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Abstract. We define the Chow ring for a Q-factorial toric variety as the Stanley-
Reisner ring for the corresponding fan modulo the linear equivalence relation. We also
define the pull-back homomorphism and the push-forward homomorphism between the
Chow rings in terms of the combinatorial structure of fans and a map of fans, and prove
the projection formula without using algebro-geometric method. In the second part,
we apply the GKZ-decomposition to the Q-factorial toric varieties and obtain some
information when the corresponding fans are confined to have one-dimensional cones
within a fixed set.

Introduction. Let N be a free Z-module of rank r and M its dual. An r-dimensional
algebraic torus Ty~ C™ x - - - x C* (r times) is defined by Ty :=Homz(M, C*), where
C* is the multiplicative group of non-zero complex numbers. A toric variety X is a
normal algebraic variety containing T as a Zariski open dense subset with an algebraic
action of Ty on X which is an extension of the group law of 7. A toric variety X can
be described in terms of a certain collection A4, which is called a fan, of cones in
Ng:=N®zR. From this fact, the properties of a toric variety have strong connection
with the combinatorial structure of the corresponding fan and the relations among the
generators. One of the purposes of this paper is based on this fact. For the precise
definitions of toric varieties, see [4], [18] and [19].

Let X :=Tyemb(4) be the toric variety corresponding to a simplicial fan 4. Hence
X is Q-factorial, and has at most quotient singularities. This paper consists of two parts.
In Section 1, we first define the Chow ring A(N, 4) over the rational number field Q in
terms of the simplicial fan 4. Namely, we define the Chow ring A(N, 4) as the
Stanley-Reisner ring SR(N, 4) (cf. [27]) of 4 modulo the linear equivalence relation.
In Proposition 1.1 we see that for any 0< p<r the homogeneous part A?(N, 4) of
degree p of the Chow ring A(N, A4) is generated over Q by the equivalence classes v(a)
of the elements in SR(N, 4) corresponding to g € 4(p). The product satisfies

v(6)-v(c")=v(c+ ) whenever o+o'€ed and ono ={0}.

Note that Danilov [4] and Fulton [7] used different generators [F,], o € 4, which are
related to ours by

[F,]=mult(s) v(0) ,
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where mult(o) is the multiplicity of ¢ which will be defined later. Hence the product
becomes

mult(o) - mult(a’)
mult(c +0”)

[Fa] : [Fa"] = [Fa+a"]

- for 6, 0’ € 4 satisfying 6+0'€4 and o nd’={0}.Thus our generators are more natural
in describing the structure of the Chow rings.

We also state some properties of the Chow ring in Section 1, and relate the Chow
ring to Ishida’s cohomology (cf. [12] and [19]) which is very useful in describing the
properties of the Chow ring.

Let N’ be a free Z-module of rank 7', and A’ a fan for N'. Let ¢: (N, 4") > (N, 4)
be a map of fans. Then ¢ gives rise to- an equivariant holomorphic map
¢,: Ty emb(4") - Tyemb(A) between toric varieties. If the corresponding map ¢, is a
proper map, then there exists a push-forward homomorphism ¢, : A(N’, 4)— A(N, 4)
between the Chow rings (cf. [6]). In Section 2, we describe ¢, explicitly in terms of
the combinatorial structure of the fans 4, 4’ and a map ¢ of fans, whenever ¢ has finite
cokernel. We hope to come back to the problem of describing ¢, in the interesting case
where the cokernel of ¢ is not finite.

Also in Section 2, we describe the pull-back homomorphism ¢*: A(N, A4) > A(N’, 4")
explicitly for an arbitrary map ¢ of fans. If ¢: (N', 4’)— (N, 4) is a map of fans with
finite cokernel, then we can prove directly that the induced homomorphisms ¢, and
¢* satisfy the projection formula (cf. Theorem 2.10), that is,

(¥ () )= ¢, (w) for weA(N, 4), w'€eAN’, 4.

In Section 3, we consider equivariant fiber bundles over toric varieties. If
¢: (N', A)— (N, A) induces an equivariant P'(C)- (resp. C'-) bundle over a toric variety,
then by [19, Proposition 1.33], 4’ can be described explicitly. From this fact, we get a
direct description of the Chow ring A(N’, 4’) in terms of A(N, A).

In the second part, we deal with the GKZ-decompositions for toric varieties, where
GKZ stands for Gelfand, Kapranov and Zelevinskij. In [8], [9] and [10] they obtained
some decompositions of RN by using regular triangulations of integral polytopes
corresponding to projective toric varieties. We have generalized and reformulated their
results in the context of R-vector spaces in [24]. Our present purpose is to modify the
definition in the context of Q-vector spaces and apply it to Q-factorial toric varieties.

In Section 4, we define the Q-linear Gale transform, and relate it to toric varieties.
This concept is very useful in dealing with toric varieties with small Picard numbers.
We use this notion in connection with the Chow ring of a toric variety.

Let Z be a finite subset of primitive elements in N, such that Z spans Ny :=N®zQ
over Q. Then, as we show in Theorem 4.1, there exists a simplicial and admissible fan
A4, in N, which is full, i.e., every &€ E gives rise to a one-dimensional cone in 4,. Each
simplicial fan 4 corresponding to a maximal dimensional GKZ-cone cpl(4) in the
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GKZ-decomposition can be obtained from 4, by a finite succession of flops or star
subdivisions as in [24, Theorem 3.12]. Furthermore, as we show in Theorem 4.5, the
union of the cpl(4)’s, with 4 obtained from 4, by finite successions of flops, also is a
convex polyhedral cone.

We describe the dual cone of cpl(4) when 4 is full, simplicial and admissible for
a fixed (W, Z) in Section 5. It is related to the Mori cone NE(X) of the corresponding
toric variety X :=Tyemb(4).

In the last section, we apply the GKZ-decomposition to a fan which is a simplicial
subdivision of a fixed strongly convex cone & all of whose proper faces are simplicial.
We get some information on small simplicial subdivisions of 7.

Throughout this paper, we fix a free Z-module N of rank r over the ring Z of
integers, and denote by M :=Hom (N, Z) its dual Z-module with the canonical bilinear
pairing

{(,>  MxN->Z.

We denote the scalar extensions of N and M to the field R of real numbers by
Ng:=N®zR and Mg:=M @ zR, respectively. We follow definitions and notation in
[19].

DErFINITION. A finite collection 4 of strongly convex rational polyhedral cones in
Npg is called a fan if it satisfies the following conditions:

(i) Every face of any g€ 4 is contained in 4.

(i) For any o, ¢’ € 4, the intersection an¢’ is a face of both ¢ and ¢'.

A fan A4 is said to be simplicial if every o € 4 is simplicial, i.e., ¢ can be expressed as
G=R20n1+ tet +R20ns

for an R-linearly independent subset {n,n,,...,n;} of N, where R, is the set of
nonnegative real numbers. A fan 4 is said to be complete if |A|: =), ,0=Ng. It is
known that the toric variety corresponding to a simplicial fan has at most quotient
singularities and is Q-factorial. Also, the toric variety is compact if and only if the
corresponding fan is complete.

In this paper, we consider only those (finite) fans which are simplicial with
r-dimensional convex support.
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1. The Chow ring. Let 4 be a simplicial fan for N=~Z", which may not be
complete. In this section, we define the Chow ring A(N, 4) in terms of a simplicial fan
4, describe its generators, and relate it to Ishida’s cohomology.

Introduce the polynomial ring S over Q in the variables {x(p)|pe 4(1)}. We can
regard this ring as a graded Q-algebra by letting deg x(p)=1 for any pe A4(1). Let I be
the ideal in S generated by the set

{x(p)x(p3)* - - x(p,) | p1> - - ., ps€ A1) distinct and p, + - - - +p,¢ 4} .
Then the residue ring SR(N, 4) : =S/I is the Stanley-Reisner ring (or face ring in [27])
for the fan 4.
On the other hand, we define another ideal J in S to be the one generated by the set

{O(m) = Y <mn(p)>x(p)|meM }

ped(l)

where n(p) is the unique primitive element of N contained in p € 4(1).

DEerINITION. In the notation above, we define the Chow ring over Q for a simplicial
fan 4 to be the ring

AN, 4):=S/(I+J).

We simply write A(4) if there is no confusion. A(4) is a finite-dimensional graded
Q-algebra of the form A(4)= @] _,A4"(4) and is generated by 4'(4) over 4°(4)=0,
where A%(4) is its homogeneous part of degree k. Especially, 4(4) is a Gorenstein ring
if 4 is complete.

Let us denote by v(p)e A*(4) the image in A(4) of x(p) for peA(1). By the
construction of the Chow ring, we have

Y (mn(p)yo(p)=0  forany meM,

ped(l)

or more symmetrically, we can write it as a single equality

Y n(p)®v(p)=0 in N®zA(4),

ped(l)

which we call the defining relation.
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Since 4 is assumed to be simplicial, each o € A(k) can be expressed aso=p; + - - - + px
for distinct py, ..., p,€ 4(1). In this case, we denote by v(c) € 4*(4) the image in A(4)
of the monomial x(p,)x(p,) - - x(p,)€S.

For pairs o, 6'€ 4, we have

2(0)- (o) = { if o+o'¢4
’ vo+d) if ono’={0} and o+o'ed.

PROPOSITION 1.1. Let A be a simplicial fan for N~ Z'. Then we have

A= Y, Que)  forany O0<k<r.

ae d(k)
Especially, if k=r, then we have

0 if A is complete
0 otherwise .

A(4) ;{

Proor. By induction, it suffices to show that v(py)v(z) for 1€ 4 and py<7 is
expressed as a linear combination of {v(s)|o€ 4, dimo=dimt+1}.

