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Abstract. In this paper, we deal with an invertible null-preserving transformation
into itself of a finite measure space. We prove that the uniform boundedness of the
ergodic averages in a reflexive Lorentz space implies a.e. convergence. In order to do
this, we study the “good weights” for the maximal operator associated to an invertible
measure preserving transformation.

1. Introduction and results. Let 7T be an invertible measure preserving trans-

formation on a measure space (X, .#, p). Let T, ,, and M be the ergodic averages and
the maximal operator defined, respectively, by

1 m .
Tn,mf(x)=7 Z f(TJx) and Mf= Sup Tn,mlfl .
n+m+1 j="n nm20
Martin-Reyes [6] studied the good weights for M to be bounded in L,(1<p<o)
and from L, to L, ,, (1<p<o0). He proved that M is bounded from L,(v) to L, ,(u)
if and only if (u, v) satisfies 4,(T), which means for p> 1

k . k , . p—1

<Z u(T'x)><Z vl (T'x)) <Ck+1)*? a.e.

i=0 i=0

with C independent of k and x and pp’=p+p’, and for p=1
Mu(x)<Cv(x) a.e.

Moreover, he proved that, for u=v and p>1, 4,(T) is also equivalent to the
boundedness of M in L,(u). Then, he used these results to obtain theorems about
convergence a.e. of the ergodic averages of functions in weighted L ,-spaces.

Gallardo [2], [3] has generalized these results to Orlicz spaces.

Our purpose is to extend the L, results to L, , spaces. In this paper, we characterize
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the pairs of non-negative measurable functions (u, v) such that M is bounded from
L,,v)to L, ,(u).By L, (v) we design the Lorenz space of all measurable functions f
such that || f1|, ., < oo, where

© a/p 1/q )
l|f|lp,q;v=<qf (f vdy) y"‘ldy) if 1<g<oo
0 {x/| £(x)| >y}

1/p
/1. r0=5UD y( J vdu> .
y>0 (x/| £(x)| >y}

The condition we give is analogous to the condition 4, , in [1] in the same way
that 4,(T) in [6] is analogous to Muckenhoupt’s 4,.

A pair (4,v) of non-negative functions on X satisfies 4, (T) (I<p<oco and
1<g< o or p=g=1) if there exists C>0 such that

and

“x[O,k]"p,q;ux- ”X[O,k](vx) -1 “p’,q'; vx S C(k + 1)

for every ke Nand a.e. xe X, where the norms are in the integers, p’ and ¢’ denote the
conjugate exponents of p and g, respectively, and f* means the function on Z defined
by f* (@) =/(T"x).

After obtaining the maximal inequalities, we will prove that for a null-preserving
invertible transformation on a finite measure space, the uniform weak type of the ergodic
averages T, , suffices to get the a.e. convergence of T, ,f for every fin L, ,.

The proofs of our results follow the techniques in [6] adapted to the L, , context.
Besides, to make transference in L, , we will need straightforward versions of Theorems
1 and 2 in [1] for two weights. It is remarkable that the process of transference in L, ,
is not as easy as it is in L,. We only work in the case ¢ <p and the difficulties are solved
by means of Minkowski’s integral inequality.

Throughout this paper, C will denote a positive constant, not necessarily the same
at each occurrence.

Our results are the following:

THEOREM 1. Let 1<q<p<oo and u, v be positive measurable functions. The
following statements are equivalent:
@  IMSfllp, w0;u<ClSlp,g:0

(b) Supn,sz“ Tn,mf“p,co;uSC“f”p,q;v
(©) (u,v) satisfies 4, (7).

THEOREM 2. Let1<p<oo and1<q<oco. Let w be a positive measurable function.
The following statements are equivalent:

@ IMflp,w0;w<Cl S5 q5w

(®)  SuPymzoll Tom S N5, c0;w < Cl g0
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© IMflpgw=<Clfllpqw

(d) Supn,sz" Tn,mf"p,q;wSC”f”p,q;w
(&) wed, (1)

(f) wedyT).

THEOREM 3. Let l<p<oo-and 1<q<w. Let (X, F,v) be a finite measure space

and let T: X— X be a null-preserving invertible transformation. The following statements
are equivalent:

@ IMflp,0=<Clfll,,

(®) supymzoll To,mS N5, 0 <Cllfllpq

© 1Ml g<Clfl,

@ 5P a0l TomS g < Cllf N g
Moreover, if one of the above conditions holds, then {T, , f},{To .f} and {T, o f} converge
a.e. for every feL, .

