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Abstract. Explicit diagonal approximations for efficient resolutions of the integers
over the dihedral groups are constructed. As an application, the multiplicative structure
of the cohomology of the dihedral groups arising from certain coefficient pairings is
determined.

1. Introduction. The dihedral group D2n of order 2n is generated by two elements
x and y which satisfy the relations xn=y2 = 1, xy=yx~i. Efficient free resolutions of
the trivial D2n-modu\e Z over the integral group ring ZD2n have been given by Wall
[7] and Hamada [3]. Our main contribution is the construction of an explicit diagonal
approximation for the Wall-Hamada resolution. This yields explicit cochain cup prod-
ucts with respect to any given coefficient pairings. It is well-known (e.g. [1, Ch. V],
[2, Ch. 3]) that these cochain cup products induce the standard cohomology cup
products.

In §2 we reformulate the Wall-Hamada resolution, and give our diagonal ap-
proximation. The construction of the latter proceeds via a well-known inductive tech-
nique which uses a contracting homotopy, and is presented in §3. In particular, we
construct an explicit contracting homotopy for the Wall-Hamada resolution, providing
an alternate proof that the latter is indeed a resolution of Z over ZD2n. In §4 we
explicitly determine the cochain complexes arising from the Wall-Hamada resolution
for general Z)2π-modules and determine the cochain cup products arising from our
diagonal approximation. This is applied in §5 to calculate the cohomology rings
H*(D2n; Z\ H*(D2nι Z/2Z), as well as H*(D2n; M) as a module over H*(D2n; Z) for
certain non-trivial Z)2/J-modules M. Some of these results for trivial coefficients have
been previously obtained by other methods (e.g. [4, Prop. 3.5], [6, Ch. 1]).

I thank the referee for insisting that I include proofs which, in the original version,
were left to the reader. The result is a more easily verifiable paper.

2. The resolution and a diagonal approximation. Let n>2. We first reformulate
the Wall-Hamada resolution of Z over ZD2n. For each #>0, let Cq be the free
ZD2n-module on generators c\, c\, ..., c*+ί. For notational convenience, interpret c\
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as 0 if either i<\ or i>q+l or #<0. Using the notation of §1, let AΓ=^"=0

1 xleZD2n.
Let

\-\ if /=0or 3 (mod 4),

1 if ι=l or 2 (mod 4).

Then the augmentation ε: C0—>Zand the boundary operators dq: Cq-
are the right ZZ)2π-homomorphisms determined by

c—1) if q even, / even,

if q even, / odd,

if q odd, / even,

c—1) if q odd, / odd.

β _! for<?>0

THEOREM 2.1 (Wall-Hamada). 7%e (C, ε, d) resolution of Z over
ZD2

An explicit contracting homotopy for C will be given in §3, providing an alternative
proof of Theorem 2.1. We turn now to the description of a diagonal approximation
A : C->C® C. (x) denotes <g)z and C® C is a bigraded ZD2π-module via the diagonal
action (a ® b)g = (ag) ® (bg) for a9beC,gε D2n. To avoid excessive parentheses, (ar) ® (bs)
will be written as ar®bs whenever a,bεC, r, sεZD2n. C® C is another free resolution
of Z over ZD2n with augmentation ε ® ε : C0 ® C0-»Z® Z= Z and the standard tensor
product boundary. Δ is to be an augmentation-preserving ZD2n chain map. For
1<7<«-1 write Nj = ΣiloXiεZD2n, and W0 = 0.

THEOREM 2.2. For #>0, let A
phίsm determined as follows:

For k even and§<k<q—\,

i even
r > 0

•Σ(-ι
iodd
r > 0

q Cq *(C®C\ denote the right ZD2n-homomor-

For k odd and —1 <k<q— 1,
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= Σ (-ιpci
i even
r > 0

n-l

iodd
r > 0

ί/ze Aq constitute a diagonal approximation for C.

The proof of Theorem 2.2 is given in §§3 and 6. An alternative approach to the

proof is to check directly that Δ0 preserves augmentation (trivial) and that A commutes
with the boundary maps. The latter task appears to be at least as tedious as the approach
we have taken.

3. Constructing diagonal approximations. Let G be any group and (X, ε, 3) a free
resolution of the trivial G-module Z over ZG. Write X_ί = Z and d0 = ε: XQ-^X_^
Recall that a contracting homotopy Γfor A" consists of a sequence of Z-homomorphisms

Tq: Xq-+Xq+1,q>-l, such that dq+lTq+Tq_^dq=\Xq for each #>0.

PROPOSITION 3.1. Let G be a group , (X, ε, d) a free resolution of Z over ZG, and
U a contracting homotopy for X®X. Suppose that for each g>0, Bq is a ZG-basίs for
Xq such that ε(b)=\ for each beB0. Let ψ0: X0-+X0® X0 be the right ZG-module
homomorphism determined by ψ0(b) = b®bfor beB0. For q>0 let ψq: Xq-+(X®X)q be
the right ZG-module homomorphism determined inductively by ψq(b)=Uq,ίψq_ldq(b)for
b e Bq. Then ψ is a diagonal approximation for X.

PROOF. Trivially, (ε® ε)ψ0(b)= 1 =ε(b) for all beB0. Write δ® for the boundary

operator on X® X. Let q>0 and assume, inductively, dfψq = ψq_ιdq (where ^-i = lz)

Let beBq+l. Then df+1ψq+1(b) = df+1Uqψqdq+1(b) = (l(X^
ψqdq + ,(b) - Uq _ ,(df φq)dq + ,(b) = ψqdq + ,(b) - Uq _ ,(ψq _ jq)dq + ,(b) = φqdq + ,(b\ Since

Bq + i is a ZG-basis for Xq+ί9it follows that Bf+ί\l/q+ί = ψqdq + ί. D

Note that since the Uq are not necessarily ZG-homomorphisms, the formula
\l/q(u)= Uq_l\l/q_ίdq(u) is not necessarily valid for all we Xq, but only for ueBq.

PROPOSITION 3.2. Let G be a group, (X, ε, d) a free resolution of Z over ZG, and
T a contracting homotopy for X. Extend Γ_ t ε: X0-*X0 to a chain map Γ_ x ε : X-+X
over Z by defining (T_^\ = ̂  ϊ/ι/0. Let Uq: (X®X)q-+(X®X)q+lfor q> -1 be the
Z-homomorphisms given by U-1 = T_1®T_1: Z= Z® Z^>X0 (x) X0, and Uq(u ®v) =
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Tί(u)®v + (T_lε)i(u)®Tq_i(v) for ueXi9υ€Xq-i9 Q<i<q. Then the Uq constitute a
contracting homotopy for X® X.

PROOF. Γmay be regarded as a chain homotopy from \x to T_{£. It is standard
(e.g. [5, Prop. 9.1]) that whenever s is a chain homotopy from /i to g1 and t is a chain
homotopy from /2 to g2, then u given by u(a®b) = s(a)®gl(b) + (— l)|fl|/2(#)(8> t(b) is a

chain homotopy from fι®g± to /2®#2 Applying this with /ι=0ι = ljr, /2=02 =

Γ_ 1ε,s = t=T, the M that results is C7 as defined above. Π

THEOREM 3.3. The following defines a contracting homotopy Tfor the Wall-Hamada
resolution C:

If q>0 is even, then

τχy*ιΉ
1̂

0
-r vCq+1X

r+
q+l

rr+l ί
C+lX

z/y=0, r = l , andϋ<i<n-l,

if 7=1, r = l , andQ<i<n-l,

ifj=Q, 2<r<q+\, and alii,

ι/7=l, 2<r<q, r even, and all i,

ι/7=l, 3<r<^r+l, r oJt/, and all i.