Since {n(p)| peA(1), p<t} is a set of linearly independent elements in N, there
exists my € M such that (my, n(py)) =1, while {(m,, n(p)> =0 for all p e A(1), p #p, with
p<t. Hence we get

vpo)+ 2, <mg,n(p)>v(p)=0.

ped(l), pKt

Multiplying v(7) to this equality, we have

vpo(D)+ Y <mo, n(p))u(p)u(z)=0.
ped(l), pLt
Since v(p)v(t)=v(p+7) for p<£t with p+1e 4, while v(p)v(r)=0 if p+1¢4, v(po)v(T)
can be written as a linear combination of {v(o) | ged,dimo=dimt+1}.

Now we prove the second statement. If 4 is complete, then every te A(r—1) is an
internal wall. Let us fix 6,€ 4(r). Then for any o € A(r), there exist 6, ..., 5, =€ A(r)
such that 6;n o, , belongs to A(r—1) for any i=0, ..., k— 1. From the defining relation,
we see that v(e)=b,v(g,) for some b, e Q. ,. Hence,

A(M)= Y Ov(o)=Qu(oe)=Q,
ageA(r)
since A(4) is Gorenstein.

If | 4|# Ng, we may assume that A(r)# . Then there exists a aeA(r) having a
facet t which is not an internal wall. Let o =1+ p, for some p, € A(1). From the defining
relation, we obtain v(g)=0. Since 4 is not complete, for any ¢'e€ A(r) there exist
04, ...,0,=0 €A4(r) such that g;no;,, belongs to A(r—1) for any i=1,...,k—1 and
that ¢, has a facet which is not an internal wall. We use the defining relation again to
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get v(a")=b,v(c,)=0 for some b,.€ Q. ,. Consequently, we have A"(4)=0. q.e.d.
Let X : = Tyemb(4) be the toric variety corresponding to a simplicial fan 4. Then
H'X;Z)®,0=A(4).

For the proof, see [4], [7], and [14]. Especially, if X is a nonsingular surface, there is
an easy proof in [1].

Now, we introduce the multiplicity of a simplicial cone ¢ in Ng (cf. [7] and [15])
to relate the Chow ring to Ishida’s cohomology. The multiplicity of a cone is also used
in Section 2 to define a push-forward homomorphism ¢, : A(N’, 4") > A(N, 4) between
two Chow rings.

DEFINITION. Leto :=p, + - - - + p, be an s-dimensional simplicial cone in Ny~ R".
We define the multiplicity of ¢ as the index

mult(a, N) :=[NnRa: Zn(p,)+ - - - + Zn(p,)]

of the submodule Zn(p,)+ - - - + Zn(p,) in Nn Rs. We simply denote mult(o) if there
is no confusion.

Let us introduce Ishida’s cohomology which is very useful in describing the
properties of the Chow rings.

DEFINITION. Let 4 be a simplicial fan for N=Z" and M the dual Z-module of
N. For any p,q=0,1,...,r, let

CY4, A7) := @ AP~YMnob)

aged(q)

and define a coboundary homomorphism

5:CTHA, AP = D APTTHU(Math) - CY4, A7)

ted(@g—1)
by defining the (7, 6)-component as follows: For any 1€ 4(g—1) and o € 4(g), define
Oye: N2 M) > AP U(Mno)

to be d,,=0 if 7 is not a face of g, while for 1<a, there exists a unique p € 4(1) such
that o = p + 1. Moreover, M no* is a Z-submodule of rank r—g in the Z-module M nt*
of rank r—g+1, hence each element of A?~?*!(Mnt") is a finite linear combination
of elements of the form

MyAMG A A,y with m,eMnt* and m,,...,m,_,.,eMno*.
We define 4, by
Oupe(My A A = Ay _ i) i =KMy Ry )My A2 A,y

where n,, is a primitive element of N which is uniquely determined modulo Nn Rt so
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that 6+ (—1)=R o1, + Rt. Then (C’(4, A?), ) becomes a complex of Z-modules for
(N, 4).

We denote by H'(4, AP) the cohomology group of C°(4, AF) and call it Ishida’s
cohomology group (cf. [12] and [19]).

ReMARK. (1) Clearly, we have H%(4, A?)=0 unless 0<g < p. If p=g¢q, then

Cr4, A= D AMnot)z @ Zx(o),
aed(p) aeA(p)
where x(o) is the element 1 at the factor corresponding to o€ 4(p). If we denote by
(o) the image of x(¢) in H?(4, AF), then we have a natural isomorphism

H¥(4, A7) ® 7 Q= 4%(4)

sending (1/mult(o))y(0) € H?(4, A?) ® O to v(c) € AP(A).

(2) Oda gave a direct proof for a vanishing theorem for a simplicial and complete
convex polyhedral cone decomposition, while Ishida generalized it to a simplicial one
which may not be complete (cf. [22, Proposition 4.1 and Theorem 4.2]): Let 4 be a
simplicial fan for N, which may not be complete. If there exist a complete simplicial
fan 4 and pe A(1) such that A=A\ {oed|p<oa}, then

Ar(4)  if g=p
0 otherwise .

H"(A,A")®zQ={

(3) If 4 is assumed to be complete and simplicial, then we have a perfect pairing
in the Chow ring for 4 (cf. [21] and [22, Proposition 4.1]):

A (M) x AN —s A N)-1LQ  forany 0<i<r,

where [ ]: A"(4) - Q is equivalent to the push-forward homomorphism f,, induced by
the structure morphism

f: Tyemb(4) - Spec(C) ,

as we see in Corollary 2.8.

2. Homomorphisms between the Chow rings. In this section, we define the
pull-back homomorphism and the push-forward homomorphism induced by a limited
class of maps of fans and prove directly (i.e., without recourse to algebraic geometry)
that they satisfy the projection formula.

DerFINITION.  Let (N, 4) and (N, A") be two fans for N~ Z" and N'>~Z". A map
of fans ¢: (N', 4)—> (N, 4) is a Z-linear homomorphism ¢: N'—> N whose scalar
extension ¢ : Ng — Np satisfies the following property: For each ¢’ € 4’ there exists g€ 4
such that ¢(¢')co.
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DErFINITION. An R-valued function 4 on | 4] is called a A-linear support function
if his Z-valued on Nn| 4| and if 4 is linear on each cone ¢ € 4. We denote by SF(N, 4)
the additive group consisting of all A-linear support functions (cf. [19]).

Throughout this section, we assume that 4 and 4’ are two simplicial fans for N~ Z"
and N'=Z". We also assume that ¢: (N', 4') > (N, 4) is a map of fans.

THEOREM 2.1. Let 4 and A’ be simplicial fans for N and N', respectively. Then a
map of fans ¢ : (N', A4') — (N, A) gives rise to a pull-back homomorphism

¢*: AN, A)—> A(N', A)
which is a graded Q-algebra homomorphism. Moreover, it is functorial, i.e., if A" is a
simplicial fan for N" and : (N", A")— (N', A'). is another map of fans, then we get
Yrop*=(p-yY)*.
PrOOF. We use the same notation as that in the definition of the Chow ring
A(N, 4).

There exists an isomorphism from SF(N, 4) ® zQ to @, 4;, @x(p) which is defined
by

SF(N, )®2Q3h®q— ), q-h(n(p)x(p)e D Ox(p).

ped(l) ped(l)

Let us denote by x'(p"), S’, I’ and J’ those appearing in the definition of the
Chow ring A(N’, 4'). Then, similarly, we have an isomorphism SF(N', 4)® 0~
D, c41)@x (). Let us define

¢*: SF(N, )®,Q—~SF(V', 4)®,0
by sending he SF(N, 4)® ;0 to ¢*(h) :=ho¢. Then it induces a homomorphism
o*: D Ox(p)—» D Ox(p).

ped(l) p'ed'(1)

By extending it, we get a graded Q-algebra homomorphism ¢*: S— .

More precisely, let us denote by ¢, the element in SF(N, 4) ® ; Q corresponding
to x(p)e D, 1,9@x(p). Hence ¢, (n(p,))=9,,, for p,p;ed(l) under the above
isomorphism, where J, , is Kronecker’s delta. 5*(sp)=spo¢ is then an element in
SF(N', 4)®20Q. For each p'e A'(1), there exists a unique cone

Oy :=pi+ - +ped for some p,,...,p,e4(1),

which contains ¢(n'(p")) in its relative interior, where n'(p")e N’ is the unique primitive
element contained in p’€ 4’(1). Thus,

o' (p))=clp’, pIn(p)+ - - +clp’, psIn(ps)
= Y, pnlp)

ped(l),p<ap



TORIC VARIETIES 117

for some c(p’, p)>0. In this notation, we have

(e,20) (' (p)) = 8,( ) (o', pon(p 1)>

p1EA(1), p1 <Tpr
_ { cp's p)=clp’, pe,(n'(p)) if p<o,
0 otherwise ,
that is,
8p°¢ = Z C(p,, p)ﬁ;, ’
p'ed(1),p<ap
where ¢, is the element in SF(N’, 4) ® ; Q corresponding to x'(p’). Hence we get
P*x(p)= ¥, px'().
p'ed'(1),p<ap

Now, we show ¢*(I)<=I'. For any generator x(p,)x(p,) - - x(p,) of I,
P*(x(p1)" *  X(py)) = P*(x(p1)P*(x(p2)) - §*(x(py))

= < X cp,p 1)x’(p’)> e ( >y, ps)x’(p’)> -
p'ed'(1),p1<0p p'€d'(1),ps<0ap

Suppose that for each p;, 1<i<s, there exists p/ed'(1) with p,<o, such that

x'(py) - -x'(p))¢I'. Recall that a monomial x'(p;)x'(p3)- - - X'(p.) is an element of I’ if

and only if pi+ - -+ +p;¢ 4". Thus we have p;+ -+ +p. e A’. Since ¢ is a map of fans,

there exists a cone g € 4 which contains ¢(p; + - - - +py). Since o ,,; is the smallest cone

in 4 containing ¢(n'(p;)), we have

pi<o, <o, forany 1<i<s,
and as a result, p, + - - - + p,<0o € 4, a contradiction. Consequently,

*(x(p)x(py) - - x(p,)) el

for any generator x(p,)x(p,)- - - x(ps) of I.
It is clear that ¢ *(J) = J'. Therefore, ¢ induces a graded Q-algebra homomorphism
¢*: AN, A)—> A(N', 4') and the functoriality is clear. q.e.d.

