® 4% V)=ev?o(p® 1) by the definition of ev?”, we have completed
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the proof in this case. The case A =SV is proved similarly by means of (5.2). O

We denote by &7 the natural map from 4; to (4)* induced by the pairing
ev?: 4,;® A;— R, and denote by & the sum of ®{'’s.

PROPOSITION 5.2. In the notation above, ®*: A—(A')" is a homomorphism of YB
bialgebra. The map ®* is a surjection if and only if AL is a split injection for any k>0,
where (1%) is the sequence (1, ..., 1) (k times 1).

PrOOF. By the definition of ev?”?, =@ is a homomorphism of algebras. By
Lemma 5.1, @ is a homomorphism of coalgebras. We set a=—f when A=AV, and
a=—y when A=SV. We show that ¢ 4y1°(PQR P)=(PR P)o¢,. Since pQp: T,V ®
T,V — A;® A; is surjective for any i, />0 and

A% @ ALy =(P)*® (p)*: (AD*®(AN* > (T} V»* @ (T V)* ~ TV @ T,V
is injective for any i, j>0, it suffices to show
(5:3)  (P)*Q(P))opay(P:@ P;)o(p®P)=((P)*®(P)*)(P;® D)o 9 4° (P ® D)
on T,V T,V for any i, j>0. Since p: T;V'— A; and p: T;V'— A; are nothing but the
iterated multiplication, (?;® ®;)-(p ® p) agrees with the composite map

TVR TV ~(TiV )y @ (T V)4 @% | (4@ a))*

thanks to the fact that @ is a homomorphism of algebras. We identify (7;'V)*® (T'V )*
with (T;'V® T;'V)*, and T,V ® T,V with (T,'V'® T,;'V)* in an obvious manner. Then,
(AD*® (A))*, (A4)*@ (447)*, (p')*® (p')*, and the restriction of ¢4y to (4))*® (A4))*
are identified with (4;® 4))*, (44" ® 44")*, (p® p')*, and (¢ » )iai@a,)"> TESPeCtively.
So the left hand side of (5.3) is identified with the dual of the composite map (4¢"®
A447)° @ 42 (p' ®p'). By (4.18), it holds that ¢ .o (p' ® p') = (p' ® p') > T(‘). Since (p' ® p')
(439 ® 447) is the action of ZUGG( ,(0)(0) by (5.1) and (5.2), the left hand side of
(5.3) agrees with the map (3., e )(’oc)(o)) (‘@)(x;i))*. On the other hand, the right
hand side of (5.3) is ((},. So.0 oc(a))ooc(xu))* by a similar argument. For any element
0=0,x0,€S;, it holds that ((o, x6,)x;) "' =(o;5 ' x 67 ')y;;, and these expressions
are reduced. Hence, we have

(( g ('a)(0)>°(‘a)(xij)> =< > d((G‘x,-j)_l)*>«
e, ) o€ G, j)

So (5.3) is proved, and the proof of the first assertion is complete.

Since @ is a homomorphism of algebras, we have (4%)* =&, p for any k>0,
where p: T, V'=— 4, is the projection, or the k-fold product. Hence, (44)* is split
surjective if and only if &, is surjective, since p is surjective and (4})* is free. So the
second assertion is now clear. O
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LEMMA 5.3. Let (V, B, y) be Jimbo’s YB triple of type A}, (see Example (1) in
Section 4) with the standard basis uy, ..., uy. Then for any k>0 and any sequence
(iys -5 G) With 1<i; < - - <i <N, we have

A(/l\'x?"'l)(”il Aau)= Y (=) U, @ ®uy,
ge Gy
In particular, A p y: AV - T,V is a split injection for any k>0.
PrOOF. To prove the first assertion, it suffices to show that
(5.4) Blo™ N, ®  ®u,)=¢""u, @ Quy,
for o € S,, which is proved easily by an induction on ¢(¢). If we define 7,: T,V —> A,V
by

B U, A AU, (ll<<l")
T, ® - Qu) = {0 (otherwise)

.....

O
Let a be a non-negative integer and 1€ R. We define [a],=1+1+-- +1*"1ifa>0,
and [0],=0. We also define [a];=][{_,[{], if >0, and [0];=1.

LEMMA 54. Let (V,p,7) and k be as in Lemma 5.3. For any sequence o=
(ay, ..., ay) of non-negative integers with Ziai=k, we have

N
A(SIV), 1)(ualzl te 'u‘;VN)= 1—[ [(Zi];—z : 2 q—[(a)uva‘U@ e ®uva'"k s
i=1 e
where the number vi is the i-th element in the sequence (1*',..., N*¥). In particular,
Adsy: SV - T,V is a split injection if and only if [al, _, is invertible in R for any 1 <a<k.

Proor. It suffices to show that ) o (—9)(0)@¥*'® - - - @ uf™™) equals the right
hand side of the formula. Since S, =& &,, and since the expression 6 =0"¢" (¢’ € S*,
'€ ,) is reduced for any o€ S, we have

) (—v)(6)=< ) (~y)(a*)> ( ) (—y)(o")) :
ge Sy g e d'eG,
For any a>0 and r€R, it holds ) o 1/’ =[a];. Hence, it is easy to see that
N
Y (=@ ® - @uyt)=[] [ed, - uf ® - @uy~.
'€ Sy i=1

So it suffices to show that

(_y)(a,)u‘lgal@) T ®u1§aN=(_q)_((al)uva"ll ® T ®uva"1N B



490 M. HASHIMOTO AND T. HAYASHI

which is proved easily by induction on £(c").
Now assume that [a],-- is invertible for any a such that 1<a<k. We define
. T, V- S,V by

N

-1
nk(“i,@ . ®uik)= <H [ai]é'2> U, (l1 < Slk)

i=1

0 (otherwise) ,

first assertion. O

DEFINITION 5.5. The graded dual (S'V)! of S'V is denoted by DV and is called

the divided power algebra of V. The degree i component of DV is denoted by D,V and
is called the i-th divided power of V.

By definition, D,V =R, and D,V =V. Moreover, the restriction of ¢, to D;V®
D, V=V®YV is equal to B, since ‘() =p,. By Proposition 5.2 and Lemma 5.3, we
have AV~(A'V)' for Jimbo’s YB triple of type 4§ ;. By Proposition 5.2 and Lemma
5.4, we have SV ~DV for Jimbo’s YB triple when [#], is a unit for any n>1, but not
in general.

PROPOSITION 5.6. Let V=(V, B, y) be a YB triple with finitely generated V and free
S'V. Then the iterated coproduct A} : DV - (T,'V) =T,V is a split injection. The image
of this map is (T, V)®.

ProOF. The first assertion is clear, since the coproduct of DV is the dual of the
multiplication of S*V. By the definition of the symmetric algebra, the sequence
-8,
y Y="B)

SYPIN T,'V-"8,V—0

is exact, where p is the projection. Taking the dual, we see that the sequence

o 0=

(1%)
AD

Dici<i-1Tk T.V—"—DJV+«—o20

is also exact. This shows that D,V is the intersection of Ker(l1—f;) for 1<i<k—1.
Since B, is generated by the b;’s, the second assertion is now clear. d

EXAMPLE 5.7. Let V=(V, ,y) be Jimbo’s YB triple of type AY),. If [2],.=0,
then the R-submodule T,V of S,V generated by ui, ..., u% is also an SE-comodule,
and we have an exact sequence

01,V -8,V A\,V—0.

However A,V is not a quotient of D,V (see Section 7). Hence, we have S,V ¢ D,V
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as SE-comodules. The coproduct S,V —» V® V vanishes on II,V, so the coalgebra
structure of SV is different from that of DV.

Let (W, Bw, yw) be another YB triple such that SW, AW and S'W are free, and
W is finite. Consider a map fe #Bx((V, By), (W, Bw)). Then, Tf : (TV, T(+ By)) = (TW,
T(+ pw)) is a homomorphism of YB algebras. Since T,Tf: T,(TV, T(x y)) - T,(TW,
T(+ Bw)) is a homomorphism of algebras, it follows that Tf is also a homomorphisms
of coalgebras, hence is a homomorphism of YB bialgebras. It is easy to see that Tf
induces Af: (AV, @ Av) > (AW, @ Aw), Sf: (SV, ¥sy) > (SW, ¥sy) and Df: (DV,
Ypv)— (DW, Yoy ). The maps A f, Sf and Df are homomorphisms of YB bialgebras,
algebras and coalgebras, respectively. These maps preserve the grading, so we obtain
/\.f. Sif and D;f for i>0. If f is also an element of #Z((V, yy), (W, yw)), then Sf
and Df are homomorphisms of YB bialgebras.

Let M be a finite free R-module. Then M*®@ M and M@ M*=(M*)*® M* are
coalgebras (see Section 3). It is easy to see that the trivial twisting 7y pe: MO M* >
M*® M is an anti-homomorphism of coalgebras. Consider an R-coalgebra 4 and a
coaction @y : M- M® A. Then, the composite map cfyoTy pe: MO M* > 4 is an
anti-homomorphism of coalgebras, and yields a left comodule structure of M*. The
left A-comodule M* is called the R-dual of the A-comodule M. For another right
A-comodule N with finite R-module structure, the identification (M @ N)*~M* Q@ N*
is an isomorphism of left 4-comodules. Similarly, the R-duals of left 4-comodules are
defined, and we have M**~ M.

LEMMA 58. Let (V,fy)cob¥RBg. Then Sty yu: S(VXVY)> SV xV) is an
isomorphism of algebras, and is an anti-isomorphism of coalgebras.