If q>

i f j = Q , r=l, andQ<i<n-2,

i f j = Q , r = l , andi = n-\,
c~1 */7 = l> r=\, and z' = 0,

ι/7'=l, r = l , am/1 </<«-!,

if j=Q, 2<r<q+l, and all i,

if j=\, 2<r<q+\, r even, and alii,

if j=\, 3<r<^, r orfrf, and all i.

rCq+l

PROOF. We must check

whenever l<r<#+l, 0<i<n— 1, and7 = 0 or 1.
From the definition of T and the boundary formula we obtain

co(yjχl— 1)? T_ίε(cQyjxl) = CQ which establishes (*) for # = 0.
For the case q>Q, r=\, and7 = 0, we obtain

q(xl— 1) if q even, 0<i<n— 1,

if q odd, 0<i<n-2,

qN if ^ odd, i = n—l,

and
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cq if q even, 0 < i < n — 1,

c\x{ if q odd, 0<z<«-2,

— cqNn_1 if q odd, /=« — !,

which combine to yield (*) in this case.
For the case #>0, r= 1, and 7= 1 we obtain, from the definitions and the fact that

if q even, Q<i<n— 1,

'(I-*'1) if # odd, ι' = 0,

(x1 — x1'1) if # odd, 1 </<«—!,

and

if # even, Q<i<n— 1,

x'1-!) if #odd, ι = 0,

-q(xi~i—xl) if ^ odd, 1 <i<n—l,

which combine to yield ( *) in this case.
For the case 2<r<q+ 1, r even, and7 = 0, we obtain dq + lTq(cr

qx
i) = 0 for all /. The

computational details of T^^j^c^x1) are different for the subcases r = 2 and r>4 due
to the presence of a cq term in 8q(cq) and the anomaly in the definition of the Tq_ί(cq_ ^x1).
In both subcases, one obtains Tq_ίdq(cqx

i) = cr

qx
i for all /, thus establishing (*) in this

case.
For the case 2<r<g+l, r even, j— 1, and / arbitrary, we obtain

and

c^1^ if q odd.

Again, the subcases r = 2 and r>4 require separate treatment. Using ε k + 1=(— l)k + 1εk,
( * ) now follows for this case.

For the case 3<r<<7+l, r odd, and 7 = 0, we obtain Sq + 1Tq(cr

qx
l) = Q and

Tq_ίdq(cqx
ί) = cqx

i for all i, thus establishing (*) for this case.
For the case 3<r<#+ 1, r odd, andy= 1, we obtain

d T(c' χi) =

ί+ι ,̂ ^ ' 1 if q odd,

ε p Ύ~I\ rr Λ/" if n PVPΠΓ+1 fl + 1 ) Q Ύ C V C l l j

-er+1e^ + 1x
I~1) + c^+1(xI —x1"1) if # odd,

and
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-εrεqcqx
i + cr

q

+1N if q even,

for all /, which combine to yield ( * ) in this case. Π

THEOREM 3.4. The diagonal approximation A for the Wall-Hamada resolution which
results from Theorem 3.3, Proposition 3.2, and Proposition 3.1 with Bq = {cq, . . . , c^+1}
is given by Theorem 2.2.

PROOF. Let ψ denote the diagonal approximation which results from Theorem
3.3, Proposition 3.2, and Proposition 3.1 with Bq = {cq, . . ., c

q

q

+ί}. We must prove
ψq(cq

q~
k) = Άq(c(

q~
k) for all q and k. The contracting homotopy U of Proposition 3.2

which results from the T of Proposition 3.3 is given by U(u ®v) = T\u) (x) υ + £(U)CQ ® 1\v).

ψ is determined inductively by

- -
To make the notation less cumbersome, write

i even
r > 0

ieven
r > 0

A3(q,k)=
ieven
r > 0

i even
r > 0

iodd
r > 0

i odd
i ao

) = Σ ( - ι
iodd
r > 0

) = Σ ( - ι
iodd
r > 0
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i even
r > 0

*)= Σ (-
ieven
r > 0

fc)= Σ
i even j = 1
r > 0

iodd
r > 0

fc)= Σ (-
iodd
r > 0

w-1

Σ (-
iodd j=l
r > 0

Thus we must prove that for all k> — 1 and all q>k+ 1,

8

(2)
ί=l

6

ί=l

At(q, k) if A: even,

c) if A: odd.

Let P(^f, fc) denote the statement that ψq(cq

q

 k) is given by (2). The plan of the proof is
the following induction scheme:

Step 1: Establish P(q, q—1) for all q>Q by induction on q.
Step 2: Establish P(q, — 1) for all q>0 by induction on q. The case q = Q in Step

1 starts the induction here.

Step 3: Let k> -1. Assuming P(p, k-1) holds for all p>k, deduce that P(q, k)
holds for all q>k + 1 by induction on q. The case q = k +1 in Step 1 starts the induction

here.
We proceed with Step 1. The statement P(q, q—l) reduces to

(3)

Σ /" 1Ci
iodd

c/(χ)c€
1_ ί+ Σ Σ clN

i odd j =1

if q odd,

if q even.

In the case of q odd, the summations which appear in (3) are A^(q, q—l) and A5(q, q—l),
respectively; the other At(q, q—l) are all 0. In the case of q even, the summations which
appear in (3) are B^q, q—l) and B6(q, q—l), respectively; the other Bt(q, q—l) are all 0.
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The statement P(0, - 1) is immediate from (1). Let #>0 and suppose, inductively,
P(q — 1, q-2) holds. The cases q odd and q even must be treated separately.

Suppose q is odd. Then dq(cl

q) = c\-l(x— 1) and so by (1),

By the inductive hypothesis,

«M^)= Σ ί/,
i odd j = 1

(4)

- Σ f.-iίc/Θc^-Λ-Σ "Σ C/.
i even i odd 7=1

From Theorem 3.3 and the definition of U we obtain

Σ c/ g- 1(cί®^ 1_ 1_ ί)=o=Σ "Σ^-I^Λ
ieven iodd 7=!

(5) Σ tf.-iίc,1*®^-!-!*)" Σ c^Φφ

= Σ Cί
iodd

"Σ Σ
i odd 7=1 ΐ odd ί even

i > 0 i > 0

In this last summation, the only non-zero contributions come from thej=n—l terms.

(4) and (5) imply (3) if q is odd, and so P(q—l, q — 2) implies P(q, q- 1) in this case.
Suppose q is even. Then dq(c}l) = Cq-1N and so by (1),

7 = 0

By the inductive hypothesis we have

" '1(f\\ ilt (s*^\ ^ \"* JJ (s*^ Ύ ΐ (5?\ r^ Ύ J\ 4- ^ ^ TJ (r^Ύ Jfor^ .V ^ + ^^(Ό) ψq(Cq)— L L Uq-l\CiX ^^q-\-iX )^ L, 2-< Uq-l\CiX (&ίq-l-i *< )•
7 = 0 i even j = 0 i odd

From Theorem 3.3 and the definition of U we obtain

Σ c£

1

+1JV ι/®cί-1_ l^ if 0</<«-2,
ί even

ieven

and so, since N0 = 0, we obtain

ieven
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(7) "Σ Σ
j = 0 ί even

Σ Σ c/
j = l i odd

From Theorem 3.3 and the definition of U we obtain

0

and so

(8)

Σ I/,_
1
(c

l
V®c

ί

1
_
1
_
ί

iodd

"Σ Σ
j = 0 i odd

Σ'
iodd

if 0</<«-2,

ify=n-i

1)= Σ

(6), (7) and (8) yield (3) for q even. This completes Step 1 of the proof.
We proceed with Step 2. The statement P(q, — 1) reduces to

(9) )= Σ c{ for ^>o.
i odd

The summations which appear in (6) are B^q, —1) and B4(q, —1), respectively; the
other Bt(q, — 1) are all 0. We already know P(0, — 1) is true.

Let q>Q and suppose, inductively, P(q— 1, — 1) holds. We have dq(c^+1) =

By the inductive hypothesis,

(10)

+1)= Σ t/,-ι(c!+V®c;:'1_(j')+ Σ
i even ί odd

± Σ t/.-iί
i odd

From Theorem 3.3 and the definiton of U we obtain

Σ ί/<,-1(c

01)
iodd

Σ JĴί
ί odd i odd

i odd
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(10) and (11) imply (9), completing Step 2.
To facilitate Step 3 we interpose six lemmas whose proofs are deferred until §6.