For a map of fans ¢: (N’, 4") > (N, 4), let us denote L(¢) :=NnRo and L'(¢’) : =
N'nR¢’ foroed and a’'eA'.

By simple calculation, we obtain the following (cf. (1) and (2) are also found in
[7] and [15]):

LEMMA 2.2. In the same notation as above, we have:
(1) o< Ng=~R’ is a nonsingular cone, that is, there exist a Z-basis {n,, ...,n,} of
N and s<r such that =R, on,+ - - + R, on,, if and only if mult(c, N)=1.
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(2) Letny:=ayn(p,)+ - - +agn(p,) with positive rational numbers a,, .. ., a;e Qs
be a primitive element contained in o. If we denote

6 =po+pit V4 +p,  for 1<i<s,

where po : =R ongy, then mult(s;, N)=a; mult(c, N).
(3) Let ¢:(N',4)Y>(N,A4) be a map of fans with finite cokernel. For
v ed'(p—1), let us denote by a,. the smallest cone in A which contains ¢(z'). Suppose that
o.=pi+ " +p,eA() with t:=(p—1)—("—r),

and that there exist p'€ A'(1) and pe A(1) which satisfy p'+v€d(p) and 6, .=
p+o.€A(t+1). Then there exist positive integers a, b and nonnegative integers
Cqs -5 C SUch that

@ BN =b-n(p)+ Y. n(p,).

In this case, we have
mult(o,., N)
mult(z’, N')
_ b mult(p+o,, N)

=—————— " -|coker(N'/L'(p’+71")—> N/L(p+07,))]|,
¢ multy 17, N') | (N'/L'(p"+7) > N/L(p+0)]

- |coker(N’/L'(t") - N/L(a,)) |

where | G| stands for the order of a finite group G.

For t€ 4(q), denote N :=N/L(t). For o€ 4 with 1<0, let 6 :=(c+ Rt)/Rt be the
image of ¢ in the quotient vector space Ny := Ng/Rt. Then

A:={G|oed, <0}

is a fan for N and the toric variety Ty emb(A4) coincides with the closure V(1) of orb(t)
in X : = Tyemb(4) (cf. [19, Corollary 1.7]). Let us denote by i#(5) the generator of A?(4)
corresponding to € 4. Then we can prove the following:

PROPOSITION 2.3. In the same notation as above, define a Q-linear map

i (D)= Y Qi@-APT(M)= Y Qu)
aed(p) aed(p+q)
for 0<p<r—gq by
o(&)— (mult(e, N)/mult(d@, N))v(a) .
Then 1, is well-defined.

Let ¢: (N', 4')—> (N, 4) be a map of fans. Then it is known that the equivariant
holomorphic map ¢,: Ty emb(4’) — Ty emb(4) is proper if and only if for each o€ 4,
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the set 4, :={c’€ 4’| p(¢’) =} is finite and

o7 o)=141:= U o
' €ds
(cf. [19, Theorem 1.15]). We also say that a map ¢ of fans is proper if the corresponding
equivariant holomorphic map ¢, is proper.

THEOREM 2.4. Let A and A’ be simplicial fans and ¢: (N', A)— (N, 4) a proper
map of fans which has finite cokernel. Then ¢ gives rise to the push-forward Q-linear map

by AP(N', 4)— AP~ "N, 4)

for all p. Moreover, the push-forward homomorphism is functorial. Namely, let
W, a0 Lo, ) Lo, 2)

be maps of fans which are proper maps between simplicial fans having finite cokernel.
Then the induced homomorphisms satisfy ¢, oy, =(doy),.

PrROOF. Let o’ € 4'(p). Denote by o, the smallest cone in 4 which contains ¢().
Define

(@) 1= MO N) e (WL @) > NIL()) |- (o)
mult(e’, N')

if dim o, =p— (¥ —r), while ¢,(v'(«)) : =0 otherwise.
Gyt AX(N', A) > AP~ (N, A)

is then the Q-linear extension.

We can prove the functoriality easily because the smallest cone in 4 containing
¢(7') is equal to the smallest cone in 4 containing (¢oy)(z”) for any t” € 4”, where 1’
is the smallest cone in 4’ containing Y (z").

It remains to show that this ¢, is well-defined. Let us fix a cone 7 e A’ (p—1).
If p’ed’(1) satisfies p'+1'€d'(p), then 0,.<0, .. If dimo, . #p—(r'—r), then
¢, (V'(p'+17))=0. Hence we may restrict ourselves to the case where dimo, ., =p—
(" —r). Hence, dimo,<p—(r'—r). If dimo,.<(p—2)—(r'—7r), then ' cannot be a
(p—1)-dimensional cone, a contradiction. Thus dimo,=(p—1)— (" —r) or p—(r'—r).
The rest of the theorem is a consequence of the following three lemmas. q.e.d.

For '€ 4'(p—1) and 6, which is the smallest cone in 4 containing ¢(z’), let us denote

N :=N/L'@)

4 :={¢":=(¢'+Rt)/RT =Np|d' e 4, 7 <0’}
N:=N/L(a,)
4:={6:=(c+Ro,)/Ro,<Ng|oed,o,<0c},
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where Ng:=N'®zR and Ng:=N®,R. Then V'(t)=Tyemb(4d) and V(o,)=
Ty emb(4) are toric varieties of dimensions ' —(p—1) and r—dimo,., respectively.
For any p'e 4'(1) (resp. pe 4(1)), we denote by #'(p’) (resp. #(p)) the generators of
ANN', &) (resp. AY(N, A)), by @(p") (resp. 7(p)) the primitive element of N’ (resp. N)
contained in p’ (resp. p), and
L(p):=N'nRp’ (resp. L(p) :=NnRp).

LemMA 2.5. Ifdimo,=(p—1)— (¥ —r), thenrank N’ =rank N. Hence the two toric

varieties V'(t") and V(o) have the same dimension, and the induced map

$: (N', 4)—>(N, 4)
is also a proper map with finite cokernel. In this case, define

b, 55 H{l()COkef(N 'IL(p")~ NIL(p))| - 9(p) th hefi(v/zl=ﬁ for some peA(l)
for p’e A'(1). Then we get a well-defined Q-linear map
b, ANN', T)> AX(N, 7).

PrOOF. Note that if ¢(p")=p for some pe A(1), then
| coker(M n (o,)t = M'n(t)Y)|

[(Za(p): Zo@' (N

If we denote by ¢* the map dual to @, then for any mje M’ n(')* there exists an
"myeMn(a,)* such that

|coker(Mn(g.)" = M'n(x)")| - mo=d*(mo) .

|coker(N'/L'(p") ~ N/L(p)) | =

Hence, for mye M'n(t)*, we have

{mg, 7'(p")) - | coker(N'/L'(p")) = N/L(p)) | = {mg, Ai(p)) .
Since @ is proper, for any j € A(1) there exists p’ € A'(1) satisfying ¢(p’) = p. In particular,
such a p’ is unique because @ has finite cokernel. Hence, the set 4(1) is in ono-to-one

correspondence with the subset {5’'e 4'(1)| §(p") e 4(1)} of A(1).
Combining these, we have for any mye M'n (7)),

¢*< Z_ Kmo, 7'(p")) 5'(5')) = Z {my, 1i(p)) - 9(p)=0,
o e A1) ped()
since mye M n(a,)" q.ed.

LEMMA 2.6. Ifdimo,=(p—1)—(r' —r), then the following diagram is commutative:
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AN, &) Py gr-e (N, 4)

lq: l*

AN, T) e AW, D),
where 1, is the map defined in Proposition 2.3.
Proor. It is a consequence of the following easy equality:
|coker(N'/L'(p") > N/L(p))| =| coker(N'/L'(p’ + ') > N/L(p+0.,)) |
for any p’e A'(1) satisfying ¢(p')=p e A(1). q.e.d.

LemMma 2.7. If dimo,.=p— (' —r), then V'(') (resp. V(o,)) is a toric variety of
dimension r' —(p—1) (resp. ¥ —p). In this case, define

s coker(N' - N)|-1 ) 5')=0
T e
0 otherwise
for any p'€ A'(1). Then we get a well-defined Q-linear map
¢, ANN', ) > A°(N, 4) .

Moreover, the following diagram is commutative:

AN, 4) P, ar-e -0, )
a2 I
AN, T) P AN, D),
where 1, is the map defined in Proposition 2.3.

ProOOF. Since ¢: (N', 4') - (N, A) is a proper map with rank(ker ¢) = 1, there exist
exactly two p; and p5 in 4'(1) which are mapped to 0 by @. In fact, p;= —p5.
Consequently, for any m’ e M’ n(v')*, we have

¢>*< X m 7P 'l‘)’(ﬁ')) ={{m', 7' (p1)> +<m', A'(p2)>} -| coker(N' — N) |

pled(1)
=0.
The commutativity of the diagram is similar to that in Lemma 2.6. q.ed

As important special cases of Theorem 2.4, we have the following two corollaries:

COROLLARY 2.8. Let X :=Tyemb(4) be a compact toric variety which has at most
quotient singularities. Then the structure morphism f. X — Spec(C) gives rise to the
push-forward homomorphism [ ]:=f,: A"(4) — Q which is defined by



122 H. S. PARK

A'(4) 3v(o)—[v(0)] :=1/mult(6)e Q.

COROLLARY 2.9. Let A’ be a simplicial subdivision of a simplicial fan A. Then the
inclusion 1: (N, A") > (N, A) becomes a proper map and gives rise to the push-forward
homomorphism

1,1 AP(4") > AP(4)

such that for ' € A',
mult(a,, N)
LW@)):= [ mult(a’, N)

0 otherwise ,

v(o,) if dimo,=dima’

where o, is the smallest cone in A containing o'.