PROOF. Since 1y y+€UBp(Vx VY, VY xV) is an isomorphism, St, ,. is an
isomorphism of algebras. Since 1y, y«: V@ V* > V*® V is an anti-homomorphism of
coalgebras, and S(V'x V") is generated by elements of degree one, Sty . is also an
anti-homomorphism of coalgebras. O

Note that E=V x V'V is the internal End of V. Hence, TV * is a right SE-comodule,
and B¥, '‘B=(B")"! are homomorphisms of SE-comodules. So T'V, A'V and S'V are
SE-equivariant graded YB bialgebras. With the anti-coalgebra algebra homomorphism
Sty v« these algebras are viewed as left SE ¥ -equivariant graded YB bialgebras. Taking
the dual comodules of each degree, the graded duals (T'V)!, (A'V)" and DV=(S'V)!
are (right) SE-equivariant graded YB bialgebras. It is easy to see that the natural
identification (T'V)'~TV of graded YB bialgebras is also an SEY-comodule iso-
morphism. Hence, D,V is a subcomodule of ¥ ®* via the injection 4: D,V — V &
Since ®\": AV - (A'V)' and ¢%: SV - DV are induced by TV~(T'V)" (see Pro-
position 5.2), these maps are SE “-equivariant. ’

REMARK 5.9. Since B~!isan SE"-comodule map, TV ™!, AV "' and SV ~! have
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SE-comodule structures. Clearly, the identification TV~TV ! is an isomorphism of
both algebras and SE"-comodules. Let us compare AV and AV ~'. They are the
quotient algebras of TV =TV ~! defined by the same ideal (Ker(1 — f))=(Ker(1—p~1)).
Hence, (AV, ¢ Av) and AV, <p}\1y_ 1) are isomorphic as SEY-equivariant YB
algebras. For each k> 1, the image of the coproduct maps Im A(/l\'?/= Im(}, ves (—B)(9))
and Im A‘}\k,’/_x=Im(zaeek(—[3‘l)(o)) agree. It follows that (A V, @ op) and (AV ™7,
<p7\1V_ 1) are also isomorphic as SEY-equivariant YB coalgebras. But they are not
isomorphic as YB bialgebras in general. To illustrate this, consider Jimbo’s YB triple
(V, B, y) of type A ,, and compare the maps

m

A A4
AV—V@V AoV and AV 'V i@y Do A, vt

The first is the multiplication by 1+ g2, while the second is multiplication by 144~ 2.

Similar facts on symmetric algebras and divided power algebra should be noted.

PROPOSITION 5.10. Let V=(V, By, yy) be Jimbo’s YB triple of type AN, and
E=(E, Bg, yg) be as in §4 Example (2). Then we have:

1. For any k>0, the comultiplication A(}\kg is a split injection. Hence, we have
NE=~(N\'E)! as graded YB-bialgebras.

2. A$Y: S,E— T,E is injective if R=Z[Q, Q™ '], where Q is an indeterminate.

PrROOF. 1. We define a map p,: E®*—> \,E by

e v . . . . « s
A A Xiyjie (1§ <ijyy, OF jy>jivy and =114,)

x; ®  ®x )_{xiljl
Pi\Xiyj, itk 0 (otherwise) .

Then pkoA‘/l\"E’=id A&+ Hence, A‘}\"E’ splits. The second assertion is a consequence of
Proposition 5.2.
2. We may localize, and assume that R=Q(Q). We define a map «, : E®* > S,E

by
G TSy D do-2) 71 gy~ X
(X, ® @ Xiyj) = Gf "R iy <ipyy, OF Gy=i)41 and j,<jy+1)
0 (otherwise) ,

where u, ;. = #{h|(iy, jn) =, I')}). Then m, 0 4§y =id, 5. Hence 4§y’ is an injection.
(]

Assume that R is a field. Since (S,V)* =(Coker(1 — f))* is identified with D,'V=
Ker(1 —'p), the Koszul complex of the quadratic algebra SV defined in [26] is nothing
but SV ®(A'V)'. The boundary map is the composite map

1®4 m®1

3: SVRA'W)! SV VR(AY)! SV A,
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where 4 is the abbreviation for the map

AV AN OATY-TEEL N TR AV =V RN

and m is the product in SV. If SV is a (homogeneous) Koszul algebra (see [28]), then
SV (/A'V)! is a resolution of the left SV-module R=SV/(V). If V=(V, B, y) is Jimbo’s

YB triple of type AY§),, then SV® (A'V)! is rewritten as SV ® AV, and the boundary
map is described explicitly as

lk

k
(5.5 da@u A AU )=y, (=Y lau,@uy A Al A A Y
j=1

In this case, SV is a Koszul algebra [32, Theorem 5.3], and the Koszul complex
SV® AV is acyclic.

REMARK 5.11. Let ¥V be a YB pair. By the discussion in the proof of Proposition
5.6, the dual of the projection T,V — S,V is naturally identified with the inclusion
(TV)B ST V.

6. Schur modules and Weyl modules. Throughout this section, (V, ) is Jimbo’s
YB pair of type A§), (cf. (1.2)) over the base ring R determined by a unit g€ R.

For (infinite) sequences of integers A=(4,, 4,, ...) and u=(u,, 4,, ...), we define
the sum A+ u to be the sequence (A, +uq, A, + U5, ...), and we define k- A to be the
sequence (k- Ay, k- A,,...) for ke Z. We also denote supp(d)={ie N|/1i;é0}. We will
denote by Q* the set {4: a sequence of integers ] YieN, ;>0 and #(supp(4)) < o0}. For
1eQ*, we define the length of A by £(1)=max supp(4), and the degree of A by |i|=
YienAi-When 4=(0,0, ...), we define £(4) =0. We set " ={1e Q" |"ie N ;> ;,,} and
call an element of Q~ a partition. For any Ae Q*, its transpose 7 is defined to be the
partition which satisfies 1,=#{je N|4;>i} for any ie N. It is easy to see that (£)~ is
the partition obtained by rearrangement of the sequence 4 in non-increasing order.

We introduce a lexicographic order < into Q%. Namely, for two elements A and
peQ*, we say that A>p when there exists some j such that 4;>yu; and 4;,=y; for any
i<j. With this ordering, Q* is a totally ordered set.

We will denote the partition (0, 0, ...) of degree zero by 0.

For A, ueQ*, we say that Aoy if and only if A;>y; for each ie V. It is clear that
> is an order and Aoy implies A>p. It holds that Aoy if and only if £ 4. For 4,
ueQ~, we say that A/u is a skew partition, if 1o p.

DEFINITION 6.1. The diagram (or shape) A, of an element Ae Q% is the set
{G,)eN? | Jj<4;}. We use the convention as in the case of matrices, namely, the row
index i increases as one goes downward, and the column index j increases from left to
right (see Figure). The skew shape of a pair A, ue Q" with Aopuis 4,,:=4,\4,.
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A2,3,= A,2=

L]

423200, = :}

FIGURE.

Clearly, 4,,,=4,. So we will always adapt the terminology for skew-shape (or
skew partition) to the terminology for shape (or partition) by letting u=0.

DEFINITION 6.2. Let X be a set and let A, ue Q*. We define Tab,,,(X) to be the
set Map(4;,,, X). An element of Tab,,,(X) is called a tableau of shape A/u with values
in the set X. For Se Tab, ,(X), we say that Sisa Young tableau, if Xis theset[1, | A|—|u|]
and S is a bijection.

Pictorially, a tableau SeTab,,, X is expressed as an array of elements in X in which
S(i, j) occupies the intersection of the i-th row and the j-th column. For example, if
A=(4,3,3), u=(2,1) and

63
S= 14
527

then S is a Young tableau, and S(3, 2)=2.

DErFINITION 6.3. Let Y be a totally ordered set. A tableau SeTab, ,(Y) is said to
be row-standard if the rows of S are strictly increasing, i.e., if we have S(, y;+1)<
S3, p;+2)< - - <S(, 4;) for any i. The tableau S is said to be column-standard if the
columns of S are non-decreasing, i.e., if for all 1<;j<A, we have S(i, )< S(i+1,))
whenever (i, j) and (i+1, j) are both in 4, ,. S is said to be standard if it is both row- and
column-standard. We denote by Row,, Y (resp. St;,, ¥) the subset of Tab, , ¥ consisting
of all row-standard (resp. standard tableaux).

DEFINITION 6.4. A tableau TeTab,,(Y) is said to be co-row-standard if the
rows of T are non-decreasing, and co-column-standard if the columns of T are strictly
increasing. T is said to be co-standard if it is co-row- and co-column-standard. We
denote by Corow;,,, Y (resp. Cost,, Y) the subset of Tab,, Y consisting of all co-row-
standard (resp. co-standard) tableaux.

Let 4, pue Q" with 1> pu. We define an element y;,, in S,;,_,,, as follows. First we
introduce a lexicographic order into the set 4,,,. We define (i, j) <, (i', j') if i<i’, or i=7"
and j<j’. Since <, is a total ordering, we have a unique order-preserving bijection
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O, au: (1, [Al= 11> (4, <,). Secondly, we introduce another lexicographic order
into 4,,,. We define (i, j) <. (i', j") if j<j', or j=j" and i <i'. We also have a unique order-
preserving bijection «, ;,: [1,|A|—|ul]l—= (4, <.)- We define y;, :=ozc‘.,{,,,oa,,l/u.
Here we show an example.

ExaMPLE 6.5. Let A1=(5,4,2) and u=(1, 1). The permutation ,, is described as
follows:

1234 . 2579
a’—:)}/“= 5 6 7 ol > 3 6 8 =0£c_‘;}/”.
89 14

The permutation w; in Proposition 4.2 is nothing but x; ;.
DEFINITION 6.6. For any 4, ue Q*, we define
AV =Ns-uV® " @ As- Vs
SaV=81,-uV® @S, -V,
D, V=D, _, V& - -®D,_,V,
T,,V=T,_,V®  ®T,_,V,
when Aoy, where s is a sufficiently large integer. If 1 u, they are all 0 by definition.
Note that T,V is naturally isomorphic to 7, -, V.

DEFINITION 6.7. Let A/p be a skew partition with £(4/u)=s and 4, =¢. We denote
the composite map

NV =Nis- V@ @ As-ilV
l A AL
TylV=T) - V® QT V=T -\u|/V
l ORI
ThaV=Tr-pV® ®T5,_p V=T -1V
l PO -®p
SyaV=81-pV®  ®S5,-pV

from A,V to Sz;V by d;,(V), and call it the Schur map (cf. [4]). The image Im d;,(V')
of the Schur map is denoted by L,,,V, and is called the Schur module of V with respect
to the skew partition A/u.

