
Tόhoku Math. J.
44 (1992), 471-521

QUANTUM MULTILINEAR ALGEBRA
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Abstract. We construct a quantized version of the theory of multilinear algebra,
based on Jimbo's solution of Yang-Baxter equation of type Λ#l 1. Using this, we discuss
the polynomial representations of quantum general linear groups.
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Introduction. Quantum groups are mathematical objects which arose from the

study of the quantum inverse scattering method, especially the Yang-Baxter equation.
They are very remarkable Hopf algebras and can be considered as {/-analogues of
Kac-Moody enveloping algebras or of coordinate rings of Lie groups. Not only have

they added new aspects to representation theory, but also they have brought to

non-commutative geometry a remarkable progress, i.e. the discovery of many new
examples such as quantum linear algebraic groups, quantum spheres and so on.

In this article, we study quantum analogues of some linear-algebraic objects such

as matrices, symmetric and alternating tensors, and determinants. We construct these

from Jimbo's solution of Yang-Baxter (YB) equation of type Atfl. x and investigate their

structure via the notion which we call Yang-Baxter bίalgebras. As applications, we give
realizations and free bases of Weyl modules KλVand their dual modules (Schur modules)
of quantum general linear groups GLq(N), and give a criterion for the irreducibility of
KλV. We also give an analogue of the straightening formula for quantum matric

bialgebras. We would like to emphasize that these objects are defined over any
commutative ring R and any unit element q e Rx and are compatible with extensions
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of the base ring R. Hence, we can get the representation theory of quantum general

group 'defined over Z[Q, β"1]', where Q denotes an indeterminate.

In Section 1, we introduce operations on YB operators (i.e. solutions of the YB
equation) called the product x , dual v, and fusion procedure. In Section 2, we associate

with a YB operator two algebras which we call the symmetric and the exterior algebras.

In Section 3, we apply these tools to the construction of bialgebras SEV which are

called quantum matric bialgebras (cf. [12]).
In Section 4, we construct two YB operators φ and ψ on the symmetric and exterior

algebras of Jimbo's YB operators of type Aftϊ. j using the fusion procedure. With the
YB operator φ, we introduce unusual algebra structures into tensor products of these

algebras, and prove that these algebras have some structures which we call YB-bialgebras.
Though a YB-bialgebra has structures of an algebra and a coalgebra, it is not necessarily

a bialgebra in the usual sense. The 'commutativity' and the 'cocommutativity' of these
YB-bialgebras are described in terms of the YB-operator ψ.

In Section 5, we discuss an analogue of the theory of graded multilinear bialgebras.

Recall that divided power algebras have been important in the study of characteristic-

free representation theory (cf. [2], [3], [4]). Here we introduce divided power algebras

of the YB pairs treated in Section 4. They are defined to be graded duals of symmetric
algebras defined in Section 4. This concept enables us to define Weyl modules and Schur

algebras in a natural way without assuming that q is not a root of unity.
From Sections 6 to 9, our interest is concentrated on the study of the representation

theory of quantum deformations of general linear groups.
In Section 6, we define (deformed) Weyl modules KλV and Schur modules LλV

associated to a partition λ, using the YB-bialgebra structure of the symmetric and
exterior algebras defined in Section 4. We prove that LλV and KλV are finite free

/^-modules and that they are 'defined over Z[Q, β"1]' in the sense that they are
compatible with base extensions. This property is an analogue of the so-called universal

freeness. For the original version of this result, we refer the reader to [4]. Though our
definition of LλV is different from Lλ

q(B) in Taft-Towber [37], they will turn out to be
equivalent (cf. Proposition 9.7). Though our construction and argument in this section
are nothing but the deformed versions of those in [4, Chapter II], we include some

details, since they do not seem to be so obvious.
In Section 7, we introduce the deformed versions of the Schur algebra, weights,

and the contravariant dual functor in our language. We will show that (deformed) Weyl
modules are universal highest weight modules in the sense of Theorem 7.12.

In Section 8, we work over a base field K, and discuss the irreducibility and complete

reducibility of SΈv-comodules. The notion of formal characters is introduced in this
section. Theorem 8.9 is a ^-analogue of the hook length criterion for the irreducibility
of Weyl modules. In the proof, Gyoja's ^-analogues of Young symmetrizers [14] play
important roles.

In Section 9, we prove a ^-analogue of the straightening formula using quantum de-



QUANTUM MULTILINEAR ALGEBRA 473

terminants. Namely, we prove that the degree k component SkE
 v of SE v admits a filtra-

tion of SE v -subbicomodules whose associated graded object is ©\λ\=k(KλV)*<S>LχV,
where λ is the transpose of λ. This formula was originated by Doubilet-Rota-Stein
[11] in the case q=l. Our approach is a ^-analogue of the treatment in [4].

Lastly, we remark on the relation between our construction and the quantum
enveloping algebra UqQl(N), or rather the "quantum hyperalgebra" such as that defined
in Lusztig [23]. Since these Hopf algebras satisfy the conditions in Theorem 3.3, there
are pairings of bialgebras between the quantum matrix bialgebra over Jimbo's YB pair
of type Atfl. x and the quantum hyperalgebra. Hence, thanks to the general theory of
bialgebras, the quantum hyperalgebra acts on our Schur and Weyl modules. Moreover,
the criterion for the irreducibility (Theorem 8.9) is also valid when they are viewed as
representations over the quantum hyperalgebra.

After the submission of the first version of this work, the authors received preprints
by Dipper- James [10], Noumi-Yamada-Mimachi [29], Parshall-Wang [30], which have
some overlap with our paper.

Our special thanks are due to Professors Mitsuo Hoshino, Yukihiro Kanie, Hideyuki
Matsumura and Akihiro Tsuchiya for valuable advice.

1. Yang-Baxter operators. Let V be a free /^-module. A Yang-Baxter (or YB)
operator on V is an automorphism βveEndR(V® V} such that

(1.1) (βV)l°(βv)2°(βvϊl=(βv)2°(βv)l°(βV)2,

A Yang-Baxter pair V=(V9 βv) is a free /^-module V equipped with a Yang-Baxter
operator βv on V.

Here we give some examples of Yang-Baxter pairs.

EXAMPLE (1) (trivial twisting). Let K be a free ^-module. Then the map τv : =
τv Y defined by τv(u®u') = ul ®u is a YB operator on V. We call τv the trivial twisting

on V.

EXAMPLE (2) (Jimbo's operators of type A^l.^. Let K be a free /^-module with

a basis {ui9 u2, . . . , UN} and let q be an invertible element of R. Then Jimbo's YB
operators of type A(^}_ l is the map defined by the following formula:

(1.2)

(ί >j} .

We call {wj the standard basis of (F, βv). This operator also satisfies Iwahori's quadratic

equation

(1.3)
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As for Jimbo's other operators, we refer the reader to [16] and [31].

EXAMPLE (3) (A 'super symmetric extension' of Jimbo's type A$L x operator). Let
V be a free module with a basis {M?, u\, . . . , u®M, u\, . . . , w# } and q an invertible ele-
ment of R such that q2 4- 1 is also invertible. Then the following formulas define a YB
operator βv on V\

(1.4) βv(

The restriction of this operator to (φ^w?)®2 coincides with the operator in Example
(2) under the identification uQ

l=ui. This operator also satisfies the relation (1.3).

EXAMPLE (4) (YB operators associated with distributive lattices). Let (L, Λ , v )
be a distributive lattice, i.e. a set together with two maps Λ , v : L x L -> L satisfying
the following laws:

(1.5) a / \ b = b / \ a , avb=bva, a/\(b /\c) = (a/\b)/\c , ay (by c) = (avb)v c ,

a v (a Λ b) = (a v b) Λ a = a , a Λ (b v c) = (a Λ fe) v (a Λ c) (a,b,ceL).

Let Kbe the free ^-module on L and define βκ e EndR( V® V) by βκ(0 ®b) = a/\b®avb
(a, bεL). Then βκ satisfies the condition for a YB operator except the existence of βy1.

Let 93fc be the E. Artin's braid group. Namely, 95fc is a group generated by elements
{bt 1 1 <i<k} with the following fundamental relations:

(1.6) bfr-bjbi ( l /

For each YB pair (V, j8K), there is a representation of 93fc on the fc-fold tensor product
TkV=V®k defined by

(1.7) fti^OSKX^ίidK)®'-1®^®^)®*-'-1 .

There is an important observation which is due to Iwahori in the Coxeter group case.
Let Sfc be the symmetric group of degree k. The length f(σ) of σ e Sfe is the number of

the pairs (i,j) such that \<i<j<k and σi>σj. It is well-known that Sfc is generated
by the transpositions o{ = (i, /+ 1) (1 <i<k) and that ^(σ) coincides with the minimal
number of factors needed to express σ as a product of the σf's. An expression σ = s^s2 ' ' ' ̂
(sl9 . . . , S i E ®fc) of σ e Sfc is said to be reduced if /(σ) = £ (s^ + + ̂ (st). Then Iwahori's
theorem says that there is a well-defined map βk -> 95fc which sends σ e Sfc in reduced
expression σ = σiίσi2 - σlV (1 </ l 5 . . . , i^σ)<k) to the element έ^ό^ 6^(σ) of the braid
group. Combining this map with the homomorphism (1.7), we get a map from 2>fc into
EndR(ΓkF). We denote the image of σe Sfc by βv(σ). Note that if σ = s^ -st (sί9 . . . ,
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is reduced, then βv(σ) = βv(si)- - - βv(Si). Let χtj (ij>l) be an element of <5i+J

defined by

1 2 3 ••• / i+1 i + 2 ••• i +

1 2 -

Then, βv(Xij) defines a linear isomorphism from TiV®TjV onto TjV®TiV. By
Iwahori's theorem we get:

PROPOSITION 1.1 (fusion procedure). The R-endomorphism Tβv : = 0i,;>0/Vfe/)
(resp. Tβy : = βv(Xu )) defines a YB operator on the tensor algebra TV= ®k>QTkV (resp.

TtV).

We denote the YB pair (TV, Tβv) (resp. (TtV, Tβy)) by Ί\V, βv) (resp. T£V9 βv)\
Now we will define a category ®/$R as follows:

(1) The objects of ®/$R consist of all YB pairs on free /^-modules of finite rank.
(2) For Yang-Baxter pairs V=(V, βv) and W=(W, βw\ the set of morphisms

R(V, W} consists of all ^-module maps /: V ̂  W satisfying the following com-

mutative diagram:

(1.9) V®V -^^ W®W

V~ „, I'
v®v > w®w .

It is easy to see that Tt is a functor from ®/$R to itself for />0.

Now we will give more operations on ®/<%R. Let V=(V, βv) and W=(W, βw) be
Yang-Baxter pairs.

DEFINITION 1.2. The product βv x βw of βv and βw is a YB operator on V® W

defined by the following commutative diagram:

(i.io) v®2®w®2 1 Θ τ ( 8 ) 1> v® w® v® w

\βy®βw

v®2®w®2 1(8)τ(8)1> v®w®v®w.

We denote the corresponding YB-pair by VxW.

PROPOSITION 1.3. The product defines a bifunctor ®/@R x ̂ ^R^^^R satisfying

the following conditions:
(1) associativity constraint

(Ux V)x W=Ux(Vx W)
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(2) existence of the identity object

(3) commutativity constraint

τv.w' v* W~Wx V .

The proof is straightforward.

DEFINITION 1.4. Let (V, βv) be an object of ®/@R. We define a YB pair

~\ resp. V v = (V*9 )5F

V)) by

(1.11) ev('0κ(ι; ® ι/) ® (M ® M')) = ev((ι? ® ι/) ® JM" ® w')) (u, i/ e V*, w, w' e V) .

(resp. V~ί = (V, βy1), resp. /^ =ί(j5^1)) and call it the transpose (resp. inverse, resp.

of F.

It is important that the evaluation map ev : F* ® K-> R gives a morphism
from K v x Konto the unit YB pair (R, idΛ(g)jR). The following theorem shows that ®/@R

is a rigid tensor category (see [9]):

THEOREM 1.5. We have the following isomorphisms of functors.
(1) (F V ) V = K, (2) (VxWY = VvxW\

(3) W@R(UxV, W}~W@R(V, ί / v x H O (t/, K,

PROOF. Parts (1) and (2) are obvious. To see Part (3), we note that under the

isomorphism HomR(ί/(χ) K, J^)~HomΛ(F, £/*(x) W),amap/: ^® ^"^ ^corresponds
to the composite

(1.12) /':

and the map/' : K-> (7* ® W7 corresponds to the composite

(1.13)

Since ev* ® idκ e W@R( V, t/v x t/x F) and ev®idfre^^κ(ί/v x £/x ̂  W^), the map

/is a morphism of $ Λ̂ if and only if so is/'. Therefore (1.12) and (1.13) give the
desired isomorphim. Π

2. Symmetric and exterior algebras associated with Yang-Baxter pairs. In this
section, we introduce two classes of algebras associated with YB pairs.

DEFINITION 2.1. Let V=(V, βv) be a YB pair. Define quotient graded algebras
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(2.1) SV:

We call SV and /\V the symmetric and the exterior algebra of F, respectively.

To distinguish elements of /\ V with those of S K, we denote the product ofa,be/\V
by a Λ b.

lfβv is the trivial twisting τκ, then SF(resp. f\V) coincides with the usual symmetric
(resp. exterior) algebra of the free ^-module V. For Jimbo's YB pair of type A(^ll9 the
fundamental relations of these algebras are given by

(2.2) SV = <M I ? . . . , UN I uiUj

/\K=<H1 ? . . ^ W j v l w i Λ w — O , quiΛUj + UjΛu—Q (ί</)>

Hence, in this case, we have:

(2.3) If /1? . . . , / f ce [1, TV] has a repetition, then u^ Λ Λ uik = 0 in

(2.4) If !</!< </ k<7VandσeS f c, thenw^Λ Λuik = (-q)~'(σ)uiσί Λ Λiι ί f f A

for fceTV.

The /^-modules 5rF and /\rV are free with respective bases

(2.5) {uhuh - 'Ujr\l<j\<j2< - - <jr<N} ,

(2.6) {uh Λ uh Λ Λ wjr 1 1 <j\ <j2 < - - <jr < N} .

For the YB pair associated with a distributive lattice L, the symmetric algebra is

the commutative algebra generated by elements of L with the fundamental relations
a-b = (a/\b) (avb)(a,beL). This algebra was introduced by Hibi [1 6] to study lattices
by means of commutative ring theory.