2. Proof of Theorem 1. The case p=¢g=1 is taken care of by [6, Theorem 2.26].
Hence we here consider only the case 1 <p< c0. The implication (a) = (b) is obvious.
To prove (b) = (c) we will need two lemmas:

LeMMA 1 (see [6]). Let k be a natural number. Then, there exists a countable family
{B;: ie N} of measurable sets such that the following are satisfied:
i x=U,B.
(i) B;nB;= if i#].
(iii) For every i, there exists a natural number s(i) with 0<s(i)<k such that the
sets {T~IB;:0<j<s(i)} are pairwise disjoint and such that if s(i) <k then T~ ~*® 4= A for
every subset A of B,. Consequently, for every subset A of B,

k sti) K
Y xr-1a<C(@) Y Ar-14<2
j=0 j=0

XT-ia>
j 0

j=
where C(i) is the least integer satisfying (k+1)(1+s(i)) ™' < C(@).

LEMMA 2. Let ke N and let B be a measurable set. For every xe B and ne Z, let
Hi={ie[0, k]/v"'(T'x)>3"}. Let A be the collection of all nonincreasing sequences in
Zu{—oo} with no more than 2**' different elements and at least an element in Z. If
a={a,} €A, let A, be the set defined by

ieHy

Aa={xeB/Hj=Q if a,= —o0 and 2°< Y, v(T'x)<2%*! ifa,,;é—oo}.

Then {A,},c4 is a countable family such that their elements are pairwise disjoint and
B= UaeAAa'

PROOF OF LEMMA 2. It is clear that 4 is a countable family and that a#p in 4
implies 4,n Az=. To see that B=|J, , 4, let xe B and let, for every ne Z with

acAd
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H}# J, a, be the only integer such that

2nc ¥ o(Tix)<2%*1 .
ieHy
If HY =, let a,= — 00. Then, the sequence o= {a,} is nonincreasing (since H;_, > H}),
it contains no more than 2**! different elements (since there are no more than 2**!
different H}) and xe 4,

(b)=(c) LetkeN and {B;} be the sequence associated to X and k by Lemma 1.
Fix B;. By Lemma 2, B;=|J, ., 4, Fix one of these 4, and consider, for every
(ng, Ny, ..., m)eZ** 1, the set

Hyopo o ={x€ 42" <v(Tx)<2m*1i=0,1,...,k}.
Itis clear that the H,_ ,, .., are measurable, their union is 4, and they are pairwise
disjoint. Fix H,_ , .., and let 4 be a measurable set of H, ,, .. ..
Step 1. Let R={J3” TA. First we will prove the relation
(11) |IXR”p,q;u”XRv_l“p’,q’;vSC#(R)

with C independent of k, s(i) and R.
In order to do this, let us see that

(12) “XRU_ ! ”p‘,q’;uS Cﬂ(A)l/p' "X[O,s(i)]w_ ! ”p’,q’;w ’

where w is defined in Z by w(j)=2"y, 4 and the (p’, ¢')-norm on the right hand side
(1.2) is a norm in the integers.

By the definitions of || and H,

no, N1, ..y

lp.arso m We have for g’ < oo:

o q'/p’ , 1/q
”XRU_l"p’»q’;v=<qlf <J Z Ux(j)dﬂ> »? _ld)’>
0 A Uel0,s())/(v*)~1(j) >y}
@ q'/p’ , 1/q
0] (o )0
0 A {jel0,s(D))/2 ">y}

© a/p’ 1/q’
=21/P’”(A)1/p’ <q'j ( Z 2'lj> yq’—ldy>
0 \{jel0,s())/2~";>y}

= C‘u(A)I/p' "X[O,s(i)]w_ ! ”p’,q';w

and for ¢’ = o0:

1/p
1Xk0 ™l 7, co50=SUP y(f > v"(f)tl’u)
y>0 4 Uel0,s@)/(v*)~1() >y}

1p’
<sup y( [ Y 2""“dﬂ>
v>0 Joa {iel0 s(D/2 1>y}
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1/p’
=217 u(A)"? sup y W(j))

y>0 ( {/(xro, sayiw ™ HU) >y}
= Cﬂ(A)l/p’”X[O,s(i)] w! ”p’, wo;w *
Therefore, (1.2) is proved.
Now we use an argument of duality: there exists w’ >0 with [|w'[, ,.,,=1 such that
s(i)
(13) CHX[O,s(i)] wo ! ”p’,q’;wS Z W’(j) .
j=0
From (1.2) and (1.3) it follows that
s(i)
(1.4) IR0 ™ g0 < C(A)'P _ZO w'(j)
j=
Let f be the function defined on X by
s(i) ]
S(x)= ‘Zo W' ()xrialx) .
=
The function f verifies:

s(i)
Y W)
(1.5) {xeX/ (,,s(,)f(x)>CW}3R

From our hypothesis about M we obtain:

(@) +1*

s(i)
( ) w'(j))
j=0

(1.6) uR)<C AN, 450 -

Let us compute || f1|,,,.0:

1 lpgro= ( f

a/lp _ 1/q
« Ud#) y* ‘dy>
w (])XTIA(X)>Y}

Jy
‘(18

a/p
U(T X)X(z/w (j)xTJA(z)>y)(T X)d[t(X))

alp 1/q
=(q ( f "(j)d#> y""dy>
Jo \(elo, sm]/w >

a/p 1/q
u(A)2"f“) y""dy>

{jelo, S(t)l/w U)>y}
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© a/p 1/q
=u(A)”"2””<qf < ) W(j)> y""dy)
0 {jel0, s()l/w'(j)> y}

= Cl(A) P W'l o= CR(A) P .

This inequality together with (1.6) and (1.4) give
(s()+1)*

” R - 1”p q’;v

Raising this to 1/p and keeping in mind that (s(¥) + 1)u(4) = u(R) we obtain (1.1).
Step 2. Relation (1.1) can be written as

1/p © . q'/p’ ) 1/q’
(1.8) ( 2 u(T’x)du) <q’ J < f Y v(T’x)) y""dy)
AJ= 0 A (Fel0,s()])/v~ (T Ix)>y}

< C(s(i) + (A) .

By means of Lemma 1, we are going to prove that (1.8) remains valid with k in
palce of s(i).
Let us consider the first factor on the left hand side of (1.8). By Lemma 1

(1.9) ( S(f u(T’x)dy>1/p2< Z u(T’x)dp)llp.
@)

AJ=
Let us dominate from below the second factor on the left hand side of (1.8):

(1.7) u(R)<C W(A)? .

s(i) .
(1.10) J‘ Z oW(Tx)dp= Z Xizjo- 1(rizy> (T IX)0(xX)dp
A Uel0,s(i))/v~ YT Ix)>y}

TiA
s(i)
= Z .[ X{z/v “1(z)> y}(x)v(x)du =2— X{z/v -1(z)> y)(x)v(x)d.u
i=0JTig C() i= 0 Tid
L o(T'x)du .

C@i) J 4 Geto. k= 1(ixm>p
Finally, we bound above the right hand side of (1.8):
2
(1.11) p(A)(s@)+1)= Z Xria(X)adp<—— Z Xrialx )du———(k+1)#(A)
xi=0 @) (@)

Now, (1.8), (1.9), (1.10), (1.11) and the fact l/p+ 1/p’=1 allow to cancell C(i) and
to obtain

1/p © . q'/p’ , 1/q’
(1.12) < Z u(T’x)du) <q’f (f Y v(T’x)du) e _ldy)
aij= 0 A (je[0,k]/v~ (T ix) > y}

<Clk+1)u(A) .
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Step 3. From (1.12) we get

k . p'/p © . q/p , r'lea
(1.13) (J Y u(T’x)du) J (J ( Y v(T’x)) y1 -ldy> du
AJ=0 A 0 {jel0,k)/v=Y(TIx)>y}

<Clk+1)"w(4)”

and then, since A4 is an arbitrary subset of H, , .. ., the union of the H’s is 4,, the
union of the A4,’s is B; and the union of the B;’s is X , we obtain

k . 1/p ] . q'/p’ , 1/q’
(Zu(fo)) ( f q'( ) U(T,x)> y'fldy) <C(k+1)
j=0 0 {jel0,k)/v~ YT Ix)>y}

a.e. xe X, that is,

”X[O,k]”p,q;u"”x[o,k](vx)_ ! ”p’,q’;v" <Ckk+1).

Let us consider the second factor on the left hand side of (1.13) and let us dominate
it by the corresponding term in (1.12):

© o \9r p'la
4 \Jo \{jel0,k)jo~ (TIx)>y}
3nti o \gr rla
f j ( ) v(T’X)> v '1dy> dp
n=-ow (jel0,k)/v~ YT Ix)> 37}
t o o \9r r'la
=C < ) j ( ) v(T’X)> y* “dy> dy
— J3n-1 \ {jel0,k)/v~ }(Tix)>3n}

CJ < f 2(an+ l)q’/p’yq’—ldy>p‘/q’d#

IA

C

3n /. r'la
- ([ ea)

A

. ar r'le

f <j > v(T’X)du> y “dy>

n= A {Jel0,kl/v~Y(TIx)>3n}
. a/r rle
sC(J (J Y v(T’x)du) y1 “dy) .
0 A4 {je[0,K)/v~ }(T Jx)>y}

Then, the left hand side of (1.13) is smaller than the left hand side of (1.12) raised
to p’. Now (1.13) follows from (1.12) and the implication is proved.