By definition, d;,,(V) and L,V are the usual Schur map and the Schur module,
respectively, when g=1. Note that (g72B)(x;;,) in the definition can be replaced by

B> (— B (i), OF (——q‘zﬁ)(xm) for the purpose of defining L;,,V, since ¢ is a unit
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(using B(x;,) might be the simplest; however we use (¢~ 2f)(x;,), since it is more
consistent with the notation in [14] (see §8)). It is easy to see that d;,,V is an SE"-
homomorphism, and L;,,V'is an SE”-comodule. We denote d,,o(}') and L,V by d,(V)
and L,V, respectively.

We set Y(0)={u,, < ' <u,y}, the ordered basis of V for seSy, and X=
{uy, ..., uy} its underlying set.

DEFINITION 6.8. Let A/u be a skew partition with £=/(4/u) and 7=¢(J/fi), and
SeTab,, X. We define

Es=S(L,p+ DA AS1,A)® - @S, ue+ DA AS(E, A)e NinV s

ns=S(;,+1,1)- - ST, D®- - @Sz +1,7) - - S(z, £)eSy,V s

Cszs(laﬂl'*'l)@"'®S(1,'11)®'"®S(/,#£+1)®“'®S({a ll)ETA/uV,

G=S@,+1,D)® - @S, D® @S+ 1,/)® - ®S(As £ )eTrV .

For o e S,, we set

AunY(0)={&s| SeRow,, Y(0)} ,
L;, Y(o)= {dl/y( V)(&s) ] Se Stuu Y(O')} .

It is obvious that A, Y(c) and the set {ns|SeTab,,Y(s), S is column-standard}
are bases of A,V and Sy,;V, respectively, for any o € Sy. It follows that Cs=1(x ) " Cs»
where 7 is the trivial twisting. In the rest of this section, we sometimes tacitly identify
T,,V with T;,_,, V. In such an occasion, we also identify SeTab,,X with
Soa, ;,€Map([1, N], X). For an arbitrary totally ordered set ¥ and skew partition
A/u, we introduce two (pseudo-) orders into Tab,,, ¥, as follows:

DEFINITION 6.9. For a skew partition A/u, I N, totally ordered set Y, Y,c Y
and SeTab,,Y, we define

n(S, YO)=#{(i,j)€A,1/uliEI, S, j)e Yo} .

DerFINITION 6.10. Let S and S’ be elements in the set Tab,,, Y. We say that S<§"
when it holds

ng, . y(S (=00, yD2ng  y(S, (=00, y])

for any ie[1, /(A4/u)] and ye Y, where (— oo, y] denotes the subset {ze Y|23y} of Y.
We say that §<,., " when §=S" or Seq, ;,(j)<S°0a, ;,(j), where j is the minimum
of the numbers i such that Soa, ;,(i))#S oa, ;,(i). We say that S< S’ (resp. §<,S")
when S<S’' and S# S’ (resp. S<,,S" and S#S5").

Note that < is a pseudo-order for Tab,, Y, and <, is a total order of Tab,, Y.
The restriction of < to Row,,, Y is an order, and S, S’e Row,, ¥, S<S" imply S< ., S".
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ExaMPLE 6.11. Let 1=(3,2), u=(1), Y={1<2<3}, and S;, S, and S; be as
follows:

13 22 31

S= , = . =
) 13 )

Then we have §; <S;<S, since S, is obtained by row-permutation on the entries of
S;. Wehave S, £S5, £5, €53 £S,, since n;y(S;, {1}) =n4y(S5, {1)=1>0=n(S,, {1})
and n;(Sy, {1, 2}) =nyy(Ss, {1, 2}) =1<2=n,(S,, {1, 2}). Since S;(1,2)=1<S,(1,2)
=2<85(1,2)=3, we have S; <, S; <jex S3-

Returning to the situation X'={u, ..., uy}, we denote S<,S’ (resp. <, ,S") for
S, S"eTab,, X, when S<§’ (resp. S<,,S") with S, S’ viewed as elements of Tab,, ¥(o).
We will omit the subscript ¢ if 6 =id. Hence, S< S’ (resp. S§<,,S’) and §>,, S’ (resp.
8> 1ex, 0S') are equivalent, where w, € Sy is the unique element with maximal length.

For ke N and pe S,, we define the decomposition of p by induction on k. We let
p;=(1 2---p~ 1), the cyclic permutation. Since pp;(1)=1, we may assume that
ppileS,_,. Let ppil=p,_, - -p, be the decomposition of pp;'. We define the
decomposition of p to be p=p,_, - -p;. Note that this decomposition is always a
reduced expression.

LEMMA 6.12. Let A/u be a skew partition, and Se Tab,,, Y. Then we have
B(Xl/u)Cs=q*fs+szs s s (cs€Z[g,97 '),
>

where by q* we mean some power of q.

ProOF. We set k=|A|—|u|, and proceed by induction on k. We denote by u’ the
unique partition such that 4,,,. is obtained by removal of the box «, ,,(1) from 4,,,.
We denote (1) by d (in Example 6.5, «,, ;,(1)=(3, 1) and d=8). If the decomposition
of Xuu 18 Xau=pr-1"""P2p1, then we have p,_, - -p,=yx;,, with the natural
identification of &, _,; with the isotropy group of 1 in S,. Hence,

T(XA—.—/;:)B(XA/M) =[1,® T(X;/,i')ﬁ(x/l/u')] o[t(py l)B(P 1,

where we identify T,V with V® T,V via the isomorphism t(p,). By the remark after
Definition 6.8, it suffices to show that we have an expression

T(XA_/;)B(XA/‘;)CS =q*(s+ szs csls -
>
By the induction hypothesis, it also suffices to prove that we have an expression

(*) t(py I)B(P1)’:s=q*‘:s+s§s s s -
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We set m;=0;" - -g,_, for 1<i<d—1, where g; is the transposition (j j+ 1). Note that
p.=mn,. To prove that we have an expression (*), we will show that

(**) ﬂ(”i)Cs=ZI:C}CS;(1) (cieZ[g,q97 '], Cig =q%)

for any ie[1, d—1], where the sum is taken over all subsequences I=(iy, i,, ..., i) of
@i,i+1, ..., d—1) such that S(i,)<S(i,)< - - - <S(i,) < S(d). The empty subsequence is
denoted by &F. For such a subsequence 7, let J;=(j, ..., J;_s:) be the complementary
subsequence of 7 in (i, i+1,...,d—1). The tableau S;(/) is defined by Si(/)=0; -

Cigni S(=8ec0j, , ., -0a;). We shall prove (*+) by descending induction on i. For
each subsequence I=(i, ..., i) of (i+1,...,d—1), we have
Cs;(l) (if S(i)=S(i1)) s
Bo)  Ls;..n= 1 9Csun (if  S@<SG)),

s+ —g)ga, Gf S@>S3G,)),

by (1.3), where we assume that i, =d when I is empty, and I’ is the sequence (i, iy, . .., i,).
So (*x) holds by the induction hypothesis. Moreover, we have

n b S = ni_+110-iSi,(]) = ni_+11S;{+ 1)
and
n b Si) =m0 A SiT) = d)ni S ()
Since (n73Y - Si+ (1)) =S@) > S(i,) = (3 i+ 1(1))(d) and «, ;,(i) lies in an earlier row
than the row in which o, ;,(d) lies, it is easy to see that n; ' S;(I') <n ' Si+ () (cf. [4,
Lemma II. 2. 14]).

Using the descending induction again, we have p;! - Si(&)=S>p; 'S;(I) for any
non-empty I. By (%), we have an expression

T(Pl_l)ﬂ(m)(s:;c}C,,xﬂ .SUD (cteZlq,97 '], ch=q%)

which is of the form (*). : O
Let k>0 and (i, ..., i;) be a sequence with 1<i; <--- <i, <N. Then by Lemma

5.3, we have

AR W i A A )= (— g e V240 A A u;,)

=(_‘1)k(k_1)/2 Z (_q)“d)ui“@ o ®u,

o€ Sy

=(=@* "2 Y (=), ® - Qu;, .

aeGk

For a skew partition A/u and Se Row, ,(w,), the image of & by the coproduct
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A: NV - T,V is of the form ¢*} .o (—q) “l,;s where w,eSy is the
permutation of maximal length. Note that ¢S>S, 0S<S, and ¢S#S for any
seS,_ \fid).

PROPOSITION 6.13. Let A/u be a skew partition. Then L;;,Y(wo)={d;,(V)(&s)| Se
St Y(wo)} is linearly independent.

PrOOF. We denote by A,V (resp. S7;V) the submodule of A,V (resp. Sz V)

generated by {£5|SeSt,, Y(wo)} (resp. {ns| SeSt;, Y(w,)}). We denote the composite
map

d,,(V) p

NV =NV SuaV——SysV

by H, where p is the projection via the standard basis {ns|SeTab,,Y(w,), S is
column-standard} of Sj,;V. Since both A,V and S}/ﬁV have bases indexed by the
same totally order set (St;;, Y(wo), <jex, w,)> WE can express H by means of a square
matrix with respect to these bases. It suffices to show that this matrix is upper triangular
and each diagonal entry is of the form g*. By Lemma 6.12 and the preceding observation,
we have an expression

d,(V)(Es)=q*ns+ Y sty
§'>8,5' %8

for SeSt,;, Y(w,). For each S’, we have 55 =g*n), where (S)° is the column-
standardization of S’ with respect to the order of ¥(w,). Hence we have

H(s)=q*ns+ > sy Yisry -
S§'28,8' #8,(5')°eSta/uY(wo)
If S” appears in the sum and S’ < S, then S’ is not row-standard. Hence S’ #(S’)°, since
(S")° is row-standard. So we have (S')° <, S’ <, S. If S'> S, then we have (§')° <, S, too.
a
For i>1, we denote the sequence (0,...,0, \1/, 0,---) by ¢, and we define
o;=¢;—&;,,. For a skew partition 1/u, we define the subset S5(4/u) of Q™ by:
Sow={veQ® PIEN, *keNg k<lpy—p and v=y+0,41—k) -},
where y=A—pu.
DEFINITION 6.14. Let A/u be a skew partition, and veSy(4/u). We have

v=A—pu+r-a, for some r, t>0. Then we define the box map O},: A,V - AV to
be the composite map
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/\vV=/\y1V®' o ®A'}’t—lV®AYt+’V®A)’t+1—7V®A'}’t+2V®‘ o ®/\ysV
l 19 ®1e0R18 8l

/\l/uV=/\y1V® o '®/\v:—|V®AY:V®/\~/¢+1V®/\V¢+2V®' o ®/\7$V’

where y=A—pu and [] is the composite map

A®1 1®m

/\Y:+VV®/\W+1—"V /\V:V®/\"V®/\}’t+l_'V /\)’tV®/\7¢+1V'

The sum of these box maps Zvesgu/m/\vV_’/\A/uV is denoted by [;,.