THEOREM 2.10. Let A and A’ be simplicial fans and ¢ : (N', A") > (N, 4) a proper
map of fans with finite cokernel. Then the induced homomorphisms ¢* and ¢, defined in
the above theorems satisfy the projection formula, that is,

¢ (¢*(w) )= ¢ ()

for any we A(4) and o' € A(4").

Proor. Since ¢, and ¢* are Q-linear maps, it is enough to prove
(*) @, (d*(W(0)) V' (7)) =v(0) ¢, (V'(7") forany o€ed and ted'.
We prove (x) by induction on the dimension of o€ 4.

If dim 6 =0, then the formula (*) is obviously true.

Assume that the equality holds for any 6 € 4 with dime<k—1.

Let dimo=k. Then o=p+ 1 for some pe A(1) and te€ A(k—1). Let 7' € 4'(p).
We may assume that o no, ={0}. Recall that v(c)=v(p)v(r). Hence we have

¢4(¢*(v(0)) V' (x) = ¢, ($*(v(7)) $*(v(p)) - v'(x"))
=0(1)" @4 (¢*(v(p)) V' (x)) ,

by the induction hypothesis. If the formula (x) holds for ¢=p € 4(1), that is,
() P P* () V(@) =0(p) $,('(*))  forany ped(l) and Ted
holds, then
¢4 (¢*(1(0)) V' (x)) =0(1)" P, (*(v(p)) V("))
=u(1)* (v(p)* P, (V'(r")))
=0(0)" ¢4 (V'(7)) .

Thus it is enough to prove the equality (k).
Note that dim o, >p— (¥ —r). If dim o, > (p +2)— (¥ —r), then we have ¢,(v'(7"))=0
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and for any p’e 4'(1), we have dimo, . >(p+2)—(r—r). Hence ¢, (v'(p)' (") =0,
which implies that ¢, (¢*(v(p)) v'(z")) =0. Thus, the equality (**) holds.

If dimo,=(p+1)—("—r), then ¢,(v'(r))=0. Now consider the commutative
diagram in Lemma 2.7:

Ap+1(A/) A(p+ 1)—(r'—r)(A)

I

AN Ay —> A°(4).
Then we have for any pe A(1)
¢*(¢*(ﬁ(ﬁ)))=¢*< Y 5 ﬁ)ﬁ’(ﬁ')) :
p'e A1), p<bp
where 6 is the smallest cone in 4 containing ¢(5’). For any p’e A'(1) with <6, the
image of #'(p’) under ¢, is not 0 only if dim &, =0. However, there is no cone p’ € A'(1)
satisfying p<&; and dim; =0. Hence we have for pe A(1)
¢4 (d*(w(p)) V(1)) =0=0(p) ¢, (V'() .
If dimo, =p—(r'—r), then we consider the diagram in Lemma 2.6:

A"“(A’) R A(p+1)—(r’—r)(A)

I

A L) — A'(4).
From the above diagram, we have for pe A(1) with p+a,€4((p+1)—('—r)),

P4 (@*(v(p))-v'(r))
, mult(p+0o,, N)
=cpsp)———

‘| coker(N'/L'(p’'+1t")—> N/L(p+0,)) |- v(p+0a,),
mult(p,+1,,N,)I (N'/L'(p'+7)—> N/L(p+0.)) | v(p+0.)

where p’ € A'(1) satisfying p'+1t'€eA'(p+1)and 6, , . =p+0,.€A((p+1)—(r—r)). Note
that

mult(o,., N)

v(p)* ¢, (v'(x)) = mult@, V)

‘| coker(N'/L'(t) > N/L(c.))|'v(p+0.) .
Thus, the projection formula (*x) holds in this case by Lemma 2.2, (3). q.e.d.

3. Fibrations and the Chow rings. In this section, we calculate the Chow rings
of equivariant fiber bundles over toric varieties. Our calculation does not resort to
algebraic geometry. We rather interpret, in terms of fans, the standard algebro-geometric
proof found in Fulton [6]. We consider equivariant C'-bundles and P'(C)-bundles over
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toric varieties, and compare their Chow rings.

Throughout this section, we denote by 4 (resp. 4') a simplicial fan for a lattice
N=Z'(resp. N'=Z"). .

The key point in considering the Chow rings for equivariant fiber bundles is the
following:

ProprosITioN 3.1.  (cf. [19, Proposition 1.33]). Consider a map of fans ¢: (N, 4)—
(N, A) and the corresponding equivariant holomorphic map

¢,: X' :=Ty emb(4') > X :=Tyemb(4)

of toric varieties. Denote by N the kernel of the Z-homomorphism ¢: N'— N and let
A" be a fan for N". Then ¢,: X' — X is an equivariant fiber bundle with X" : = Ty..emb(4")
as typical fiber if and only if the following is satisfied: ¢ : N' — N is surjective and there
exists a subfan A< A’ such that

(i) ¢ induces a homeomorphism | 4|>| 4|

(ii) 4={G+0"|Ged, 0" eA"} and

(ili) for each 6€ A, ¢ induces a Z-isomorphism N’ n RG> N n R (6).

REMARK. (1) We need to add (iii), which is missing in [19, Proposition 1.33].

(2) In particular, if X’ :=Ty emb(4’) is a P'(C)-bundle over X, then there exist
equivariant line bundles L,, ..., L, such that

X :=Tyemb(d)=P(Ly® - ®L).

Let A; be the support function corresponding to the line bundle L;, 0 <i</. Denote by
{n,...,n/} a Z-basis for N, and let n : = —(n{+ - - - +n}). For each g € 4, we denote
by & the image of ¢ under the R-linear map Nz — Ny

N,ﬁxn—»(x, Y h,-(x)n’{)eN;(.
O<ix<l

(cf. the minus sign in [19, p. 59] needs to be deleted.) Let 4 :={G|ae 4}, p} :=R o},
and

for 0<i<l If we denote 4”:={the faces of ¢} |0<i<!/}, then Ty.emb(4”)=P'C)
and we have

A={6+0"|6ed, c" e} .
Let {m, ..., m{'} be the dual basis for the dual Z-module M"” of N”. By applying
mj to the defining relation ) o eay(P)®V'(p)=0, we get

v+ X hop)v(P)=v' )+ Y hn(p)w'(p)  forall 1<i<l.

ped(l) ped()
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For any 0<i</, let us denote
M= Y b)) (p)e 44
ped(l)
and
E:=v(p)+ X ho(n(p))v'(p)e A1 (4').
peA(t)
Then we have

E=v'(pp) +1no=v"(p) +n1="--=v(p))+n;.

We also denote

nii= 2. ho(n(p))v(p)e A (4) for 0<ix<l!.
peA(l)

(3) Similarly, we can express an equivariant C'-bundle X} : = Ty, emb(4j;) over a
toric variety X :=Tyemb(4) as a direct sum of equivariant line bundles and obtain an
expression for the fan 4j in terms of the cones in 4 and support functions corresponding
to the line bundles. Indeed, let X be an equivariant C'-bundle over X. Then there exist
equivariant line bundles L, ..., L, over X such that Xg=L, ®---® L,. Let L, be an
equivariant line bundle over X. Then P(L,® - - -@® L,) is an equivariant P'(C)-bundle
over X. Let us use the same notation as above. Then we have

Ay={6+0"|Ged, " ey},

where we denote by Ag the collection of all the faces of aye 4”.

Let ¢,: Ty emb(4’) > Tyemb(4) be an equivariant P'(C)-bundle. From now on,
we use the same notation as above.

Note that the corresponding map ¢: (N, 4) > (N, A4) is proper and surjective.
Hence we have the pull-back homomorphism ¢* and the push-forward homomorphism
¢, induced by ¢. By construction, we easily see that

¢*(v(0))=v'(6) for any oed.
Note that ¢(6+0”)=0 and dim(6+0")=dimo+dime” for any Ged, o”e4".
Hence ¢,(v'(6+0¢"))=0 whenever dim¢” #r'—r=1. On the other hand,
mult(s, N)=mult(6+0c!, N') forany 0<i<l/,
since ¢ induces a homeomorphism |4|-">|A4| and a Z-isomorphism N’n RG>
Nn Ro. Thus, it follows that

v(o if ¢’=0} for some 0<i</
suwa+on={17

0 otherwise
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for any 6e4, " eA".
Now following Fulton [6], let us define the Segre class operation

Sy(A4'): AP(A) - AP*(4)
in the same notation as above, to be the homomorphism which sends ae A?(4) to
Si(d)-a:=¢ (&' p*(@) e APHH(4)

for any i, where & :=v'(p0)+ 5 i) ho(n(P))V'(p) € A1 (4)).
By the projection formula, we can easily prove the following:

LemMMa 3.2 (cf. [6, Proposition 3.1, (a)]). For any ae A?(4),
(1) S4)-a=0  for i<0;
2) So(d) a=a.

THEOREM 3.3. Let ¢,: Ty emb(4’) - Tyemb(A) be an equivariant P'(C)-bundle.
Then we have the following:
(1) The induced pull-back homomorphism

0—— 42(4) -2 v 1)

is a split monomorphism for all p.
(2) The induced push-forward homomorphism

Ar(4) 22 471 4 —s0

is a split epimorphism for all p with ¢, ¢d*=0.

(3) In the same notation as the one in the remark above, we have a canonical
isomorphism

A(A") = A(A)[E] with the defining relation (& —no)(E—ny): - - (E—n)=0.