3. Quantum matrices. Let V be a finite free ^-module. Then, the dual coalgebra
of End(F) is identified with F* ® V as an .R-module. With this identification, V* ® V
is an Λ-coalgebra with the coproduct

-̂ l(χ)ev*(χ)l
(3.1) S: V*®V~V*®R®V— — ̂ -> F*(g) V® F*(x) V

and the counit e = ev: V*®V-+R. More explicitly, these maps are expressed as

_ N

(3.2) δ(Xij) = £ xik ® xkj , e(Xij) = δij ,
k=l

where (w l 5 . . . , UN} is a free basis of F, {t;l5 . . . , VN} is its dual basis and xij = vi

and 50 is Kronecker's delta.
The ^-module V is a K*® F-comodule with the coaction
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ev*
(3.3) ώ: V~R®V u

The maps <) and e are extended to the (unique) algebra maps S: Γ(F*®F)-»

Γ(F*®F)®Γ(F*®F) and e: Γ(F*® F)-»Λ, respectively, and Γ(F*®F) is a

bialgebra. Hence, V®k is a Γ(F*® F)-comodule with the coaction ώ given by

(3.4) ω(Ujι ® ' ' ' ® Ujk)
 = Σ (Miι ® " ' ' ® wik) ® C*iι./ι ® ' * ' ® Xikjk)

* i , . . . , i f c

Let A be an Λ-coalgebra, and F an ^4-comodule with coaction ωF: F-> F®^4. We
define a coalgebra homomorphism cΐv: F*®F->v4 by cfκ = (ev®idA)o(idFv ®ωκ)

and call it the coefficient map of F. The coaction ωv is determined by cfκ by the formula

Now we consider a YB operator βv on F. The YB pair (E, βE) : = (V,βv)x(V, βv)
v

is called the internal End of the YB pair (F, βv). The ^-module £" (resp. £v) is nothing

but F® F* (resp. F*® F). By Theorem 1.5, Ey is identified with the internal End

F v x(F v ) v of F v . Since ev*e^J>

R(Λ, F v x F) and eve^κ(Fx F v , /^), the maps

£, e and ώ are contained in W@R(EV,E* x£ v), ^Λ(£v, Λ) and ̂ ^Λ(F, Fx Ev),

respectively. It is easy to see that βE* is a coalgebra map. Hence, by [34, Proposition

1.4.8], (Im(id£vΘ£v-j?£V)) is a bi-ideal of Γ£v. Thus the symmetric algebra SEV

becomes a quotient bialgebra of the bialgebra (7ΈV, J", έ). We call this the quantum

matric bialgebra for the YB pair (F, βv) and denote its coproduct and counit by δs and

es, respectively. Note that the exterior algebra /\E v also becomes a quotient bialgebra

Let us write down the fundamental relations of SE v and /\E v for Jimbo's YB

pair of type A(^^ For Jimbo's YB pair of type A(^Lί9 the internal End YB operator
/?£* is given by

(3.5) βE(xίk ® xik) = xik ® xik , βE(xn

Hence, the fundamental relations of SE v are

(3.6) xίk Xn = qxn xik , xik xjk = qxjk xik , xit x jk = xjk xit ,

and those of /\E v are
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(3.7) xik Λ xik = 0 , xik Λ xn + qxa Λ xik = 0 , xik Λ xjk + qxjk Λ x/fc = 0 ,

Xn Λ Xjjk + Xjk Λ Xa-(q-q'1)xik Λ X;f = 0 , Xίk Λ Xfl + Xji Λ Xίjk = 0 ,

Using [5], one can easily see that Sr£
v and /\rE

v have the following Λ-free bases,
respectively:

(3.8) (XiιhXi2h ' '*wJ O

Here < denotes the lexicographic ordering of (1, . . . , TV}2.
In the remainder of this section, we will consider representations of the quantum

matric bialgebra SEV for an arbitrary YB pair (F, /JF). Since Fis a comodule for the

bialgebra SEy with the structure map ωs(
uj) = Σiui®xip the &-fold tensor power TkV

of V is also an SE v -comodule with the structure map

(3.9) ωs(uh ® -®ujk)= X (M|l ® ® κίfc) ® x, tjl xίkA .

PROPOSITION 3.1. ΓΛ^ coaction of SEV on TkV commutes with the action of the
braid group S3k. In other words, the following diagram is commutative for \<i<k\

(3.10) TkV
 ω* > TkV®SEv

I (̂ )t. I ou®id

TkV
 ωs > TkV®SEv .

PROOF. Clearly, it is enough to consider the case k = 2. Let ώ be the coaction of
(TE\ δ) on TV. Since ώeW<%R(V, Fx£ v ), we have

(3.11) (βv®βE*)0ώ \v®v = ΰ>\v®v°βv -

Let/7 be the projection from T2E
 v onto S2E

 v . Since ωs |K(g)F = (idK(g)K ® /?) o ώ \V<S)V9 we get

(3.12) ωs\v®v°βv=P®idv®v0βE®βv°ΰ>\v®v

=p® βv°ώ\v®v = idsE®βv°ωs\v®v -
D

THEOREM 3.2 (Universal mapping property of SE v). Suppose there is a bialgebra
(A, δA) and coaction ωA : V—> V®A such that the coaction of A on TkV commutes with
the action of the braid group 93fc. Then there exists a unique bialgebra homomorphism
f: SE v -> A such that the following diagram is commutative.
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(3.13) TkV

TkV °*A > TkV®A .

PROOF. The coalgebra map cfκ: Ey = V*®V-^>A uniquely extends to a bialgebra

map/: Γ£v ->Λ. By (3.10), it is easy to see that/(Im(id-/?£v )) = 0 and that the theo-

rem follows. D

Similarly, we get:

THEOREM 3.3. Suppose there is a bialgebra (U, δυ) and an action θυ: U® V^> V

such that the action of U on TkV commutes with the action of the braid group. Then there

exists a unique bilinear pairing < , ) : U® SEy ->R satisfying

(1)
(2)
(3) ΘV(X® w) = (idr(K) ® (X, »(ωs(w)) (X, Ye U, a, b e SE v, w e TV).

In particular, the bialgebra U acts on SEy by Xa = (idS(E}®(X, »°<5s(fl) (XeU9

aeSE).

4. Symmetric algebras, exterior algebras and the fusion procedure.

DEFINITION 4.1. Let A = (A, mA, ηA) (resp. C=(C, Δc, εc)) be an /^-algebra with

product mA and unit ηA (resp. an Λ-coalgebra with coproduct Δc and counit εc). Let

φA (resp. φc) be a YB operator on A (resp. C). We call (A, φA) (resp. (C, φc)) a YB

algebra (resp. YB coalgebra) if the following diagrams (4.1) (resp. (4.2)) are commutative:

(4.1)

(4.2)

4 0 4 0 4 ^Άi) >

I mΛ®iάΛ

Φ
4 0 4 >

I1 ΊAXI A

P fiλ A ~ >

zl (x) id

1
c c

4 fy} 4 βft 4 ^^12^ ^ x-v ^ -o, ^

J,d^ |^βld.

4 5 ^ 4 x

 k 4 (9\ 4

I id ® ί1 J x x ̂  1 ^x x ! x

^12)
ί id x 4 ί J x id1 ! c x c 1 c x l c

Γ* (\?\ Γ* c . /° /σ\ /°

1 idc®εc I εc®idc

c®/^
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PROPOSITION 4.2. (1) For a YB algebra (A, φA), the YB pair Tt(A, φA) (see
Proposition 1.1) becomes a YB algebra with product mτ.A:=mA

ioφA(wi) and unit
(ηA)®1 : R^R®1 -> TtA, where wt is the element of S2ί defined by

(4.3)

123 " i i + l i + 2 2i

1 35 - 2i-l 2 4 - - 2i

(2) For 0 YB coalgebra (C, φc), /Ae YB

with coproduct ΛΓ|C : = Φc(wf ̂ c' αnrf «wιιf

PROOF. By (4.1), we have

(4.4) φA(χij) o (*ιΓlX (g) idf 0 = (id®'' ® m ® f)

Since both sides of the equality χ 2 i,/Wi x

hand side of (4.4) becomes

hence we have

(4.5)

Similarly

(4.6)

T^C, φc) becomes a YB coalgebra

, .

= x reduced, the right

(id®' ® m® '> (idf '® <pA(wt)) o φA(χ2it j) ,

<g> idf 0 = o φA(χ2iJ) .

= (mTίA ® idf J) o

Taking 7 = /, we find the commutativity of the upper two diagrams of (4.1) for TtA.
Now we will prove the associativity of mτ.A. Since (1 x 1 x w f)(l x χ f l x 1) is a reduced
expression for w ί+1, we have

(4.7) wΓi + M =

Hence by (4.5), (4.6), we get

(4.8) mτ. + lA o (mτ. + lA ® idτ. +
o (mA ® idr.^))) o φA(σ) ,

where σ = (\&2 x/ 2 i , i x is^ί1®! x %»i x 1e2i + 1) Hence the associativity of mτ. + ίA fol-
lows from that of mA and mTί>l. The rest of the proof is similar and easy. Π

EXAMPLE. For an arbitrary algebra A, the YB pair (A, τA) becomes a YB algebra

(cf. § 1 Example (1)). The product of Tt(A, τA) is given by mT.A((a1 ®-'®ai)®(b1®-'
(X) £.)) = β^1 (X) « ' « (X) fl.ft..

DEFINITION 4.3. A sextuple A = (A, AA, εA, mA, ηA, φA) is called a graded YB-

bialgebra over Λ, if:
(1) (A, mA, ηA, φA) is an YB algebra over R and (A, ΔA, εA, φA) is an YB coalgebra

over R.
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(2) The ^-module A is a direct sum of submodules Ai (/>0) such that

m^Ai^Aj^Ai+j, ΛA(Ak)^Σί+j=kAi®AJ and ^(Λi®^)^.®^.
(3) The unit ηA and the counit εA give an isomorphism A0~R.

(4) Both ΔA : A -> Γ2(^4, ra^, ι/A, φA) and ε^ are algebra maps.

Note that in general, A is not a bialgebra in the usual sense. But the following lemmas

still hold.

LEMMA 4.4. Under the conditions (1), (2), (3), the condition (4) in Definition 4.3 is

equivalent to
(4') Both ηA and mA are coalgebra maps, where the coalgebra structure of A® A

is as in Proposition 4.2 (2).

LEMMA 4.5. For a graded ΎB bialgebra (A, φA), the tensor product Tt(A, φA) (/>0)

becomes a graded ΎB bialgebra with a product mτ.A and a coproduct ΔT.A (see Proposition
4.2).

Let (A, φA) and (B, φB) be YB algebras (resp. coalgebras, resp. bialgebras), and

f:A-*Ba homomorphism of algebras (resp. coalgebras, resp. both algebras and co-

algebras). We say that/is a homomorphism of YB algebras (resp. coalgebras, resp. bi-

algebras) when (/®/)oφ^ = φβ°(/®/) (cf. (1.10)). For a homomorphism/: (A, φA)^>
(B,φB) of YB algebras (resp. coalgebras, resp. bialgebras), TJ\ (T\A, T^A)-^

(Tβ, T^B) is again a homomorphism of YB algebras (resp. coalgebras, resp. bialgebras)

for *>0.
Let βv and γv be YB operators on a free Λ-module V. We call (V, βv, yv) a YB

triple if the following two conditions are satisfied.

(4.9) (

(4.10)

For a YB triple V=(V, βv, yv\ we set SV=S(V, βv) and /\V=f\(V, βv). There exist

two important examples of YB triples.

EXAMPLE (1). Let (K, βv) be Jimbo's YB pair of type A(^}_1 for a fixed ring R
and its invertible element q. By (1.3), the YB operator yv:=-q~2βv satisfies the

equation (4.9).

EXAMPLE (2). Let (V, βv) be as in Example (1) and let (E,βE) be its internal

End YB pair Fx F v . Set yE = βvx
tyv It is easy to verify that (E,βE,yE) is a YB

triple.

Let φA and ψA be YB operators on an algebra A. We call (A, φA, ψA) a YB algebra

triple if (1) both (A, φA) and (A9\j/A) are YB algebras and (2) β = φA and y = ψA satisfy
(4.10).
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PROPOSITION 4.6. (1) Let (V, βv) be a YB pair. Then the tensor algebra TV=
®i>QV®1 becomes a graded YB bialgebra with a YB operator Tβv and a coproduct

Δτv : TV-> T2(TV, Tβv) defined by A(u) = u®l + 1 <g> u (we F). (2) If(V, βv, yv) is a YB
triple, then (TV, T( + βv\ T(±yv)) is a YB algebra triple.

PROOF. By Proposition 1.1, (TV, Tβv) is a YB algebra. By the universal mapping
property of the tensor algebra, there exists a unique algebra map Δτv : ΓF-> T2(V, Tβv)
such that Δ(u) = u®\ + \®u for weF. The commutativity of (4.2) follows from
Proposition 4.8 below. Next, we show the coassociativity of Aτv. Because the restrictions
of Δτv®\ά°Δτv and \A®ΔTV°ΔTV on V coincide, it suffices to show that these are
algebra maps. Since A τv is an algebra map, this follows easily from the commutativity
of (4.2). Part (2) follows from the following lemma. Π

LEMMA 4.7. For a YB triple (V, βv, γv), we have

(4.H) β(XiJ)°βk=βk+j*β(xtJ) , y(xιj)°βk=βk+J°y(xιj) 0 <

PROOF. Since

(4.12) ^ = (1®,-! x&ι) ' Όsi x /ii x Uj.Jfei x Is,-!)

is a reduced expression, we have

(4.13) 7tej)=yOsJ-1 χχii) -yOβ! χχ i i χ is,-2)y(£i χ is,.,)
Hence the second identity follows from

(4.14) y ( l 6 w x Z i i χ l s J - w - 1 ) Λ + m = jSfc+m + ι7( le w XL ι X l e J - m - 1 ) .

The other identities are obtained similarly. Π

To give an explicit formula for Δτv, we need some notation. Let k>\ and let

α = (αl5 . . ., αs) be a sequence of non-negative integers with a x + +αs = fc. Let

C= ®i>0Ci be a graded coalgebra. We denote by AC the composite map C-» C®s-*Cα

of the s-th iteration of zlc and the projection, where Cα = Cαι ® (x) CΛs. If α and C in
consideration are clear by context, then we will drop them, and simply denote it by A.

