ON TOWERS OF LIFTINGS AND HYPERCUSPIDALITY FOR UNITARY GROUPS

TAMIR BOAZ

(Received December 9, 1991, revised October 29, 1992)

Abstract. Given a cuspidal automorphic representation on $U(2, 3)$, then its theta lift to $U(i, i)$ is cuspidal if and only if its theta lift to $U(i-1, i-1)$ is zero. Also, the theta lift of a cuspidal generic representation from $U(2, 3)$ to $U(3, 3)$ is generic. The theta lift of a cuspidal representation from $U(2, 3)$ to $U(4, 4)$ or to $U(5, 5)$ is hypercuspidal.

In this paper we study the cuspidality and hypercuspidality of some automorphic forms on the group $U(i, i)$ for $i=1$ to 5. These automorphic forms are “theta lifted” from automorphic forms belonging to the space of a cuspidal representation π for the group $U(2, 3)$.

In Chapter 1 we study the tower of liftings $\theta^i(\pi, s)$ for $i=1$ to 5 to find conditions for the cuspidality of the lift $\theta^i(\pi, s)$ in terms of the lift $\theta^{i-1}(\pi, s)$. More explicitly, Theorem 1.1 states that $\theta^i(\pi, s)$ is cuspidal if and only if $\theta^{i-1}(\pi, s)$ is zero. Moreover, $\theta^5(\pi, s)$ is nonzero, so higher theta lifts cannot be cuspidal. Therefore we stop the tower at $i=5$. These are well-known results for split groups (cf. [Ra]).

In Chapter 2 we generalize some results of [Wa], concerning the hypercuspidality of such lifts. Theorem 2.1 states that the lift $\theta^3(\pi, s)$ is already nonzero for generic representations π on $U(2, 3)$. Moreover, a Whittaker function of the lift can be expressed in terms of a Whittaker function of π. Theorem 2.2 states that $\theta^4(\pi, s)$ and $\theta^5(\pi, s)$, if cuspidal, are also hypercuspidal in the sense that all Whittaker functions disappear.

In the proof of Theorem 2.1 we use the Witt decomposition for the space of $U(2, 3)$, i.e., the existence of a maximal isotropic subspace of dimension two, and an anisotropic subspace of dimension one. In general if π is a cuspidal generic representation of $U(n, n+1)$, then the $n+1$ lift should also be generic. All theta lifts above this level should be hypercuspidal.

We conclude by remarking that the “simpler” tower, $U(1, 2)$ to $U(i, i)$, for $i=1$ to 3 is computed in [Wa]. If π on $U(1, 2)$ is generic, then the lift to $U(2, 2)$ is also generic [Wa, Theorem 4.3]. Using Theorem 2.2, it is easy to show that the theta lift of $U(1, 2)$ to $U(3, 3)$ is hypercuspidal.
ACKNOWLEDGMENT. I would like to thank Professor S. Gelbart of the Weizmann Institute of Science for his great help in writing this work.

Notation. Let K be a global field, and L a quadratic Galois extension of K. We write $L = K(i)$, and i for the Galois involution on $i \in L$. If U is an algebraic group defined over K. We write U_K for the group of its K-rational points, and U_A or U_A^* for the adele group.

Let W be a 5-dimensional vector space over L equipped with a Hermitian form \langle , \rangle_W having the matrix

$$Q = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$$

in the basis $\{w_1, w_2, w_0, w_{-2}, w_{-1}\}$.

Let V_i for $i = 1 \text{ to } 5$ be a $2i$-dimensional vector space equipped with a skew-Hermitian form \langle , \rangle_{V_i} having the matrix

$$J_i = \begin{pmatrix} I_i \\ -I_i \end{pmatrix}$$

in the basis $\{e_1, \ldots, e_i, \hat{e}_1, \ldots, \hat{e}_i\}$.