LEMMA 6.15 (cf. [4, Lemma 11.2.9]). Let A=(4,, 4;) and u=(u,, u,) be partitions
with Ao u. We set y=A—u. Let a and b be non-negative integers with a+b<2A,—u,.
Then the image of the composite map

I®4®1

Ij(tz,l:) : /\aV®/\n —a+72—bV®/\bV A0V®/\Y1 -aV®/\72—bV®/\bV

m@m

/\71 V®/\Y2V= /\U#V

is contained in Im [],,,.

Proor. We use induction on a. If a=0, then we have (y, +y,—b, b)e Sp(A/n),
and [, 5 =0%4772 """ by assumption. So the assertion is clear. We consider the case
a>0. For each i€[0, a], we denote by 4(i) the composite map

44

/\aV®A|Y|—a“bV /\iV®/\a—iV®/\y1—iV®/\y2—a+i—bV

l®‘P/\V®1
—_—

/\iV®/\71—iV®/\a—iV®Ay2—a+i—bV'

Then, we have a commutative diagram

NV ON i -a-sV A4
(*) l"/w@/\v: z i=04() r‘

Z‘i]=0/\iV®/\71—EV®Aa—iV®/\}’2—a+i—bV nen /\71V®/\72—bV’

since m is a homomorphism of coalgebras. Note that [J,, is nothing but the
composite map
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d(@)®1

/\aV®/\HI-a—bV®/\bV /\aV®/\71—aV®/\n—bV®/\bV

m®m

/\71 V®/\72V= /\l/uV .

On the other hand, the image of the composite map

m®l AR 1

Ain-sVONV

AV ®Nisi-a-sVONY AV O,V OV

1®m

/\71 V®/\72 V= /\l/u 4

is clearly contained in Im[J,,. Hence, it suffices to show that the image of the
composite map

A1
[ AV ®ON1-a-sVO NV ®

/\iV®A71—iV®/\a—iV®/\y2—a+i_bV®/\bV

mme 1 1®m

/\Y1V®/\‘lz—bV®AbV /\MV@/\WV:/\)-/#V

is contained in Im [, for i€[0, a—1], because [, =/, and Im (Y-, f)=Im ],
by the commutativity of (*). Consider the diagram

Na-VONy1-a-sV > Ayi-a-sVOAa-iV
DAV
l 1®4
Na-VON, -V ON;1-a+i-sV 4®1
l ‘P/\V@l

/\v;—iV®/\a—iV®/\v2—n+i—bV /\n—iV®/\vz—a+i—bV®/\a—iV

1®(P/\V
m®\ /@m

Noi=V®Nyo V-

The upper square commutes, since (AV, @ oy) is a YB coalgebra. Since ¢ 5y equals
(—g)*Y Ay on AumiVONA,,-a+i-sV, the lower triangle commutes up to unit thanks
to Proposition 4.11 (1). Together with the associativity of the algebra AV, these
commutativity of the diagram above yields that f; is a unit multiple of the composite map

4®1
AaV@/\lvl-a—bV®/\bV—“’/\iV®/\a-iV®/\|y|_,,_bV®/\bV

1 1
OO LNV O Niyi-acsV O AaeiVO AV
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1®m Gia+ -1
—— AV O -i-@+o-0V O Aasp-iV—"L2 A, VO,V = AuV

whose image is contained in Im [];,, by the induction hypothesis. O

We emphasize that the proof above is a slight modification of the proof of [4,
Lemma I1.2.9]. Similarly, we can prove the following lemma using the idea of the
proof of [4, Proposition I1.2.8] and the properties of YB bialgebras AV and SV from
§4.

LEMMA 6.16. Let A/ju=(Ay, 4,)/(11, u2) be a skew shape consisting of two rows,
and ve Sy(A/u). Then, the composite map

ANFV—"= AV

O 4,V

Sj‘/ﬁV

is zero.
The proof is left to the reader.
LEMMA 6.17. Let A/u be a skew partition, and v e Sy(A/u). Then the composite map

M d, (V
/\vV e /\A/MV M( ) ’S/T/ﬂV

is zero.

PrOOF. We set v=A—pu+t-o, AV=0Ay, ..., 1), u =Wy ..., t_y), A°=
(Aes A 1)s #Oz(ﬂn Wev1)s A =(hiz, -5 4), and pu” =(4s, ..., 1), Where s=
¢(4/p). We have a reduced expression y;,=p ° x;+/u+ " X100 * Xa-/u- With unique pe
SUAT Il LU= LIA71=107 D Since (SV, @ py) is a YB algebra, this Schur map
d,,,(V') coincides with the composite map

/\;1/,;1/‘_‘/\/1"/;;+ V®/\A°/u°V®/\l‘/u‘ v

Do s B0,0®d, - -
At A0/u ®d, In YS,T+/;I+V® Sj_’o/ﬁoV@SI—/ﬁ— VLSI/ﬁVa

where m is the restriction of the multiplication T, SV® T, SVQ® T, SV — T, SV defined
in Proposition 4.2 (which agrees with m$* o @z, (w), where mg, is the multiplication
SVRSV®SV-SV and weS;,, is given by w(id; +j)=3j+i—2 for i=0, 1,2 and
j=1,..., ;. Observe that the restriction of @g,(w) to Si+/z+ V® Sz0/30V ® Si- -V is
induced by (¢ 2B)(W): Tz 3+ V® Tg0/p0V ® T3~ z- V= Tz;V). On the other hand, the
box map [J},, is nothing but 1 ® Diﬁ,,,o® 1, where v°=(v,, v, ;). Therefore, the lemma
is clear by Lemma 6.16. d

LEMMA 6.18. Let A/u be a skew partition, o € Sy, and S Row s Y(0)\St;,, Y(0).
Then, there exist S}, ..., S;e Row,,, Y(c) (re N) with S} <, S for each i€ [1, r] such that
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¢s— Y els;eIm [y, for some c;e Z[q, g~ ']

ProoF. The proof is quite similar to that of [4, II. Lemma 2.15] (the case g=1),
so we only point out some non-trivial differences. The proof in [4] depends on the fact
corresponding to (2.3) and (2.4) for the case g=1, while we can use these without much
problem, since + ¢* is a unit by our assumption. It also depends on the following fact:
(*) Let s,tzeN and i,,..., i, be distinct integers in [1, N]. Then, the image of
wi Ao A, by the map ARD: Ay V= AV @AV equals

Y Tq* U, A AU, @y A A
ne®D
(for the case g=1). :
Let us prove (). If i; < - - <ig,, (this case corresponds to the case g =id), then

A(i(t’)/(uil AT uis+t)= %s t)(_q)!(n)uinl ZATA uins®uin(s+l) ZASRA uint

mE ’
by Proposition 4.8 and (5.4). The general case follows from (2.4). Since the coefficients
in the sum are units, we can use (*). We have generalized [4, Lemma I1.2.9], which
is used in the proof, to Lemma 6.15, and we can use this generalized version. We leave

the complete modifications to the interested reader. |

THEOREM 6.19. Let A/u be a skew partition. Then the Schur module L,V is an
R-free module with L, Y(0)={d,,(V)(&s)|SeSt;, Y(0)} its free basis for any ce Gy,
The sequence of SE" -comodules

(*) X AV

veSn(4/u)

O 4, (V)

o NaguV —"=—— Ly, —>0

is exact. The Schur module L,V is a direct summand of Sy,;V via the natural inclusion,
as an R-module.

Proor. Clearly, d,,(V): AV — Ly, V is surjective. With any a=ZSEROWWY(¢)cS£se
i,V we associate a non-negative integer N(a)=)_ _,,2"®, where ht(S) is the height
of S with respect to the order <, , of Row,, ¥(c). We claim that a can be expressed
in the form a=ao+ZSEswum)c§§s with a,eIm [J,,,. We prove this by induction on
N(a). If each S appearing in the sum with cg#0 is standard, then there is nothing to
prove. So we may assume that some S is not standard. For such an S, we have an
expression {g=)Y g, - S; +ag for some ag eIm [, and S; <, S by Lemma 6.18. Then
we have a=cgaq + (a—csag), and N(a—cgag) <N(a). So the claim is now clear by the
induction hypothesis. Since we have d,,(a)=) g csd;,(¢s) by Lemma 6.17, L, Y(0)
generates L,V for any ¢. By Proposition 6.13, L,,, Y(w,) is a free basis of L;,,V. Since
%L,,Y(0)=4%L,,Y(w,), the first assertion is now clear. If aeKerd,,, then we have
0=d,, (@)=Y gcs " dy,(&s). Since d,(¢g) are linearly independent, we have ¢g=0 for all
S. Hence, a=a,€Im [1,,,, and the second assertion is proved. As we have seen in the
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proof of Proposition 6.13, L, V+ 5%,V =S}, where S%;V is the R-span of the set
{ns| SeTab,, ¥(id), S is column-standard but is not row standard}. This sum must be

a direct sum by the first assertion, so the last assertion is now clear. O

COROLLARY 6.20. Let f: R— R be a homomorphism of commutative rings. Then
we have an isomorphism of S(E')Y-comodules L,(R @rV)~R @grL,V, where
E'=R @rE, and R @RV is Jimbo’s YB-pair obtained by base change.

