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Abstract. In this paper, we deal with an invertible null-preserving transformation

into itself of a finite measure space. We prove that the uniform boundedness of the

ergodic averages in a reflexive Lorentz space implies a.e. convergence. In order to do

this, we study the "good weights" for the maximal operator associated to an invertible

measure preserving transformation.

1. Introduction and results. Let T be an invertible measure preserving trans-

formation on a measure space (X9 Jί9 μ). Let Tnm and M be the ergodic averages and

the maximal operator defined, respectively, by

Tn,mf(x)= —- Σ RT'x) and Mf= sup Γ M ,J/ | .
n + m+ 1 j= -n n,m>0

Martin-Reyes [6] studied the good weights for M to be bounded in Lp (1 <p<co)

and from Lp to LPtO0 (1 <p< oo). He proved that M is bounded from Lp(v) to Lpoo(ύ)

if and only if (M, Z;) satisfies Ap(T), which means for /?> 1

fc \ / k \p-l

Σ uC^x) jlΣv1 " ' ' ( Γ ' J C ) < C ( f c + l ) p a.e.

with C independent of k and x and pp'=p+p\ and for p= 1

Mu(x) < Cv(x) a. e.

Moreover, he proved that, for u = v and p>l, Λp(T) is also equivalent to the

boundedness of M in Lp(u). Then, he used these results to obtain theorems about

convergence a. e. of the ergodic averages of functions in weighted Lp-spaces.

Gallardo [2], [3] has generalized these results to Orlicz spaces.

Our purpose is to extend the Lp results to Lp q spaces. In this paper, we characterize
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the pairs of non-negative measurable functions (M, V) such that M is bounded from

Lpq(v) to Lpj00(w). By Lpq{v) we design the Lorenz space of all measurable functions /

such that H/HPfί; ι,< oo, where

I I / H M ! . = ? vdμ) y«-ιdy) if

and

The condition we give is analogous to the condition Apq in [1] in the same way

that AP(T) in [6] is analogous to Muckenhoupt's Ap.

A pair (u,v) of non-negative functions on X satisfies Apq(T) (\<p<co and

\<q<co or p = q=\) if there exists C > 0 such that

for every keNand a. e . i e l , where the norms are in the integers, p' and q' denote the

conjugate exponents of/? and q, respectively, and fx means the function on Z defined

by fx(i)=f(Γx).

After obtaining the maximal inequalities, we will prove that for a null-preserving

invertible transformation on a finite measure space, the uniform weak type of the ergodic

averages Tnm suffices to get the a.e. convergence of Tnnf for every / in Lpq.

The proofs of our results follow the techniques in [6] adapted to the Lp q context.

Besides, to make transference in Lp^q we will need straightforward versions of Theorems

1 and 2 in [1] for two weights. It is remarkable that the process of transference in Lpq

is not as easy as it is in Lp. We only work in the case q<p and the difficulties are solved

by means of Minkowski's integral inequality.

Throughout this paper, C will denote a positive constant, not necessarily the same

at each occurrence.

Our results are the following:

THEOREM 1. Let \<q<p<co and u, v be positive measurable functions. The

following statements are equivalent:

(a)
(b) P p ,

(c) (u9v) satisfies APtq(T).

THEOREM 2. Let 1 <p< oo and \<q<oo. Let w be a positive measurable function.

The following statements are equivalent:

(a) \\Mf\\p,m;w<C\\f\\p,q.tW

(b) sup n i m > 0 | |Γ n > m /H p > 0 0 ; ) V <C| | /H p , ϊ : w
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(c) \\Mf\\Pfq;w<C\\f\\p,q;w

(d) supn^0\\Tntmf\\Ptq;w<C\\f\\Pfq;w

(e) weAPtq(T)
(f) weAp(T).

THEOREM 3. Let 1 <p<oo and \<q<co. Let (X, !F, v) be a finite measure space
and let T: X^X be a null-preserving invertible transformation. The following statements
are equivalent:

(a) Wf\\p^< ell/11,,,
(b) sup^^ol l^^/H^^
(c) \\Mf\\M<>C\\f\\9%q

(d) s u p ^ ^ ^ l l ^ ^ / I I ^ ^ , ,
Moreover, if one of the above conditions holds, then {Tnnf}, {TOtΛf} and{TnOf} converge
a. e. for every f e Lp q.