LEMMA 3.5. Suppose k>Q is even and q>k. Then

(a) Uq(Aί(q9k)yx) =
r > 0

(b) Uq(A2(q,k)yx) = A6(q+lk)- £ (^
r > 0

(c) UJ,A3(q,k)yx) = Ajq+l,k)- Σ (-\
r > 0

(d) Uq(A4(q, k)yx) = As(q+ί, k)- Σ (~
ra O

(e)

(f)

(g)
r > 0

(h) Uq(A8(q9k)yx) = A4(q + \9k).

LEMMA 3.6. Suppose k>0 is even and q>k. Then Uq(At(q, k)) = Qfor 1

LEMMA 3.7. Suppose k>Q is even and q>k+l. Then

(a) UJ[A1(q,k)N)=Σ "Σ
r > 0 j = l

(b) c/,μ5(q,fc)N)=Σ(-
r > 0

(c)

(d) Uq(As(q,k)N)= Σ (
r > 0

(e) Uq(At(q,k)N)=0 for t =2, 3, 4, and! .

LEMMA 3.8. Suppose k>-\ is odd and q>k. Then Uq(B,(q,k)) = Ofor l<t<6.

LEMMA 3.9. Suppose k> 1 is odd and q>k. Then

(a) Ujflάq, k)y) = B^q + 1, k) + c J ® c't } -*

(b) Uq(B2(q,k)y) = B5(q+l,k);

(c) £/ 3̂(9,%) = lϊ6(9+l tJk)- Σ "Σ
r > 0 j = l
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(d) £/,(*4to,*)3θ=*ι(?+l.*)- Σ (-
r > 0

(e) UJiB5(q, k)y) = B2(q+l,k)-
r > 0

(f) Uq(B6(q,k)y) = B3(<]+l,k)+ £ (
r > 0

LEMMA 3.10. Suppose k>—\ is odd and q>k+l. Then

(a) Uq(Bl(q9k)x)=Σ(-^)rq^
r > 0

(b) Uq(B2(q,k)x)=Σ(-l)rqrc1

2,
r > 0

(c) t/^
r > 0

(d) Uq(Bt(q,k)x) = 0 fort -3, 4, and 5.

We proceed with Step 3. Suppose k> — 1 and that P(p, k— 1) holds for all /?>£.

By Step 1, P(/c +!,/:) holds. Let q>k+l and suppose, inductively, P(q-l,k) holds.

The cases fc even and k odd require separate treatment.

Suppose k is even. Then Sq(cq

q~
k) = cq

ql\~i(yx±l) + cq

ql
k

l(x-l) and so by (1),

By the induction hypothesis,

W*)= Σ Uq.1(
r = l

(12)

+ Σ Uq^(Bjiq-l,k-l)x)- t
ί=l ί=l

Using Lemmas 3.5, 3.6, 3.8, and 3.10 to express the right-hand side of (12), one easily

deduces that ιl/q(cq~k) is given by (2).

Suppose k is odd. Then dq(cq

q-
k) = cq

ql\~k(y± l) + (-l)qcq

qI\N and so by (1),

,A,(O=^-ι(^^^^
By the induction hypothesis,
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*> = Σ Uq^(Bt(q- 1, k)y)± Σ Uq^(Bt(q-\, k))
ί=l ί=l

r=ι

Using Lemmas 3.7, 3.8, and 3.9 to express the right-hand side of (13), one easily deduces
that ψq(cq~k) is given by (2).

This completes Step 3, modulo the proofs of Lemmas 3.5-3.10 (see §6). Π

4. Cochain complexes and products. This section is concerned with cochain-level
computations arising from the Wall-Hamada resolution and our diagonal ap-
proximation, in preparation for the cohomology determinations in §5.

Let A be a right ZZ)2π-module. Write Cq

A = HomZD2n(C€, A) where C is the
Wall-Hamada resolution. We first describe the coboundary maps δq\ Cq

A->Cq

A

+1. If
a e A and 1 < i < q + 1 , let al

q e Cq

A denote the cochain characterized by afafy = δ{a where
δ{ is the Kronecker delta. (We will sometimes write (a)l

q if a represents an expression
consisting of more than one symbol.) Thus for any zeCq

A,

Following standard sign conventions, the coboundary maps δq are characterized
by δq(a)(u) = (— l)q+ia.(dq + 1(u)). The following is a routine consequence of the boundary
formulas in §2:

PROPOSITION 4.1. Let n>2 and suppose A is a right ZD2n-module. Then for aeA
and 1 </<#+!,

~(a(x-l)yq+i-(a(y-si+lsq + i)Yq

+

+\ if q even, i odd,

^+i^+i))^! if ^ even, /even,δ<*( h=
(aq) + if q odd, i odd,

if q odd, /even.

If A and B are right ZD2n-modu\QS, so is A ® B via the diagonal action and we
have a cochain cup product pairing

arising from our diagonal approximation A (Theorem 2.2) which induces the standard
cohomology cup product pairing

H *(Z)2π; A) ® H*(D2n; B)-+H*(D2n; A®B).

For α s CA and β e C ,̂ the above cochain cup product αβ e CS

A®B is characterized by

= (α®/?)Gdw) for ueCs+t where (α® β)(v® w) = (— l)sία(ϋ)® jS(w). Our next task
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is to determine the cochain cup products au

sb
v

t for aeA,beB, \<u<s+l, and

Let C" denote the ZZ)2π-submodule of Cs generated by c". Then C® C is the direct

sum of the Cu

s ® Cv

t. If z e C ® C, we write zj," for the C? ® Q-component of z with respect
to this direct sum decomposition, and zl"f for the C" ® (^-component of Δ.

In the lemma below, the A^q, k) and Bt(q, k) are as in the proof of Theorem 3.4.

LEMMA 4.2. Suppose 1 < u < s +1 and 1 < v < t +1. 7%e« ίAe ̂ (s + t, Kf^for k even,
0<k<s + t-1, αwrf /Λ^ Bfa + t, k)u

syfor k odd, -1 <k<s + t-1, αr^ α// 0 except for the
following cases:

(a) A1(s + t,s + t-u-v + l)tt

sf = (-l)(t+

for s even, u odd, and t — v even',

(b) A2(s + t,s + t-u-v)u

s;ϊ = (-l)t(s-u)/2

for s even, u even, and t — v even

(c) Aι(s + t,s + t-u-v+\ysΐ = (-\y(s-

for s even, u even, and t — v odd',

(d) A4(s + t,s + t-u-v)uJ = (-l)t(

for s even, u even, and t — v even

(e) 
5̂
(s + ί,s + t-ιι-t? + l);j = (-l)̂ -

for s odd, u odd, and t — v odd',

(f) ̂
6
(s + i,s + t-tt-»)#=(-l)*-"W

2

for s odd, u odd, and t — v even

(g) ̂
7
(s + ί,s + ί-M-ι;+l)̂  = (-

for s odd, u even, and t — v even

(h) A
s
(s + t,s + t-u-v)

u
^ = (-l)

t(s
-

u)/2

for s odd, u odd, and t — v even',

(i) B
l
(s + t,s + t-u-v+\Y

s
^(-\J

(s

for s even, u odd, and t — v odd;

(j) B
2
(s + t,s + t-u-v)

u
^ = (-l)

t(

for s even, u odd, and t — v even

(k) £3(s+ί,s+ί-M-u+i)^=Σ":ί(-ψ^^
for s even, u even, and t — v even',

(1) (̂s + ̂ s + ί-ii-i +l^^ί-l^1

for s odd, u even, and t — v odd',

(m) B5(s + t,s + t-u-vYs^ = (-\J(

for s odd, u even, and t — v even',
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(n) Bβ(s + t9s^t-u-v+l)uiJ = ^n

j~l(-\)(t+1)(s-u+2)l2cu

sNj®c1ίxj

for s odd, u odd, and t — v even .