Let $U(2, 3)$ (resp. $U(i, i)$) be the group of transformations in $GL(5)_L$ (resp. $GL(2i)_L$) preserving the form \langle , \rangle_W (resp. \langle , \rangle_{V_i}). Then $U(2, 3)$ and $U(i, i)$ are the groups of K-rational points of quasi-split algebraic groups defined over K, split over L. Also

$$H = U(2, 3) = \{g \in GL(5)_L ; g^tQg = Q\}$$
$$U(i, i) = \{g \in GL(2i)_L ; g^tJ_ig = J_i\} .$$

(a) Description of parabolic subgroups of $U(2, 3)$. Let P_1 be the maximal parabolic subgroup of $U(2, 3)$ with Levi component $L(P_1) = \text{RES}_K^{GL(1)} \times U(2, 1)$, having the form

$$P_1 = \begin{pmatrix} \begin{pmatrix} d \\ U(2, 1) \end{pmatrix} \\ \bar{d}^{-1} \end{pmatrix} \begin{pmatrix} 1 & a & b & c & z \\ \cdot & 1 & \cdot & \cdot & -\bar{c} \\ \cdot & \cdot & 1 & \cdot & -\bar{b} \\ \cdot & \cdot & \cdot & 1 & -\bar{a} \\ \cdot & \cdot & \cdot & \cdot & 1 \end{pmatrix} ,$$
where \(z = -(a\bar{c} + b\bar{b} + c\bar{a})/2 + is \) and \(s \) in \(K \). Let \(N_1 \) be the unipotent radical of \(P_1 \).

Recall \(\text{RES}_K^L \text{GL}(n) \) is the disconnected quasi-split algebraic group of type \(A_{n-1} \times A_{n-1} \) formed by the restriction of scalars from \(L \) to \(K \). Note that \(\text{RES}_K^L \text{GL}(n)_K = \text{GL}(n)_L \) and \(\text{RES}_K^L \text{GL}(n)_L = \text{GL}(n)_L \times \text{GL}(n)_L \) (cf. [Ta]).

Let \(P_2 \) be the maximal parabolic subgroup of \(U(2, 3) \) with Levi component \(L(P_2) = \text{RES}_K^L \text{GL}(2) \times U(1) \), having the form

\[
P_2 = \begin{bmatrix}
g & \cdot & b & z_1 & z_2 \\
\cdot & 1 & c & z_3 & -\bar{d} \\
\cdot & \cdot & 1 & -\bar{c} & -\bar{b} \\
\cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1
\end{bmatrix}
\]

where

\[
z_1 = -\bar{c}b + d , \quad z_2 = -(\bar{b}b)/2 + is , \quad z_3 = -(\bar{c}c)/2 + it , \quad J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},
\]

for \(s, t \) in \(K \). Let \(N_2 \) be the unipotent radical of \(P_2 \) (\(N_2 \) fixes \(w_1 \) and \(w_2 \)).

Let \(N \) be the maximal unipotent subgroup of \(U(2, 3) \). We can write \(N \) as \(Z_3, \bar{U} \), i.e.,

\[
\begin{bmatrix}
1 & a & b & z_1 & z_2 \\
\cdot & 1 & c & z_3 & -\bar{d} \\
\cdot & \cdot & 1 & -\bar{c} & -\bar{b}+\bar{a}\bar{c} \\
\cdot & \cdot & \cdot & 1 & -\bar{a} \\
\cdot & \cdot & \cdot & \cdot & 1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & a & b & a_1 & a_2 \\
\cdot & 1 & c & -\bar{c}c)/2 & 0 \\
\cdot & \cdot & 1 & -\bar{c} & -\bar{b}+\bar{a}\bar{c} \\
\cdot & \cdot & \cdot & 1 & -\bar{a} \\
\cdot & \cdot & \cdot & \cdot & 1
\end{bmatrix}
\]

where

\[
z_1 = d + ait - \bar{c}b + a(\bar{c}c)/2 , \quad z_2 = -[(a\bar{d} + \bar{a}\bar{d}) + (-b + ac)(\bar{b} + \bar{a}c)]/2 + is \, ,
\]

\[
z_3 = -(\bar{c}c)/2 + it , \quad a_1 = -\bar{c}b + a(\bar{c}c)/2 , \quad a_2 = -(-b + ac)(\bar{b} + \bar{a}c)/2 \, ,
\]

for \(s, t \) in \(K \).
(b) Description of maximal parabolic subgroups of $U(i, i)$. Let P^j_i denote the maximal parabolic subgroup of $U(i, i)$ having a Levi component $L(P^j_i) = \text{RES}_{k}^{GL(j)} \times U(i-j, i-j)$, unipotent radical $U^{i,j}$, and of the form

$$
\begin{array}{c}
\begin{bmatrix}
 * & * \\
 * & * \\
 \hline
 I_{i-j} & I_i \\
\end{bmatrix}
\end{array}
\quad \text{RES}_{k}^{GL(j)} \times U(i-j, i-j)
$$

where $g \in GL(j)_k$ and $\bar{Y}^t = Y$. We decompose $U^{i,j}$ as $U^{i,j}_1 \cdot U^{i,j}_2$.