2. Proof of Theorem 1. The case p = q = 1 is taken care of by [6, Theorem 2.26].
Hence we here consider only the case 1 <p<co. The implication (a) => (b) is obvious.
To prove (b) => (c) we will need two lemmas:

LEMMA 1 (see [6]). Let kbea natural number. Then, there exists a countable family
{B{. ieN) of measurable sets such that the following are satisfied:

(i) X^B,

(ii) BinBj = 0ifi^j.
(iii) For every i, there exists a natural number s(i) with 0<s(i)<k such that the

sets {T~ jB( : 0 <y < s(i)} are pairwise disjoint and such that ifs(ι) < k then T~ *" s{i)A = A for
every subset A of Bt. Consequently, for every subset A of Bt

k s(i) k

Σ Xτ-JA<C(i) Σ XT-JA<2 Σ Xτ-u>
j = O j = 0 j = O

where C(i) is the least integer satisfying {k+1)(1 +s(i))~1<C(i).

LEMMA 2. Let keN and let B be a measurable set. For every xeB and neZ, let
H* = {ie[Q, fc]/v~1(Tix)>3n}. Let A be the collection of all nonincreasing sequences in
Zu{ — oo} with no more than 2k + 1 different elements and at least an element in Z. If
α = {an} eA, let Aa be the set defined by

x

n = 0 if an= - o o and 2a»< Σ t>(7V)<2β«+ 1 ifanΦ - o o
ieHΪ J

Then {Alx}oιeΛ is a countable family such that their elements are pairwise disjoint and

PROOF OF LEMMA 2. It is clear that A is a countable family and that oaΦβ in A
implies Aar\Aβ = 0. To see that B=\JaeΛA(X let xeB and let, for every nsZ with
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Hx φ 0, an be the only integer such that

2an< X v(Γx)<2an+1 .
ieHΪ

If Hx = 0 , let an = — oo. Then, the sequence α = {an} is nonincreasing (since Hx _ x => //*),

it contains no more than 2k+1 different elements (since there are no more than 2k+1

different Hx) and xeAa.

(b) => (c) Let keN and {B^ be the sequence associated to X and k by Lemma 1.

Fix Bt. By Lemma 2, Bi=\JaeAAa. Fix one of these Aa and consider, for every

(no,nu...,nk)eZk+\ the set

It is clear that the Hno nu Πk are measurable, their union is Aa and they are pairwise

disjoint. Fix Hnonu nk and let A be a measurable set of i/Πo Πl >Πk.

Step 1. Let R= ( j ^ 0 Γ U. First we will prove the relation

with C independent of k, s(i) and i^.

In order to do this, let us see that

(1.2) ^ ^ ^ ^ ^ ^ ,

where w is defined in Z b y w(/) = 2Πjχ[0 s(i)] and the (pr, ̂ r)-norm on the right hand side

(1.2) is a norm in the integers.

By the definitions of || \\p>iq>;v and Hno nι Πk we have for q'< oo:

( f \l/q'

\ (\ Σ ) ' )

q'\ (\ Σ vx(j)dμ) yo'-'
J o \JA {Je[O,s(i)}/(v*)-Hj)>y} J

/ r°° ί C
<UΊ Σ 2 ^

\ Jo \JA Ue[0,s(i)]/2-»j>y}

q'/p' \ί/q'

o \Ue[0,s(i)]/2-nj>y} J

and for q'=oo:

) ^
y>0

ΛIP'

v>0 V J A ίie\0.s(i)V2~ni>v)
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y>0

.[0,s(0] ** lip', αo w

Therefore, (1.2) is proved.
Now we use an argument of duality: there exists w'>0 with | |w / | | J, f q ; w= 1 such that

0 3) Σ

From (1.2) and (1.3) it follows that

(1.4) % ^ ' Σ

Let / be the function defined on X by

j=o

The function / verifies:

(1.5) lxeX/Tsii)Mi)f(x)>C J = °Λ Λ \^R.