I/\
+

(c)=(a) Let f be a positive function. Let Le N, NeN, A>0 and O,=
{xe X/M_f(x)>A}, where M, is the truncated maximal operator defined by M, f =

Supn,msLTn,ml f I
Then,
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i 1 .
(1.14) w0)=\| udp=— Z — Z w(T’x)du
JO, N 1 Jj= T-3(0y3)

1 .
= Z X1~ 350,,U(TIx)dp
j=0

Jy N+1
[ ! ) *(j)dp
=| —— u
Jx N+1 geo,NyMor(rin>
[ 1
= > u (j)dp

Jx N+1 geo, Nympr=iy> 2

< f : > w*(j)du ,

x N+1 eNmir=xo n+Lpi)> 2

where m is the maximal operator in Z and my its truncated.
Condition 4, (T) means that (u*, v™) verify 4, , in the integers uniformly in x.
Theorem 2 in [1] (adapted to two weights) ensures that

C
(1.15) ) "(J)_—Ilf Yo, N+l 5, g 0% -

{jeZ/m(f*xio, v + L)) > 4}

Then (1.14) together with (1.15) give:

(1.16) w(0,)<— J ||f X0, N+L]”pqv" U .

By the definition of the L, ,-norm and Minkowski’s integral inequality (p/g>1) we
obtain

(1.17) )< C 1 < fw(f < Z ( ))d )q/p -1y )p/q
i u(0,)< v*(j) Jdu ) y* - dy
V= N+1 x \ el0, N+LY/f=(j)> y}

Since T is a measure preserving transformation, the right hand side of (1.17) equals

C 1 © a/p rla
(1.18) -— (4_[ <(N+L+ l)f v(x)X{z/f(z)>y)(x)d.u) yq_ldJ’)
0 x

AP N+1
C N+L+1
= ey -
Therefore we have
C N+L+1
(1.19) u(OA)_ Nt — 7 g0

Letting N and then L tend to infinity we obtain
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u({x/Mf(x)>A})sT€ 112,00 thatis,

”Mf”p,oo;uscnf”p,q:” *

REMARK. Observe that (a)=>(b) and (b)=>(c) also hold with 1<p<oo and
l<g<oo.

3. Proof of Theorem 2. The implications (a) = (b), (c) => (d) and (d) = (b) are
clear. The implication (b) = (e) follows as in Theorem 1 (see the previous remark). To
prove the equivalence (f) <> (e) just write the proof of Theorem 4 in [1] in the integers.

Finally, let us see simultaneously that (f)=>(a) and (f) = (c). We will need the
following well-known properties of 4,(T)-weights:

(i) A,(T) is contained in 4,(T) if p<r, and

(i) weA,(T) implies we A,_,(T) for some ¢>0 with p—e>1.

These properties and Theorem 1 (or Theorem 2.7 in [6]) imply that if we 4,(7T),
then there exist r; and r, with r,>p>r, such that

IMflry0iw<Clfllry;w and  IMfl,, 0w <Clfllrw-
By Marcinkiewickz’s interpolation theorem (see [4]),

"Mf"p,s;wscllf”p,s;w s ISSS(D .

4. Proof of Theorem 3. The implications (a)=(b), (c)=(d), (d)=(b) and
(c) = (a) are obvious. We only have to prove (b) =>(c). Let L be a Banach limit. Let

o { ] ).

u is well defined by (b) and by the finiteness of v. Moreover, since T is invertible,
u is an invariant measure equivalent to v, i.e., v=wdu where w is a positive a.e.,
measurable function. Therefore, Theorem 2 gives (c).

Since L, ,(w)is reflexive, || T, 4l 5,4, <Candn~ Y(fo T™) converges to 0 in L, ,(w)for
every f €L (w), we have that L, ,(w)=F@®cl(N), where

F={heL, (w)/hoT=h}
and cl(N) is the clousure of the set N defined by
N={heL, (w)h=g—g-T, geL,(w)}

(see [5, pp. 71-74)).

The a. e. convergence of {7, , f} is clear for f=h+g—goTwithgeL,(w)and heF.
On the other hand, Theorem 2 (the hard part) gives us a weak inequality for M. We
can apply Banach’s principle to obtain the a.e. convergence of {T, ,f} for every
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feL, (w) from the a.e. convergence in the dense class.
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