Let Sα be the Young subgroup Sαι x x Sαs of ®k. We denote by <3α the following

complete set of representatives of Sfc/Sα in ®k.

(4.15) ®α : = {σe® k | σ l< <σα l 9 σ(αi + l)< <σ(α1+α2), ,

<σ(α1+ +αs)} .

Any σ e Sk is uniquely expressed as σ = σ'σ" with σ' e Sα and σr/ e ®α, and this expression
is reduced.

PROPOSITION 4.8. ForaYBpaίr(V, βv\ the coproduct of theΎE bialgebra T(V, βv)
satisfies the following formula.
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(4.16) Δ\y= Σ ^(σ'1).
σ e S"

PROOF. We prove this formula for a = (ij) by induction on k = i+j. Let w and u
be elements of Ti+jV and V, respectively. Since Δτv is an algebra map, we have

(4.17) Λ ( U + 1 )(w®w) = wΓ2(ΓF)(Λ(/-^

By the induction hypothesis, the right hand side of (4.17) is

\Σ βv(σ~^®\άv \(w®u)
σe 6 < i ~ 1 » J + 1 ) /

Since

we obtain

D

Now we fix a YB triple V=(V, βκ, )V) sucrι that S^F and /^tK are free ^-modules
for each />0. The next lemma follows easily from Lemma 4.7.

LEMMA 4.9. (1) There exist YB operators φsv andψsv on SV(resp. φ /^vand ̂  /\y
on /\V} which satisfy

(4.18) φsv°(P®P) = (P®P)°T(-yv), Ψsv °(P® P) = (P ® p) ° Tβv ,

where p denotes the projection from TV onto SV (resp. /\V).
(2) Both (SV, φsv, ψsv) and (y\F, φΛκ, ̂ ΛK) are YB

Let A be either SF or f\V. Then we have the following:

THEOREM 4.10. (1) There exists a unique algebra map ΔA\ A^A®A such that
ΔA(u) = u® 1 + 1 ® u for ueA1^V9 where the algebra structure of A® A is given by
Proposition 4.2 in terms of the YB operator φA.

(2) Define a map εA : A -> R by ε^(£χ.) = α0 fa e AI). Then (A, mA, ηA, ΔA, εA, φA)
becomes a graded YB bialgebra.

PROOF. We prove this theorem only in the case A = SV. By Proposition 4.6 (1),
it suffices to show that the ideal (Im(id-βκ)) is a coideal of TV. By (4.11),
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(Im(id-jBK))® TV+ TV® (Im(id- βv)) is a two-sided ideal of T2(TV, T(-yv)). On the
other hand, by (4.9) and (4.16),

A τv((id - βv ) ( w)) = (id - βv ) ( w) ® 1 + 1 ® (id - βκ ) ( w)

e (Im(id - )BF)) <

forweΓ 2 F. D

PROPOSITION 4. 1 1 . Let A be as above. Then, (l)mA°ΨA = mA- (2) ίM : A^Af1 is
ίnjective for any />0, then, ψA°AA = AA.

PROOF. We show this proposition only for A = SV. Using (4.2), we obtain

(4.19) J(lί)<xM(1JVsr°Λ(U)°^^^

where (10 = 0, . . . , l)eZ<\ By (4.16), the right hand side of (4.19) is j3fe,.)o£σe Sk(-

Since

OMr Σ (-yv)(σ) = (βv\ Σ (id-(yκ)r)(-7κ)(σ) = Σ (-
σeβ k

for l<r</+7, we get

This proves Part (2). Part (1) follows from

D

Now we shall look at the representation-theoretical aspects of the YB algebras we

discussed so far.

DEFINITION 4. 12. Let H be an /^-bialgebra, and A = (A, φA) be a YB algebra with
a //-comodule structure. We say that A is H-equίvariant YB algebra when mA, ηA and

φA are homomorphisms of //-comodules. We define //-equi variance of YB algebra

triples, YB coalgebras, and YB bialgebras similarly. All of the structure morphisms
(including YB operators) are required to be homomorphisms of //-comodules.

If (A, φA) is a //-equi variant YB algebra (resp. coalgebra, resp. bialgebra), then
Tt(A, φA) is also //-equivariant for any />0.

Let (K, j8, 7) be a YB triple such that SKand y\Kare free, that Fis a //-comodule,
and that β is a homomorphism of //-comodules. Then it is easy to see that (TV, T( + β))

is a //-equivariant YB algebra. The map F-> V® R®R®V; u\-*u® 1 + 1 ® u is clearly
a //-homomorphism. Since T2(TV, T( ± β)) is a //-equivariant YB algebra, the coproduct

Δτv of (TV, T( + β)) is also a //-homomorphism. Hence, (TV, T(±β)) is a //-equivariant
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YB bialgebra. Since the ideals (Im(l-β)) and (Ker(l-jS)) are subcomodules of TV,
we see that SV and /\V are quotient comodules of TV. The YB bialgebra structure of

(/\v>9f\v) is induced by the structure of (TV,T(-β)). Hence, f\V is also a
/f-equivariant YB bialgebra. Though msv, ηsv, εsv, and ψsv are /f-homomorphisms,

Δsv, φsv and ψ/\v mav not be /f-homomorphisms.
The most important example of H is the quantum matric bialgebra SEV (see

Proposition 3.1 and Theorem 3.2). If 7 is also a //-homomorphism, then (TV, T(±y))

is also a //-equi variant YB bialgebra. It is easy to see that (/\V,φ f\v,\lf/\v)
 anc*

(SV, φsv, ψsv) are //-equivariant both as YB algebra triples and as YB bialgebras in

this case. Jimbo's YB triple of type A(^_1 and its matric bialgebra satisfy this condition,

since yv= — q~2βv.

5. Divided power algebra. For a graded /^-module M=0k>0M fc, the graded

dual M1" of M is 0fc>0^* by definition. The graded dual/* of a homogeneous map
/: M^N=@kNk is defined to be Σkf*> where fk is the degree k component of/.

Let A = (A, ΔA, &A, mA, ηA, φA) be a graded YB-bialgebra with each homogeneous
component At being free of finite rank for each z>0. We introduce into A* a structure
of a graded YB-bialgebra. There is a canonical isomorphism A^®A^~(A®Aγ via the

pairing

1 (x) τ (x) 1 ev (x) ev
Af®AJ®Ai®Aj

where τ is the trivial twisting. The structure morphisms ΔAι, ε^t, mAι, ηAτ and φAι are

defined to be m\, η\, Δ\, ε\ and φ\, respectively. For example,

Af®AJ®Aj®Ai

is equal to

Af®AJ®Aj®Ai

Thus, for k>Q and σe Sk, the graded transpose (^(σ))1^ of φA(σ) is equal to Φ^t(σ-1).
With these definitions, A* is a graded YB-bialgebra. In fact, it is well-known that
(A\ mAι, ηAτ) is an /^-algebra, and that (A\ ΔAτ, ε^t) is an .R-coalgebra (see e.g., [28]).
Taking the dual of the diagram (4.1), we easily see that A^ is a YB coalgebra. Similarly,
taking the dual of the diagram (4.2) for A, we see that A* is a YB algebra. It is clear
that the conditions (2) and (3) in Definition 4.3 for A imply the conditions (2) and (3)
for A\ respectively. By the condition (4) in Definition 4.3 for A, we have the condition
(4;) in Lemma 4.4 for A*.

Let V=(V9 β, 7) be a YB triple. We assume that V is a free /^-module of finite
rank and both SV and /\V are free. As in Section 4, the exterior algebra /\V=
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T(V, -j8)/(Ker(l-/0) and the symmetric algebra SV=T(V, -γ)/(lm(l-β)) has a
structure of YB bialgebras. By (4.16), we have:

(5.1) J(^-1VιA Λ W t )= Σ (-Wσ-'HHΊ®"-®^)
σe Sk

(5.2) 4V -1Vr wfc)= Σ (-yXcr'XHΊΘ ®**)
σe Sk

for any /r>0 and w1? . . . , wke F.
We denote the YB triple (F*, '& ry) by <F, where '0 (resp. 'y) : F*® F* -> F*® F*

is the transpose of β (see Definition 1.4). We assume that SV and /\*V are free. Let

^ = Θk>oΛ be eitrier Λ*7 OΓ sv Note that the '"̂ d product mA : Vm ̂  A®1 -> A{ is
nothing but the projection map/?: Γ fF= F®1-^. We denote by ̂ '= ®k>0A'k the YB

bialgebra ^rF or SΨ, according as A = /\V or A = SV. For a non-negative integer /,
we denote the pairing ΓfF® Ty* -+R; w x ® ® w f ® φ1® 'Θφii-^φiίw!)- '(^(HY)

by Ev(0. We define a pairing ev(l): ^4,-®^^^ by the commutativity of the diagram

I

^

Ev(ί)

R,

where p: T{V^A{ is the natural projection. This pairing ev(0 is well-defined, since

Ev(ί)(Ker(l-jβί)®Im(l-ίjSί))-0 for !</</-! (the case A = /\V) and Ev(0(Im(l-
ft)®Im(l-ί7ί)) = Ofor !</</-! (the case A = S F).

LEMMA 5.1. In the notation above, the diagram

l®p' I Ev(ί)

ev(ί) ^

commutative, where p' : T^V—^AΊ is the natural projection.

PROOF. First, we consider the case A = /\ V. It suffices to show that ev(I) o (p ®p')

J^ ^op)®!), since p: TiV-^Ai is surjective. By (5.1), we have

Since Ev(°o(l ®zJ^" '1)) = ev(ί)o(/7® 1) by the definition of ev(0, we have completed
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the proof in this case. The case A = SV is proved similarly by means of (5.2). Π

We denote by Φ/4 the natural map from A{ to (Ay induced by the pairing

ev(0: Ai®A'i-+R, and denote by ΦA the sum of Φ^'s.

PROPOSITION 5.2. In the notation above, ΦA : A -+(AΎ is a homomorphism 0/YB
bialgebra. The map ΦA is a surjection if and only if A(

A

k} is a split injection for any fc>0,

where (lk) is the sequence (1, . . . , 1) (k times 1).

PROOF. By the definition of ev(ί), Φ = ΦA is a homomorphism of algebras. By
Lemma 5.1, Φ is a homomorphism of coalgebras. We set α= — β when A = /\V, and

α = — y when A = SV. We show that φ(A'γ
0(Φ® Φ) = (Φ®Φ)°φA, Since p®p:

TjV-*Aι® AJ is surjective for any /,j>0 and

is injective for any ι,y>0, it suffices to show

(5.3) ((pr®(/0*)°φ(,n
to(φi®^

on TiV® TjV for any ij>0. Since /?: Γ F-^ and p\ ΎjV-^Aj are nothing but the
iterated multiplication, (Φi®Φj)°(p®p) agrees with the composite map

thanks to the fact that Φ is a homomorphism of algebras. We identify (Γ/F)*(χ) (T^V)*
with (T/V® TSV)*, and TtV® TjV with (TfV® Γ/F)* in an obvious manner. Then,

(Aiγ®(A'jY, (Δ(ft)*®(Δ(£})*, (p'Y® (/)*, and the restriction of φ(Aγ to (^ί)*® (̂ -)*

are identified with (A'&A])*, (Δ(£}® J^V>)*, (p'®pT, and ((φ^)uί®^)*' respectively.
So the left hand side of (5.3) is identified with the dual of the composite map (A(^®

Δ(A'J)) ° φA' ° (p' ®P')' By (4. 1 8), it holds that φA. ° (pf ®p') = (pr ®pf) ° Γ^α). Since (// ®p') °
(Δ(p ® A^) is the action of Σσ e 6 ( ί .}Cα)(σ) by (5.1) and (5.2), the left hand side of

(5.3) agrees with the map ((ΣσeS Cα)(tf))°0α)0θi))*. ^n ̂ e otner hand, the right
hand side of (5.3) is ((ΣσeS . α(σ))oα(χ0 ))* by a similar argument. For any element

σ = σ1 xσ 2 eS / J , it holds that ((σ± x σ2)%ji)~1 ==(σ21 xσι~1)%u' an(^ Λese expressions
are reduced. Hence, we have

Σ ('α)(σ)°('α)te,) = Σ αίίσ χyΓ1

σ e 8 ( f ) J ) / / \σe(S ( ί ) j )

So (5.3) is proved, and the proof of the first assertion is complete.
Since Φ is a homomorphism of algebras, we have (A(

A*
))* = Φkop for any fc>0,

where p: TkV=-*Ak is the projection, or the A -fold product. Hence, (J^k))* is split
surjective if and only if Φk is surjective, since p is surjective and (A^ is free. So the
second assertion is now clear.
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LEMMA 5.3. Let (K, β, y) be Jimbo's YB triple of type A^l^ (see Example (1) in
Section 4) with the standard basis ul9...,uN. Then for any k>0 and any sequence
(/!,. . ., ik) with 1 < il < - < ik < N, we have

σe Sk

In particular, A /\v\ /\V-+ TkV is a split injection for any k>Q.

PROOF. To prove the first assertion, it suffices to show that

(5.4) /KOK® ®uik) = q^uiσί® -®uiσk

for σe ©k, which is proved easily by an induction on /(σ). If we define πk : TkV^> f\kV

by

(otherwise)

for 1 <il9..., ik<N, then π k o A ( f c y " υ = id/ycK. Hence, the second assertion is now clear.

D

Let a be a non-negative integer and t G R. We define [a\t = 1 +1 + 4- ta ~~l if a > 0,

and [0]t = 0. We also define Mί = Π?=ιW f if «>0, and [0]{=1.

LEMMA 5.4. Let (V,β,γ) and k be as in Lemma 5.3. For any sequence α =

(αl5 . .., αN) of non-negative integers with Σiαi = ̂ » ^^

/!( ! , . . . , I)/,.αi .. , ί y αiv\_ TT Γ/v Ί ! . V /i"^

/ze number vi is the i-th element in the sequence ( l α ι , . . ., N*N). In particular,

ΔSV '- SkV^> TkV is a split injection if and only if[a]q~2 ^ invertible in Rfor any \<a<k.