From our hypothesis about M we obtain:

(1.6)
s(0

Σ w
; = o

Let us compute \\f\\p,q;v:

-( [* (f Y/p «-i Y
\ Jo VJ^Λr/y w'(/)yrjix)>v / /

j=o

s(i) \q/p

Σ ii(TΓJVW CTJ\ \s1n(y\
VK2 X)Mz/w'(j)χτJΛ(z)>y}\1 *J«/*W

o \JAJ=O

\ ^ I JC/ \ J l β—1 J l

\β/P \l/4

Σ
0 \O'e[O,s(i)]/w'C/)>y}
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\ J o \O'e[O,S(i)]/w'α)>y}

1/4

This inequality together with (1.6) and (1.4) give

IIv i)~ι\\p

\ \ X R V \\p',q';Ό

Raising this to l/p and keeping in mind that (s(i) + l)μ(A) = μ(R) we obtain (1.1).
Step 2. Relation (1.1) can be written as

\q'lp' \W

(TJχ)>y)α1 s(i) \ί/p/ Λoo / r

Σu(Px)dμ) [q'\ Σ
AJ = O J \ Jo \JAUe[O,s(i)]/v-

By means of Lemma 1, we are going to prove that (1.8) remains valid with k in
palce of s(i).

Let us consider the first factor on the left hand side of (1.8). By Lemma 1

Σα \I/P ( i r k \i/p

Σ u(Px)dμ) >l——\ Σ u(Px)dμ)
) \C(l) JAj = O JLet us dominate from below the second factor on the left hand side of (1.8):

Γ s(ί) Γ
(110) Σ v(Px)dμ=Σ X{z/v-HτJz)>y}(T-jx)v(x)dμ

JA {je[O,s(i)yv-HTJχ)>y} j = O JTjA

so) r i k r

= Σ X{z/vHz)>y}(x)v(x)d^-^Γ Σ X{z/v-Hz)>
J = OJτJA C W J = OJTjA

= 7̂ 7" ί Σ v(Px)dμ.
Q O JAUe[O,k}/v-HTJχ)>y}

Finally, we bound above the right hand side of (1.8):

2
(1.11) μ(A)(s(i)+l)= f Σ χτjA(x)dμ<-*-- ! Σ XTJA(XW = -^- (k+ \)μ(A) .

Jχj=o C(ι) J C(ι)

Now, (1.8), (1.9), (1.10), (1.11) and the fact \/p+l/p' = \ allow to cancell C(i) and
to obtain

G' k \l/p/ f oo / Γ \q'/p'

Σu(Px)dμ) (q'\ (\ Σ v(Px)dμ) y^
AJ = O / \ J θ \jA{JelO,k]/v-HTJχ)>y} J

l/qf
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Step 3. From (1.12) we get

α' * V'/P f / foo /

Σ M (Px)φ X
AJ=O J JA\J0 \{JelO,k\lυ-HTJχ)>y

P7«'

(T^c) ^ ' "Vy
y}

<c{k+\y'μ(Ay'

and then, since A is an arbitrary subset of Hnonι Πk, the union of the 7/'s is Aa, the
union of the AΛ

9s is 5 f and the union of the 5/s is X, we obtain

\Jo \{je[O,k]lv-HTJχ)>y}

a. e. xeX, that is,

Let us consider the second factor on the left hand side of (1.13) and let us dominate
it by the corresponding term in (1.12):

Γ ( f oo / \q'/p' \p'/q'

Σ v(Tjx)\ yϊ-'dy) dμ

Γ / oo f 3 » + i / \q'/p' \p'lqf

< Σ Σ v(Px)) y'-idy) dμ

= C ( Σ Σ v(Px)\ y^dy) dμ
JA\n=-™ J 3 " " 1 \Ue[0,fc]/ι;-1(Γ>x)>3"} / /

f / +oo Λ3» \p'/«'

<C Σ 2^+ 1^>y-1φ; dμ
JA \Π=-OO J3n-1 /

/ +oo Λ3» / f

= C ( Σ 2 -

+oo( f / f

Σ Σ v(Px)dμα'oo / Γ \q'/p' \p'/q'

Σ v(Px)dμ) y'-'dy) .
0 \JAUelO,k]/v-HTlχ)>y) ) J

Then, the left hand side of (1.13) is smaller than the left hand side of (1.12) raised
to p'. Now (1.13) follows from (1.12) and the implication is proved.