ProoF. (1) By construction, we have
d*(v(0))=1'(6) forany oed.
Define a homomorphism {: 47(4") - AP(A) by sending v'(¢’) for any ¢’ € 4'(p) to
{(v'(0") : =4 (v'(¢") v'(07)) -
Then { is a well-defined homomorphism and from the projection formula (cf. Theorem

2.10), we also see that {o¢* =id 4,4 and ¢* is injective.
(2) Since

. v(o if ¢"=0{ for some 0<i<l/
b, G+ ))={ @)

0 otherwise

for any 64, 6" A", ¢, must be surjective and ¢, o p*=0.
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Define a homomorphism y: AP~ (4) - AP(4’) by sending v(c) for any ce A(p—1)
to
Y(v(0)) : = ¢*(v(0))v'(60) =v'(6 +00) -
Then v is a well-defined homomorphism and from the projection formula, we also see

that ¢, oy =id 4p-1(4)
(3) Let g:=min{p,/}. Define a homomorphism

q
0,: @ APi(4)— A4P(A")
i=0
by sending @ «;, with a;e 477(4), to
q .
0,(D ) := .ZO ¢ *(o) -

For any o'eA’, we let ¢'=6+0¢" for some e A and ¢”e€4”. Since v'(p})=¢—n;=
E—¢*(n;) for any 1<i</ and v'(6)=¢*(o), we have

V' (0)=v'(6)v'(d")=¢*(0) v'(c") = 'go & p*()

for some a;€ A7 ~!(4). Hence 0, is surjective.

To show that 6, is injective, let us assume that there exists a nontrivial relation
B=Y!_ & ¢*(2)=0. Let k be the largest index such that o, #0. Then by Lemma 3.2,
we get

0=6,(E' 7 = 3 Gu& 7 e =

which is a contradiction.
Consequently, we have isomorphisms

AN A) = A(D) S (AT D - D (4°(4)-&) for 0<j<li
A=A DDA A O® (AN A) ¢ for I<k<r=r+].
Furthermore, since pg+p+ - - - +p;' ¢ A’, we have v'(pg)v'(p7)- - -v'(p])=0, that is
E—mo)(€—ny) - (€—nm)=0 in AL).
Thus we obtained the desired isomorphism

A= ADLEN(E—n0)E—ny) - (E—m)).
q.e.d.

Let us recall Ishida’s cohomology. We have seen that 4?(4)~ H?(4, A?) ® 20 in
the remark at the end of Section 1. Even though we define the Chow ring only for
simplicial fans, Ishida’s cohomology can be defined for a locally star closed subset A’
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of a fan A4, that is, a subcollection of 4 which is required to contain ¢ whenever t<o<n
for 7, te A’. In this case, C'(4’, AP) with a coboundary map 6 defined in Section 1
becomes a complex (cf. [12] and [13]). From this fact, Ishida’s cohomology is a useful
tool in considering the Chow rings for simplicial fans.

Furthermore, if 4, is a subfan of a fan 4, then we get a cohomology long exact
sequence

o HP (g, A7)~ HY(AN\ Ao, AP) > HP(4, AP) > HP(4g, A7)0 .
From this fact and the remark at the end of Section 1, we have the following:

PROPOSITION 3.4. Let A be a simplicial fan for N and A, a subfan of A. We denote
the corresponding inclusions by i: (N, AN\ 4,)— (N, 4) and j: (N, 4o) = (N, 4), re-
spectively. Then we have an exact sequence

HY (AN Ao, A7) ® 70> 42(4) " 42(4)——0 ,

where iy is the induced homomorphism between Ishida’s cohomology groups and j* is the
induced pull-back homomorphism. Namely, ker(j*) is the set of linear combinations of v(c)
with 6 € A\ 4.

As we saw in the remark after Proposition 3.1, for any equivariant C'-bundle
Xg : =Ty emb(4y), there exist equivariant line bundles L,, ..., L, over X := Tyemb(4)
such that X;=L, ®---@®L,. Let L, be an equivariant line bundle over X. Then
P(Ly®---® L)) is an equivariant P/(C)-bundle over X. Let us use the same notation
as the one in Theorem 3.3. Then we have
Ay={6+0"|6ed, c" €Ay},
where we denote by A4f the collection of all the faces of o5e 4”. Let us denote

A\ 4y =Star,,(4") :={cea

po<0} .
Then there exists a cohomology long exact sequence

c > HP (45, A7) @2 Q — HP(Star,4(4'), A7) ® 7@ — AP(A') — AP(45) -0
as we have seen in Proposition 3.4.

THEOREM 3.5. If ¢,: Ty emb(4;y) = Tyemb(4) is an equivariant C'-bundle, then
the induced full-back homomorphism ¢*: A(N, A) - A(N’', A}) is an isomorphism.

Proor. In the same notation as above, we have an exact sequence
. -
HP(Star,(4'), A7) @ z Q—"» AX(4') " A7(45)—0 .

Hence
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AP(Ay) = AP(4")[ker(G*) .
Notice that
AP(A') = ¢*(AP(4)) © (v'(p5)- AP~ 1(4")) .
From the above exact sequence, we see that
v(pg)- AP~ (4 cker(j*)=im(i;) = v'(pg)- AP~ (L") .
Thus, ker(j*)=v'(py)- A~ *(4’). This implies that
AP(40) = {$*(47(A) @ (V' (p5)- AP~ H (AN} /{V'(p5)- AP~ ()}
=¢*(4"(4)=A4"(4),
since d)* is injective. q.ed.

REMARK. We can apply these facts to equivariant P!- (resp. C!-, resp. C*-)
bundles over a toric variety. We obtain more special facts, and relate them to the
strong Lefschetz theorem (cf. [21]). Indeed, let us fix a simplicial fan 4 for N>~ Z" and
a support function 5 for 4 with 5n(n(p))>0 for any p e A(1). Then

q:= ), nn(p)v(p)

peAl)
is an element in 4!(4), and we have a map
i1: AP~ 1(4) > AP(4) for p=1,...,r,
sending v(t), te A(p—1), to

f-v(t)= Z” (n(n(p)) — <z, n(p)PIv(p +1) .
ﬂerergzll(p)

For each o€ 4, we define
6:={(x,n(x))|xes}cNgxR.

Since 7 is linear on ¢, we see that & is a strongly convex rational polyhedral cone with
dim 6 =dim ¢. Furthermore, we fix

Po:=R.o(0,1)cNgxR
and define the following fans for N’ := N x Z associated with #:
?":={¢|oed}
® =" [{G+p,|6e P}
& =0 [{G+(~po)|sea?},
where —po:=R,0(0, —1)cNgx R. Then Ty.emb(®) (resp. Ty emb(®), resp.
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Ty emb(®")) is an equivariant P(C)- (resp. C-, resp. C*-) bundle over Tyemb(4). We
have the following:
(1) The projection pr gives rise to a canonical isomorphism

pr¥: AP(4)-=5 AP(P)

for any p=0,1,...,r.
(2) As we have seen in Theorem 3.3,

AY (D)= AP(A) D (£-AP~'(4)) forany 1<p<I.

where &€ A!(®) with the defining relation £(&—#)=0.
(3) Forany p=1,...,r, we have an exact sequence

AP=1() " ar() P, 4r(@7)—0,

where the first map is the multiplication by 7€ A*(4). Hence, we have
AP(D°) = AP(4)/7A°~(4) .

If 4 is simplicial and complete, then the above (3) is closely related to the strong
Lefschetz theorem. Oda showed that 7: AP~ 1(4) — AP(4) is surjective for r/2 <p if and
only if (1) H?(®®, A")=0 for r/2 < p (cf. [21, Corollary 4.5]).

4. The GKZ-decomposition. We have defined the linear Gale transform in the
context of R-vector spaces and stated some properties of it in [24]. In this second part
of the paper, we modify the definition in the context of Q-vector spaces and apply it
to Q-factorial toric varieties.

Let Z be a finite subset of primitive elements in N, such that Z spans Ny :=N®;Q
over the field Q of rational numbers. Let Z be the Q-vector space with a basis {e, | te&d},
which is in one-to-one correspondence with Z. By sending e, to { € Z, we get a surjective
linear map Z— Ny. Let Z* :=Homgy(Z, Q) be the dual space with the dual basis
{e¥| £ E}. Then we have the dual injective linear map My :=M ® ; Q@ — Z* which sends
me Mg to Y cezMm, &) e}. The cokernel G2 :=Z*/M, of the injective map is a Q-vector
space of dimension #Z —r, where #Z is the cardinality of Z. For each £ e &, we denote
by g(£) € G2 the image of e} € Z*. Then by definition, the defining relations among the
elements in g(8) :={g(¢)| € &} are

Y (m, Eyg(6)=0  forall meM,.

teE

More symmetrically, they can be written as a single equality

Y E®gE)=0 in No®oG?,

éeE
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which we call the defining relation. We call the pair (G2, g(Z)) the Q-linear Gale trans-
SJorm of (Ny, E).

We regard G2 as a subset of its scalar extension G :=G2®4R. Hence (G, g(£)) is
the linear Gale transform of (Ng, g(Z)) in the sense of [24]. We define a cone G, , in G by

G.o :=§Z:Rzog(é) .

If Z positively spans Ng over R, that is, NR=Z§E5R2 of, then we easily see that G
becomes a strongly convex cone (cf. [24, Proposition 1.3]).

ExXaMPLE. Let 4 be a complete and simplicial fan with {n(p)|pe4(1)}=Z and
X :=Tyemb(4) the corresponding compact toric variety. We use the same notation as
that in the definition of the Chow ring A(N, 4). If we denote by Ty Div(X),, the scalar
extension to @ of the group of Ty-invariant divisors and by V(p) the closure of the
codimension-one Ty-orbit orb(p) corresponding to each cone p € A(1), then from [19,
Proposition 2.1 and Corollary 2.5] we have

TyDiv(X)g= @ QV(p) and Pic(X)o=A'(4).
ped(l)

Note that we have a natural isomorphism
TyDiv(X)e=S':= @D Ox(p).
ped(l)

As we have seen in Proposition 1.1, 41(4) is generated over Q by the set {v(p) | pedA(l)}.
By the definition of 4'(4) and the natural isomorphism Ty Div(X),=S' above, we see
that v(p) is the linear equivalence class of the Ty-invariant divisor V(p).