Let π be an automorphic cuspidal representation of $U(2, 3)$, with V_π as its vector space. We use the Schrödinger realization of ω_ψ in $S((X_1)_A)$, the Schwartz-Bruhat space of $(X_1)_A$ (cf. [Ra], [Ro], and [P.S.]). Then for f in V_π, Φ in $S((X_1)_A)$ we write

$$
\theta^{(\psi)}(\pi, s)f(g) = \int_{U(2,3) \backslash U(2,3)_A} \sum_{x \in (X_1)_k} \omega_\psi(s(g, h)) \Phi(x) f(h) dh
$$

for the theta lift of f to $U(i, i)$. We denote by $\theta^{(\pi, s)}$ the space of such functions for all f in V_π, Φ in $S((X_1)_A)$. It is well known that $\theta^{(\pi, s)}$ generates an irreducible representation for $U(i, i)$ if it is cuspidal (cf. [Ge-Ro-So]).

Suppose now $V_i \otimes W = U_1 \oplus U_2$ (orthogonal sum), and $G = G_1 \times G_2$ is a subgroup of $U(V_i \otimes W)$, the unitary group of $V_i \otimes W$. Suppose also G_1 (resp. G_2) acts on U_1 (resp. U_2). Then any splitting s of $U(V_i \otimes W)$ determines two splittings s_i of G_i into $MP^{\psi}(U_i)$ for $i = 1, 2$. Also

$$
\omega_\psi(s_1(g_1), s_2(g_2)) = \omega_{\psi}^{1}(s_1(g_1)) \otimes \omega_{\psi}^{2}(s_2(g_2)),
$$

where ω_{ψ}^{i} is the Weil representation of $MP^{\psi}(U_i)$ for $i = 1, 2$.

Picking any one of the standard maximal parabolic subgroups P^j_i of $U(i, i)$, let U_1...
be $W_i \oplus \cdots \oplus W_{-j} \oplus \cdots \oplus \hat{W}_i \oplus \cdots \oplus \hat{W}_i$. Then $U(i-j, i-j)$ and H act on U_1, where H (and $GL(j)$) act on U_2. Therefore there exists a splitting s_i of $U(i-j, i-j) \times H$ into $MP^*(U_1)$, and a splitting s_2 of H into $MP^*(U_2)$. Also $\omega_\phi = \omega_\phi^1 \otimes \omega_\phi^2$.

Theorem 1.1. (a) $\theta'(\pi, s)$ is cuspidal if and only if $\theta^{i-1}((\pi, s))^1$ is zero, where γ' is a character of $H_K \backslash H_A$ defined by

$$
\gamma'(h) = \{\omega_\phi^1(s_{\frac{1}{2}}(h))\Phi\}(0),
$$

and $\theta^{i-1}(\pi', s'_i)$ is the lift defined by ω_ϕ^i.

(b) $\theta^2(\pi, s)$ is nonzero.

To prove the theorem we prove:

Proposition 1.1. For $j = 1$ to $i-1$

$$
\int_{U_{i-j}^{1} \backslash U_{i-j}^{1}} \{\theta_{\phi}(\pi, s)f\}(ng)dn = \int_{H_K \backslash H_A} \sum_{(w_{1}, \ldots, w_{i-j})} \omega_\phi(s(g, h))\Phi(x_1, \ldots, x_{i-j}, 0, \ldots, 0)f(h)dh.
$$

Proof (cf. [Ra] or [Wa]). Write U_{i-j}^{1} as $U_{1}^{1} \times U_{2}^{1}$. First taking integration over $(U_{1}^{i-j})_A \backslash (U_{1}^{i-j})_A$, we have

$$
\int_{(U_{1}^{i-j})_K \backslash (U_{1}^{i-j})_A} \{\theta_{\phi}(\pi, s)f\}(u_1 g)du_1 = \int_{H_K \backslash H_A} \sum_{(x_1, \ldots, x_{i-j})} h \omega_\phi(s(u_1 g, h))\Phi(x_1, \ldots, x_{i-j})f(h)du_1 dh.
$$