PROOF. It suffices to show that £ ff 6 Sk (- 7)(σ)(wfαι (x) - ® wfα") equals the right

hand side of the formula. Since Sk=®α Sα, and since the expression σ = σ'σ" (σ'eSα,

σr' e Sα) is reduced for any σ e ®k, we have

Σ (-?)(*)=( Σ (-y)(^)) ( Σ (-y)(
σeβ k \σ'eSα / Vσ"e6 α

For any a>Q and tεR, it holds Σ'σ 6@ ^(σ) = Mί Hence, it is easy to see that

Σ (-y)(O("fαι® ®t/fα-)= Π Mi-2- w f α ι ®
σ"eβα » = 1

So it suffices to show that
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which is proved easily by induction on /
Now assume that \_ά]q-2 is invertible for any a such that \<a<k. We define

(otherwise),

for !</!,..., ik<N, where aι = 9{j\ij = i} for i<i<N. It is clear that π f c °/dkV"" 1 ) = id

by the first assertion, and /J^V"" υ *s a SP^ injection. The converse is obvious from the
first assertion. Π

DEFINITION 5.5. The graded dual (5ίF)t of SΎ is denoted by DV and is called

the divided power algebra of F. The degree / component of DV is denoted by DtV and

is called the i-th divided power of F.

By definition, D0V=R, and .0^= F. Moreover, the restriction of φDV to Z^F®

D±V= F® F is equal to βv, since t(tβv) = βv. By Proposition 5.2 and Lemma 5.3, we

have y\Fc^(/\ίF)t for Jimbo's YB triple of type ̂ -i By Proposition 5.2 and Lemma
5.4, we have SV~DVfor Jimbo's YB triple when [n\q2 is a unit for any n> 1, but not

in general.

PROPOSITION 5.6. Let F=(F, β, 7) be a YB triple with finitely generated V and free
S*V. Then the iterated coproduct Δ(pγ} \ DkV^\TkV) = TkV is a split injection. Theίmage

of this map is (TkV)®k.

PROOF. The first assertion is clear, since the coproduct of DV is the dual of the

multiplication of S'F. By the definition of the symmetric algebra, the sequence

is exact, where p is the projection. Taking the dual, we see that the sequence

Y Π - # ) A(ίk)

Λ P) 0

is also exact. This shows that DkV is the intersection of Ker(l— βt) for l < i < f c — 1.
Since Sk is generated by the 6/s, the second assertion is now clear. Π

EXAMPLE 5.7. Let V=(V, β, γ) be Jimbo's YB triple of type A^l^ If [2]q2 = 0,
then the /^-submodule Π2V of S2V generated by u\, . . . , u% is also an 5Έ-comodule,
and we have an exact sequence

However /\2V is not a quotient of D2V (see Section 7). Hence, we have S2Vφ D2V
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as SΈ-comodules. The coproduct S2V-*V®V vanishes on 772F, so the coalgebra
structure of S V is different from that of DV.

Let (W, βw, yw) be another YB triple such that SW, /\W and S W are free, and
ίFis finite. Consider a map/e^κ((F, βv)9 (W, βw)). Then, Tf: (TV, T(±βv)) -> (TW,
T(±βw}) is a homomorphism of YB algebras. Since T2Tf: Γ2(ΓF, T(±βv))-+T2(TW,
T(±βwJ) is a homomorphism of algebras, it follows that Tfis also a homomorphisms
of coalgebras, hence is a homomorphism of YB bialgebras. It is easy to see that Tf

induces Λ/ :(M>ΦΛ^(Λ^ΦΛ^)> Sf:(SV9ψsy)-+(SW,ψsw) and Df:(DV,
Ψov)-*(DW9 ψDW). The maps y\/, Sf and Z)/are homomorphisms of YB bialgebras,
algebras and coalgebras, respectively. These maps preserve the grading, so we obtain
/\J9 Si f and DJ for ΐ>0. If /is also an element of 9ΛR((V9 yv), (W9γw))9 then Sf
and Df are homomorphisms of YB bialgebras.

Let M be a finite free ^-module. Then M*®M and M®M* = (M*)*®M* are
coalgebras (see Section 3). It is easy to see that the trivial twisting τM M*: M®M*->
M*®M is an anti-homomorphism of coalgebras. Consider an Λ-coalgebra A and a
coaction ωM: M-»M®y4. Then, the composite map cfM°τM M*: M®M*^>A is an

anti-homomorphism of coalgebras, and yields a left comodule structure of M*. The
left ^-comodule M* is called the .R-dual of the ,4-comodule M. For another right
^4 -comodule TV with finite ^-module structure, the identification (M®7V)*~M*®7V*
is an isomorphism of left ^4-comodules. Similarly, the /?-duals of left y4-comodules are
defined, and we have

LEMMA 5.8. Let (V, βv)eobW@R. Then SτVtV+\ S(Vx Vv)^S(Vy x F) is an
isomorphism of algebras, and is an anti-isomorphism of coalgebras.

PROOF. Since τκ>κ*e^J^Λ(Fx F v , F v x V) is an isomorphism, SτKfK» is an

isomorphism of algebras. Since τVtV* : F® F*-^F*®Fisan anti-homomorphism of
coalgebras, and S(Vx F v ) is generated by elements of degree one, SτVtV* is also an
anti-homomorphism of coalgebras. Π

Note that E= Vx F v is the internal End of V. Hence, TV* is a right ^-comodule,
and j5v, *β = (β v)-1 are homomorphisms of SΈ-comodules. So T'V9 /\Ύ and ^'Fare
Sls-equivariant graded YB bialgebras. With the anti-coalgebra algebra homomorphism
SτVtV* these algebras are viewed as left SE v -equivariant graded YB bialgebras. Taking
the dual comodules of each degree, the graded duals (ΓίF)t, (/\Ψ^ and DV=(SΎ^
are (right) ^-equivariant graded YB bialgebras. It is easy to see that the natural
identification (T*vy~TV of graded YB bialgebras is also an SE v -comodule iso-
morphism. Hence, DkV is a subcomodule of V®k via the injection Δ : DkV^>V®k.
Since φλv\ /\V-+(fcvy and Φsv : SF-^Fare induced by TV~(TΎy (see Pro-
position 5.2), these maps are SEy -equivariant.

REMARK 5.9. Since β~ l is an SE v -comodule map, TV 1

9 /\V ~ : and SV ~ 1 have
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SE-comodule structures. Clearly, the identification TV^TV'1 is an isomorphism of

both algebras and S^-comodules. Let us compare /\V and /\V~l. They are the

quotient algebras of TV= TV'1 defined by the same ideal (Ker(l -β)) = (Ker(l - β~ *)).

Hence, (/\V9φ^v) and (/\V~l

9φ~j^y-ι) are isomorphic as SE v -equi variant YB

algebras. For each k > 1 , the image of the coproduct maps Im Δ(ffi= ImQ] σe&k( — β) (σ))

and Im J(^-ι=Im(Xσ6Sfc(-j8~1)(σ)) agree. It follows that (J\V9 φ^v) and (/\V~\

φ^V-0 are als° isomorphic as SE v -equivariant YB coalgebras. But they are not
isomorphic as YB bialgebras in general. To illustrate this, consider Jimbo's YB triple

(V9 β, γ) of type A$Ll9 and compare the maps

Λ2^— V®V^-+/\2V and ̂ K'1— K-1®K-1-^->Λ2^"1

The first is the multiplication by 1 +q2, while the second is multiplication by \+q~2.
Similar facts on symmetric algebras and divided power algebra should be noted.

PROPOSITION 5.10. Let V=(V9βv,yv) be Jimbo's YB triple of type A(^11 and
E=(E, βE, yE) be as in §4 Example (2). Then we have:

1. For any fc>0, the comultiplίcatίon ^(/\E ^ a split injection. Hence, we have
(/\*EY as graded ΎE-bialgebras.

2. A(SE} '. SkE-+ TkE is infective if R = Z[Q, β"1], where Q is an indeterminate.

PROOF. 1 . We define a map pk : E®k -> /\kE by

l' O Γ Λ > Λ + l

(otherwise).

Then Pfco^(y\l=id^k£. Hence, zl(^ splits. The second assertion is a consequence of
Proposition 5.2.

2. We may localize, and assume that R = Q(Q). We define a map πk:
by

(if *hih<ih+l9 oτih = ih+1

0 (otherwise),

where ulj. = t{h\(ih9jh) = (l9 /')})• Then πkoΔ(sE) = idSlfE. Hence Δffi is an injection.

D

Assume that R is a field. Since (S2K)* = (Coker(l -0))* is identified with D2Ύ=

Ker(l -'jS), the Koszul complex of the quadratic algebra SV defined in [26] is nothing
but SV®(/\*Vy. The boundary map is the composite map
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where A is the abbreviation for the map

projΘ1 t

and m is the product in 8V. If SF is a (homogeneous) Koszul algebra (see [28]), then
SV®{fcVy is a resolution of the left SF-module R = SV/(V). If F=(F, jS, y) is Jimbo's
YB triple of type A$Lί9 then SV®(/\*V)* is rewritten as SV®f\V, and the boundary
map is described explicitly as

k

(5.5) d(a®uiίA - - - /\uik)= £
j=ι

In this case, SK is a Koszul algebra [32, Theorem 5.3], and the Koszul complex
SV®/\Vis acyclic.

REMARK 5.11. Let Kbe a YB pair. By the discussion in the proof of Proposition
5.6, the dual of the projection TkV^SkV is naturally identified with the inclusion

6. Schur modules and Weyl modules. Throughout this section, (K, βv) is Jimbo's
YB pair of type A^L^ (cf. (1.2)) over the base ring R determined by a unit qeR.

For (infinite) sequences of integers λ = (λl9 λ2, . . .) and μ = (μl5 μ2, . . .), we define

the sum λ + μ to be the sequence (λ^ +μl9 λ2 + μ2, - - •)> and we define k λ to be the
sequence (k λl9k λ2, . . .) for keZ. We also denote supp(λ) = {ieN\ A f /0}. We will
denote by Ω+ the set {λ: a sequence of integers | v /e TV, A t >0 and ίf(supp(A))<oo}. For
λeΩ + , we define the length of λ by *f(Λ) = maxsupp(Λ,), and the degree of λ by | λ | =

ΣίeN Aj.When λ = (0,0, . . .), we define t(λ) = 0. We set Ω" = [λeΩ+ | v/eΛ^^> A ί + 1} and
call an element of Ω~ a partition. For any >ieΩ+, its transpose Γis defined to be the
partition which satisfies ^^^{jΈNlλj^i} for any /eΛf . It is easy to see that (Γ)~ is
the partition obtained by rearrangement of the sequence λ in non-increasing order.

We introduce a lexicographic order < into Ω+ . Namely, for two elements λ and

μeΩ+, we say that λ>μ when there exists some j such that λj>μj and λi = μf for any
i<j. With this ordering, Ω+ is a totally ordered set.

We will denote the partition (0, 0, . . .) of degree zero by 0.
For λ, μeΩ + , we say that λ^>μ if and only if λ^μi for each ieN. It is clear that

ID is an order and λ ==> μ implies λ > μ. It holds that λ =5 μ if and only if J=> μ. For /I,

μeΩ~, we say that λ/μ is a sA ew partition, if

DEFINITION 6.1. The diagram (or shape) Δλ of an element A e Ω + is the set
{(/,/) e W2 1 y'<Aj. We use the convention as in the case of matrices, namely, the row
index / increases as one goes downward, and the column index j increases from left to

right (see Figure). The skew shape of a pair λ, μeΩ+ with A=>μ is Aλ/μ : = Aλ\Aμ.
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^(2,3,2)

FIGURE.

Clearly, Aλ/0 = Aλ. So we will always adapt the terminology for skew-shape (or
skew partition) to the terminology for shape (or partition) by letting μ = 0.

DEFINITION 6.2. Let X be a set and let λ, μeΩ+. We define Ύabλ(μ(X) to be the
set Map(JA/μ, X). An element of Ύabλ/μ(X) is called a tableau of shape λ/μ with values
in the set X. For Se Ύabλ/μ(X), we say that S is a Young tableau, if Xis the set [1, \λ\ - \ μ |]
and S is a bijection.

Pictorially, a tableau SeΎabλ/μXis expressed as an array of elements in A'in which
S(i,j) occupies the intersection of the z-th row and they-th column. For example, if
λ = (4, 3, 3), μ = (2,1) and

6 3
S= 1 4 ,

5 2 7

then S is a Young tableau, and S(3, 2) = 2.

DEFINITION 6.3. Let Fbe a totally ordered set. A tableau SeΎabλ/μ(Y) is said to
be row-standard if the rows of S are strictly increasing, i.e., if we have S(ί, μ/+1)<
S(i, μί + Ί)< - - - <S(i, λt) for any z. The tableau S is said to be column-standard if the
columns of S are non-decreasing, i.e., if for all \<j<λ± we have S(iJ)<S(i+lJ)
whenever (z,y) and (i+1,7) are both in Δλ/μ. S is said to be standard if it is both row- and
column-standard. We denote by RowΛ/μF(resp. StA/μF) the subset of Tabλ/μF consisting
of all row-standard (resp. standard tableaux).

DEFINITION 6.4. A tableau ΓeTabλ/μ(F) is said to be co-row-standard if the
rows of T are non-decreasing, and co-column-standard if the columns of T are strictly
increasing. T is said to be co-standard if it is co-row- and co-column-standard. We
denote by CorowΛ/μF (resp. Costλ/μF) the subset of Tabλ/μF consisting of all co-row-
standard (resp. co-standard) tableaux.

Let 2, μεΩ+ with λ=>μ. We define an element χλ/μ in SUMμ| as follows. First we
introduce a lexicographic order into the set Aλ/μ. We define O',y)<r0'>/) if *'<*'', or /=/'
andy</. Since <r is a total ordering, we have a unique order-preserving bijection
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αr,λ/μ : Π> | Λ l~lμ |]-*C4λ/μ> <r) Secondly, we introduce another lexicographic order
into Aλ/μ. We define (ij)<c (/',/) if/</, orj=jf and /</'. We also have a unique order-
preserving bijection α C j A / μ : [1, |/l|-|μ|]->(zlλ/μ, <c). We define χλιμ: = a~yμ°&r.λιμ.
Here we show an example.

EXAMPLE 6.5. Let λ = (5, 4, 2) and μ = (l, 1). The permutation χλ/μ is described as
follows:

The permutation w( in Proposition 4.2 is nothing but χ(/ 0.

DEFINITION 6.6. For any λ, μeΩ+, we define

when Λ,=?μ, where s is a sufficiently large integer. If A^μ, they are all 0 by definition.

Note that Tλ/μVis naturally isomorphic to Γ ) λ |_ j μ |Γ .