PROOF. Suppose k is even and Q<k<s + t— 1. Then term indexed by i and r in

the summation denning ̂ (s + ί, k) is ( - l)r(s+ί + ΐ}c\+ 1 ~ 2r ® cjΐ Jl}+ 2r~*. Then latter will
contribute to A±(s + t, /c)";" if and only if / = s, z + 1 — 2r = M, s + 1 — ί = t, s + ί — ί + 2r — k = v,
i is even, and s + £ — i + 2r — t; is even. Thus, the only possible contribution occurs when

s is even, u is odd, r = (s — u+ l)/2, t — v is even, and k = s + t — u — v+l. The assertion
about the A^s + t, /c)"f now follows. The other parts are similar. Π

PROPOSITION 4.3. Let n>2 and suppose A and B are right ZD2n-modules. Then

for aeA,beB,l<u<s+l, l<t ;</+l, the cochaίn cup product au

sb
v

tECs^B derived
from Theorem 2.2 is as follows:

(a) (-
+ (-iγ(s-»»i(a®b + (l/2)(s-u)a®bN)

u

s
ϊϊ for s even, u even, and t-v even',

(b) (- \)
t(s
-
u}l
\a®by)

u

s
^-

l
for s even, u even, and t-v odd',

(c) (-l)
(t+1)(s

-"
 + 1)/2
(fl®fê

for s even, u odd, and t — v even

(d) (- l)ί(f-"+1)/2(fl® WίΓ1/^ s even, u odd, and t-v odd',

(e) (-l)ί+(ί+1)(s-"+1)/2(αx®^^

for s odd, u even, and t — v even',

(f) (-\)t(s-u-"l2(a®byys + v

t-^ for s odd, u even, and t-v odd',

)u

sϊϊ for s odd, u odd, and t-v even;

(h) (-I)t(s-u + 2)l2(a®bx)u

sϊ?-1for s odd, u odd, and t-v odd.

PROOF. We have

s + f+l s + ί+1

«:*?= Σ ((α:A?χcϊ+t))ϊ+,= Σ ((^®6rχΛ« (v*+ ,»)*+,.
J k = l f c = l

It follows from Lemma 4.2 that the zl"f(cj+ί) are all 0, except possibly for k = u + v— 1

or u + v.
Suppose s, u, and t — v are all even. Scanning Lemma 4.2, we see that only case

(k) contributes to Δu^(cu

3^
l\ and only cases (b) and (d) contribute to Δ^(cu

s^). Thus

(̂ ®̂ )(zî (ĉ ^
π-1

= (-l)
st
 Σ (-
7=1

"
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and

(α; <g> b»)(Δ u

s;ϊ(cu

sX)) = (au

s

= ( - l)sί( - I)t(s-u)l2(au

s(c») ® b»(cv

t) + (l/2)(s- u)au

s(c») ®bv

t(cv

tN))

=,( - 1 )ί(s - ")/2(α ®b + (\ /2)(s - u)a ® bN) .

Part (a) now follows. The other parts are similar. Π

5. Cohomology products. We first calculate the cohomology rings H*(D2n' > Z)
and H*(D2n\ Z/2Z), where the coefficients are simple. Although these rings have
previously been known, it is useful to describe them in terms of cocycles coming from
the Wall-Hamada resolution in order to use Proposition 4.3 to describe 7/*(D2π; A) as
a module over H*(D2n; Z) (or over H*(D2n; Z/2Z) if A is a (Z/2Z)-module) for certain

non- trivial ZZ>2π-modules A. We accomplish the latter when A is any of the non- trivial
ZD2n-modules whose underlying Z-module is Z.

For notational convenience, we write i instead of 1 in Z when we regard Z as a
trivial ZD2n-module. Under the canonical identification Z®Z=Z, we identify ι®ι
with i. Thus, using the notation of §4, Cq

z is the free Z-module with basis { z £ |
for <7>0. From Proposition 4.1 we obtain

if q even, / odd,

nιi

q+1-(l~εi+lεq+i)ιi

q

+

+\ if q even, /even,

if q odd, / odd,

/ even.

(5.1)

If z is a cocycle, let [z] denote its cohomology class.

If n is even, it follows from (5.1) that we have the following cohomology classes:
a2 = [i 1] e H \D2n Z), b2 = [(π/2)ι J + 1 i] e H\D^ Z), c3 = [z2] e 7/3p2π; Z), and J4 =

THEOREM 5.2. Let n>2 be even. Then H*(D2n; Z) = Z[a2, b2, c3, J4]// wΛ^r^ / is
the ideal generated by 2a2, 2b2, 2c3, «J4, (62)

2 + «2^2 + (n 2/4)</4, and (c3)
2 + a2d4.

PROOF. Using (5.1), one finds that Hq(D2n\ Z) for positive q is as follows:
If q= 1 (mod 4), then Hq(D2n\ Z) = (Z/2Z)(q~l)l2 (a direct sume of (q- 1)/2 copies

of Z/2Z) with generators [ϊ^] for !</<(^-l)/4, and [(n/2)^ί+2-z^+3] for

If q = 2 (mod 4), then Hq(D2n; Z) = (Z/2Z)(q + 2}/2 with generators [z*ί + 3] for

If q = 3 (mod 4), then Hq(D2n; Z) = (Z/2Z)(q-ί)/2 with generators [z*ί+2] for

If <7 = 0 (mod 4), then Hq(D2n; Z) = (Z/nZ)®(Z/2Z)q/2; [z^1] generates the Z/nZ
summand, and the generators of the Z/2Z summands are [z£ί + 1] for 1 </<<//4, and
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[(n/2)*4/+3 + !4ί+4] for 0

We proceed to show that a2, Z>2, c3, and d4 multiplicatively generate H*(D2n\ Z).

Using Proposition 4.3, we obtain (02)
2 = [i2i|] = D4], a2b2 = \_(n/2)ιlι2 + ιlι2

2] =

[ — (n/2)ϊ4ι3 — ϊ2ϊ3] = [(tt/2)ι4 — 17], which shows that a2, Z>2, c3, and d4 multiplicative-
ly generate /f*(Z)2π; Z) in grades <7. Let #>7 and suppose, inductively, that a2, b2,
c3, and d4 multiplicatively generate H*(D2n\ Z) through grade q—\. Using Proposition
4.3, we obtain the following:

If ^ = 0 (mod 4), then

, and

^4L+

2

2] for
If q=l (mod 4), then

I

4LV] for 1 </<(?-

, and

If ^ = 2 (mod 4), then

Dί^'l^^Dί'-V] for o</<(^-2)/4,
[(n/2)ιίl+1 + ϊίl + 2]=fl2[(π/2)ιίL-2

1 + ιί!-2] for 1 <i<(?-2)/4, and
[(n/2)^1 + , 2] = [(π/2)ι ί_4 + ι2

q-4-]d4 .
l f q = 3 (mod 4), then

It follows that α2, b2, c3, and ί/4 multiplicatively generate H*(D2n; Z) through grade q,
completing the induction.

The additive orders of α2, b2, c3, and d4 are implicit in the above. We next
check that the relations (ό2)

2 + fl262 + («2/4)c/4 = 0 and (c3)
2 + a2d4 = Q hold. Equivalent-

ly, since the additive orders of a2 and b2 are both 2, it suffices to check that

-(ό2)
2H-α2ό2-h(«2/4)ί/4 = 0 and (c3)

2-α2d4 = 0. We have -(b2)
2 + a2b2 + (n2/4)d4 =

-L(n2/4)ι2ι2+(n/2)ι\ι2

2 + (n/2)ιl^^ and (c3)
2-

a2^4 = C z 3Z 3] — Ll 2lϊ]- We apply the appropriate parts of Proposition 4.3 to calculate the
above cochain products: From part (d) we obtain ι\ι2 = ιl, ι\ι\ — ι\, and ι\ι\ = ι\\
from part (c) we obtain ι\ι\— — ι4 + m 4and \\\\ = ι\\ from part (b) we obtain ι\ι\ = ι\\

from part (a) we obtain ι\ι\= — Σ"lίy'ϊ4 + *4= — (Λ— iχ/ι/2)ι4+ϊ4; from part (f) we
obtain ι\ι\ = ι\. The two desired relations now follow easily.