In writing this we have used a change in the order of integrations justified as in [Ra, Appendix to Section 1]. Suppose

$$
U_{1}^{i-j} = \begin{bmatrix} I_i & [n_{k,i}] \\ \vdots & \vdots \\ I_i & \end{bmatrix}
$$

with $[n_{k,i}]$ a matrix in $M_{i,i}(K \backslash A)$. Then
\[\omega_\psi(s(u_ig, h))\Phi(x_1, \ldots, x_i) = \prod_{i \geq 1, j > k} \psi(\text{Real}(n_{k,i} \langle x_k, x_i \rangle_w)) \prod_{i \geq k > j - 1} \psi \left(\frac{1}{2} n_{k,i} \langle x_k, x_i \rangle_w \right) \cdot \Phi(x_1, \ldots, x_i). \]

Therefore the integral over \((U^j_1)^K \setminus (U^j_1)^A\) is zero unless

\[
\left[\langle x_k, x_i \rangle_w \right]_{1 \leq k, l \leq j} = \begin{bmatrix}
* & 0 \\
0 & 0 \\
0 & 0 \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & \cdots & * \\
\end{bmatrix}
\]

Let \((Y_1)_K\) denote the subset of \((X_1)_K\) satisfying the above matrix equation. Then

\[
\int_{(U^j_1)^K \setminus (U^j_1)^A} \{ \theta^\phi_\psi(\pi, s)f(u_ig)du_i \} = \int_{H_K \setminus H_A} \sum_{(Y_1)_K} \omega_\psi(s(g, h))\Phi(x_1, \ldots, x_i)f(h)dh.
\]

Let \(Sp\{w\}\) denote the \(L\)-vector space spanned by \(w\). Then the following lemma is easily proved using Witt’s theorem.

Lemma 1.1. There are three types of orbits of \((Y_1)_K\) under the left diagonal action of \(H_K\) and the right action of \((U^j_2)_K\):

(a) \((x, \xi) = (x_1, \ldots, x_{i-j}, \xi_j, \ldots, \xi_1)\)

where \(\xi_k \in Sp\{w_1, w_2\}\) for \(k = 1\) to \(j\) (not all in \(Sp\{w_i\}\), \(i = 1, 2\)), \(x_l \in Sp\{w_0\}\) for \(l = 1\) to \(i-j\), and \((x, \xi)\) runs through a set of representatives of \(L(P_2)\) orbits.

(b) \((x, \xi) = (x_1, \ldots, x_{i-j}, \xi_j, \ldots, \xi_1)\)

where \(\xi_k \in Sp\{w_i\}\) for \(k = 1\) to \(j\), \(x_l \in Sp\{w_2, w_0, w_{-2}\}\) for \(l = 1\) to \(i-j\), and \((x, \xi)\) runs through a set of representatives of \(L(P_1)\) orbits.

(c) \((x, \xi) = (x_1, \ldots, x_{i-j}, 0, \ldots, 0)\).

We shall show now that integration over orbits of type (a) and (b) gives zero. The kernel of the last integrals is:

\[\sum_{(Y_1)_K} \omega_\psi(s(g, h))\Phi(x_1, \ldots, x_i) = \sum_{(x, \xi)} \sum_{\delta_2 \delta_1} \omega_\psi(s(\delta_1 g, \delta_2 h))\Phi(x, \xi) \]

where \(\delta_1 \in (U^j_2)_K(x, \xi) \setminus (U^j_2)_K \), \(\delta_2 \in H_K(x, \xi) \setminus H_K \), and \((U^j_2)_K(x, \xi)\) (resp. \(H_K(x, \xi)\)) is the stabilizer of \((x, \xi)\) (resp. \((x, \xi)\)) in \((U^j_2)_K\) (resp. \(H_K\)).