(c)=>(a) Let / be a positive function. Let LeN, NεN, λ>0 and Oλ =
{xeX/MLf(x)>λ}, where ML is the truncated maximal operator defined by MLf =

, m < L Γ π > J / | .
Then,



444 P ORTEGA

Γ l N Γ l N Γ
(1.14) w(Oλ)= w φ = Σ « Φ = Σ u(Tjx)dμ

= ί 1 y (ΛWΓ^W
J x JV+l j=o T J (°λ )

= ί — ^ Σ «XO)Φ

TT^V Σ «xσ)Φ

Jx 7 V + 1 t/6JV/m(/xZ[0>w + L])U)>A}

where m is the maximal operator in Z and mL its truncated.
Condition Apq(T) means that (wx, vx) verify ^ p > 9 in the integers uniformly in x.

Theorem 2 in [1] (adapted to two weights) ensures that

0.15) Σ « x ϋ )£-£ll/xχ[o,*+L]li;.«.-.

Then (1.14) together with (1.15) give:

(1.16) u{Oλ)<^ [ — i - ||/*χ

By the definition of the Lp g-norm and Minkowski's integral inequality (p/q>l) we
obtain

r l / Γ00 / Γ / \ \q/p \plq

(i.i7) u(oλ)<—-—-U Σ ^0)W y " 1 *
>lp iV+1 \ Jo \Jχ\t/6[ofAr+L]//*α)>y} / / /

Since Γis a measure preserving transformation, the right hand side of (1.17) equals

C 1 / f00/ *̂ ^ p ^p 'β

7V7" i 1 V l \

C N+L+l

1 / Γ00/ Γ

J T Γ ^ J ^ + ^ + i ) J K*)z,,,/W>,)

\\fVP,q;vλp N+l

Therefore we have

C N+L+l
(119) κ(OΛ)

Letting TV and then L tend to infinity we obtain
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u({x/Mf(x)>λ})<-^- WfVp.,-.., that is ,
A

REMARK. Observe that (a)=>(b) and (b)=>(c) also hold with 1</?<OO and
1 <q<co.

3. Proof of Theorem 2. The implications (a) => (b), (c) => (d) and (d) => (b) are
clear. The implication (b) => (e) follows as in Theorem 1 (see the previous remark). To
prove the equivalence (f)o(e) just write the proof of Theorem 4 in [1] in the integers.

Finally, let us see simultaneously that (f) => (a) and (f) => (c). We will need the
following well-known properties of ^4p(Γ)-weights:

(i) Ap(T) is contained in Ar{T) if p<r, and
(ii) weAp(T) implies weAp_ε(T) for some ε>0 with/? —ε>l.
These properties and Theorem 1 (or Theorem 2.7 in [6]) imply that if weAp(T),

then there exist rx and r2 with r2>p>r1 such that

and

By Marcinkiewickz's interpolation theorem (see [4]),

s ; w , \<s<co.

4. Proof of Theorem 3. The implications (a) => (b), (c) => (d), (d) => (b) and
(c) => (a) are obvious. We only have to prove (b) => (c). Let L be a Banach limit. Let

μ is well defined by (b) and by the finiteness of v. Moreover, since T is invertible,
μ is an invariant measure equivalent to v, i.e., v = wdμ where w is a positive a. e.,
measurable function. Therefore, Theorem 2 gives (c).

Since Lpq(w) is reflexive, || TntΛ\\Ptq;w< C and n~ x(fo Tn) converges to 0 in Lp q(w) for
every feL^w), we have that Lpq(w) = F(Bcl(N), where

F={heLp,q(w)/hoT=h}

and cl(N) is the clousure of the set N defined by

(see [5, pp. 71-74]).
The a. e. convergence of {ΓΠt„/} is clear for f = h + g-g ° Γwith geL^w) and heF.

On the other hand, Theorem 2 (the hard part) gives us a weak inequality for M. We
can apply Banach's principle to obtain the a.e. convergence of {Tnnf} for every
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feLpq(w) from the a.e. convergence in the dense class.
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