Thus if A, B9 C, D are abstract symbols of grades 2, 2, 3, and 4, respectively, the
map of algebras Z[A, B, C, D]-»//*(D2M; Z) which sends A, B, C, D to α2, b2, c3, d4,

respectively, induces a surjective map of graded algebras Z\_A,B, C, £)]//=/£->
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H*(D2nι Z) where / is the ideal generated by 2 A, 2£, 2C, nD, B2 + AB + (n2/4)D, and
C2 + AD. Since each Hq(D2nl Z) is finite for 0>0, it remains only to check that the
order of Rq is at most the order of Hq(D2n\ Z) for each 0>0. By abuse of notation we

write A, B, C, D for their images in R under the canonical projection.
If q is odd, then Rq is additively generated by the D[AJC where i9j>0 and

4ί + 2/4-3=0, and the D1AJBC where z,;>0 and 4z + 2/ + 5 = 0. All these elements have
order dividing 2, and one checks that there are (q— 1)/2 such elements. Thus the order
of Rq is at most 2(«~1)/2, which is the order of Hq(D2n; Z).

If q is even, then Rq is additively generated by the D 1AJ where i, j > 0 and 4i + 2j = q,

and the D1ASB where 1,7 >0 and 4i + 2j + 2 = q. If q = 2 (mod 4), all these elements have
order dividing 2, and one checks that there are (0 + 2)/2 such elements. If 0 = 0 (mod 4),
Dq/4 has order dividing «, while the rest of these elements have order dividing 2. One
checks that there are q/2 of the latter. In either case one sees that the order of Rq is at
most the order of Hq(D2n\ Z), completing the proof. Π

If n is odd, it follows from (5.1) that we have the cohomology classes a2 =

2n, Z) and d4 = ίιfieH4(D2Λι Z).

THEOREM 5.3. Letn>3 be odd. Then H* (D2n\ Z) = Z[a29 rfj// where / is the ideal
generated by 2a2 and nd4.

PROOF. Using (5.1) one finds that Hq(D2n; Z) for positive q is as follows:

If q is odd, then Hq(D2n; Z) = 0.
If 0 = 2 (mod 4), then Hq(D2n\ Z) = Z/2 with generator [ι« + 1].

If 0 = 0 (mod 4), then Hq(D2n; Z) = (Z//ιZ) φ (Z/2Z); [ι*] generates the Z/«Z
summand, and [z^+1] generates the Z/2Zsummand.

From Proposition 4.3(d), ι%ιq+ί = ι«^| for 0 even, and z^ = z^+4 for 0^0 (mod 4).

It follows by induction on q that [ιq

q

 + l']=(a2)
q/2 for q even, and [^]=W/4 for 0 = 0

(mod 4). The assertion now follows. Π

We denote the generator of Z/2Z by λ. From Proposition 4.1 we obtain, for

if 0 + / is odd ,
., ./ ..
/ i + if 0 + / is even.

If n is even, it follows from (5.4) that δq(λl

q) = 0 for all 0 and /. Thus for 0>0,
Hq(D2n; Z/2Z) has a (Z/2Z)-basis consisting of the [λ£] for 1 </<0+ 1. In particular,
we have the cohomology classes u1 = lλ\']eHl(D2n; Z/2Z), v1 = lλ2

1]eHl(D2n; Z/2Z),

THEOREM 5.5. Let n>2 be even. Then H*(D2n; Z/2Z) = (Z/2)[w1? t? l 9 w2]/7
/A^ ideal generated by (u^2 + u1v1 +(n/2)w2.

PROOF. Under the canonical identification (Z/2Z) ® (Z/2Z) .= Z/2Z, A ® A is
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identified with λ. We first check that the relation (ul)
2 + uίv1+(n/2)w2 = Q holds. Using

Proposition 4.3, (uί)
2 = lλ\λ^ = l(n-i)(n/2)λ^λ^ = l(n/2)λl

2 + λ2

2'] by part (g), and
w1ι;1 = [/l}Aι] = [A|] by part (h). The relation now follows.

We next check that uί9 v1 and w2 multiplicatively generate H*(D2n; Z/2Z). As
noted above, u1vί = [ λ 2

2 ] . By Proposition 4.2(f), (i?i)2 = [Ai>i<i] = [^i] and so uί9 vί9

and vv2 multiplicatively generate H*(D2n'9 Z/2Z) through dimension 2. Let q > 2 and
suppose, inductively, that ul9 vί9 and vv2 multiplicatively generate H*(D2n; ZβZ)
through dimension q—\. If q — i is odd, 2 </<#+!, then by Proposition 4.3(f),

[Λp = [^ι^-ι] = tfι[Λ4-ι] If q-i is even, !</<#, then by Proposition 4.3(h),
[Aj] = [AίAj_ 1 ] = ι/1[Ai_1]. If 4 is even, then by Proposition 4.3(d), [Aβ

1] = [λiλί

1_2] =
w2[/l*_2]. It follows that w l 5 t;l5 and w2 multiplicatively generate Hq(D2n; Z/2Z),
completing the induction.

Thus if £7, F, and PFare abstract symbols of grades 1,1, and 2, respectively, the
map of algebras (Z/2Z)[ί7, F, W~\-+H*(D2n\ Z/2Z) which sends £/, F, and ίFto ul9 v^
and w2, respectively, induces a surjective map of graded algebras (Z/2Z)[C7, F, fF]/
J=R-+fi*(D2n;Z/2Z) where / is the ideal generated by U2 + UV+(nj2)W. Abusing

notation, we write (7, F, and W for their images in R under the canonical projection.
R is additively generated by the monomials UViWj and F'PF7, z,y>0. An easy counting
argument, similar to that used in the proof of Theorem 5.2, shows that for each #>0,
there are precisely q + 1 such monomials of grade q. Since Hq(D2n\ Z/2Z) is
(</+l)-dimensional over Z/2Z, R is mapped isomorphically onto H*(D2n\ Z/2Z),
completing the proof. Π

If n is odd, it follows from (5.4) that we have the cohomology class υ± =

THEOREM 5.6. Let n>3 be odd. Then H*(D2n, Z/2Z) = (Z/2Z)[_v^.

PROOF. Let <x> denote the subgroup of D2n generated by x. Since <x> has odd
order, it follows from the Lyndon-Hochschild-Serre spectral sequence of the extension

(e.g. [1, Ch. VII] or [2, Ch. 7]) that/?*: /P(/)2lI/<jc>; Z/2Z)-»//%D2n; Z/2Z) is an
isomorphism. Since Z)2n/<x> is cyclic of order 2, it follows that H*(D2n; Z/2Z) is a
polynomial algebra over Z/2Z on a 1-dimensional class. By (5.4), H^(D2n', Z/2Z) is
generated by t^. The theorem now follows. Π

We next describe H*(D2n; M) as a module over H*(D2n; Z) when M is a nontrivial
ZD2π-module whose underlying Z-module is free on one generator, x and y can only
act via multiplication by ± 1 . If n is odd, x can only act as the identity.

Let MΛ denote the ZD2π-module where Ma is the free abelian group on one generator
α with Z)2π-action given by 00; = α, ay=— α. From Proposition 4.1 we obtain, for
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if q even, / odd,

/c *7\ Soί i\ '* V Λ f l l l ' V•"• ' wί •+• 1 "a + 1 / Q~\~ 1 ^ CVCI1, t CVC11,
Q f /1 ι)αi+\ if q odd, /odd,

JαjVi if tf odd, /even.