Suppose now \((x, \xi)\) is of type (a). Then \(H_K(x, \xi) = (N_2)_K\). By integrating over \((U^j_2)_K \setminus (U^j_2)^A\) this part of the sum becomes
HYPERCUSPIDALITY FOR UNITARY GROUPS

\[\sum_{(a)} \sum_{(u_2^t)^{N_2} \setminus H_A} \omega_\psi(s(\delta_1 u_2 g, \delta_2 h)) \Phi(x, \xi) du_2 \]

Next, we integrate this kernel against a cusp form \(f \) on \(H_K \setminus H_A \) to get

\[\sum_{(a)} \int \int \omega_\psi(s(u_2 g, \delta_2 h)) \Phi(x, \xi) f(h) du_2. \]

Note that the left action of \(N_2 \) on \((x, \xi)\) of type (a) can be written as a right action of \(U_2^t \), so the inner integral is invariant under \((N_2)_K \setminus (N_2)_A\). Then the last integral reads;

\[\sum_{(a)} \int \int \omega_\psi(s(u g, h)) \Phi((x, \xi)) du \int f(n h) dn d h. \]

Now \(f \) is a cusp form so this integral is zero, and we are done. For orbits of type (b) replace \(N_2 \) by \(N_1 \) and use the same reasoning. This concludes the proof of Proposition 1.1.

We continue the proof of Theorem 1.1. If \(\theta_0^\phi(\pi, s)f \) is cuspidal, then we use Proposition 1.1 for \(P_1^i \). We write then \(\Phi(x_1, \ldots, x_{i-1}, 0) \) as \(\Phi(x_1, \ldots, x_{i-1}) \Phi(0) \) and define \(\gamma'(h) \) to be \(\{\omega_\psi^{1/2}(s_{1/2} h)\Phi\}(0) \). Conversely, we write the lift \(\theta_0^\phi(\pi^\gamma, s_{1/2})f \) as the integral on the right hand side of Proposition 1.1. We consider this integral as a function of \(U(i-1, i-1) \) imbedded in \(P_1^i \). We compute its zero Fourier coefficients in the direction of all standard maximal parabolic subgroups of \(U(i-1, i-1) \). Then these are all integrals

\[\int_{H_K \setminus H_A} \sum_{W \times \cdots \times W} \omega_\psi(s(g, h)) \Phi(x_1, \ldots, x_l, 0, \ldots, 0) f(h) dh, \]

where \(l = 1 \) to \(i-1 \). But if all these are zero, then \(\theta_0^\phi(\pi, s)f \) is cuspidal. This concludes the proof of Part (a) of Theorem 1.1. The proof of Part (b) is a standard argument (cf. [Ra]).

2. Hypercuspidality. Let \(N \) (resp. \(U \)) denote the standard maximal unipotent subgroup of \(U(2, 3) \) (resp. \(U(3, 3) \)). Let \(\psi_{\xi, \eta} \) (resp. \(\psi_{\xi, \eta, i} \)) denote a nondegenerate character of \(N \) (resp. \(U \)) where \(\xi, \eta \neq 0 \) in \(L \) and \(\xi \neq 0 \) in \(K \) (cf. [Ge-Sh, p. 76]). For an automorphic cuspidal form \(f \) on \(U(2, 3) \) (resp. \(U(3, 3) \)) let \(W_{\xi, \eta}^\phi \) (resp. \(W_{\xi, \eta, i}^\phi \)) denote a \(\psi_{\xi, \eta} \) (resp. \(\psi_{\xi, \eta, i} \)) Fourier coefficient in the direction of \(N \) (resp. \(U \)), i.e., a Whittaker function. We write \(W(\pi, \psi_{\xi, \eta}) \) (resp. \(W(\pi, \psi_{\xi, \eta, i}) \)) for the space of all such Fourier coefficients, where
\(\pi \) is a cuspidal representation of \(U(2, 3) \) (resp. \(U(3, 3) \)). We say that \(\pi \) is \(\psi_{\zeta, \eta} \) (resp. \(\psi_{\zeta, \eta, t} \)) generic if \(W(\pi, \psi_{\zeta, \eta}) \) (resp. \(W(\pi, \psi_{\zeta, \eta, t}) \)) is nonzero. We say \(\pi \) to be generic if \(\pi \) is \(\psi_{\zeta, \eta} \) (resp. \(\psi_{\zeta, \eta, t} \)) generic for some \(\zeta, \eta \neq 0 \) in \(L \) and \(t \neq 0 \) in \(K \). If for all such \(\zeta, \eta \) and \(t \) the space \(W(\pi, \psi_{\zeta, \eta}) \) (resp. \(W(\pi, \psi_{\zeta, \eta, t}) \)) is zero, then we say that \(\pi \) is hypercuspidal.