Proor. Note that A, and ) A, are compatible with base changes, and that
Oy, is defined over Z[Q, Q™ '], where Q is an indeterminate. By Theorem 6.19, we
have an isomorphism Coker [1,,~L;,V. Since cokernels are compatible with base
change, the assertion is clear. O

We shall now define the Weyl modules of V.

DErFINITION 6.21. Let A/u be a skew partition. Let d;,(V) be the composite
map

4®-®4 (a7*B)(x,,)

DV TV =TV

Tya-1mV

It is called the Weyl map. We denote the image Im d; (V) of d;,(V) by K,V and
called it the Weyl module of V with respect to the skew partition /.

With the natural identifications A 7V =(Az;:'V)* and D, V=(S,,,'V)*, we can
identify d3,, (V) with (dj('V))¥, since 17} =74, 50 that (¢4 *'B)(z)* = (47 2B) (ae):
Since Lj;'V is a direct summand of S;,'V, we have a standard isomorphism
KV ~(Ly;'V)*. In particular, K, ,V is a free R-module with the same rank as Lj;; V.

To describe a presentation and the standard basis of K, V, we need additional
notation. We define Q; ={ae Q" | |a|=k} for k>0. We denote the dual basis of X by
‘X={vy,...,vy}. So we have a basis {v*|aeQ],/(x)<N} of S,'V for k>0, where
v*=07"- - -v§¥. The dual basis {u®|aeQ;, £(«) <N} is a basis of D, V, where u® is the
basis corresponding to v*. For ie[1, N] and k>0, we denote u*% by 4. Since the
product of DV is the dual of the coproduct of S'V, we have uf=[k],-u{ in D,V by
Lemma 5.4 applied to S'V, where u; on the left hand side is u{ e D, V= V. We call «{
the k-th divided power of u,.

LEMMA 6.22. Let k, o and v be as in Lemma 5.4. Then we have u'® =u#V- - - u@™,
If 6 € &*, then we have

N
Uyg-11"" "Uyg- ‘k=q_f(0)ua=< n [ai];_2>q—{w)u(a)

i=1

in D V.
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PrOOF. The second assertion follows immediately by Lemma 5.4, since the product
of DV is the dual of the coproduct of S*V. To prove the first assertion, we may assume

that the base ring R is Z[q, ¢~ '] with ¢ transcendental over Z. By the observation
above, we have

N
uﬂl:uﬂlll .. .u'IIVN=< n [ai];_2>u(1“!). . .u%’;n) i
i=1

On the other hand, we have u*=([[,[;];-2)u®® by the first assertion. Since [ [,[o];->
is a non-zero-divisor, we have u®=u{"- - - 4™ as desired.

For a skew partition 4/u and SeTab,, X, we set
E(S) =g LoD+ H M R e,

where s=£(1—p), a?=(a, ..., o) is given by a® =#{j| S(i, j)=u,} for te[1, N], and
o? is the unique element in &*” such that S(i, u; + ¢?}) is the j-th element in the sequence
(i)

1%, ..., N*¥). It is clear that {€(S)| SeCorow,,, Y(p)} is a free basis of D,V for
any pe Sy.

THEOREM 6.23. Let A/u be a skew partition. Then the Weyl module K,V is an
R-free module with {d;,,(V)(&5)| SeCost,, Y(p)} as its free basis for any pe Sy. The
sequence of SEY -comodules

. o, 4, (V)
ZVESU(}./;‘) D,V = 'D)./MV A KA/uV >0

is exact, where [, is defined similarly to [1,,,. The Weyl module K, is a direct summand
of \zzV as an R-module via the natural inclusion.

ProoF. Since the inclusion K,V 5 A7,V can be identified with the dual of the
Schur map dz;('V): A1'V—Lj 'V, the last assertion is trivial. The rest of the theorem
is proved similarly to Theorem 6.19 (see also the proof of [4; Theorem I1.3.16]. To
translate this proof into our context, we need Lemma 6.22). We only remark that there
is no need to prove the fact corresponding to Proposition 6.13, since we already know
that K,V is free of rank #Cost,,, Y(p)=#Stz; Y(p). O

COROLLARY 6.24. Let Alu be a skew partition, and R— R' a homomorphism of
commutative rings. Then we have an S(E')Y-comodule isomorphism K(R'® V)=~
R ®K,V, where E'=R @ E.

7. Universality of Weyl modules. Throughout this section, V'=(V, B, 7, ) denotes
Jimbo’s YB triple determined by a basis {u, ..., uy} and ge R*, and E=(E, B, y) is as
in Example (2) in §4.

Let 4 be an R-algebra (resp. R-coalgebra). We denote by A-mff (resp. mff-4, resp.
A-cff, resp. cff-4) the category of left A-modules (resp. right 4-modules, resp. left
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A-comodules, resp. right A-comodules) which are free of finite rank as R-modules. Let
C be an R-coalgebra which is free of finite rank as an R-module, and M a C-comodule.
The map C*® M — M given by aQui—) ev(a®@u)u{" is a left action of the dual
algebra C* of C on M, where w(u) =), u{¥’ ® u®. This correspondence is an equivalence
between the category of right C-comodules and the category of left C*-modules, and
we have an equivalence cff-C = C*-mff. We will sometimes identify cff-C with C*-mff
by this correspondence. The corresponding notion of the R-dual ( )*=Homg(—, R):
C*-mff - mff-C* is the R-dual cff-C — C-cff (see §5).

Since the coalgebra SEY is decomposed into the direct sum SEY = @, o S E, we
have a decomposition M =@, o M, for any SEY-comodule M, where M, is the image
of the map

j 1
PO M@ S EY 2

M-2 . M®SE" M.

Clearly, M, is an S EV-comodule. We call M, the degree k component of M. The co-
module M is said to be locally free of finite rank when M, is free of finite rank as an R-
module for each k>0. We denote the category of locally finite free right (resp. left)
SE" -comodules by 2 (resp. 2). Itisclear that Z~[|, . ,cff-S,EY and 2~[], . (S, E" -cff.
The categories 2 and 2 are additive, and are closed under extensions and tensor products.
Taking the product of the dual ( )*: cff-S,EY — S, E" -cff, we obtain the graded dual
(' :=[1is0( )*: 2> 2. The graded dual is a contravariant equivalence of categories,
and preserves tensor products. Similarly, the graded dual 2 — £ is also defined, and is
also denoted by ( )'. It holds that ( )fo( )f=Id.

The dual algebra of S,E" is (S,E¥)*=D,E. Since the projection (E¥)®* - S,E¥
is nothing but the product, D,E is a subalgebra of E®*~Endz¥ ®* via the coproduct
A4y. By Proposition 5.6, we have D,E~(E®¥)®~Endg (V®¥).

DEFINITION 7.1. The dual algebra D, E=Endg _V®* of S,E" is called the Schur
algebra of degree k.

We denote the dual basis of {u;,...,uy} by {vy,...,vy}. The R-linear map
p: V—V* given by p(u;)=v; is an element of ¥B(V,'V)~YRB(V ", VV). Clearly,
we have p*=p~ !, Since SE" and S'E are the quotients of the same bialgebra TEY =T'E
defined by the same biideal (Im(1—gj))=Im(l—'Bg)), they are isomorphic as
bialgebras. The composite map

~

Sp®p1)

S
SEY -~ S§'E22Y, SE »SE"

is an anticoalgebra algebra isomorphism, and is denoted by tr. Since ((p®p~')o
Tyx y)? =id, we have tr? =id.

DErFINITION 7.2. The composite functor tryo( )': 22— 2 is denoted by ( )°, and
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is called the contravariant dual, where try: 2 — & is the push-forward with respect to tr.

LEmMA 7.3. (1) The contravariant dual ( )°: P—P is a contravariant additive
functor, and preserves tensor products.

@ ())*=id,.

(3) p: V- V°is an isomorphism of SEY -comodules. B3, is the composite map

-1 -1
veer 2 yevt, ver 2 gy

ProoF. Part (1) is obvious. Part (2) follows easily from the fact tr2=1. (3) The
action of D;E=End V on V*=V" is given by (1;®v)) * v, =v,(tr*(y; ® v))) = v} - (; ®
v;)=0,v;. Hence p is an isomorphism. The map By is nothing but ‘f, by definition.
Since pe Y BR(V,'V), we have completed the proof. |

ProrosITION 7.4. The maps Tp: TV >tryT'V~(TV)°, Dp: DV —-try;D'V~
(SV)°, Sp: SVt SV=(DV), Ap: ANVt A'V=(AV)® are isomorphism of
SEY -equivariant graded YB bialgebras, where ~’s are the usual identifications (see §5).

Proor. The identifications ~’s are isomorphisms of SEY-equivariant graded YB
bialgebras, thanks to the observation after Lemma 5.8. Since p: V'V is an
isomorphism of YB pairs, it suffices to show that Tp, Dp, Sp and Ap are
SEY-homomorphisms. This is clear for Tp by Lemma 7.3. So the induced maps Sp
and Ap are SEY-homomorphisms. It is easy to see that Dp=(Sp)°, so it is also an
SEY-homomorphism. g

CoroOLLARY 7.5.  For a partition A, D,;p: D,V —tryD;'V=(S,V)°, Aup: \iV—
try A2 V(A Lip: LV o tr,L,'V~(K;V)° are isomorphisms of SE”-comodules.
We have (K3p)°=Ljzp and D,p=(S,p)°.