It follows from (5.7) that we have the cohomology classes o^ = [α2] εHl(D2n; Mα) and

THEOREM 5.8. Let n>2 be even. Then H*(D2n; Mα) is the free H*(D2n', Z)-module
on oc1 and α2, modulo the H*(D2n\ Z)-submodule generated by 2α l5 «α2, £30^ +fl2α2, and

PROOF. From (5.7), H°(D2n; Ma) = 0, and for # >0, Hq(D2n\ Mα) is as follows:
If #ΞΞl(mod4), then Hq(D2n; MΛ) = (Z/2Z)(q+1)/2 with generators [α^ + 2] for

-!)/4, and [(n/2)< + <i+1] for 1 </<(^- 1)/4.
If^ = 2 (mod4),then^(D2π; Mα) = (Z/«Z)0(Z/2Z)(^2)/2. [α^1] generates the Z//ιZ

summand; the generators of the Z/2Z summands are [α£ί+1] for \<i<(q — 2)/4 and
[(n/2)α^ + 3-α^ί + 4] for 0</<(</-6)/4.

If ^Ξ 3 (mod 4), then Hq(D2n; MΛ) = (Z/2Z)(q + 1}/2 with generators [α£l] for
!</<te+l)/4, and [(n/2)< + 2 + <ί + 3] for 0</<(^-3)/4.

If 4 = 0 (mod 4), then Hq(D2n; Ma) = (Z/2Z)q/2 with generators [<ί + 3] for
0</<(^-4)/4, and [(tt/2)α^ + 1-αf +2] for 0</<(^-4)/4.

We proceed to show that α x and α2 generate H*(D2n; Mα) as an H*(D2n\ Z)-module.
Under the canonical identification Z(χ)Mα = Mα, we identify z(x)α with α. Using
Proposition 4.3 we obtain b2cc1 = — [(n/2)ttl + α3], α2α! = [α*], b2c/L2 = [(/ι/2)αi — αj], and
#2α2 = [α|] which shows that o^ and α2 generate H*(D2n; MΛ) as an //*(Z)2π; Z)-module
in grades <4. Let q>4 and suppose, inductively, oίί and α2 generate H*(D2n\ MΛ) as
an H*(D2n; Z)-module in grades <q— 1. Using Proposition 4.3 we obtain the following:

If q = 1 (mod 4), then

[<ί + 2]=α2[<L2] for l</<(<7-l)/4, and

[(n/2)α*
i + αί

4ί+1] = α2[(n/2)α,4Γ2

2 + α^-2

1] for
If ^ = 2 (mod 4), then

K1]=^K1-J,
[α*i+1]=α2[α*LV] for l<i<(q-2)/4, and

I ΐ q = 3 (mod 4), then

[<] = a2[«i-~22] for 1 < i < (« + 1)/4 ,
[(n/2)α,2 + α J] = ί/4[(«/2)αβ

2- 4 + α?

3- J + 2πα2[α
 2_ 2] , and

[(n/2)α*i+2 + α,4ί+3] = a2[(n/2)αί

4L2 + <ί-V] for
If 9 = 0 (mod 4), then
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[α|_4] , and
for 1 </<fe

It follows that oq and α2 generate H*(D2n; Mα) as an H*(D2n', Z)-module through grade
q, completing the induction.

The additive orders of αx and α2 are implicit in the above. By Proposition 4.3,
c3OL1+a2aL2 = [ilal + i:

2oL\~] = [-al + al~]=Q, and ί/4α1 + c3α2 = [ιiαf + ι2αi] = [α2-

αi] = 0, establishing the stated relations.
Thus if F is the free graded H*(D2n; Z)-module on two generators A{ and A2 of

grades 1 and 2, respectively, the H*(D2n; Z)-module homomorphism F^Hήf(D2n:) Mα)
which sends At to αf, /=1,2, induces a surjection of H*(D2n; Z)-modules F/R-*
H*(D2n;MΛ) where Λ is the submodule generated by 2Aί9 nA2, c3A1+a2A29 and
d4A± + c3A2. We will be done if we show that for each #>0, the order of (F/R)q is at
most the order of Hq(D2n\ Mα). Abusing notation, we write Aί and A2 for their images
in F/R under the canonical projection. In view of the relations above and the structure
of H*(D2n', Z) as given by Theorem 5.2, F/R is additively generated by the (α2)

l(J4)^41?

(a2)
l(d4)

jA2, b2(a2}\d^jA^ and b2(a2)\d4)
jA2 for i9j>0. An easy counting argument,

similar to that used in the proof of Theorem 5.2, shows that if #>0, then:
If q is odd, precisely (<7+l)/2 of the (a^d^A^ and b2(a2)

i(d4)
jA1 have grade #,

and all of these have additive order dividing 2.

If q is even, precisely q/2 of the (a2)
l(d4)

JA2 and b2(a2)
l(d4)

jA2 have grade </, and
that all of these have additive order dividing 2, with the possible exception of (d4)

(q " 2)I2A2

(when # = 2 (mod 4)) which has additive order dividing n.
In all cases, it follows easily that the order of (F/R)q is at most the order of

//*(Z>2π; Mα), completing the proof. Π

THEOREM 5.9. Let «>3 be odd. Then H*(D2n\ MΛ) is the free H*(D2n; Z)-module
on α t and α2, modulo the //*(Z)2π; Z)-submodule generated by 2oc^ and na2.

PROOF. It follows from (5.7) that for #>0, Hq(D2nι Mα) is as follows:
O i f ?ΞΞθ(mod4);

Z/nZ with generator [α^] if q = 2 (mod 4);
Z/2Z with generator [α^+ 1] if q is odd .

From Proposition 4.3(d), a2[aq

q

 + 1] = lιlaq+1] = [_ocq

q +
 3

2] for q odd, and </4[α*] =

Di«ί] = [αί+4] if ? = 2 (mod 4). It follows by induction on <? that [α«+1]=(έϊ2)
(ί~1)/2α1

for q odd, and [o^1] = (d4)
(q " 2)/4α2 for ? = 2 (mod 4). In view of the structure oϊH*(D2n\ Z)

as given by Theorem 5.3, the result now follows. Π

For the remainder of this section we assume n > 2 is even.
Let Mβ denote the ZZ)2π-module where Mβ is the free abelian group on one generator

β with Z)2π-action given by βx=—β,βy = β. From Proposition 4.1 we obtain, for
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^Ui-O-^+iVi^Vi if <7 even, /odd,
(1 +εi+1εq+1)βl

q

+

+\ if q even, i even,

-(l-εί+1ε,+1)j3'Vι if <7 odd, i odd,
εi+ιββ+1)^^+1 if ^ odd, / even.

It follows from (5.10) that we have the cohomology classes βί = [βl']eHί(D2n , Mβ),
D2n;Mp), and β^Lβl-βl^eH^D^ Mp).

THEOREM 5.11. (a) Suppose n = 0(mod4), «>4. Then H*(D2n;Mβ) is the free
H*(D2n; Z)-module on β1, β2, and β3, modulo the H*(D2n; Z)-submodule generated by
2βlf 2β2, 203, b2β1+a2β1,b2β2, b2β3, C3β2 + a2β3, and dJ2 + c3β3.

(b) Suppose n = 2 (mod 4), n > 2. Then H*(D2n; Mβ) is the free H*(D2n; Z)-module
on βt and β2, modulo the H*(D2n; Z)-submodule generated by 2β±, 2β2, C3β!+b2β2, and

PROOF. From (5.10), H°(D2n; Mβ) = Q, and for q>0, H"(D2n; Mβ) is as follows:
If <7=l(mod4), then H"(D2n; Mβ) = (Z/2Z)(q+i)l2 with generators Γj3*ί+1] for

0</<((7-l)/4, and Γj3*ί+3-/?*ί+4] for 0</<(ί-5)/4.
If ήίΞ2(mod4), then H«(D2n; Mβ)=(Z/2Z)"12 with generators ΓjS*'] for

l</<(^-2)/4, and [j?*ί+2-)S4ί+3] for 0</<(9-2)/4.
If ^Ξ3(mod4), then Hq(D2n; M#)=(Z/2Z)<i+1)/2 with generators [j8*ί+3] for

0</<(<7-3)/4, and [^ί+1-^ί+2] for 0</<(<7-3)/4.
If ^Ξθ(mod4), then H"(D2n; Mβ)=(Z/2Z)9'2 with generators [)34ί+2] for