THEOREM 2.1. If \(\pi \) is cuspidal generic on \(U(2, 3) \), then its \(\psi \) lift to \(U(3, 3) \) is generic.

Moreover,

\[
W^{\psi_{\zeta, \eta, -t/2}}_{\theta_{\mathbf{a}(\mathbf{n}, \mathbf{w})}} = \begin{cases}
0 & \text{if } t \text{ is not a norm} \\
\int_{U_2 \cap H_A} \omega_f(s(g, h)) \Phi(xw_0, w_2, w_1) W^{\psi_{\zeta, \eta, -t/2}}_{\mathbf{a}(\mathbf{n}, \mathbf{w})}(h) dh & \text{if } t \text{ is a norm,}
\end{cases}
\]

where \(\mathbf{a} \mathbf{a} = t \).

PROOF. Write \(U = U_1 \cdot U_2 \) where

\[
U_1 = \begin{bmatrix}
1 & a_1 & a_2 & a_3 \\
1 & 1 & a_4 & a_5 \\
1 & a_6 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix},
\]

\(U_2 = U_2(a, b, c) = \begin{bmatrix}
1 & c & 1 \\
b & a & 1 \\
1 & 1 & 1
\end{bmatrix},
\]

with \(a_1, a_4, a_6 \in K \) and \(\bar{z} = ac - b \). Next we integrate the theta lift of \(f \) over \((U_1)_k \backslash (U_1)_A \) against the character \(\psi_{\zeta, \eta, -t/2}(u_1) = \psi((-t/2)a_1) \). This integral is zero unless

\[
[\langle x_k, x_l \rangle]^w_{U_1}_{1 \leq k, l \leq 3} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}.
\]

Let \((Y_1)_K \) denote the subset of \((X_1)_K \) satisfying the above matrix equation. Then

\[
W^{\psi_{\zeta, \eta, -t/2}}_{\theta_{\mathbf{a}(\mathbf{n}, \mathbf{w})}} = \int_{U_2 \cap H_A} \int_{(Y_1)_K} \omega_f(s(u, h)) \Phi(x_1, x_2, x_3, f(h) \psi_{\zeta, \eta, t}(u)) du dh .
\]

The orbits of \((Y_1)_K \) under the diagonal action of \(H_K \) can have the following representatives:
if \(t \) is not a norm,
\[
(x, \xi) = (aw_0, w_1, 0)
\]
if \(t \) is a norm,
\[
(x, \xi) = (aw_0, lw_1, w_1)
\]
\[
(x, \xi) = (aw_0, 0, 0)
\]
\[
(x, \xi) = (aw_0, w_2, w_1)
\]
where \(\alpha = t \) and \(l \) in \(L \). This is clear by using the action of \((P_1)_K\) and \((P_2)_K\) on \((Y_1)_K\).

For orbits of type (a), (c), (d) and (f), the action of \((U_2)_K \backslash (U_2)_A\) gives an integration of an additive character over \(L \backslash A_L \). For orbits of type (b) and (e), observe that
\[
\omega \phi(s(u_2(a, b, c)g, h))\Phi(x, lw_1, w_1)\psi_\xi(a)\psi_\zeta(c)dadcdb
\]
and
\[
\omega \phi(s(g, z_3h))\Phi(axw_0 + aw_1, w_2 + aw_1, w_1) \psi_\xi(a)\psi_\zeta(c)dadcdb.
\]
Next we change the variable \(c \) (if \(l \neq 0 \)), so we end with an integration of an additive character over \(L \backslash A_L \). As for orbits of type (g), write \(N \) as \(Z_3 \tilde{U} \), and note that \(\tilde{U}_K \) stabilizes \((aw_0, w_2, w_1)\). Now the integral reads;
\[
\int \int \omega \phi(s(u_2g, h))\Phi(xw_0, w_2, w_1)\psi_\xi(h)dhdu_2.
\]
Observe also that
\[
\omega \phi(s(u_2(a, b, c)g, h))\Phi(axw_0, w_2, w_1) = \Phi(axw_0 + cw_2 + bw_1, w_2 + aw_1, w_1),
\]
and
\[
\omega \phi(s(g, z_3h))\Phi(axw_0 + cxw_2 + abw_1, w_2 + aw_1, w_1).
\]
By using the above equations and a change of variables, the last integral reads;
\[
\int \int \omega \phi(s(g, zh))\Phi(axw_0, w_2, w_1)\psi_\xi\eta(z)\psi_\zeta\eta(z)f(h)dhdy
dh
\]
and
\[
\int \int \omega \phi(s(g, h))\Phi(axw_0, w_2, w_1)\psi_\xi\eta(z)f(z^{-1}h)dzdh.
\]
Note that the last integral cannot be zero for all Φ in $S((X_1)_{\mathcal{A}})$ (see also [Wa, Theorem 3.1]). So this concludes the proof of Theorem 2.1.