On the other hand, since 4 is assumed to be complete and simplicial, we have a
perfect pairing in the Chow ring for 4 (cf. Corollary 2.8 and [22, Proposition 4.17)

A" 1(4) x A‘(A)—»A'(A)%Q 5

which enables us to identify 4"~'(4) with the dual space of 4'(4). Hence, we have
mutually dual short exact sequences of Q-vector spaces

0« Ng «— (Ty Div(X)g)* — A"~ 1(4) <0
0— Mg— TyDiv(X)y — A'(4) —0,

where (T Div(X)g)* denotes the dual space of Ty Div(X)g (cf. Example in Section 5).
Thus by the definition of the Q-linear Gale transform, the pair

(A'(4), {v(p) | pe 4(D)})

becomes the Q-linear Gale transform of (N, {n(p) | pe€4(1)}), and the defining relation
for the Q-linear Gale transform coincides with the defining relation for the Chow ring:
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Y, n(p®@up)=0 in No®oA'(4).
. pedQ)

If a subset Z of N is given, then it is known that there exists a convex polyhedral
cone decomposition of G, called the GKZ-decomposition (cf. [24]), with support G .
To describe it, let us introduce necessary concepts.

For the time being, we assume that A is a simplicial fan for N such that the support
| 4| is convex and spans Ng over R. (Note that 4 may not be complete.)

Let us denote PL(4) :=SF(¥, 4) ® z R. A function 7 in PL(4) is said to be convex if

n(w+w) <n(w)+n(w) forall w,wel|d]|.

A function nePL(4) is said to be strictly convex with respect to A if there exists an
m, € My for each o e 4 such that '

n(w)=<_m,, w) if weo

n(w)><m,, w) otherwise .

A fan 4 is said to be quasi-projective if there exists an € PL(4) which is strictly
convex with respect to 4. If a fan 4 is complete and quasi-projective, then 4 is said to
be projective.

We denote by CPL(4) the cone consisting of all convex functions in PL(4).

By using the toric Kleiman-Nakai criterion (cf. [24, Theorem 2.3]), we see that a
fan A4 is quasi-projective if and only if CPL(4) spans PL(4) over R.

From now on, we fix a finite subset = of primitive elements in N such that = spans
Ny over R.

DEFINITION. A fan A for N is said to be admissible for (N, E) if

(1) A4 is quasi-projective,

(ii) |4 |=dengoé and

(i) A1) {R.o¢|¢eE]).

We denote by Z(4) the subset consisting of those elements in = which are of the
form n(p) for some p € A(1). Note that Z(4)# = may happen. For any given =, however,
there always exists a simplicial fan 4 such that 4 is admissible for (N, Z) with Z(4)=Z,
as we now prove by using the concept of pulling (cf. [11]).

DEerINITION. Let P be a convex polytope in R” with the vertex set ver(P)=Z. For
¢eZ and ¢>1, the convex hull P, :=conv((ver(P)\ {£})u{c¢}) is said to be obtained
from P by pulling & to c& if (&, c&€]n H=J for the hyperplane H determined by any
facet of P, where (&, ¢&] :={aé|1<a<c}.

Eggleston, Griibaum and Klee [5] described all the faces of P, explicitly. Using
a similar concept of pushing instead of pulling of vertices, Klee [16] constructed a
simplicial convex polytope P, from a given convex polytope P.
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THEOREM 4.1. Let E be a finite subset of primitive elements in N such that E spans
Npg over R. Then there exists a simplicial and admissible fan A for N which is full, that
is, 2(A)=E. In the two-dimensional case, such a fan A is unique.

In order to prove this theorem, we use the following lemma:

LEMMA 4.2. Suppose that A is a simplicial fan with r-dimensional convex support.
Then A is quasi-projective if and only if there exists c.>0 for each £ € E(A) such that the
convex hull conv({c;- | & € B(4)} u{0}) gives rise to the same fan as A by projection from 0.

PrROOF. Suppose that 4 is quasi-projective. Then there exists an # € PL(4) which
is strictly convex with respect to 4. Replacing n by n+m for a suitable me M, we
may assume that n(£)>0 for any ¢eZ. Put c.:=1/n(f). Let us denote P:=
conv({c,£| € E(4)} u{0}). Let F be the set of all facets of P which do not contain 0.
For any ceA(r), let 6=R, (&, + -+ R, &, for &, ..., ¢ eZE(4). We denote by H,
the hyperplane passing through the points ¢, ¢, ..., c; &, Since 5 is strictly convex
with respect to 4, Pn H, becomes a facet of P satisfying ). _p. u,Rsox=0 and O¢
PnH,. So we can find a facet Pn H,e % corresponding to each g€ A(r).

On the other hand, for any facet Fe %, let Hy be the hyperplane containing F.
Then there exists a linearly independent subset {&,, ..., ¢} =& such that HgynP=
conv{cg &y, ..., ¢ ¢} and that R, o0&+ - + R, 0 &, € A(r), because 7 is strictly convex
with respect to 4. Thus there exists a one-to-one correspondence between the subset
& of facets of P and the set of r-dimensional cones in 4.

For the converse, we define a map n by n(¢)=1/c; for any {€Z and extend it to
| 4] in such a way that n becomes piecewise linear with respect to 4. This is possible,
because 4 is assumed to be simplicial. Obviously 7 is strictly convex with respect to 4
by assumption. q.e.d.

THE PROOF OF THEOREM 4.1. Let us denote P, : =conv(Z u {0}). If ver(P,)#E (or
Zu {0}, if 4 is not complete), then we can find x,>0 for each e E\ ver(P,) such that

P :=conv(ver(Py) U {x&| e E\ ver(Py)} u{0})

becomes a convex polytope with ver(P)=Z (or Zu{0}, if 4 is not complete).

Note that this convex polytope P may have a facet which is not an (r — 1)-simplex.
But if we use a method similar to that in [5, Theorem 2.1] and [16, Corollary 2.5], we
can find a ¢,>0 for each {eZ such that every facet of the new convex polytope P,,
which is obtained from P by pulling ¢ to c.¢ for any e Z, is an (r— 1)-simplex. Let us
define

Ofp .= U R.ox

xeF

for any facet F of P, with 0¢ F. Then it is clear that oy is an r-dimensional cone. Now
we define
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A :={the faces of 05| F: a facet of P, with 0¢F} .

Then 4 becomes a simplicial fan with Z(4)=E. It is clear that 4 is quasi-projective by
Lemma 4.2.
The uniqueness in the two-dimensional case is clear. q.e.d.

Recall the exact sequence of Q-vector spaces

0->My—>Z*=P Qef>G2-0.
teE
For any simplicial and admissible fan 4, we define the cone CPL~(4) in Z§ :=Z* @4, R
to be the set of all elements x=zéesx¢eg‘ € Z§ satisfying the following: There exists an
ne CPL(4) such that

x:>n(8) forall {eZ and that x,=n(%) for all £eZ(4).

CPL "~ (4) contains the nontrivial vector subspace Mz. We denote by cpl(4) the image
of CPL~(4) in G:=G2?®yR. Then cpl(4) is a maximal-dimensional strongly convex
cone, that is,

cpl(4) n (—cpl(4)) = {0}
and
dimcpl(4)=dim G=#E—r,
since 4 is assumed to be simplicial and quasi-projective.

REMARK. (1) We have proved the following in [24, Proposition 3.3 and Theorem
3.5]: Let & be a finite subset of primitive elements in N. Assume that = spans Ng over
R. Then we get

U CPL~(A)=MR+€Z R, et
A €eE

and
(xx%) U cpl(4)= 3, R=09(6)=G-o,
A exE

where 4 runs through all the simplicial fans admissible for (N, £).

(2) V. Batyrev pointed out that the above (**x) can be regared as one on the
existence and uniqueness of the Zariski decomposition of effective divisors, and suggests
a possible nice formulation of the problem for general higher-dimensional algebraic
varieties and arithmetic varieties.

(3) In fact, the collection of all faces of cpl(4)’s for all simplicial and admissible
fans A4 becomes a cone decomposition with support equal to G,, We call this
decomposition the GKZ-decomposition for (Ng, Z) and call cpl(4) the GKZ-cone for
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A. Furthermore, we can describe all the elements in this collection explicitly. Indeed,
by defining the GKZ-cones for any admissible convex polyhedral cone decompositions,
we see that GKZ-cones corresponding to nonsimplicial fans become faces of GKZ-cones
corresponding to some simplicial fans.

By [24, Theorem 3.12], we can describe a relation among the GKZ-cones in the
GKZ-decomposition as a relation among the corresponding fans. Namely, the cone
cpl(4) ncpl(4’) is a facet of both cpl(4) and cpl(4’) if and only if one of 4 and 4’ is a
star subdivision or a flop of the other. For the definition of a star subdivision and a
flop, see [24].

It 4 is simplicial, by the definition of cpl(4) we have

cpl(d)= () ( > Rzog(z))
ge A(r) \ée EN(E(4)no)

If 4 is simplicial with Z=Z(4), then the above expression is related with [26]. As we
have seen in [24, Corollary 2.4], # is strictly convex with respect to 4 if and only if

7= n(&g&e N ( > R>og(é)),
¢eE ge A(r) \(e EN(Eno)
where R, :={xeR|x>0}. This is the same result as [26, (3) Theorem].

By the property of the linear Gale transform, the set A =Z is an R-basis of Ny if
and only if g(E\ 1) :={g(£)|€eE\A} is an R-basis of G. Hence we see that every
GKZ-cone cpi(4) can be written as an intersection of cones which are generated by
some R-bases for G. Moreover, we get the converse correspondence as follows:

THEOREM 4.3 (cf. [3]). For an R-basis Q= g(E) for G, we denote

Coi= ) Rs09(0),
9(&)e2
which is a maximal dimensional cone, that is, dim Co=#E—r. Let A be a ($&—r)-
dimensional cone in G, of the form A=(\,Cq, where Qc=g(E) runs through some R-
bases for G. Suppose that for any R-basis Q' =g(E) for G, Cq contains A whenever C,
meets the interior of A. Then there exists a unique simplicial and admissible fan A satisfy-
ing cpl(4) = A.