REMARK 7.6. It is easy to see that Bi., y5. e 2((EV)®?, (EY)®?), where (E)®?
is the subcomodule of the right regular representation SE{g.. It follows that SEY and
S'E are SEY-equivariant YB-bialgebras. The direct sum of Schur algebras
DE=®.,D\E is an R-algebra without unit. The graded duals of the left and the
right regular representations (pzDE)' and (DE,g)! are identified with the regular
representations ggvSEY and SEgg. respectively. Since

tr: SE_\g/Ev—’tr#(SEVSEV)

is an isomorphism in & we have (pDE)° ~SE" ggv. It follows that ,yDE, viewed as
SE" -comodule, is also an SEY-equivariant YB bialgebra. The left DE-module DE !
is identified with (S*Egg.)°, and is also an SEY-equivariant YB bialgebra.

Let I be the ideal of SEY generated by {x;;|i#/}. It is easy to see that [ is a
homogeneous bi-ideal of SEV. By (3.6), we have SE" /I=S(®X.,Rt;, t), where ¢, is the
image of x; in SEV/I, and 7 is the trivial twisting. Let us denote by T the YB pair
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(@M Rt;, 7). The structure of ST is independent of ¢, and is commutative and
cocommutative. In fact, ST=R[¢,, ..., ty] is a polynomial ring, and each monomial
th=1t*-- -1}y is group-like for AeQ* with £(4)<N. Taking the dual, we see that
D,T=D,'T is a subalgebra of the Schur algebra D,E, and {t*® = {0 .. 0| 1 e QF
Z(2)< N} is a set of mutually orthogonal primitive idempotents of D, T. It follows that
1=),*%®, and that D, T~[[,**(D,T)r*P~[],R.

DEFINITION 7.7. Let Me 2 and A€ Q; with £(A) < N. We call the R-module ** M,
the weight 4 component of M, and denote it by M.

Clearly, M, is a finitely generated projective R-module. By [6, p. 375], we have
7.1 M, =r*YM,~Hom,, (D, T)*P, M)~Hom,, ((DE)*P, M),

so that ( ), is an exact functor ((D,E)r*® is projective). Since 1= ,r**, we have
M=@ ;M. Itis easy to see that M, ={me M |w(m)=m®1,}, where w is the coaction
as an ST-comodule. For a base change R— R’, we have (R @ g M), ~R ®xM,. If the
prime spectrum Spec R is connected, then dimg(K® g M), does not depend on the field
K or the map R— K.

LEMMA 7.8. Let Me P and )€ Q;t with £(A)<N. Then we have an isomorphism of
R-modules (M°),~M#.

ProOF. We may replace M by M,. Clearly, we have M**®~(M,)*. On the
other hand, the restriction of tr' to DT is the identity map. O

PROPOSITION 7.9. For k>0 and 1€ Q,} with £(A)<N, we have:

(1) (DEY*P~D,V as SEY-comodules.

(2) D,V is projective, and is generated by c(A):=u"® - -Qu{™ as a left
D, E-module.

Proor. First note that the identification SEY ~S'E maps a monomial M to M.
Hence, the identification D,E~D,E~! maps t** to **. For ie[l, N], we define
@it Vo E=V®V* by ¢u;))=u;®uv, It is clear that ¢,e #Bg(V, E), and that ¢, is a
homomorphism of left End(?¥)= E-module. Hence, the composite map

Dll(p1®.‘.®D

¢2:D,V=D,V® @D, V w?.p E® - @D, E—D,E

is a homomorphism of left D, E-modules. Observe that ¢,(c(4)) = t*? (cf. Lemma 6.22).
The sum Zlcp 1. @,D,V— D,E is surjective, since Zl(p 2(c(4))=1. On the other hand,
we have rankg(@ ; D,;V)=rankgz(D,E) (since the rank in question is stable under base
change, we may assume that R=C and g=1. In this case, see e.g. [2]). It follows that
Y.,¢, is an isomorphism. Since ) ,¢, is injective, and Im ¢, > (D, E)r*® for each A, we
have Im ¢, =(D,E)*?, and ¢,: D,V — (D,E)t** is an isomorphism. Hence, we have
(1). Now (2) is obvious. O
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CoROLLARY 7.10. Let AeQ and £(A)<N. For Me# we have an isomorphism
V,: M,3P(D,;, M) given by (¥,(a))(c(A))=a for ae M,.

LEMMA 7.11. Let A€ Q™ with {(A)<N. For any o€ Sy, we have an isomorphism
of SEY-comodules D,V~D,,V, where 6A=(Ay-11, ", Ag-1y). In particular, we have
D,V~D-V. For Meob%, we have M;~M ;.

PROOF. The SE"-isomorphism Y, (): (DV)®¥ - (DV)®N maps D,V onto D,, V.
The last assertion follows from Corollary 7.10. O

Let 4 and p be elements in Q* such that £(1), /(1) <N. We say that u<1 when
A—u is a non-negative linear combination of a;=¢;—¢;,; (ie[1, N—1]). It is easy to
see that u=<1 implies | 4| =|A| and p<A. For Ae Q* with /(1) <N, we have A<1"~. For
ue Q™ with /() <N and 1€ Sy(u), we have u<41 by the definition of S5(4) (see §6).

THEOREM 7.12. Let k>0, and L€ Q, with {(A)<N. Then we have:
(1) peQ ,Z(W<N, (KV),#0=pu=41.
2 KV)~R.
(3) K,V is generated by (K,V), as a D, E-module.
Let M be a D E-module which satisfies:
(1) weQf, LW<N, p>i=M,=0.
(3") M is generated by some ae M ;.
Then M is a homomorphic image of K,V. Moreover, we have:
(1) peQ ™, {(W<N, M,#0=pu=4A.
(2") Homyp, g(K,;V, M)~M,~Ra.
Conversely, any homomorphic image M of K,V satisfies (1') and (3').

PrOOF. By Proposition 7.9 (2), K,V is generated by d;(V)(c(1))e(K,V),. So we
have (3). By Corollary 6.24, rankg(K;V), does not depend on R nor q. Parts (1) and
(2) are well-known in the case R=C and g=1 (see [4]). So the general case immediately
follows, since any rank one projective module over Laurent polynomial ring Z[Q, Q1]
is free. Now the last assertion is obvious, since ( ), is an exact functor for any u. Let
M be a D, E-module which satisfies (1’) and (3"). By (3') and Corollary 7.10, we have a
surjective map ¥,(a): D,V — M. By Theorem 6.23, we have an exact sequence

0— Homy, ((K;V, M) >Homyp, (D,V, M)~ @uesm(l) Homyp, (D, V, M) .

For pe Sy(4), we have Homy, ¢(D,V, M)~M,~M ;- by Lemma 7.11. Since i~ Zpu>1
and i~ €Q,, we have M ;- =0 by (1'). It follows that Hom, ¢(d;(V), M): Hom,, (K, V,
M)—Homyp, ¢(D,V, M)~M, is an isomorphism. In particular, we have an induced
surjective map ¥,(a): K,V — M. Now (1”) and (2') are obvious. O

REMARK 7.13. Since DV and DV ™! are isomorphic as SE"-equivariant YB
coalgebras, we have D,V ~D,V ™! for Ae Q*. So it is easy to see that K,V ~! satisfies
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(1) and (3) in the theorem for AeQ~ with £(A))<N. We have a surjective map
K,V — K,V ~'. This map is an isomorphism, since K;¥ and K,V ~! have the same rank.
Since AV and AV ~! are isomorphic as SE¥-equivariant YB algebras, the image K}V
of the composite map

4 A P |
a;v): Dy A8 8y W0 gy MO Oy

is isomorphic to K;¥ ~!. Hence, we have K;V~K,V. Taking the contravariant dual,
we have L;V~L;V ™ '~(K,V)°.

As we will see in the next section, the study of SEY-comodules is closely related
to the representations of the Iwahori Hecke algebra. The Iwahori Hecke algebra §, is
defined to be the quotient algebra

(7.2) S~ RIBI((1—b)(1+g~2b)|i=1,...,k—1).

We set =g~ 2. By Iwahori’s theorem, h(c) : =t/“b, - - -b;, is independent of the choice
of the reduced expression a=g0;,* - -0;,  of o€ S, where b; (1<j<k) is the image of
b; in $,. It is known and easily shown that $, is R-free of rank k!, and {h(0)|o e S,}
is a free basis of $,. By (1.4), the representation of R[B,] on V' ®* given by (1.8) yields
the representation B: $, —» Endg V®* given by B(b)=(By); (1<i<k). Since D,E=
Endg, V' ®*, we have Im B<End), V' ®*. Note that B(h(c))=(—7y)(0) for ce S,.

LEMMA 7.14. Assume that N>k. Then, B: $,— Endp, ¢V ®* is an isomorphism.

PRrOOF. Since V' ®* =D« V, we have an isomorphism ¥ % : (V®¥) 1% = Endp, cV®*
by Corollary 7.10. Under this identification, B: §,— V3% is given by B(h(s))=
(=)0 (U, ® " @uy). By (5.4), we have (—7)(0)(,®  ®u)=q " (U-1, ®
- -®u,-1,). Hence, B is bijective. O

8. Polynomial representations of GL, over a field. In this section, we work on a
base field K, instead of R. Throughout this section, V'=(V, By, yy) and E=(E, Bg, yg)
are as in §7. A polynomial representation of GL(N, K) is a finite-dimensional right
SEY-comodule by definition. This section is devoted to studying polynomial
representations of GL (N, K) over a field K. Note that the categories cff-S,E and 2
(§7) are abelian, and that the contravariant dual ( )° is exact.

DEFINITION 8.1.  For a polynomial representation M of GL, (N, K), we define a
polynomial

8.1 WM)= Y (dimgM)ete e Z[Ly, ..., ty)

AeQ*,l(A)<N

in the variables ¢, ..., ty, and call it the formal character of M.
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By Lemma 7.11, (M) is a symmetric polynomial in ¢,, ..., fy. For polynomial
representations M and N of GL (N,K) and 1eQ* with /(A)<N, we have
(MON),;~®,+y-2M,®N,. Since ( ), is an exact functor for Ae Q* with (1) <N,
the formal character y is a homomorphism from the Grothendiek ring POL of poly-
nomial representations of GL,(N, K) to the ring Z[1y, ..., ty]® of symmetric poly-
nomials. If M is an SEY-comodule over the Laurent polynomial ring Z[Q, Q']
such that it is Z[Q, O~ ']-free of finite rank, then Y(K® ZIQ,Q'l]M ) does not depend
on the field K nor the value of ¢ by the remark before Lemma 7.8. Hence, for k>0
and 1e 2~ with /(1) <N, we obtain the following formulas:

@2  xAMN=e:= ¥ g

1<iy<-<ig<N

(8.3) x(SiV)=h,:=Y M, where M runs through the monomials of degree k.
M

(3.4 XK V)=s; :=det(h;,_;+ )1 <i, jen=det(er,—i+ )1 <i,j<n -

LemMa 8.2. For a polynomial representation M of GLy(N,K), we have
A(M°)=y(M).