Corollary 2.1. Let π be a cuspidal representation of $U(2, 3)$. If $\theta^4(\pi, s)$ (resp. $\theta^5(\pi, s)$) is cuspidal, then π must be hypercuspidal.

Proof. If $\theta^4(\pi, s)$ (resp. $\theta^5(\pi, s)$) is cuspidal then $\theta^5(\pi_\gamma', s_\gamma') = 0$ (resp. $\theta^3(\pi_\gamma', s_\gamma') = 0$) where $\gamma'(h) = \omega_{\psi}^2(s_{\gamma'}(h))\Phi(0)$ (resp. $\gamma'(h) = \omega_{\psi}^2(s_{\gamma'}(h))\Phi(0, 0)$) (cf. Proposition 1.1). So π_γ' (resp. π_δ') cannot be generic (cf. Theorem 2.1).

Theorem 2.2. Let π be a cuspidal representation of $U(2, 3)$. Assume $\theta^4(\pi, s)$ (resp. $\theta^5(\pi, s)$) is cuspidal. Then it is hypercuspidal.

Proof. Consider $\theta^4(\pi, s)$. Write the maximal unipotent subgroup of $U(4, 4)$ as $U_1 \cdot U_2$ (as done previously for $U(3, 3)$). The integral of the theta lift over $(U_1)_{\mathcal{K}} \cdot (U_1)_{\mathcal{A}}$ against $\psi_{\xi, \eta, h = \omega_{t/2}}$ is zero unless

$$[\langle x_k, x_l \rangle_w]_{1 \leq k, l \leq 4} = \begin{bmatrix} t & 0 \\ 0 & 0 \\ \vdots & \ddots \\ 0 & 0 \end{bmatrix}.$$

Let $(Y_1)_K$ denote the subset of $(X_1)_K$ satisfying the above matrix equation. Then

$$W_{\theta^4(\pi, s)}^{(y, z), -(t/2)}(g) = \int_{(U_2)_{\mathcal{K}}} \int_{(U_2)_{\mathcal{A}}} \sum_{(y, z, h)_{\mathcal{K}, \mathcal{A}}} \omega_{\psi}(s(ug, h))\Phi(x_1, x_2, x_3, x_4)f(h)\psi_{\xi, \eta, h = \omega_{t/2}}(u)du dh .$$

The orbits of $(Y_1)_K$ under the left diagonal action of H_K can have the following representatives:

(a) $(x_1, \xi_1, \xi_2, \xi_3) = (aw_0, aw_1 + bw_2, w_1, w_2)$

(b) $(x_1, \xi_1, \xi_2, \xi_3) = (aw_0, w_1, aw_1, bw_1)$

(c) $(x_1, \xi_1, \xi_2, \xi_3) = (w_{-2} + (t/2)w_2, w_1, aw_1, bw_1)$

(d) $(x_1, \xi_1, \xi_2, \xi_3) = (w_{-2} + (t/2)w_2, 0, 0, 0),$

where a, b in L, $\omega = t$, and ξ_1, ξ_2, ξ_3 can appear in any order. It is now left to show that the integral corresponding to each of the above orbits vanishes. If $\xi_i = 0$ for some i, then the conclusion is easy. Otherwise we end as we do in Theorem 2.1 for orbits of type (b) and (e).

A similar argument holds for the theta lift $\theta^5(\pi, s)$.

REFERENCES

P.O. Box 788
Jerusalem 91007
Israel