DEFINITION 6.7. Let λ/μ be a skew partition with S(λ/μ) = s and λ± = t. We denote
the composite map

p® ®/)

Sχ,pV= 5Γl _ Al K® ® S^-fcF

from /\λllίVio Sχ/fiVby dλlμ(V), and call it the Schurmap (cf. [4]). The image lmdλlμ(V)
of the Schur map is denoted by Lλ/μV, and is called the Schur module of V with respect
to the skew partition λ/μ.

By definition, dλ/μ(V) and Lλ/μV are the usual Schur map and the Schur module,
respectively, when <jr=l . Note that (q~2β)(χ^μ) in the definition can be replaced by

β(y.λ,μ}, (- 0)(XΛ/μ), or (-1~2β}(Xλ/μ) for the purpose of defining Lλ/μV, since q is a unit
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(using β(χλ/μ) might be the simplest; however we use (q~2β)(χyμ)9 since it is more
consistent with the notation in [14] (see §8)). It is easy to see that dλ/μV is an SEy-
homomorphism, and Lλ/μVis an 5£v-comodule. We denote dλ/0(V) and Lλ/0Vby dλ(V)

and LλV, respectively.

We set Y(σ) = {uσl< <uσN}, the ordered basis of V for σeSN, and X=

{w l 9 . . . , UN} its underlying set.

DEFINITION 6.8. Let λ/μ be a skew partition with / = /(Λ,/μ) and 7=/(I/μ), and

abλ/μX. We define

ξs = S(l, μl + 1) Λ Λ 5(1, A!>® ' ® 5(/, μ,+ 1) Λ Λ 5(/, λ^e/\λlμV,

\,l) S(λ1, l)® ®S(μ?+l,?)'-S(fyJ)eSχιμV,

i + 1)® * 05(1, Λ,χ)® * * ® 5(/, μ^+ 1)® * ® 5(/, λ^)e Tλ/fίV ,

l, I)® - - ®5(Γ1? 1)® ®5(μ/+l,O® ®5(I/, OeΓj/ / 2F.

For σ 6 6 ,̂ we set

It is obvious that /\λlμY(σ) and the set {ηs\ SeΊabλ/μY(σ), S is column-standard}

are bases of y\Λ/AίKand Sχ/βV, respectively, for any σe SN. It follows that ζs —
 τ(%λ/μ) ' Cs>

where τ is the trivial twisting. In the rest of this section, we sometimes tacitly identify
Tλ/μV with Γ ) λ |_ | μ |K. In such an occasion, we also identify SeTabΛ/μ^ with
S°%r,λ/μeMap([l, ΛΓ|, X). For an arbitrary totally ordered set Y and skew partition

λ/μ, we introduce two (pseudo-) orders into TabA/|ίF, as follows:

DEFINITION 6.9. For a skew partition λ/μ, laN, totally ordered set F, Y0^Y
and 5eTabΛ/μF, we define

DEFINITION 6.10. Let S and 5; be elements in the set Ίabλ/μY. We say that S<S'
when it holds

for any /e[l, ^(A/μ)] and 76 F, where (—00,^] denotes the subset {ze F|Z<J} of F.

We say that 5<lexS" when 5 = 5' or 5oαr ,A/μ(/)<^/ o αr ,λ/μO)» where 7 is the minimum
of the numbers i such that 5oaraM(0^5'°ar)A////). We say that 5<5r (resp. 5<lex5')

when 5<5' and 5^5r (resp. 5<lex5' and 5=^5').

Note that < is a pseudo-order for TabA/μF, and <lex is a total order of TabA/μF.
The restriction of < to RowA/AίFis an order, and 5, 5'eRow^F, 5<5' imply 5<lex5'.
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EXAMPLE 6.11. Let A = (3, 2), μ = (l), F={1<2<3}, and S19 S2 and S3 be as
follows:

• s- l 3 s- 2 2 s- 3 l

Sl~22 ' Sl~l 3 ' S*~22

Then we have S^<S3< S^ since £3 is obtained by row-permutation on the entries of
Sx . We have S2 ̂  ̂  :£ S2 ̂  S3 ̂  S2, since «u^

and n{1}(51,{l,2}) = Λ{1)(S3, {l,2})=l<2 = n{1}(S2, {1,2}). Since S1(1,2)=1<S2(1,2)
= 2<S3(1, 2) = 3, we have S,<lexS2<lexS3.

Returning to the situation X= {ul9 ..., UN}, we denote S<σS' (resp. S<ltXtffS') for
5, S'eΎabλlμX, when S<S" (resp. S<lexS") with S, S' viewed as elements of Tabλ/μ7(σ).
We will omit the subscript σ if σ = id. Hence, S<Sr (resp. 5<lexS') and S>ωoS' (resp.

S>ιex, ωoS") are equivalent, where ω0eSN is the unique element with maximal length.
For A: e TV and pe Sk, we define the decomposition of p by induction on fc. We let

Pi=(l 2 p~1l), the cyclic permutation. Since ppf 1 (l)=l, we may assume that

p p f 1 e ® k _ 1 . Let ppΓ 1 = Pfc- ι " ' "P2 ^e tne decomposition of ppf 1 . We define the
decomposition of p to be p = Pk-ι" 'Pi- Note that this decomposition is always a
reduced expression.

LEMMA 6.12. Let λ/μ be α skew partition, and SeΎabλ/μY. Then we have

β(Xιl$s = <I*ζS+ Σ cs.ζs. (cs.eZlq,q-lD,
S'>S

where by q* we mean some power of q.

PROOF. We set k = \ λ \ — \ μ |, and proceed by induction on k. We denote by μ' the
unique partition such that Δλlμ, is obtained by removal of the box αc λ/μ(l) from Aλ/μ.
We denote χ^(l) by d(in Example 6.5, αc>λ/μ(l) = (3, 1) and rf=8). If the decomposition

of χλ/μ is χλ/μ = pk-ι'-p2Pι, then we have pk-i'-p2 = Xw> with the natural
identification of ® k _ι with the isotropy group of 1 in ®k. Hence,

^ o [τ(pΓ ̂

where we identify TλlμV with V® Tλ/μ,Vvia the isomorphism τ(p±). By the remark after
Definition 6.8, it suffices to show that we have an expression

τ(χλ-/μ

1)jS(χλ/μ)ζs = ̂ ζs+ Σ cs,ζs. .
S'>S

By the induction hypothesis, it also suffices to prove that we have an expression

s = ?*Cs+ Σ cs.ζs .
S'>S
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We set π^σ -σd.l for 1 <i<d— 1, where σ, is the transposition (jj+ 1). Note that

pί = π1. To prove that we have an expression (*), we will show that

(**) 0(*i)fS = Σ <#*</) (c\eZ[q9 q~^ , 4 =**)

for any / e [1, J— 1], where the sum is taken over all subsequences /= (iί9 /2, . . . , ίh) of

(i,i+l,...,d— 1) such that Sfa) < S(i2) < < S(ih) < S(d). The empty subsequence is

denoted by 0. For such a subsequence /, let Ji = (jι> >Jd-h-i) be the complementary
subsequence of / in (/, / - h i , . . . , d- 1). The tableau S/CO is defined by S'i(I) = σjί -
σjd-h-i ' S( = s°σjd-h-i " "σjι) We s^a^ Prove (**) by descending induction on i. For
each subsequence 7= (/15 . . . , 4) of (/+ 1, . . . , J— 1), we have

(if

by (1.3), where we assume that /Ί = rf when /is empty, and /' is the sequence (/, iί9 . . . , /Λ).
So (**) holds by the induction hypothesis. Moreover, we have

πf 1 SKI) = πΓ+\σtSKI) = πΓ+\S'i+\(I)

and

πΓ1 5;(/0 = πΓ+

1

1^πί+1πΓ+\Sί(/') = (/ d)πΓ+\S'i+1(I) .

Since (π£Vι ' S'i+1(I))(ί) = S(i)>S(iί) = (π^+\S'ί+1(I))(d) and αr>A/μ(/) lies in an earlier row

than the row in which αr A/μ(ίf) lies, it is easy to see that πί~
1iSf (//)<πίVι5'i + ι(^) (cf [4,

Lemma II. 2. 14]).
Using the descending induction again, we have pϊl - S{(0) = S>pϊ1S'1(I) for any

non-empty /. By (**), we have an expression

which is of the form (*). Π

Let k>0 and (il9 . . . , ίk) be a sequence with 1 <i1 < - <ik<N. Then by Lemma

5.3, we have

σe Sk

For a skew partition Λ/μ and 5eRowA/μ(ω0), the image of ξs by the coproduct
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Δ:/\λlμV-*TλlμV is of the form ?*Σσ6sA_μ(-?)~'(<r)ίσs, where ω0eS* is the
permutation of maximal length. Note that σS>S, σS<S, and σS^S for any

PROPOSITION 6.13. Lei λ/μ 6e α sfcew partition. Then Lλlμ 7(ω0) = {rfA/μ( F) (ξs) 1 5 e
StA/μy(ω0)} is linearly independent.

PROOF. We denote by y\'A/μ V (resp. S^β V} the submodule of /\λ/μ V (resp.
generated by {ξs|SeStA/μy(ω0)j (resp. {7/s|SeStA/μT(ω0)}). We denote the composite
map

by //, where /? is the projection via the standard basis {jfs|SeTabA/μy(ω0), S is
column-standard} of S^βV. Since both /\λjμV and Sjr/μ^ have bases indexed by the
same totally order set (StA/μy(ω0), < lex> ωo), we can express H by means of a square
matrix with respect to these bases. It suffices to show that this matrix is upper triangular
and each diagonal entry is of the form q*. By Lemma 6.12 and the preceding observation,
we have an expression

for *Sί6Stλ/μΓ(ω0). For each S", we have ηs> = q*η(sΎ, where (S")° is the column-
standardization of S" with respect to the order of F(ω0). Hence we have

#«s) = ?*ίs+ Σ c[SΊΎ(sr.
S'>S,S'*S,(S')°eSU/μY(ωo)

If 5" appears in the sum and S'<S, then S' is not row-standard. Hence S"^(S")0, since
(S")° is row-standard. So we have (5")° < ω S' < ω S. If S' > 5, then we have (5")° <ωS, too.

D
ψ

For />!, we denote the sequence (0, . . ., 0, 1, 0, •) by εί5 and we define
α. = ε. — g. + 1. For a skew partition λ/μ, we define the subset Sπ(λ/μ) of Ω+ by:

1-^ and v =

where 7 = A — μ.

DEFINITION 6.14. Let λ/μ be a skew partition, and veSπ(λ/μ). We have
v = λ — μ + r - at for some r, ί>0. Then we define the ftox mα/? DI/μ: /\vV-+/\λ/μV

 to

be the composite map
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l(χ) (8)l(χ)D®l® ®l

where y = λ — μ and Π is the composite map

Λ*+rr®Λ*+ι-r^^Λ*r®^^

The sum of these box maps ΣvesD (λ/μ)Λv^-»Λλ/μ^ i s denoted by Oλ/μ.

LEMMA 6.15 (cf. [4, Lemma Π.2.9]). Let λ = (λl9 λ2) and μ = (μ^ μ2) be partitions
with λ=>μ. We set y = λ — μ. Let a and b be non-negative integers with a + b<λ2 — μl.

Then the image of the composite map

is contained in Im DA/>

PROOF. We use induction on a. If 0 = 0, then we have (yί+γ2 — b, b)eSπ(λlμ),

and D(α,ί,) = D(//ίί

+V2~ί>'5) by assumption. So the assertion is clear. We consider the case
α>0. For each /e[0, a], we denote by Δ(ί) the composite map

Then, we have a commutative diagram

since m is a homomorphism of coalgebras. Note that D(α,6) is nothing but the
composite map
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A(a)®\

On the other hand, the image of the composite map

10m

is clearly contained in Im DAM- Hence, it suffices to show that the image of the

composite map

, 4(0 ®1 ,

is contained in ImΠλ/μ f°Γ /e[0, 0—1], because D(β,b)=/β and
by the commutativity of (*). Consider the diagram

The upper square commutes, since (f\V, φ/\v) is a YB coalgebra. Since φ/\v equals

( — q2)*ψ/\v on Aα-i^®Λv2-α + i-b^ tnc lower triangle commutes up to unit thanks
to Proposition 4.11 (1). Together with the associativity of the algebra /\V, these

commutativity of the diagram above yields that/] is a unit multiple of the composite map
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whose image is contained in Im Πλ/μ by the induction hypothesis. Π

We emphasize that the proof above is a slight modification of the proof of [4,
Lemma Π.2.9]. Similarly, we can prove the following lemma using the idea of the
proof of [4, Proposition Π.2.8] and the properties of YB bialgebras /\V and SV from

§4.

LEMMA 6.16. Let λ/μ = (λί, A2)/(^i> μ2) be a skew shape consisting of two rows,
and veSπ(λ/μ). Then, the composite map

is zero.

The proof is left to the reader.

LEMMA 6.17. Let λ/μ be a skew partition, and v e SΏ(λ/μ). Then the composite map

s zero.

PROOF. We set v = λ-μ + t-χk, λ+ =(λ,, . .., λ^J, μ+=(μι, ...,Λ-ι), λ° =
(λt,λt + 1), μ° = (μt,μt+ι\ λ~=(λt+2,...,λs), and μ~ = (μt+2, . . ., μs), where s =
S(λ/μ}. We have a reduced expression χλ/μ = ρ - χλ+/μ+ ' χλo/μo χλ-/μ- with unique pe

s < | A + l - | μ + l . U 0 l - | μ ° l . U - | - | μ - | ) β g.̂  (βV, φ f ^ v ) is a YB algebra, this Schur map

dλ/μ(V) coincides with the composite map

λ-lμ- V

where m is the restriction of the multiplication TλίSV® TλίSV® TλlSV^> TλίSV defined
in Proposition 4.2 (which agrees with mfγl°φsv(w), where msv is the multiplication
SV®SV®SV^SV and weβ3λl is given by w(U1+y) = 3y + /-2 for z = 0, 1,2 and
7=1,. . . , A j . Observe that the restriction of φsv(w) to S^+/ft+ V®S%o/μoV®Sz-iβ- V is
induced by (q~2β)(w) : Γj+//ϊ+ V® T^ΓμQV® T%-,μ- V^> Tχ/βV). On the other hand, the

box map ΠI/μ ^s nothing but 1 (x) ΠIo/μo® 1, where v° = (vί9 vί+1). Therefore, the lemma
is clear by Lemma 6.16. Π

LEMMA 6.18. Let λ/μ be a skew partition, σ e ©N, and S e Rowλ/μ ̂ (σ)\Stλ/μ Y(σ).
Then, there exist S(, . . . , S'r e RowA/μ Y(σ) (re TV) with S[<σSfor each ιe[l, r] .SMC/Z
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λiμ for some CiEZfaq-1].