This follows immediately from Lemma 7.8.

In the rest of this section, we fix k>0, and set A =D,E. We denote the Jacobson

radical of 4 by J. For M € A-mff, (M/JM)° is the unique maximal semisimple submodule
of M°. Namely, we have (M/JM)° ~Soc M°, where Soc denotes the socle.

LEMMA 8.3. Let AeQ; and £(A)<N. Then, K,V/J(K,V)~(Soc(L;V))° is simple
(irreducible). In particular, K,V and L3V are indecomposable.

PrROOF. Let M be a proper submodule of K, V. Then, we have M;=0 by (2) and
(3) of Theorem 7.12. We define (K, V)., to be the sum of all proper submodules of
K,V. We have (K; V). #K,V, since ((K;V)na)2=0. It follows that (K; V). is the
unique maximal proper submodule of K,;V. Hence, we have (K;V)n.,=J(K;V), and
K, V/J(K,V) is simple. By Corollary 7.5, we have (Soc(L3V))°~K,V/J(K,V). O

For Ae Q, with Z(A) <N, we denote by F, the simple module K,V/J(K,V).

PRrOPOSITION 8.4. Each simple A-module is isomorphic to F, for exactly one A€
such that £/(A)<N.

ProoF. In this proof, we use the lexicographic order < of the set
{LeQ; |¢(A)<N}. For 0# M e A-mff, we define

8.5) h(M) :# max{AeQ; |¢() <N, M;#0}.

Since 0#M =@ ; M, and M,~ M-, the partition A(M) is well-defined. Since F L is a
non-zero homomorphic image of KV, we have A(F,)=A by Theorem 7.12. Hence,
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F,#F, for p#A. Let M be a simple 4-module. By the definition of A(M), the condition
(1) of Theorem 7.12 is satisfied for A=h(M). Since M is simple, the condition (3’) of
Theorem 7.12 is satisfied for any non-zero vector ae M, . Hence, M is a homomorphic
image of Ky, and we have M~ F, . O

COROLLARY 8.5. The formal character y:POL—Z[t,...,t5]1%~ is a ring
isomorphism, where POL is the Grothendieck ring of polynomial representations of
GL /N, K).

Proor. It suffices to show that y: [ 4-mff] — Sym(k) is a bijection, where [ 4-mff]
denotes the Grothendieck group of A-mff and Sym(k) is the module of symmetric
polynomials of degree k in ¢, ..., ty. By [25], Sym(k) is a Z-free module with a free
basis {s;|1€Q;, /()<N}. By (8.4), x:[4-mff]-Sym(k) is surjective. By the
proposition, we have rank[ 4-mff] =rank Sym(k). O

COROLLARY 8.6. Let Me A-mff. Then, M and M° have the same composition
factors. In particular, We have F,~F;~Soc(LzV) for A€ Q, with £(A)<N.

This follows immediately from Lemma 8.2 and Corollary 8.5.

LEMMA 8.7. Let AeQ, with £(A)<N. Then, the following are equivalent:
(1) K,V is simple.

(2) LjV is simple.

(3) K, V~LjV.

PrROOF. K, V~F, <(K,V)°~F;<>L;V~F;. Hence, we have (1)«<(2). By
Corollary 8.6, (1) (or (2)) also implies (3). We shall show that (3)=>(2). By Theorem
7.12, L;V is generated by (L;V),. Since both (L;V), and (F,), are one-dimensional,
L;V is generated by its simple socle F,. Hence, we have L;V/ ~F,. dJ

LemMA 8.8. Let A€ Q. and {(A)<N. Then, F, is absolutely irreducible.

Proor. Since 0#End, F,cHom,(K,, F;)~K by Theorem 7.12, End,F, is
one-dimensional. The lemma follows from [6, (29.13)]. O

The rest of this sections is devoted to the proof of the following theorem.

THEOREM 8.9. Let K be a field, (V, By) be Jimbo’s YB pair of type A\)., defined
by qe K™ and (1.3), and let ) be a partition with £(A) < N. If the product l_[(l.,j)e“hq(i,j)
of (q-analogues of) hook lengths is non-zero, then the Weyl module K,V is simple
(irreducible) and projective, where h(i, j)= [li+fj—i —j+1],-2

To prove the theorem, we use Gyoja’s g-analogues of Young symmetrizers [14]. For
this purpose, let us clarify the relationship between the notation in [14] and that of
ours. Our size k of the Iwahori Hecke algebra, is denoted by n in [14]. The notation
h(c) agrees, while ¢ in [14] corresponds to our t=¢~ 2. To avoid confusion, we will
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stick to our notation k, (our) g and t=q 2. For AeQy, our S,, Sz, «, 1, a; 1, x; and

x;=yx; ! correspond to W, (1), W_(4), T+(A), T_(A), [—, +] and [+, —] in [14],
respectively. Hence, we have

(8.6) Be,= ) Bh(o)= Y. (—n)(9),
ceS, ceC,

(8.7) Be_= Y (—0)"““Bh(c)= ), (—By)(0),
ge Sy ge By

where e, =e, (4) and e_=e_(4) are those in [14], and B is as defined in §7.

PrOOF OF THEOREM 8.9. We set k=] 4|. It suffices to show that K;V (see Remark
7.13) is simple and projective. We define the map @,: S,V — D,V to be the restriction
of Ty®: (SV)®N—(DV)®N to S,V, where #=®%" is the map which appears in
Proposition 5.2. By the remark below Lemma 5.8, &, is a homomorphism of
SEY-comodules. We denote by x,(¥) the composite map

4,(V) ()

@
KyVe— A1V LiVe—S,V—D,V KV,
where d; (V) is the map defined in Remark 7.13. The map k,(V) is defined over the
Laurent polynomial ring Z[Q, Q™ '], and is a multiplication by a scalar, say ¢, by

Theorem 7.12. We claim that ce Z[Q, Q'] is expressed as c= Q*[_](i, peaholis ))-
Assume that the claim is true. Then, (V) =g¢*[[A,(, j)#0 is an isomorphism over K.
Since the isomorphism k,(¥) factors through L;V and dimgK;V =dimgL;V, we have
K,V~L;V. By Lemma 8.7, KV is simple. Since the scalar multiplication «,(V’) factors
through D,V, the epimorphism dj(V): D,V — K,V splits. Since D,V is projective by
Proposition 7.9, (2), the direct summand K, V' is also projective, and the proof is complete.
To prove the claim, we may extend the base ring and work over the base field K= C(Q).
We still use the notation =0~ 2. We denote the maps m® - --@m: V& ~T,V-»D,V,
AR ®A: D,V ->T, V=V m@ - ®@m: V=TV - \iV, 4Q - @4: \;V —
TV=V®* m® - @m: V®*=T,V>S,Vand 4Q - -®4: S,V - T,V=V® by mp,
Ap, mp, A\, ms and 4g, respectively. Since @ is a homomorphism of YB bialgebras, it
holds that @;omg=my, and 4,0 ®; = A5 (P, is identified with id, e« and omitted). By
(5.1) and (8.7), we have Be_ =Apomp. By (5.2) and (8.6), we have Be, =A4g5omg=
Apo®,omg=Apom;. Now consider the map

"

d 4
(8.8) ver "o, p vy Gk K ye A\ v2A per e per

where A_ =h([—, +]). Since the diagram
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8.9) )
yer o, pex Mo, per o) ek Mo, per C, per B per oo pex B, e

WA AP

D, ——»/\AV—’ S,V D/IV—‘*/\AV

NI N

K,V — LV K,V

is commutative and the bottom row map is k,(V), the map (8.8) is B(h_e_h-'e,)?. On
the other hand, we have k,(¥V)=c. So the map (8.8) equals cB(h_e_h-'e,) by the same
diagram. Hence, we have

(8.10) B(h_e_h-'e,)*=cB(h_e_hZ'e,).

Since K=C(Q), we see that 4: §;'V— T;'V (i>0) is injective by Lemma 5.4. It follows
that my, is surjective. Again by (8.9), we have (h_e_hZ'e,)V®* ~K;V#0. Hence, c is
uniquely determined by (8.10).

It is now clear that the scalar ¢ is nothing but ¢(7',) in [14]. Here we recall the
value of ¢ [14, (3.9)].

lr_n[ )..-+m—i(tl_ 1)
(8.11) =7t =1 B 11,
l_[ (t/h+m—i_t}.j+m—j)

1<i<j<m
where m is any integer such that m>N. By [25, p. 9], we have

Hi
H [Te'-1n phatid)

e= Tty k= ] =t 11 ho(i.j).

[T —1) Gieds 1—1 (i, )eds
i<j
as desired, where u=(u,, ..., ) is given by y;=A;+m—i for ie[1, m]. O

COROLLARY 8.10. Assume that [a],#0 for a€[l,k]. Then the Schur algebra
A=Endg, V®*issemisimple,and {K, | 1€ Q; ,£(2) < N} is a complete set of non-isomorphic
simple A-modules. In this case, the Iwahori Hecke algebra §, is also semisimple.

PrOOF. By the theorem, K,V is simple and projective for any 1€ Q, with /(1) <N.
By Proposition 8.4, {K;|A€Q;, £(A)<N} is a complete set of non-isomorphic simple
A-modules. Since each simple module is projective, 4=Endg, V'®* is semisimple.
Applying this for N>k, we see that $,=End V' ®* is also semisimple, by the double
centralizer theorem. O
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Note. Gyoja and Uno [15] proved the semisimplicity of $, under the same
assumption as in the corollary above (and some extra condition on the base field, which
can be dropped easily). The semisimplicity of 4 also follows from their result using the
double centralizer theorem.