PrOOF. Let @ be the set of all R-bases Q<g(Z) for G satisfying C,> 4. Choose
an element y from the interior of 4. Let x be the pre-image of y in Z§ under the map
Z¥ - G. Then x is contained in the set

Mg+ ), R, ,ef=J{CPL"(4)|4: simplicial and admissible} .
tel

Thus there exists a simplicial and admissible fan 4 satisfying xe CPL~(4). Namely,
there exists an m,e Mg for any o€ d(r) such that x,>{m,, ¢) for {€Z and that
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xg={m,, ) for (e E(4)no. We claim that x is contained in the interior of CPL™~(4).
To show this, suppose that x is contained in the boundary of CPL~(4). Then there
exist 6o € A(r) and £, € E\ (E(4) n g,) such that x, = {m,, {o>. Let 6o=R,0& + - +
R, & foran R-basis {£,, ..., &} =E(4). Thentheset Q :={g(£)|E€E, E#Ey, ..., &} e
g(Z) becomes an R-basis for G. We have

ye X Reog@c= Y R.o9(8)=Co.

o) ¢e&

¢e
E#80, &1, .00 & E#&1, .0y &

By assumption, we have C,> 4. Hence y is contained in the interior of C,, a contra-
diction to the assumption x. =<{m,, &>. Hence x is contained in the interior of
CPL~(4). Hence 4 is the unique fan satisfying x e CPL~(4).

As we have seen above, any r-dimensional cone g € A(r) gives rise to an R-basis

Q:={g(&)|¢eE, Ry oEK0}=g(B)
for G, satisfying C, > 4. Conversely, for any Qe @, the set

oi= ) R.o¢
¢eE
9(0)¢Q

becomes an r-dimensional cone in 4. Consequently, we have

eplid)= ( » Rzog<z>)= N ( » R20g<:>>=,4.
ceA(r) \Ee EN(E(4) no) Red \g()eQ 4
g.e.d.

COROLLARY 4.4. There exists a one-to-one correspondence between the set of
simplicial and admissible fans and the set of maximal dimensional cones [\, o Cqo Which

are not separated by C,. for any R-basis Q' <= g(E) for G, where © runs through all the
possible subsets of all the R-bases Q<= g(E) for G.

ProoF. By what we stated before Theorem 4.3, a simplicial and admissible fan
gives rise to a cone of the form [,,Cy,. We get the converse correspondence by Theorem
4.3, q.e.d.

EXAMPLE. LetE:={n,n', —n, —n—n',n—n'} c N Z?, where {n, n'} is a Z-basis
for N. Then there exist eight different simplicial admissible fans. Among those fans,
there is a unique fan 4, which is full (cf. Theorem 4.1). Let 4 be a fan consisting of
all the faces of the following three cones:

0, =R, on"+R,y(n—n')
0,:=R,on"+R,o(—n—n')
03:=R,o(n—n)+R,o(—n—n').

Then the corresponding toric variety S :=Tyemb(4) becomes the weighted projective
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plane P(1, 1,2) (cf. [20]). The toric variety X, :=Tyemb(4,) corresponding to 4, is
obtained from S by blowing-up at the following two Ty-fixed points of S:

p1:=V(oy) and p,:=V(s,).
G, is a three-dimensional strongly convex cone spanned by the set

{v(Rzon), v(R-o(n—1)), v(R;o(—n)), v(Ryo(—n—n))}

in A'(44)g :=A"'(4,) ®oR. By choosing all the R-bases for G=A4"(4,)g from the set
9(E)={uv(p)| pe 44(1)}, we get the GKZ-decomposition consisting of eight different
three-dimensional cones. Using Theorem 4.3, we can express the corresponding fans
immediately. The corresponding Q-factorial toric varieties are
(i) S=P1,1,2),
(ii) (resp. (iii)) the equivariant blowing-up X, (resp. X,) of S at the Ty-fixed
point p; (resp. p,),
(iv)  Xo,
(v) (resp. (vi)) the Hirzebruch surface F; =: Y, (resp. Y,) obtained from X, by
contracting V(R o(n—n")) (resp. V(R o(—n—n'))), and
(vii) (resp. (viii)) the projective plane P,(C)=: Z, (resp. Z,) obtained from Y,
(resp. Y,) by contracting V(R o(—n)) (resp. V(R,(n))) in Y, (resp. Y,).

It is clear that the GKZ-decomposition of G is uniquely determined by the given
set =. From this, we obtain all possible fans and get information on the relations among
these fans.

Suppose that 4 is a complete fan for N. Then by the property of the linear Gale
transform, G, becomes a strongly convex cone. As the example above suggests, the
GKZ-decomposition of G has some core which is the union of the GKZ-cones
corresponding to fans which are full, simplicial and admissible. 4 becomes coarser as
cpl(4) goes to the boundary of G . In fact, the core in the above sense also becomes
a cone in G, even if 4 is not complete, as we now show.

THEOREM 4.5. Let E be a finite subset of primitive elements in N such that Z spans
Ng over R. We denote by € the union of CPL~(A)’s corresponding to all fans A which
are full, simplicial and admissible for (N, Z). Then € is equal to the set of those elements

x=y x¢e§eMR+§Z~R20eg‘
EX

ieE
which satisfy

ayxg, + - taxg, >x,,
whenever

ooy €€l and a4+ +al,=¢ for some a,,...,a
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So the image € of € in G becomes a convex polyhedral cone contained in G . If both
CPL"~(4) and CPL~(A') are contained in €, then A can be obtained from A’ by a finite
succession of flops.

ProOOF. Suppose that x=2¢esx¢e§‘ is contained in %, hence x is in Mg+
dest oe¥. By assumption, there exists a fan 4 which is full, simplicial, admissible,
and satisfying x e CPL~(4). Hence, there exists an n€ CLP(4) such that x,=#() for
any (eZ. If a; &+ - +a,,=¢holds for &y, ..., ¢, €& and for some ay, ..., a,>0,
then

xe=n(&)=n(aé+ - +a,l)<an( )+ +an)=ax; + - +ax;,,

because 7 is convex.
Conversely, suppose that x=) cesXe€i € Mg+ Y cezR>oef satisfies the assump-
tion. Recall that

Mg+ Y R,,e¥=JCPL~(4),
el a4

where 4 runs through all the simplicial and admissible fans. Thus there exists a simplicial

and admissible fan 4 satisfying x e CPL~(4). Namely, there exists an ne CPL(4) such

that x, >#(¢) for any £ € £ and that the equality holds if £ € Z(4). For any {e E\ E(4),

we can find an r-dimensional cone o :=R, (&, + * * - + R, (&, € 4(r) containing £. Thus,

¢=a &+ +at, for some a,...,a,>0.

Hence we have

xe2nl)=n(a i+ - +al)=am)+ - +an)=a;x;+ " +axg, >x,,

by assumption. This implies that x,=#n(¢) for all £eZ. We can find a subdivision 4’
of 4 such that 4’ is full, simplicial and admissible as in Theorem 4.1. It is clear that
xeCPL~(4").

As for the last statement of the theorem, we just note that 4 and A4’ are full. So
A(1)=A4'(1) and the case of a star subdivision in [24, Theorem 3.12] cannot occur in
the present situation. q.e.d.

5. Full and simplicial fans. In this section we consider only those fans which are
full, simplicial and admissible for a fixed (N, E).

Recall that dim Ng=r. An (r— 1)-dimensional cone te€ A(r—1) is called an internal
wall if there exist ¢ and ¢’ in A(r) such that t=ong’. It is clear that every
(r—1)-dimensional cone is an internal wall when 4 is complete. We have described the
dual cone of the GKZ-cone cpl(4) in [24] for a convex polyhedral cone decomposition
4 having convex r-dimensional support. If 4 is full and simplicial, we can describe it
more explicitly as follows:
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THEOREM 5.1 (cf. [24, Theorem 2.3]). Let 4 be a full and simplicial fan for N
with r-dimensional convex support. Then for each internal wall te A(r—1), there exists
a nonzero element I, G* uniquely determined up to positive scalar multiple such that

cpld)'= Y Ryol.

©: internal wall

PrOOF. Let teAd(r—1) be an internal wall. Then there exist &,,...,¢&,,,€Z and
0,(1), 0,(t) € A(r) which depend on 7 and satisfy t=0,(t) no,(t) with
0,(1)=1+p4(7)
o2(0)=1+p2(v)
t=p3(0)+ps(D)+ " +p,41(7),

where we denote py(7) : =R, (¢i(t)eA(1) for i=1, ..., r+ 1. By renumbering the indices
if necessary, we have a relation

p q
'Zla,-f,-(r)='ZI(—apﬂ)épﬁ(r) for some ay,...,ap (—@ys1), ..., (—ay4)>0
i= =

among the elements in a minimal linearly dependent subset of {&,(7), ..., &, (1)}, where
D, q are intergers with p>2, ¢>0 and p+¢g<r+1. If we put

P q
L:= 21 Ai€r) — Z (*ap+,')e¢,,+j(‘f) >
i= j=1

then by the definition of cpl(4), we can deduce that cpl(4)* =)

©: internal wall R >0 lr'

q.e.d.
Let 4 be a complete simplicial fan which is full. Recall that there exists a perfect
pairing
r—1 1 r [ ]
A7 HA) x AN Q)—A(H)—>Q
in this case (cf. Example in Section 4), and that 4"~ '(4)=3}"__,,_,,Qv(z) by Proposition
1.1.