PROOF. The proof is quite similar to that of [4, II. Lemma 2.15] (the case q=\\
so we only point out some non-trivial differences. The proof in [4] depends on the fact
corresponding to (2.3) and (2.4) for the case q=\, while we can use these without much
problem, since + q* is a unit by our assumption. It also depends on the following fact:
(*) Let s,ίeN and /15 . . . ,z s + f be distinct integers in [1,7V]. Then, the image of

utί Λ Λ uis+t by the map A(ffi: /\t+tV^f\*v®f\tv ecluals

Σ ± ι, Λ

(for the case q=\}.
Let us prove (*). If z\ < <is+t (this case corresponds to the case σ = id), then

by Proposition 4.8 and (5.4). The general case follows from (2.4). Since the coefficients
in the sum are units, we can use (*). We have generalized [4, Lemma II. 2. 9], which
is used in the proof, to Lemma 6.15, and we can use this generalized version. We leave

the complete modifications to the interested reader. Π

THEOREM 6.19. Let λ/μ be a skew partition. Then the Schur module Lλ/μV is an

R-free module with LλίllY(σ) = {dλfμ(V)(ξs)\S€StλιμY(σ)} its free basis for any σeSN.
The sequence of SEV -comodules

<«) Σ Λ -̂̂ Λ -̂̂ Lî r— o
veSD(A/μ)

is exact. The Schur module Lλ/μV is a direct summand of Sχ/μV via the natural inclusion,
as an R-module.

PROOF. Clearly, dλlμ(V) : /\λ/μV^LλlμVis surjective. With any a=^Se^^Y(ff^se

/\λ/μV, we associate a non-negative integer N(ά) = ΣCs^o^hi(S\ where ht(S) is the height
of S with respect to the order <ιex>σ of RowA/μΓ(σ). We claim that a can be expressed

in the form « = ̂ o + ΣsestA γ(σ)csζs with βo eImΠλ//r We prove this by induction on
N(a). If each S appearing in the sum with cs^0 is standard, then there is nothing to

prove. So we may assume that some S is not standard. For such an S, we have an

expression ξs = Σιcsi ' sί + ao f°Γ some αo elm Πλ/μ

 and Si <σS by Lemma 6.18. Then
we have a = csaQ+(a — csa

fQ), and N(a — csa
fQ)<N(a). So the claim is now clear by the

induction hypothesis. Since we have dλ/μ(a) = Σs

csdλ/μ(ξs) by Lemma 6.17, Lλ/μY(σ)
generates Lλ/μVfor any σ. By Proposition 6.13, Lλ/μΓ(ω0) is a free basis of Lλ/μV. Since

# Lλ/μ Y(σ) = %Lλlμ F(ω0), the first assertion is now clear. If a 6 Ker dλ/μ, then we have

0 = ̂ λ/μ(fl) = Σscs ' dλ/μ(ζs)- Since dλ/μ(ξs) are linearly independent, we have c's = Q for all
S. Hence, a = a0εlm Oλ/μ, and the second assertion is proved. As we have seen in the
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proof of Proposition 6.13, Lλ/μV+Sz/βV=Sz/β, where S'faV is the Λ-span of the set

{ηs\ 5'eTabA/μ7(id), S is column-standard but is not row standard}. This sum must be

a direct sum by the first assertion, so the last assertion is now clear. Π

COROLLARY 6.20. Let f: R-*R' be a homomorphίsm of commutative rings. Then

we have an isomorphism of S(E') v -comodules Lλ(R ®RV}^R ®RLλV, where

E' = R ®RE, and R ®RV is Jimbo's ΎB-pair obtained by base change.

PROOF. Note that /\λ/fί and £v /\v are compatible with base changes, and that

Πλ/μ is defined over Z[g, β"1], where Q is an indeterminate. By Theorem 6.19, we

have an isomorphism Coker DA/^ — Lλ/μV. Since cokernels are compatible with base

change, the assertion is clear. Π

We shall now define the Weyl modules of V.

DEFINITION 6.21. Let λ/μ be a skew partition. Let d'λ/μ(V) be the composite

map

It is called the Weyl map. We denote the image Imd'λ/μ(V) of d'λ/μ(V) by Kλ/μV and

called it the Weyl module of V with respect to the skew partition λ/μ.

With the natural identifications /\x/μV=(/\χ/β

tV)* and Dλ/μV=(Sλ/μ

tV)*, we can

identify d'λ/μ(V) with (^//F))*, since χ^μ = χλ/μ so that ((q-2tβ)(χx/p))* = (q-2β)(χλlll).
Since L^^V is a direct summand of 5λ/μ

fK, we have a standard isomorphism

KλlμV~(LχiβV)*. In particular, Kλ/μVΊs a free ^-module with the same rank as Ar/μF.

To describe a presentation and the standard basis of Kλ/μV, we need additional

notation. We define Q£ = (α e Ω + \ \ α | = k} for k > 0. We denote the dual basis of X by

'X={vl9...,vN}. So we have a basis {ι;α |αeΩ fc

+, t(u)<N} of Sk

lV for fc>0, where

ιf = vll - -4*. The dual basis {w(α) | αeΩ f c

+, /(α)< AT} is a basis of DkV, where w(α) is the

basis corresponding to iΛ For ι'e[l, N~\ and fc>0, we denote uk'εi by wf}. Since the

product of DV is the dual of the coproduct of SrK, we have w* = [fc]^-2M$ k) in DfcF by

Lemma 5.4 applied to SΎ, where u{ on the left hand side is u\1}eD1V= V. We call uf]

the A:-/ A divided power of w f.

LEMMA 6.22. Let k, α am/ v be as in Lemma 5.4. Then we have u(Λ) =

If σ 6 Sa, //ιeτ2 we have

i/i
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PROOF. The second assertion follows immediately by Lemma 5.4, since the product
of DVis the dual of the coproduct of S'V. To prove the first assertion, we may assume
that the base ring R is Z\jq, #-1] with q transcendental over Z. By the observation

above, we have

/ N
,.α _ t.αι . . . ΛN _ / T~ίu — u± UN —i l l

\ i = l

On the other hand, we have wα = (Πi[αί]!r2)w(α) by the first assertion. Since
is a non-zero-divisor, we have u(Λ) = u(^} -U(^N} as desired.

For a skew partition λ/μ and SeΎabλ/μX, we set

where s = S(λ-μ), oi(i) = (^, . . . , α$) is given by α<° = *{/'! S(iJ) = ut} for te[l9 ΛΓ], and
σ(ί) is the unique element in Sα(l) such that S(i, μt + σ(ί)y ) is they-th element in the sequence

(1*™,...,N*{»). It is clear that {ξ'(S)\SeCorov/λlμY(p)} is a free basis of Dλ/μK for
any

THEOREM 6.23. L^/ λ/μ be a skew partition. Then the Weyl module KλlμV is an
R-free module with {df

λ/μ(V)(ξfs)\SeCosiλ/μY(ρ)} as its free basis for any peSN. The
sequence of 5f£'v -comodules

is exact, where Π Ά/μ is defined similarly to Dλ/μ The Weyl module Kλ/μ is a direct summand
of /\%jμV as an R-module via the natural inclusion.

PROOF. Since the inclusion KλjμV ^ /\%jμV can be identified with the dual of the
Schur map d^^V) : /\ι//F-»Lι//F, the last assertion is trivial. The rest of the theorem

is proved similarly to Theorem 6.19 (see also the proof of [4; Theorem Π.3.16]. To
translate this proof into our context, we need Lemma 6.22). We only remark that there

is no need to prove the fact corresponding to Proposition 6.13, since we already know

that Kλ/μ V is free of rank #CostA/μ Y(p) = % Stj//2 Y(p). D

COROLLARY 6.24. Let λ/μ be a skew partition, and R — > R' a homomorphism of

commutative rings. Then we have an S(E'Y -comodule isomorphism Kλ(R'®V)~

R®KλV, where E' = R®E.

7. Universality of Weyl modules. Throughout this section, V= ( V, βv, yv) denotes
Jimbo's YB triple determined by a basis {w l 5 . . . , UN} and qeR* , and E=(E, β, y) is as

in Example (2) in §4.

Let A be an ^-algebra (resp. ^-coalgebra). We denote by A-mff (resp. mff-Λ, resp.

^-cff, resp. cff-A) the category of left ^-modules (resp. right yl-modules, resp. left
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^4-comodules, resp. right ^-comodules) which are free of finite rank as ^-modules. Let

C be an Λ-coalgebra which is free of finite rank as an ^-module, and M a C-comodule.

The map C*(x)M-»M given by α(x)wι->^ι.ev(α(x)wp))wί1) is a left action of the dual
algebra C* of C on M, where ω(ύ) = £. u\l) (x) u\2\ This correspondence is an equivalence
between the category of right C-comodules and the category of left C*-modules, and

we have an equivalence cff-C^ C*-mff. We will sometimes identify cff-C with C*-mff

by this correspondence. The corresponding notion of the Λ-dual ( )* = HomΛ( — , R):

C*-mff->mff-C* is the R-dua\ cff-C-* C-cff (see §5).
Since the coalgebra SEV is decomposed into the direct sum SEV = Q>k>0SkE

v , we

have a decomposition M— 0 fc>0 Mk for any 5£'v-comodule M, where Mk is the image
of the map

Clearly, Mk is an Sj^-comodule. We call Mk the degree k component of M. The co-
module M is said to be locally free of finite rank when Mk is free of finite rank as an R-
module for each fc>0. We denote the category of locally finite free right (resp. left)

SE v -comodules by 9 (resp. Ά). It is clear that 9 ~ Y[k > 0 cff-SkE
 v and Ά ~ Y\k > 0SkE

y -cff .
The categories 9 and & are additive, and are closed under extensions and tensor products.

Taking the product of the dual ( )* : cff-Sfc£
v ->Sfc£

v-cff, we obtain the graded dual

( Ί* : = ΓL>o( )* : &-*&• The graded dual is a contravariant equivalence of categories,
and preserves tensor products. Similarly, the graded dual Ά-+0* is also defined, and is

also denoted by ( )f. It holds that ( ) τ o( )t = Id.
The dual algebra of SkE

v is (SkE
v)* = DkE. Since the projection (Ev)®k ^SkE

y

is nothing but the product, DkE is a subalgebra of E®k~EndRV®k via the coproduct

Δ(£l By Proposition 5.6, we have £fc£~(£®*)®*~EndsJF®k).

DEFINITION 7.1. The dual algebra DkE=End%^V®k of SkE
v is called the Schur

algebra of degree k.

We denote the dual basis of {uί9...9uN} by {vί9...9vN}. The ^-linear map
p: V->V* given by p(u^ = v{ is an element of W@R(V, Ύ)^^^R(V-\ Kv). Clearly,
we have p* = p~1. Since SEV and S*E are the quotients of the same bialgebra TEV = TE
defined by the same biideal (Im(l — j8£)) = (Im(l — ̂ E)), they are isomorphic as
bialgebras. The composite map

is an anticoalgebra algebra isomorphism, and is denoted by tr. Since ((p(χ)p~1)o

τF*sK)2 = id, we have tr2 = id.

DEFINITION 7.2. The composite functor tr#o( )t : gj> ^>g> is denoted by ( )°, and
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is called the contravarίant dual, where trtf : SL -» £P is the push-forward with respect to tr.

LEMMA 7.3. (1) The contravarίant dual ( )° : ̂ -»^ is a contravariant additive
functor, and preserves tensor products.

(2) (( )°)2 = id^.
(3) p\ V-+V° is an isomorphism of SE^ -comodules. βγ is the composite map

v°®v°p 10P \v®v-^ v®v

PROOF. Part (1) is obvious. Part (2) follows easily from the fact tr2= 1. (3) The

action of D1E=End V on V*= V° is given by (ut®Vj) - vk = vk(tr*(ui<S)vj)) = vk - (w/®
vi) = δjkvi- Hence p is an isomorphism. The map βγ is nothing but *βv by definition.
Since p£®/38R(V, *V), we have completed the proof. Π

PROPOSITION 7.4. The maps Tp: TV^tr$ΓV~(TVγ, Dp:

Sp: ST-^S'K^CDF)0, /\p\ /\V-^iτ^V^(f\V)° are isomorphism of
SEV -equivariant graded YB bialgebras, "where ^'s are the usual identifications (see §5).

PROOF. The identifications ~'s are isomorphisms of SEV -equivariant graded YB
bialgebras, thanks to the observation after Lemma 5.8. Since p: V ̂ 1V is an
isomorphism of YB pairs, it suffices to show that Γp, Dp, Sp and /\p are
&E"v-homomorphisms. This is clear for Tp by Lemma 7.3. So the induced maps Sp
and /\p are S^-homomorphisms. It is easy to see that Dρ = (Sp)°, so it is also an
SEV -homomorphism. Π

COROLLARY 7.5. For a partition λ, Dλp : D^^ir^D^V^S^)0, /\λp : /\λV-+

tr*Λ/^-(ΛλJO°, Lλp: L^V-^iτ^L^V^K^Vγ are isomorphisms of SEV -comodules.
We have (K^p)° = Lχp and Dλp = (SAp)°.

REMARK 7.6. It is easy to see that j»|v, y|v e^((£v)®2, (£'V)<S)2), where (£ v)®2

is the subcomodule of the right regular representation SEsE*. It follows that SEV and
S*E are SEV -equivariant YB-bialgebras. The direct sum of Schur algebras

DE=@k>QDkE is an /^-algebra without unit. The graded duals of the left and the
right regular representations (DEDE)* and (DEDE)^ are identified with the regular

representations SE*$EV and SEsE* respectively. Since

is an isomorphism in ̂  we have (DEDE)°~SE" SE-. It follows that DEDE, viewed as

S£v-comodule, is also an SEV -equivariant YB bialgebra. The left D^-module DE~i

is identified with (S'E^v)0, and is also an SEy -equivariant YB bialgebra.