COROLLARY 8.11. In the situation of Corollary 8.10, A=End g,V ®* is isomorphic to
. o .cy<n ENdg(K; V) as a K-algebra. We have an irreducible decomposition

(8.12) A=SE '~ @  KVEKV)*
A€Qir . ¢(W<N

of A-bicomodules of A and S E" .

ProoF. The first assertion is a consequence of Lemma 8.8 and Corollary 8.10.
So we have S,EY ~ @ (K, V)*® K,V as a K-coalgebra, and the isomorphism (8.12) is
established. The category of finite dimensional A-bimodules can be identified with
(A ® A°P)-mff, where ( )°P denotes the opposite algebra. By the first assertion, we have
AR A®~[],Endg(K,V®(K,;V)*), and the decomposition (8.12) is an irreducible
decomposition. O

In the next section, we will discuss the 4-bimodule (or SEY-bicomodule) structure
of S EY over an arbitrary commutative ring R and ge R”™.

9. Quantum determinants and the straightening formulas. Throughout this
section, ¥ and E are as in §7. Let Mecff-SEV. Then we have the coefficient map
cfy: M*® M — SEY (see §3). Since cf,, is a homomorphism of coalgebras, M* @ M
is an SEY-bicomodule and cf,, is a homomorphism of SEY-bicomodules. The
SEY-bicomodule M*® M agrees with the tensor product of the left SEY-comodule
M* and the right SEY-comodule M. Since the counit ¢ of M*® M is nothing but
ev:M*® M — R, themap (1 ®ev)o(w®1): M*® M — SEY agrees with cfy,. It follows
that the diagrams

1®¢

9.1 N*QM N*®N
lco*@l lch
Mr@M —n SE
and
©9.2)
MIQ - @M*QM,®@ - ®M, = M, ® - @MP**Q(M,® - ®M,)
E | o
of,, ® - ®cf,,

M{f@M,® - QM*QM, SE'® - QSE" -+ SE"
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are commutative for M, N, M, ..., M ecft-SEY and.¢ ecff-SEY (M, N), where 7 is an
appropriate trivial twisting.

In what follows, we identify A'V with (A\V)' via the left SE¥-equivariant graded
YB bialgebra isomorphism @' : A’V — (AV)', where ®: AV — (A'V)!is the map which
appears in Proposition 5.2. So A,'V (k>0) is identified with (A, V)*. More generally,
we identify A 'V with (A,;V)* via the isomorphism

AV

for A=(Ay, ..., A)eQ".

DEFINITION 9.1.  For k>0, the coefficient map cfp,y: AdVRAY - SEY is
called the determinant map, and is denoted by det,. For A=(d,...,A)€eQy,
cf A ALV @AY = SyEY is denoted by det,.

01,8 ®0}

(AR QALY =(AI)*

By the commutativity of (9.2), det, is the composite map

9.3) MAVOAY—— A VOV @AVONALY

deth®-"®deth S.E m S EY
=5 >y .

Note that det, is an SE"-bicomodule homomorphism.
LEMMA 9.2. Let k>0. Then, det, is given by

9.4) dety(v;, A - AV @up A Aw)= D (=@ x5 X

o€ Sy

= 2 (=% Xigjn
ge Sy
for 1<i; <+ <i<Nand 1<j, <+ <j,<N. The map detx: (V)®*@ VE* > S,E¥
is surjective.

PrROOF. It is easy to see that det,: ‘V® V' — EV is nothing but the identification
V*® V> EY. By (9.3), det,x, is surjective, and is given by

(95) det(lk)((val ® e ®Uak)®(ubl ® o ® ubk))=xa1b1 te .xakbk

for1<ay,...,a,by,....,b,<N. Since m: (‘V)®* > A\,'V (tesp. 4: \i' V> (V)®") is
the dual of 4: A,V — V®* (resp. m: V& > A, V), the diagram
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9.6) (‘V)®"®/\kV ATVOINY ATV ® y ®k
l 1®4 l det, l 4®1
(tV)®k® V@k SkEv « (t V)®k® V®k

det . det

(1%) (1k)
is commutative, thanks to the commutativity of the diagram (9.1). By the commutativity

of the left (resp. right) square in (9.6) and Lemma 5.3, the first (resp the second) equality
in (9.4) holds. O

LEMMA 9.3 (The Laplace expansion). Let i,j>0. Then, the following diagram
commutes.

m®1 1®@m
AVEAV OV E0 N VO NV 2 A VO AV OV

l 1®4 l det,,, l 4®1
d
ANTVONTONY ONY ——d 8, B 2 AVOAVONVONV -

Proor. Since m: A\/'VONA;'V - Ai+jV (esp. 4: Nir j V> NVONV) is
identified with the dual of 4: A, ;¥ > AV AV (resp. m: AiV AV = Ai+;V), the
lemma follows from the commutativity of (9.1). O

LEMMA 9.4 (cf. [4, Proposition II1.1.1]). Let k>0 and 1€ Q, . For ue Sg(4), the
following diagram commutes:

1@ O V)* el
9.7) ATVONAY —20 AVOAY - NAVOAY
| iemet | o | rem»
AV SEY « AVONV
det, det,

This follows immediately from the commutativity of (9.1).
Let M, Necff-SEY, and ¢: M- N be an SEY-isomorphism. Then, we have
Im cf,,=1Im cfy by the commutativity of (9.1).

LEMMA 9.5. Let A=(4,...,4)€Q" and 6e€S,. Then, we have N\,V~N\,..V
and Im det, =Im det,,;, where 6A=(Ay-11, ..., Ay-1s). In particular, we have Im det; =
Im detj-.

Proor. It suffices to show that AV~ A,V by the observation above. But this
is obvious, since the isomorphism ¥ 5 () : (A V)®s - (AV)® maps A,V onto A,,V.
O
Let A>0 and 1eQ, . We define:
(9.8) M(A)= Y. Imdet,cSE"

ne ,p=i
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9.9) M= Y Imdet,cM(}).
peQi,u>2
Note that M(2) and M(1) are subbicomodules of S,E", and that 4, ueQ;, u> 1 imply
M(u)< M(A). By Lemma 9.2, we have S,E¥ = M((1¥)). Hence, we have a filtration
SEY =M((14) > M((2, 1*"2))> - - - > M((k)) >0
of S,EY.
THEOREM 9.6 (Straightening formula). Let k>0 and A€Q;. Then we have a

unique isomorphism of SEY-bicomodules ©,: L'V ® L,V — M(J)|M(}) which makes
the following diagram commutative:

(9.10) ATVONAY — M)
l 4,®d, l proj .
LiVOLY — 2 MG)M3).

Hence, the associated graded object of the filtration {M(3)};co: is @ 1ca- L'V L,V.
The set {det,l(éS@CT)ller_, SeSt,Y, TeSt,')Y} is a free basis of S,EY, where
'Y={v,<:-- <uvy} is the dual basis of Y={u; <"+ <uy}.

ProOF. Let veSo(4). Then, we have Im det,=Im det;~ by Lemma 9.5. Since
7~ > A, we have Im det,= M(4). By Lemma 9.4, we have det,(Im(1 ® [1})) = M(4) and
det,(Im([1% ® 1)) = M(A). Hence, we have det,(Im(0];® 1)+Im(1® [1,))< M(J). By
Theorem 6.19, we have Ker(d,®d;)=Im(0;® 1)+Im(1 ® ;). Hence, we have a
unique induced map @,: L'V ® L,V — M (A)/M(A) which makes (9.10) commutative.
By the definition of M(1) and M(1), the composite map projedet, is surjective, and so
is ©;. We set I'(A)={det,((s®@¢&r) | neQy, u=A, SeSt, Y, TeSt,'Y} for AeQ, . By
induction on 4, it is easy to see that I'(1) generates M(4), thanks to Theorem 6.19. On
the other hand, we have rank S,E¥ =), _, (#(St,Y))*>=#I'(1*). To prove this, we may
assume that R=((q), and this case is a consequence of Corollary 8.11. It follows that
(1% is linearly independent, and I'(1) is a free basis of M(4) for Ae®Q, . Hence,
{0(d:ts®d;Er)| SeSt, Y, TeSt,'Y} is linearly independent, and @, is injective for
A€, . Since det,, proj and d; ®d, are SEY-bicomodule homomorphisms, so is ©;.
The theorem is now clear. O

Let Ne 2, and ve Q" with /(v) < N. We define N := Nr* < N. By Lemma 7.8 and
its proof, we have ,N~(N¥)*=~(tryN),. For 1eQ, with /)=, <N, we set
CA):=v3A A0, @ @uy A+ Av, € \LV. Tt is easy to see that ¢'(A) e 1(A'V),
and d,(c'(1)) generates ;(L,'V)=(K;V)f~R. We set
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©.11) L} :=det,(c(1) - RON V) S,E" .

This definition is due to Taft and Towber [37, §3]. Clearly, L} is a quotient
SE"-comodule of A,V via the surjection

~ det
AV DRI,V —2 LAV,
and is a subcomodule of S,E.

PROPOSITION 9.7. Let A€y and ((A)<N. Then we have Li~L,V as an
S EY -comodule.

ProoF. For pueQ; with /(A)<N, we have p>i<fi<1 (see [25, (1.11)]).
Hence, p> 4 implies g 1. By Theorem 7.12, we have i(L,'V)=(K;V)¥=0 for peQ;
with /(W) <N and pu>A. By Theorem 9.6, we have ;M(1)=0. Hence, the projection
proj: zM(A)— (M(A)/M(4)) is an isomorphism. Since Lj is contained in tM(4), we have

L;=pr0j0det1(c'(/1) ‘ R@/\AV)=@l°(dl®dl)(C,(l) * R®AAV)
=d,(c'(A))  RQL,V~L,V.
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