PROPOSITION 5.2. Let A be a complete simplicial fan which is full. Then

A" (A)sy— Y [yov(p)le,eZ= @ Qe,

pea(l) pea(l)
induces an isomorphism

A7 Dg =47 (M) @gR=G* :=(GY*QoR
which sends cpl(4)" onto (A"~ (A)R) 20 : = re 4r— 1y R 00(7).
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ProoF. Since 4 is complete, every wall Te A(r — 1) is an internal wall, that is, there
exist p,, p, € 4(1) such that
o, :=1+p,€A(r), 0, =T+ p,€A(r),
satisfying a relation
an(py)+ayn(p,)+ > ayn(p)=0
ped(l), p<t

for some a,, a,>0 and a,e Q. Recall that (cf. Theorem 5.1) cpl(4)” =ZIEA(r—1)Rzolr
and that we can put

l,=aie, t+aze, + Z ase,
ped(l), p<t

in this case. If we regard cpl(4)¥ = G* as a subset of Zz: =P Re,, then we have

ped(l)

a,(resp.a;) if p=p,(resp.p,)
pepd>=1 a, if p<r
0 otherwise .

On the other hand, we have an isomorphism
A" H(4) =5 (A1 (4))* :=Homy(4'(4), Q)
by identifying y € A"~ !(4) with a map which sends v(p) e 41(4) to [y-v(p)] € @, in view
of the perfect pairing
r—1 1 r [ ]
AN M) x AN — A" (D)0
Hence by the map

A MNsZ= @ Qe,, 7y~ 3 [yovp)le,.

ped(1) pea(1)
we have isomorphisms 4"~ }(4)g—>G* as well as
Ro0() 5 R, ol,
for any te 4(r—1) by Corollary 2.8. q.e.d.

ExAMPLE. Let X :=Tyemb(4) be the toric variety corresponding to a complete
simplicial fan A which is full. The above isomoiphism 4"~ *(4)g—> G* induces the mu-
tually dual short exact sequences (cf. Example in Section 4)

0«— Ng «— (TyDiv(X))f= @ Re, — A" 1 (A)g—0

ped(1)

0— Mg — TyDiv(X)g= @ RV(p)— A'(4)g —0.

ped(l)
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G.o=(A"(4)r)>0 is equal to the cone spanned by the linear equivalence classes of
Ty-stable effective divisors, and cpl(4) =(4'(4)g) s, becomes the cone spanned by the
linear equivalence classes of numerically effective divisors. By the isomorphism
A"~} (A)g—=> G* in Proposition 5.2, we have the identification of the dual cone

cpl(4)” =(A4"" H(Dp) 2= A" (Mg

Thus cpl(4)"¥ becomes the cone of effective one-cycles modulo linear equivalence, that
is, the Mori cone NE(X) :=). R ,v(7) (cf. [19] and [25]).

ted(r—1)

REMARK. Batyrev [2, Theorem 2.15] expressed the Mori cone in a different way,
when 4 is complete and nonsingular. He used a new concept of primitive collections. If
A is complete and nonsingular, then cpl(4)¥ =) _ se-1)Rsole If Rl is an extremal
ray (i.e., a one-dimensional face) of cpl(4)", then t gives rise to a primitive collection.
We see that not all of the primitive collections come from the extremal rays of cpl(4)"
in this way. The total cone cpl(4)" itself, however, is equal to the cone Pr(X) generated
by the primitive relations for primitive collections, and coincides with the Mori cone
NE(X).

Coming back to the general case where 4 may not be complete but has r-dimensional
convex support, we have another proof of a result in Reid [25].

ProprosITION 5.3 (cf. [25, Corollary 2.10]). Let dim Ng=r>3, and let A be full,
simplicial and admissible for (N, E). Let us denote
oy =T+ p EA()
0y =19+ p€A(r)
To =0,N05:=p3+ " +p,,€4(r—1)
™ i=pyt -+ v + 4 p, 1 €4(r—2) forany k=3,...,r+1.
Furthermore, let
D q
Zl an(p)= ). i j1(Ppj) 5
i= j=1

forsomeay, ..., a,,,>0, bearelation among the elements in a minimal linearly dependent
subset of {n(p,), ..., n(p,+,)}. Suppose that Rl is an extremal ray of cpl(4)". Then
we have the following:

(1) Forany k=3,...,p, let

1 =t +ped(r—1)
T, =t +ped(r—1).

Then I, 1,eR 1, and ™+ p, +p, e A(r).
(2) Forany k=p+q+1,...,r, if there exists a n(p') € E={n(p) ] peA(1)} distinct



142 H. S. PARK

Sfrom n(p,), ..., n(p,+q) such that v :=p +t*€A(r—1), then I.€R.l, and p,+7,
P2+ €A(r).

ProoF. For any k=3,...,r+1, it is clear that ™+ p,, ™"+ p,, "+ p,ed(r—1).
Suppose there exists a poe A(1)\{py,...> py+1} such that p,+t*ed(r—1). Since
| 4| is convex, we may assume that o :=1*+p,+p, €d(r). For any xe CPL~(4)<
@D ,ca0,Re}, we can express x as

x=z,+ ), x,e¥ forsome z,eMy and x,>0.
ped(l), p£a

Recall that R, o/, is an extremal ray of cpl(4)" if and only if
F:={xeCPL~(4)|(x, [,>=0}

is a facet of CPL~(4). We may take [, :=)"7_, aie,,— Y -1 a,4je,,,, (cf. Theorem 5.1).
Hence we have for xe€ F,

) g
0=<x, lro>=<za+ ) Xp€p 5 ) ai€p,— Z ap+jepp+j>
i=1 j=1

ped(l), pLa =

i=1

p q
=<Za s Z an(p;)— Z ap+jn(pp+j)>+xp2a2 + X, A
j=1
=X,,0,+X,, Q.

(1) If 3<k<p, then a,, a,>0. So F cannot be a facet of CPL~(4). Hence for
any pe 4(1) distinct from p,, ..., p,.,, we have p+1*¢ A(r—1). Since | 4| is convex,
we have t*+p, +p,€4(r), and clearly [, , [, e R, L.

(2) Ifp+q+1<k<r+1,then<x, [, >=x,,a,. So xe Fimplies x,,=0. If there is
another p € 4(1) distinct from p,, ..., p,+, such that p +1*e A(r—1), then x,=0 for the
same reason, which contradicts the fact that F is a facet of CPL~(4). So we have

{ped(D)|p+7eA(r—1)}={po, p1, P2 Pi} -

Hence we are done, if we take p’ :=p,. q.ed.

6. Application to isolated singularities. As another application of the GKZ-
decomposition, we consider a toric variety which has at most one bad isolated singu-
larity and possibly some quotient singularities.

Choose and fix an r-dimensional strongly convex rational polyhedral cone 7 in Ng
such that any proper face of = is simplicial.

Let 4, be the fan consisting of all the faces of n. Then the corresponding toric
variety X, has one possible bad isolated singularity at the point orb(r) and X,\ orb(=)
has at most quotient singularities.

Let & : = {n(p) ] p€ 4o(1)} and consider the Q-linear Gale transform of (N, E). Since
7 is strongly convex, G, becomes the whole space G (cf. [24, Proposition 1.4]). For
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any maximal dimensional GKZ-cone cpl(4) in the GKZ-decomposition, the cor-
responding fan 4 is a quasi-projective simplicial subdivision of 4, with 4(1)=4,(1) (cf.
[24, Corollary 3.8]). The corresponding toric variety X = Ty emb(4) has at most quotient
singularities. We also see that for any pair of maximal dimensional GKZ-cones, the
corresponding fans can be obtained from each other by a finite succession of flops.

DEerFINITION. A fan 4 is called a small simplicial subdivision of = if it satisfies the

following:
(i) 4 is simplicial.
(ii) |4|=m.

(iii) Any proper face of n is contained in 4.
(iv) dimo for any cone pe 4 is greater than r/2 whenever ¢ meets the interior
int(w) of =.

Such a small simplicial subdivision may not exist and may not be unique. In fact,
we have examples of = which do not have any small simplicial subdivision.

PROPOSITION 6.1. Let © be an even-dimensional strongly convex cone and E=
{n(p) I p<m, dim p=1}. Suppose that there exists a small and quasi-projective simplicial
subdivision A of n. If cpl(4") is a GKZ-cone such that F:=cpl(4)ncpl(4’) is a facet of
both cpl(A) and cpl(4'), then A’ cannot be small.

PrOOF. Let R:=R. [, be the extremal ray (cf. Theorem 5.1) of cpl(4)" cor-
responding to the facet F. Then there exist a minimal linearly dependent set {n(p,), ...,
n(p,+,)} and a relation

p q
Y an(p)= Y, ay.;n(p,e))  for some a,a,,;>0,
i=1 ji=1
where p;, p,+j€ A(1) are one-dimensional faces of g, o, € A(r) satisfying o, no,=r,
while p and ¢ are intergers such that p+¢<r+1 and p, ¢g>2.

Without loss of generality, we may assume that p, +7=0, and p, +t=0,. Then,
by the construction of a flop 4’ of 4, we see that

p1+'“+pp¢Aa pp+1+"'+Pp+q€A,
p1+...+pp€A,9 pp+1+”.+pp+q¢A,'

Thus, py+ - +p, and p,,;+ - +p,4, are not proper faces of n, and these cones
intersect the interior of 7. Since 4 is small, we have ¢>r/2, hence p+r/2<p+g<r+1.
Thus p<r/2, which implies that 4’ cannot be small. q.e.d.

If we cut this cone n by a hyperplane not passing through the origin, then the
intersection becomes an (r—1)-dimensional simplicial convex polytope. Thus, by
considering combinatorial types of simplicial convex polytopes (cf. [19, Appendix]),
we have some information in lower dimensional cases.
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Recall that a simplicial subdivision 4 of 7 is said to be non-divisorial if it does not
introduce any one-dimensional cones other than the one-dimensional faces of n (cf.
[23]). As we have seen in [24, Corollary 3.8], for any n there always exists a non-divisorial
quasi-projective simplicial subdivision 4 of 7.

PROPOSITION 6.2. (1) If r=3, then every non-divisorial simplicial subdivision of ©
is small.

(2) If & with r=4 has a small simplicial subdivision, then it is unique.
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