Let 7 be the ideal of SEy generated by { X i j \ i ^ j } It is easy to see that / is a
homogeneous bi-ideal of SEV . By (3.6), we have 5f

JE'v//=5'(0f=1^, τ), where /,. is the

image of xu in SE" //, and τ is the trivial twisting. Let us denote by T the YB pair



508 M. HASHIMOTO AND T. HAYASHI

(Θf=ι^ήτ) The structure of ST is independent of q, and is commutative and
cocommutative. In fact, ST=R[ίl9 . . . , /N] is a polynomial ring, and each monomial

ίλ = t λ ί . . . ί λ N js gΓOUp_iike for λeΩ+ with £(λ)<N. Taking the dual, we see that

DiT^D^Tis a subalgebra of the Schur algebra DkE, and {**<*> = /*<*i>- - -t*(λN) \λeΩ^

f(λ)<N] is a set of mutually orthogonal primitive idempotents of DkT. It follows that

1=Σ/*(A), and that DkT~l\λt*
(λ\DkT)t*(λ)~]\λR.

DEFINITION 7.7. Let M e 0> and λ e Ωfc

+ with /(>!) < TV. We call the ^-module /*(λ)Mk

the weight λ component of M, and denote it by Mλ.

Clearly, Mλ is a finitely generated projective /^-module. By [6, p. 375], we have

(7.1) Mλ = t*^Mk ~ HomDkT((DkT)t*(λ\ M) - HomDkE((DkE)t*(λ\ M) ,

so that ( )A is an exact functor ((DkE)t*(λ) is projective). Since l=ΣAf* ( Λ ), we have
M= 0 AMA. It is easy to see that Mλ = {mεM\ ω(m) = m (x) /A}, where ω is the coaction
as an ST-comodule. For a base change R-+R', we have (^'(x^MX^^tx^M^ If the

prime spectrum Spec R is connected, then dimκ(K®RM)λ does not depend on the field
K or the map R-+K.

LEMMA 7.8. Let Mε0> and λεΩk with t(λ)<N. Then we have an isomorphism of
R-modules(M°)λ~Mf.

PROOF. We may replace M by Mk. Clearly, we have M*/*(Λ)~(MA)*. On the

other hand, the restriction of trf to DT is the identity map. Π

PROPOSITION 7.9. For k>0 and λeΩk with t(λ)<N9 we have:
(1) (DkE)t*(λ)~DλV as SEV -comodules.
(2) DλV is projective, and is generated by c(λ) : = w(

1

λl)® -(X)M^N) as a left
DkE-module.

PROOF. First note that the identification SEV ~SΈ maps a monomial M to M.
Hence, the identification DkE~DkE~l maps /*(A) to ί*(Λ). For ιe[l,ΛΓ], we define

φ. : F-^£'= F(x) K* by φί(Mi/) = M ι/®ι? ί. It is clear that φ^^R(V, E), and that φf is a
homomorphism of left End(K) = £'-module. Hence, the composite map

φλ: DlV=D

is a homomorphism of left D^-modules. Observe that φλ(c(λ)) = t*(λ} (cf. Lemma 6.22).

The sum ΣλΨλ' ®λ^λ^~^^k^ i§ surjective, since ^λφλ(c(λ)) = I . On the other hand,
we have rankκ(0AZ)λK) = rankΛ(/)fc£') (since the rank in question is stable under base

change, we may assume that R = C and q=l. In this case, see e.g. [2]). It follows that

ΣΛφA is an isomorphism. Since ΣλΨ* ^s mJective, and Imφλ^>(DkE)t*(λ) for each /I, we
have Imφλ = (DkE)t*(λ), and φλ: DλV^>(DkE)t*(λ) is an isomorphism. Hence, we have
(1). Now (2) is obvious. Π
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COROLLARY 7.10. Let λeΩf and S(λ)<N. For Me^ we have an isomorphism
Ψλ: Mλ^0>(Dλ, M) given by (Ψ λ(ά)}(c(λ)) = afor aeMλ.

LEMMA 7.11. Let λεΩ+ with £(λ)<N. For any σe®N, we have an isomorphism
of SEV -comodules DλV~DσλV, where σλ = (λσ-ιly - , λσ-ιN). In particular, we have
DλV~D(χΓV. For Meob^we have Mλ~Mσλ.

PROOF. The SE v -isomorphism ψDV(σ) : (DV)®N -> (DV)®N maps DλVonto DσλV.
The last assertion follows from Corollary 7.10. Π

Let λ and μ be elements in Ω+ such that £(λ), £(μ)<N. We say that μ^λ when
λ — μ is a non-negative linear combination of 0^ = 6; — ε ί+1 (/e[l, N— 1]). It is easy to
see that μ^λ implies | μ \ = \λ \ and μ < λ. For λ e Ω+ with /(λ) < N, we have λ^λ~ . For
μeΩ~ with £(μ)<N and λeSπ(μ), we have μ^λ by the definition of Sπ(λ) (see §6).

THEOREM 7.12. Let fc>0, and λeΩ^ with S(λ)<N. Then we have:
(1) μeΩ-^(μ)<N,(KλV\^=>μ^λ.
(2) (KλV}λ^R.

(3) KλV is generated by (KλV}λ as a DkE-module.
Let M be a DkE-module which satisfies:

(3r) M is generated by some a e Mλ.
Then M is a homomorphic image of KλV. Moreover, we have:

(V'}
(20

Conversely, any homomorphic image M of KλV satisfies (Γ) and (3').

PROOF. By Proposition 7.9 (2), KλV is generated by d'λ(V)(c(λ))€(KλV)λ. So we
have (3). By Corollary 6.24, rankR(KλV)μ does not depend on R nor q. Parts (1) and
(2) are well-known in the case R — C and q = 1 (see [4]). So the general case immediately
follows, since any rank one projective module over Laurent polynomial ring Z[β, Q~ 1]
is free. Now the last assertion is obvious, since ( )μ is an exact functor for any μ. Let
M be a D^-module which satisfies (Γ) and (3'). By (3') and Corollary 7.10, we have a
surjective map Ψλ(a): DλV^>M. By Theorem 6.23, we have an exact sequence

, M) .

For μεSΏ(λ), we have HomDkE(DμV, M}~Mμ~Mμ~ by Lemma 7.11. Since μ~ϊ^
and μ~ eΩk~, we have Mr =0 by (!'). It follows that HomDkE(d'λ(V), M) : Hom
M)-^HomDk£(Z)AK, M)~Mλ is an isomorphism. In particular, we have an induced
surjective map Ψλ(a): KλV^M. Now (1") and (2') are obvious. Π

REMARK 7.13. Since DV and DF"1 are isomorphic as £Ev-equi variant YB
coalgebras, we have DλV~DλV~^ for λeΩ+ . So it is easy to see that KλV~^ satisfies
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(Γ) and (3') in the theorem for λεΩ~ with £(λ)<N. We have a surjective map

Kλ V-* Kλ V ~ l . This map is an isomorphism, since Kλ V and Kλ V ~ 1 have the same rank.

Since y\Fand /\V~l are isomorphic as £Ev-equi variant YB algebras, the image K'λV

of the composite map

is isomorphic to KλV~l. Hence, we have K'λV^KλV. Taking the contra variant dual,

we have

As we will see in the next section, the study of M^-comodules is closely related

to the representations of the Iwahori Heche algebra. The Iwahori Hecke algebra $>k is

defined to be the quotient algebra

(7.2) $k

We set ί = q~2. By Iwahori's theorem, h(σ) : = t*(σ)b^ - b^(σ) is independent of the choice

of the reduced expression σ = σίl σlV(<r) of σe ®fc, where bj (1 <j<k) is the image of

bj in δfc. It is known and easily shown that §fc is Λ-free of rank k\, and (h(σ) | σe βfc}

is a free basis of §fc. By (1.4), the representation of Λ[23fc] on V®k given by (1.8) yields

the representation B : §fc -> EndΛ V
m given by B(5i) = (βv)i (l<ί<k). Since DkE=

EnddkF®fc, we have Im5cEndDkK
<8>k. Note that B(h(σ)) = (-γv)(σ) for σeSk.

LEMMA 7.14. Assume that N>k. Then, B: ξ)k-+ΈnάDkEV®k is an isomorphism.

PROOF. Since K®* = Z)(lk)K, we have an isomoφhism y(lk): (F®k)(lk)^End/>k£F®k

by Corollary 7.10. Under this identification, B:ξ>k-*V$ϊ} is given by B(h(σ)) =

(-yF)(σ)(wι® ®"k) βy (5 4X we have (-yF)(σ)(wι® ®w f c)=^~A σ )K-ιι®
σ- ιk). Hence, B is bijective. Π

8. Polynomial representations of GLq over a field. In this section, we work on a

base field K, instead of R. Throughout this section, K=(K, βv, yv) and E=(E, βE, yE)

are as in §7. A polynomial representation of GLq(N, K) is a finite-dimensional right

ST^-comodule by definition. This section is devoted to studying polynomial

representations of GLq(N, K) over a field K. Note that the categories cfi-SkE and 0*

(§7) are abelian, and that the contravariant dual ( )° is exact.

DEFINITION 8.1. For a polynomial representation M of GLq(N, K), we define a

polynomial

(8.1) χ(Af)= Σ (diiM/Jtf' #GZ|Λ, ..., *N]
Aeβ + ,<f(A)<Λr

in the variables tl9...,tN9 and call it informal character of M.
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By Lemma 7.11, χ(M) is a symmetric polynomial in tί9 ..., tN. For polynomial
representations M and N of GLq(N,K) and λεΩ+ with t(λ)<N9 we have
(M®N)λ~®ll+tl, = λMμ®Nμ,. Since ( )A is an exact functor for λeΩ+ with /(Λ)<7V,
the formal character χ is a homomorphism from the Grothendiek ring POL of poly-
nomial representations of GLq(N, K) to the ring Z[i.l9 . . . , tN~]^k of symmetric poly-
nomials. If M is an S^-comodule over the Laurent polynomial ring Z[Q,Q~l~\
such that it is Z\jQ, g-1]-free of finite rank, then χ(K®Z[Q ,Q-i]M) does not depend
on the field K nor the value of q by the remark before Lemma 7.8. Hence, for
and λεΩ~ with £(λ)<N, we obtain the following formulas:

(8.2) χ^V)=ek:= Σ V A
l < i ι < <i k<N

(8.3) x(SkV) = hk : =£M, where M runs through the monomials of degree k.
M

(8.4)

LEMMA 8.2. For a polynomial representation M of GLq(N, K), we have

This follows immediately from Lemma 7.8.
In the rest of this section, we fix fc>0, and set A = DkE. We denote the Jacobson

radical of A by /. For Me ^4-mff, (M//M )° is the unique maximal semisimple submodule
of M°. Namely, we have (M//M)° ~ Soc M°, where Soc denotes the socle.

LEMMA 8.3. Let λeΩk and/(λ)<N. Then, KλV/J(KλV)~(Soc(LχV)γ is simple
(irreducible). In particular, KλV and LχV are indecomposable.

PROOF. Let M be a proper submodule of KλV. Then, we have Mλ = 0 by (2) and
(3) of Theorem 7.12. We define (KλV)max to be the sum of all proper submodules of
KλV. We have (KλV)w*KλV9 since ((KλV)maκ)λ = Q. It follows that (KλV)max is the
unique maximal proper submodule of KλV. Hence, we have (KλV)mείX = J(KλV), and
KλV/J(KλV) is simple. By Corollary 7.5, we have (Soc(LχV))°~KλV/J(KλV). Q

For λεΩk with t(λ)<N, we denote by Fλ the simple module KλV/J(KλV).

PROPOSITION 8.4. Each simple A-module is isomorphic to Fλfor exactly one λeΩk

such that έ(λ)<N.

PROOF. In this proof, we use the lexicographic order < of the set

£N}. For O^MeΛ-mff, we define

(8.5) h(M) : φ max{Λ e Ωk \ /(/I) < TV, Mλ φ 0} .

Since O^M=0λMA and M^Mj-, the partition Λ(M) is well-defined. Since Fλ is a

non-zero homomorphic image of KλV, we have h(Fλ) = λ by Theorem 7.12. Hence,
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FλφFμ for μ Φλ. Let M be a simple A -module. By the definition of h(M), the condition

(Γ) of Theorem 7.12 is satisfied for λ = h(M). Since M is simple, the condition (3') of

Theorem 7. 12 is satisfied for any non-zero vector a e Mh(Mγ Hence, M is a homomorphic

image of Kh(M), and we have M~Fh(Mγ Π

COROLLARY 8.5. The formal character χ\ POL->Z[/1? . . ., /N]S2V is a ring

isomorphism, where POL is the Grothendίeck ring of polynomial representations of
GLq(N, K).

PROOF. It suffices to show that χ : [A-mff] -> Sym(fc) is a bijection, where [^4-mfΓ]

denotes the Grothendieck group of ^4-rnff and Sym(fc) is the module of symmetric

polynomials of degree k in tί9 . . . , tN. By [25], Sym(&) is a Z-free module with a free

basis {sλ\λeΩϊ, ί(λ)<N}. By (8.4), χ : [Λ-mff] -> Sym(fc) is surjective. By the

proposition, we have rank[yl-mfF] =rank Sym(A ). Π

COROLLARY 8.6. Let MeA-mff. Then, M and M° have the same composition

factors. In particular, We have Fλ~F°λ~ Soc(L jK) for λ e Ωk~ with /(/I) < N.

This follows immediately from Lemma 8.2 and Corollary 8.5.

LEMMA 8.7. Let λeΩ^ with £(X)<N. Then, the following are equivalent:

( 1 ) KλV is simple.
(2) LχV is simple.

(3) KλV

PROOF. KλV^Fλo(KλV)°~ίFϊoLχVzίFΪ. Hence, we have (l)o(2). By
Corollary 8.6, (1) (or (2)) also implies (3). We shall show that (3)=>(2). By Theorem

7.12, LχV is generated by (LχV)λ. Since both (L%V)λ and (Fλ)λ are one-dimensional,

LχV is generated by its simple socle Fλ. Hence, we have L%V~Fλ. Π

LEMMA 8.8. Let λeΩj^ and έ(λ) < N. Then, Fλ is absolutely irreducible.

PROOF. Since O^EndAF^HomA(K^F^^K by Theorem 7.12, EndAFλ is

one-dimensional. The lemma follows from [6, (29.13)]. Π

The rest of this sections is devoted to the proof of the following theorem.

THEOREM 8.9. Let K be afield, (V, βv) be Jimbo's YB pair of type A%lί defined

by qeKx and (1. 3), and let λ be a partition with t(λ)<N. If the product \\(ίj)GΔλhq(iJ}
of (q-analogues of) hook lengths is non-zero, then the Weyl module KλV is simple

(irreducible) and projective, where hq(i,j) = \_λi + λj — i—j+\~\q-2.