0</<(<7-4)/4, and [^4ί-^i+1] for l</<^/4.
We proceed to show that βt, β2, and β3 generate H*(D2n; Mβ) as an

H*(D2n; Z)-module. Under the canonical identification Z®Mβ = Mβ, we identify i® β
with β. Using Proposition 4.3 we obtain a^^ = fj8|], a2β2 = \_β*- β%], and c3β1 = [̂ 4]
which shows that βί} β2, and β3 generate H*(D2n; Mβ) as an H*(D2n; Z)-module in
grades <4. Let q>4 and suppose, inductively, βt, β2, and β3 generate H*(D2n; Mβ) as
an H*(D2n; Z)-module in grades <q— 1. Using Proposition 4.3 we obtain the following:

If q=\ (mod 4), then

[/Ή = <W-4].
0?f+1] = «2[^V] for 1 <i<(q- 1)/4, and
[)94ί+3_Jg4ί+4] = α2[^LV_jg4L+22] for

If q= 2 (mod 4), then
DCΊ^ΓJ?^2] for l</<(^-2)/4,

ΓA2-/?3] = <*4ΓA2-4-/ίβ

3-4], and
[)Sί

4i+2-^4ί+3]=«2[^2-)?ί

4LV] for
If 9 = 3 (mod 4), then

[)?4ί+3] = α 2 [ V ] for

for
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If # = 0 (mod 4), then

WΓ2] = *2lJ»ί-2] for l</<(4-4)/4, and

\β?-β? + il = *2\β?-22-β?-2ll for
It follows that βl9 β2, and /?3 generate H*(D2n; Mβ) as an H*(D2n; Z)-module through
grade q, completing the induction.

It is implicit in the above that 2βi = 0 for i= 1, 2, and 3. By Proposition 4.3,

7=1

Thus,
O if «Ξθ(mod4),

β3 if /I = 2 (mod 4).

In particular, β3 is superfluous as an H*(D2n; Z)-module generator if « = 2 (mod 4). The
remaining relations are similarly checked using Proposition 4.3.

Let F be a free graded H*(D2n; Z)-module on generators Bt of grade /, /= 1, 2, 3
if n = 0 (mod 4), i = 1 , 2 if n = 2 (mod 4). The map of H*(D2n; Z)-modules F-+H*(D2n; Mβ)
which sends B{ to βt induces a surjection of H*(D2n; Z)-modules F/R^>H*(D2n', Mβ)
where R is the H*(D2n\ Z)-submodule of F generated as follows: by 2£l5 2B2, 2B3,
b2B1+a2Bί, b2B2, b2B3, c3B2 + a2B3, and d4B2 + c^B3 if n = Q (mod 4); by 2Bl9 2B2,
czBι+b2B2, and a2b2B1+(a2)

2B1+c3B2 if n = 2 (mod 4). For positive q, (F/R)q is a
vector space over Z/2Z, and it remains only to check that its dimension does not exceed
the dimension of Hq(D2n; Mβ) over Z/2Z Abusing notation, write Bt for its image in
F/R under the canonical projection for each /.

Suppose n = 0 (mod 4). From the definition of R and the structure of H*(D2n; Z)
as given by Theorem 5.2, F/R is additively generated by the (a2)

l(d4)
jBl9 (a2)

lc3(d4)
jBly

(a2)
l(d4)

jB29 and (a2)
l(d.4)

JB3, i,j>Q. An easy counting argument shows that if q is odd,
exactly (#+l)/2 of the (a^d^B^ and (a2)

l(d4)
jB3 have grade q; if q is even, exact-

ly q/2 of the (a2)
ic3(d4)

JB1 and (a2)
ί(d4)

jB2 have grade q. In each case, the number
of additive generators of (F/R)q is the dimension of Hq(D2n Mβ) over Z/2Z.

Suppose n = 2 (mod 4). From the definition of R and the structure of H*(D2n; Z)
as given by Theorem 5.2, F/R is additively generated by the (a^d^B^ (ajb^d^B^
(a2)\d4)

jB2, and (a2)
lb2(d4)

jB2, /,y>0. An easy counting argument shows that if q is

odd, exactly (q+l)/2 of the (a2)
ί(d4)

JBί and (a2)
ib2(d4)

jB1 have grade q; if q is even,
exactly q/2 of the (a2)\d4)

jB2 and (a2)
lb2(d4)

jB2 have grade q. In each case, the num-
ber of additive generators of (F/R)q is the dimension of Hq(D2n; Mβ) over Z/2Z,
completing the proof. f j
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Let My denote the ZD2w-module where My is the free abelian group on one gener-
ator y with Z)2n-action given by yx = γy= — y. From Proposition 4.1 we obtain, for 1 <

'εi+ιεq + ι)ylq+\ if # even, / odd,

q+ι)ylq+\ if q even, /even,

i)ylq++\ if <7 odd, / odd,

I +£i + i£q+i)ylq+\ " if # odd, / even.

It follows from (5.12) that we have the cohomology classes y t = [y {+yf] eHl(D2n\ My\

y2 = {.y2ϊ}^H2(D2n\ My), and y3 = [y3]e//3(Z)2rt; My).

THEOREM 5.13. (a) Suppose n = Q (mod 4), n>4. Then H*(D2n;My) is the free
H*(D2n9 Z)-module on y l 9 y2, andy3, modulo the H*(D2n; Z)-submodule generated by 2y1?

(b) Suppose n = 2 (mod 4), n>2. Then H*(D2n; My) is the free H*(D2n, Z)-module

on γί and y2, modulo the H*(D2n'9 Z)-submodule generated by2yl9 2y2, c3y! + a2y2 + &2y2,

PROOF. From (5.12), H°(D2n, My) = 0, and for ^r>0, Hq(D2n; My) is as follows:

If 0=1 (mod 4), then Hq(D2n; My) = (Z/2Z)(q+1)/2 with generators [y£ί + 3] for
0</<(^-5)/4, and [7 '̂ + 1+y^' + 2] for 0<i<(q- l)/4.

If ^Ξ2(mod4), then Hq(D2n; My) = (Z/2Z)q/2 with generators [γ£ί + 2] for

0</<(^-2)/4, and [}f + y£ ί+1] for l</<(^-2)/4.
If ^ = 3 (mod 4), then Hq(D2n\ Mγ) = (Z/2Z)(q + 1)/2 with generators [y^'+1] for

0</<(^-3)/4, and [y^+3H-y^'+4] for 0</<(^-3)/4.
If q = 0 (mod 4), then Hq(D2n, My) = (Z/2Z)q/2 with generators [y^] for 1 <i<q/4,

and [y^ + 2 + y£ ί+3] for 0</<(^-4)/4.
We proceed to show that y1 ? y2, and y3 generate //*(D2π; My) as an H*(D2n; Z)-

module. Under the canonical identification Z® My = Mr we identify i ® y with y. Using

Proposition 4.3 we obtain a 2yι = [y 'i + y4], a-ιΊ ϊ = \y*£\τ and c3yί = [yl + yl~] which
shows that y1 ? y2, and y3 generate //*(Z)2π; My) as an H*(D2n\ Z)-module in grades
<4. Let q>4 and suppose, inductively, γl9 y2, and y3 generate H*(D2n; My) as an
7/*(Z)2n; Z)-module in grades <q— 1. Using Proposition 4.3 we obtain the following:

If q=\ (mod 4), then
1 for 0</<(^r-5)/4,

^-4]5 and
fl2[yί-"21+yί!.2] for

If ^ = 2 (mod 4), then

[y,2]-^[y,2-4],
[y,4ί + 2]=^[y^2] for l</<^-2)/4, and

[ y 4 ί + y 4 ί + 1 ] = [ y - 2 2 + y V ] f o r
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If q = 3 (mod 4), then

for l</<(<7-3)/4, and

for
If q = Q (mod 4), then

4], and

+y4^1] for ι<*<(<7-4)/4.
It follows that γl9 y2, and y3 generate //*(D2n; My) as an H*(D2n', Z)-module through
grade #, completing the induction.