To prove the theorem, we use Gyoja's ^-analogues of Young symmetrizers [14]. For
this purpose, let us clarify the relationship between the notation in [14] and that of
ours. Our size k of the Iwahori Hecke algebra, is denoted by n in [14]. The notation

h(σ) agrees, while q in [14] corresponds to our t = q~2. To avoid confusion, we will
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stick to our notation k, (our) q and t = q~2. For λeΩϊ, our SA, S& α~|, α~|, χΛ and
χ^χ,-1 correspond to W+(X), W.(λ\ T+(X), T_(λ\ [-, + ] and [ + , -] in [14],

respectively. Hence, we have

(8.6) Be+= Σ Bh(σ)= Σ (
σ e SΛ σ e SA

(8.7) fie_= Σ (-tΓ'MBh(σ)
σeSi σeSi

where e+ = e+(Λ,) and e_ =e_(λ) are those in [14], and B is as defined in §7.

PROOF OF THEOREM 8.9. We set k= \ λ \. It suffices to show that K'λV (see Remark
7.13) is simple and projective. We define the map Φλ: SλV^DλVto be the restriction
of TNΦ: (SV)®N->(DV)®N to SλV, where Φ = ΦSV is the map which appears in

Proposition 5.2. By the remark below Lemma 5.8, Φλ is a homomorphism of

S^-comodules. We denote by κλ(V) the composite map

where d'ί(V) is the map defined in Remark 7.13. The map κλ(V} is defined over the

Laurent polynomial ring Z\Q, β"1], and is a multiplication by a scalar, say c, by

Theorem 7.12. We claim that ceZ[β, β'1] is expressed as c = Q*Y\(i j}^ΔhQ(iJ).

Assume that the claim is true. Then, κλ(V) = q*Y\hq(i,j)^Q is an isomorphism over K.
Since the isomorphism κλ(V) factors through L%V and dimx^F=dimκLj;F, we have

K'λV~L%V. By Lemma 8.7, Λ^Kis simple. Since the scalar multiplication κλ(V) factors

through DλV, the epimorphism d'ί(V)\ DλV-+K'λV splits. Since DλV is projective by
Proposition 7.9, (2), the direct summand Λ^Fis also projective, and the proof is complete.
To prove the claim, we may extend the base ring and work over the base field K= C(Q).
We still use the notation t = Q~2. We denote the maps m® ®m :

Δ® ®Δ: DλV^TλV~V®k, m®'-®m: V®k~ TχV^>/\χV, A®
TιV~ V®k, m® "®m\ Vm~TλV-+ SλV and A® - - - ® A : SλV-* TλV~ V®k by mD,

ΔD, m/\, Δ/\, ms and As, respectively. Since Φ is a homomorphism of YB bialgebras, it
holds that Φλ°ms = mD and ADoφλ = As (Φ(1k} is identified with idv®k and omitted). By
(5.1) and (8.7), we have Be_=Δ^m/^. By (5.2) and (8.6), we have Be+=Asoms =
ADoφλoms = AD°mD. Now consider the map

(8.8)

where Λ _ =A([ — , +]). Since the diagram
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®k

is commutative and the bottom row map is κλ(V), the map (8.8) is B(h_e-h_le+)2. On
the other hand, we have κλ(V) = c. So the map (8.8) equals cB(h_e_hI1e+) by the same
diagram. Hence, we have

(8.10) B(h.e.h-^e+)2 = cB(h.e_h-le+).

Since K=C(Q\ we see that A : S^V^ T^V(i>0) is injective by Lemma 5.4. It follows
that mD is surjective. Again by (8.9), we have (h,e-h^le+)V®k~K'λV^b. Hence, c is
uniquely determined by (8.10).

It is now clear that the scalar c is nothing but c(T+) in [14]. Here we recall the
value of c [14, (3.9)].

(8.11) c=-

_

Π Σ O'-
ΓT h

where m is any integer such that m>N. By [25, p. 9], we have

ΠΠO'-D
i 1=1

jhι(i,j)_ j

=/* Π

as desired, where μ = (μly . . . , μm) is given by μ~ — i for /e[l, D

COROLLARY 8.10. Assume that [_ά]t^Q for a€\\,k~\. Then the Schur algebra
A = End^k F®fc Z5 semisimple, and {Kλ \ λ e Ω^, έ(λ) < N} is a complete set ofnon-ίsomorphic
simple A-modules. In this case, the Iwahorί Hecke algebra £>fc is also semisimple.

PROOF. By the theorem, Kλ V is simple and projective for any λ e Ω^ with έ(λ) < N.
By Proposition 8.4, {Kλ\λeΩ^', £(λ)<N} is a complete set of non-isomorphic simple
A -modules. Since each simple module is projective, A = End%kV®k is semisimple.
Applying this for N>k, we see that ξ>k = EnάAV®k is also semisimple, by the double
centralizer theorem. Π
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NOTE. Gyoja and Uno [15] proved the semisimplicity of ξ>k under the same
assumption as in the corollary above (and some extra condition on the base field, which
can be dropped easily). The semisimplicity of A also follows from their result using the
double centralizer theorem.

COROLLARY 8.11. In the situation of Corollary 8.10, A = End^k V®k is isomorphic to

ΓLeΩk t(λ)<N^ndκ(KλV} as a K-algebra. We have an irreducible decomposition

(8.12) A~SkE
v~ 0 /

of A-bicomodules of A and SkE
v.

PROOF. The first assertion is a consequence of Lemma 8.8 and Corollary 8.10.
So we have SkE

v ~ ®λ(KλV)*®KλV as a ^-coalgebra, and the isomorphism (8.12) is
established. The category of finite dimensional ^4-bimodules can be identified with

(A ® Λop)-mff, where ( )op denotes the opposite algebra. By the first assertion, we have
A®Aop~YlλEndκ(KλV®(KλV)*}, and the decomposition (8.12) is an irreducible

decomposition. Π

In the next section, we will discuss the ^4-bimodule (or S^-bicomodule) structure

of SkE
y over an arbitrary commutative ring R and

9. Quantum determinants and the straightening formulas. Throughout this

section, V and E are as in §7. Let MecS-SEy. Then we have the coefficient map

cfM: M*®M->S£'V (see §3). Since cfM is a homomorphism of coalgebras, M*®M
is an SΈ^-bicomodule and cfM is a homomorphism of S^-bicomodules. The

5£"v-bicomodule M*®M agrees with the tensor product of the left S£'v-comodule
M* and the right S^-comodule M. Since the counit e of M*®M is nothing but
ev:M*®M-»/?, themap(l ®ev)o(ω® 1): M*®M->S£V agrees with cfM. It follows

that the diagrams

(9.1) 7V*®M 1(8)φ » 7V*®7V

I <P*®1 I cf

1 „ 1 "cfM

® M* <g> M! <g> ® M,
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are commutative for M, N, M1? . . . , MsGcff~SE" and.φecff-S.Ev(M, TV), where τ is an
appropriate trivial twisting.

In what follows, we identify /\*V with (/\V^ via the left SEy-equi variant graded

YB bialgebra isomorphism Φ1 : /\{V-* (A^)f> where Φ : /\V-* (f^V)^ ΐs the map which
appears in Proposition 5.2. So /\kV(k>G) is identified with (/\kV)* More generally,
we identify /\/K with (/\λV}* via the isomorphism

Φ* (x) (x) Φ*,U U

DEFINITION 9.1. For fc>0, the coefficient map cfΛ k K: f\k

tV®/\kV^SkE
y is

called the determinant map, and is denoted by detfc. For /1 = (/11, . . .,

\λv®/\λv^ SkE^ is denoted by detλ.

By the commutativity of (9.2), detA is the composite map

(9.3) /\

detλ(χ) ®det

Note that detλ is an iST^-bicomodule homomorphism.

LEMMA 9.2. Let k>0. Then, detfe is given by

(9.4) det^ Λ - Λ vik ® uh Λ -Λ ujk) =

forl<il< <ik<N and l<j\<"' <jk < N. The map det(lk) : C F)®k ® F®k -> 5'fc£'v

w surjective.

PROOF. It is easy to see that detj : 1V® V-*Ey is nothing but the identification
F*(x) V^Ey . By (9.3), det(lk) is surjective, and is given by

(9.5) det(lk)((ι;βl ® '®υaι)®(ubί®- - '®ubk)) = xaιbl - χakbk

for l£al9...,ak,bi9....,bk<N. Since m: (<y)®k-> /\kΎ (resp. A: fa'V-tCV)®*) is
the dual of A : f\kV^> V®k (resp. m : K®fc -+/\kV}> the diagram
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(9.6) m*k®Λ*v m(S)1 > /
1®Λ detfc

X T/®fc O |7V
"J V > Ofr-II/ •<—

det(lk) det(lfc)

is commutative, thanks to the commutativity of the diagram (9.1). By the commutativity
of the left (resp. right) square in (9.6) and Lemma 5.3, the first (resp. the second) equality
in (9.4) holds. Π

LEMMA 9.3 (The Laplace expansion). Let i,j>0. Then, the following diagram
commutes.

— Λ^ Î det.+j

det(U) det(ί>j)

PROOF. Since m: /^V®/\fV^ /\^}V (resp. Δ\ f^^V^ f^V^/^V) is

identified with the dual of A : Λί+;F^Λ;κ®ΛjK(resP m '- /\i^®/\jv^f\i+jv\ the

lemma follows from the commutativity of (9.1). Π

LEMMA 9.4 (cf. [4, Proposition III. 1.1]). Let k > 0 and λ e Ωk~ . For μ e SD(λ), /Λ^
following diagram commutes:

(9.7) Λ
I det

detλ detλ

This follows immediately from the commutativity of (9.1).
Let M, Necff-SEy , and φ:M->7V be an SEV -isomorphism. Then, we have

Im cfM = Im cfN by the commutativity of (9.1).

LEMMA 9.5. Let λ = (λί9 . . ., λs}εΩ+ and σeSs. Then, we have /\λV~/\σλV
and Im detΛ = Im detσΛ, where σλ = (λσ-ιl9 ..., λσ-ιs). In particular, we have Im detλ =

Imdetj-.

PROOF. It suffices to show that /\λV~/\σλV by the observation above. But this

is obvious, since the isomorphism \l/^y(σ): (/\V)®S^>(/\V)®S maps /\ΛFonto f\σλV.

D

,μ>λ

Let Λ>0 and λeΩ^. We define:

(9.8) M(λ)=
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and

(9.9) M(λ)= £ ImdetμczM(λ).

Note that M(λ) and M(λ) are subbicomodules of SkE" , and that λ, μe£2k~, μ>λ imply

M(μ)c=M(Λ). By Lemma 9.2, we have SkE
y = M((1*)). Hence, we have a filtration

THEOREM 9.6 (Straightening formula). Lef fc>0 ««rf λeΩk. Then we have a

unique isomorphism of SEy -bicomodules Θλ: L£V®LλV-*M(λ)IM(λ) which makes

the following diagram commutative'.

(9.10) A

proj.

LλΎ®LλV —— > M(λ)/M(λ).

Hence, the associated graded object of the filtration {M(λ)}λeΩi^ is ®^eΩ^L

The set {detΛ(£s® £Γ)|Λeί4~, SeSt^, ΓeSt/Γ} is a free basis of Sk£
v, where

*Y= {v1 < - - - <VN} is the dual basis of Y= {uί<- - - <UN}.

PROOF. Let veS^(λ). Then, we have Imdetv = ImdeV by Lemma 9.5. Since

v~ >λ, we have Im detvc=M(A). By Lemma 9.4, we have detλ(Im(l (g) Πϊ))c:M(λ) and

detA(Im(ΠI®l))c=M(l). Hence, we have detΛ(Im(ΠΛ® l) + Im(l ® \U)c:M(X). By

Theorem 6.19, we have Keτ(dλ®dλ) = lm(Oλ® l) + Im(l ® ΠΛ) Hence, we have a
unique induced map Θλ: LχV®LλV-+M(λ)IM(λ) which makes (9.10) commutative.

By the definition of M(λ) and M(A), the composite map projodetλ is surjective, and so

is Θλ. We set Γ(λ) = {detμ(ξs®ξτ)\μeΩk-, μ>λ, SeStμY, TeStμΎ} for λeΩk. By

induction on λ, it is easy to see that Γ(λ) generates M(/l), thanks to Theorem 6.19. On

the other hand, we have rank SkE
v =Σλ6ίifc(*(Stλy))2 = *Γ(lk) To Proγe this, we may

assume that R = C(q), and this case is a consequence of Corollary 8.11. It follows that

Γ(\k) is linearly independent, and Γ(λ) is a free basis of M(λ) for λeΩk. Hence,

{Θλ(dλξs® Jλ{Γ)|5r6StAΓ, ΓeSt/7} is linearly independent, and Θλ is injective for

Aeί2k~. Since detλ, proj and dλ®dλ are ST^-bicomodule homomorphisms, so is Θλ.

The theorem is now clear. Π

Let Ne Ά, and v e Ω + with /(v) < TV. We define VN: = M*(v) c ΛΓ. By Lemma 7.8 and

its proof, we have vΛΓ^(Λ^*)*^(trft7V)v. For /Iei2k~ with /(I) = A1<7V, we set

c'(λ): = v1 Λ Λ vλl (x) (x) ϋ j Λ Λ vλN E/\^V. It is easy to see that c'(λ) e χ(/\λ*V)9

and dλ(έ(λ)) generates χ(Lλ'V) = (KχV)ϊ~R. We set
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(9.11) Lλ

q :=detλ(c(λ) - R®/\λV)^SkE* .

This definition is due to Taft and Towber [37, §3]. Clearly, Lλ

q is a quotient
Sk£

v-comodule of /\AKvia the surjection

f^/ dct
ΛA^ - >c'(λ)R®/\λV - ̂ >^K,

and is a subcomodule of SkE.

PROPOSITION 9.7. Let λεΩϊ and S(λ)<N. Then we have Lλ

q~LλV as an
SkE

v -comodule.

PROOF. For μeΩk with ί(λ)<N, we have μ>λoμ<X (see [25, (1.11)]).
Hence, μ>λ implies μ^rL By Theorem 7.12, we have z(Lfl

tV) = (KfiV)* = Q for μeΩk~
with t(μ)<N and μ>/l. By Theorem 9.6, we have jM(A) = 0. Hence, the projection
proj : χM(λ) -> j(M(Λ)/M(/l)) is an isomorphism. Since L£ is contained in χM(/l), we have

= dλ(c'(λ)} R®LλV~LλV.

D
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