It is implicit in the above that 2^ = 0 for /= 1, 2, and 3. By Proposition 4.3,

J = l

= ί(n/2)yI -(n/2)yl + (n/2)yf] = (n/2)y3.

Thus,

0 if «ΞΞθ(mod4),

. y3 if n = 2 (mod 4).

In particular, y3 is superfluous as an //*(Z)2/1; Z)-module generator ifn = 2 (mod 4). The
remaining relations are similarly checked using Proposition 4.3.

The remainder of the proof is formally identical to that of Theorem 5.11 with the
βt replaced by y{. Π

Using Propositon 4.3, other cup products resulting from pairings among the
ZD2M-modules we have considered can be computed as needed. For example, if n>2
is even, MΛ (x) Mβ can be identified with My as a ZD2n-module where we identify α (x) β = y.
Under the cup product pairing

H*(D2n; Mα) (x) H*(D2n; Mβ) -, H*(D2n; My)

we have α1jS1=72, oc1β2 = a2yί, etc.

6. Proofs of Lemmas 3.5-3.10. The proofs proceed by direct application of
Theorem 3.3 and the definition of U. It is useful to note the following consequence of
Theorem 3.3:

If />0, !<#</+!, and 0<b<n-l, then

(**)

cl+ίNb if / even, a= 1, and \<b<n— 1,

cl+1 if i odd, a = 1, and b = n—\,

0 otherwise.
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PROOF OF LEMMA 3.5. We have

i even
r > 0

:?-2'x®c<:r2r-V- Σ (-i
i even r > 0
r > 0

(the second summation arising from the /=2r terms)

= Σ (-ir(q+i)c\+i-2rx®c«:r_\+2'-kyx+ Σ (-i)r

i odd r > 0
r > 0

(since £2r = (~l) r+1)> which yields part (a).
For f = 2, 3, and 4, At(q, k)yx has the form

/ ^ @r,qC i yX&)Cq — i
ieven
r > 0

where arΛ eZ,we ZD2n, and δ is either 0 or 1. We have

υί Σ w'r"?
\ieven / i even

r > 0 r > 0

— n r ~
— L ar,qCi+l

ieven i odd
r > 0 r > 0

i+l-2r>3 i-2r>3

— V n ri-2rfarq+l-i + 2r-k + δ . \Γ n r 1 /o, q-k + δ
— Zj ar,qCi WCq+i-i W~ ^ ^r,qC 2r+1 ̂  C q-2r

iodd r > 0
r > 0

Parts (b), (c), and (d) now follow.
For ί = 5, 6 and 8, At(q, k)yx has the form

i odd / i odd
r > 0 r > 0

Σ i-2r
ar,qCi y

iodd
r > 0

where aftq E Z, w e ZD2«> and δ is either 0 or 1. We have

— V n ri+l-2r(9\r4-ί + 2r-k + δ

— /L ar,qCi+l ^^q-i
i odd i even
r > 0 r > 0

Parts (e), (f), and (h) now follow.

-i + 2r-k + δ
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We have

Uq(AΊ(q,k)yx) =
iodd
r > 0

-i + 2r-k_— / i
\~

-2r ,r> <? + 1 -i + 2r-k

i odd
r > 0

i + 2 - 2 r > 3

ίeven
r > 0

i even
r > 0

i + l - 2 r > 3

r > 0

Part (g) now follows. Π

PROOFS OF LEMMAS 3.6 AND 3.8. It follows by inspection, using (**), that the
At(q, k) for 1 < / < 8 and the Bt(q, k) for 1 < t < 6 are linear combinations over Z of terms

which are annihilated by Uq. Π

PROOF OF LEMMA 3.7. From the definition of U and (**),

Uq(A1(q9k)N)=
ieven
r > 0

= Σ
ieven
r > 0

= Σ
r > 0 7=0

Since W0 = 0, part (a) follows.
For t = 5, 6, and 8, At(q, k)N has the form

Σ "Σ arfqcΓ2rxj®c(

qI
i

i

+2r-k+δwxj

iodd j=0
r > 0

where α r ίeZ, weZD2n, and (5 is either 0 or 1. We have

iodd j =
r > 0

Σ V"1 rri / I /

L ar,q* 2r+l(C2r+lX

r > 0 j = 0

r > 0

iodd j = 0
r > 0

r>0

rq ~ ~C q-l-2r

The only non-zero contributions to these last summations come from they'=«— 1 terms.
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Parts (b), (c), and (d) now follow.
It follows by inspection, using (**), that the At(q,k)N for t = 2, 3, 4, and 7 are

linear combinations over Z of terms which are annihilated by Uq, yielding part (e).

D

PROOF OF LEMMA 3.9. For /= 1 and 2, Bt(q, k)y has the form

Σ flΓf,c!+1-2l>®c;:j+2r-*-*w
i even
r > 0

where ar^q e Z, w e ZD2rr and δ = Q or 1 . We have

Uq(Bt(q,k)y)=
i even
r>0

π rar,qCί+l
i even
r > 0

— Y1 n ri+i~2r

~~ Lt "r,qci
(odd
r>0

For t= 1 we have a0tq= 1, w=y, δ = 0 and Tq(c'q~
ky) = cq

q + {~k. For ί = 2 we have α0,€ = °
Parts (a) and (b) now follow.

Noting that Njx~jy=yxNj, we have

Uq(B3(q9k)y)= X "Σί-i
ίeven J= 1
r > 0

= Σ Σ(-i)(r+1)(4+1)ciΐi-2r^ <8)c«:r2'-'I+V
i even j= 1
r > 0

i + l - 2 r > 3

= Σ
i odd j = 1
r > 0

i - 2 r > 3

= Σ
iodd j=l
r > 0

π-1
V V

~ Li 2^,
r>0 j=l

Part (c) now follows.
For t = 4 and 5, Bt(q, k)y has the form
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where

Σ i+1-
CL C

iodd
r>0

weZD2n, and (5 = 0 or 1. We have

i odd
r>0

i odd
r > 0

i + 2-2r>3

i even
r > 0

i odd
r>0

i even
r > 0

i + l - 2 r > 3

"q+l-i

; n
~ Zj a

r > 0

r rr,qC 2r W Cq + 1 - 2r

Parts (d) and (e) now follow.
We have

iodd j = l
r>0

= Σ "Σ(-
iodd j=l
r>0

i-2r>3

π-1

+ Σ Σ(-ι
ι >0 j= l

= Σ "ΣI^-j L—ι
iodd j= 1
r>0

i + l - 2 r > 4

+ Σ"Σ(-:
r>0 ;=1

= Σ "Σ (-ι>
ieven j=l
r>0

- Σ (-i)(Γ

r>0

r>0

Part (f) now follows. Π
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PROOF OF LEMMA 3.10. For /= 1 and 2, Bt(q, k)x has the form

Σ i+ 1 -
d rr,q i

i even
r > 0

where ar<qeZ, weZD2n, and <5 = 0 or 1. We have

Σ a^Γ1-2^
ί even
r > 0

_ V χι T (s>i+ * ~2rγ\fi?\ ^4-i + 2r-fc-<5... n y"1 G?\ T ίs 4~k

— Zj ar,q1ί(Ci X)(&Cq-i W + #0,4
C0 *& 1 q(C q

ί even
r > 0

= Σ ar,q
r > 0

r > 0

If t=l9 then w = x, q-k-δ = q-k>\ and thus Tq(cq

q~
k~δw) = Q. If ί = 2, then a0tq = 0.

Parts (a) and (b) now follow.

We have

Uq(B6(q,k)x)=
iodd .7=1
r > 0

= Σ
r > 0 j

= Σ (-i)ί(r+1)ci+2®^:ΐ-2f= Σ (-ιy*c
r>0 r > 0

(only they=w— 1 terms contribute to these last summations), proving part (c).
It follows by inspection, using (**), that the Bt(q, k)x for ί = 3, 4, and 5 are linear

combinations over Z of terms which are annihilated by Uq, yielding part (d). Π
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