Tohoku Math. J.
46 (1994), 13-26

THE DEGREE OF THE BEST APPROXIMATION
IN BANACH SPACES

TOSHIHIKO NISHISHIRAHO

(Received August 10, 1992, revised September 25, 1992)

Abstract. Direct theorems of Jackson type on estimating the degree of the best
approximation in Banach spaces are obtained by means of the moduli of continuity of
higher orders of elements having certain smoothness properties.

1. Introduction. Let C,, denote the Banach space of all 2n-periodic, continuous
functions f defined on the real line R with the norm

11l o =max{| f(D)]: || <m} .

Let N be the set of all natural numbers, and put Ny=Nu{0}. For each neN,, we
denote by 7, the set of all trigonometric polynomials of degree at most n. For a given
feC,,, we define

E(Cam N=inf{| f—gllo: 9€T,},

which is called the best approximation of degree n to f with respect to 7.

The Weierstrass approximation theorem simply states that E,(C,,; f) converges
to zero as n tends to infinity for all fe C,,. It does not say how fast E,(C,,; f) tends
to zero. The following fundamental direct estimates due to Jackson (cf. [9]) assert that
E,(C,,; f) approaches zero much faster when f'is smooth: For all fe C,, and all ne N,

En(CZN; f) < Kw(CZﬂ:’ .f; l/n) ’
where K is a positive constant independent of f and »n, and
(Cap £, O)=sup{ll f(- =)= f()llo: |£]<6}  (620)

denotes the modulus of continuity of f. If f e C,, has a continuous r-th derivative f®
for some re N, then for all ne N

En(CZn; .f) SI(rn_rco(CWZn; f(r)’ l/n) ’

where K, is a positive constant depending only on r.
Similar estimates also hold for the Banach space L3, consisting of all 2z-periodic,
p-th power Lebesgue integrable functions f on R with the norm
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n 1/p
||f||,,=<i f foP dr) (1 <p<)
2n ) _,

using the integral modulus of continuity (see, e.g., [1], [4], [21]).

The purpose of this paper is to extend these results to arbitrary Banach spaces,
and in particular, homogeneous Banach spaces (cf. [10], [15], [19]) which include C,,,
and L5,, 1<p< oo, as particular cases. For this purpose, we consider the following
setting:

_ Let X be a complex Banach space with norm || - ||, and let B[X] denote the Banach
algebra of all bounded linear operators of X into itself with the usual operator norm
Il * | px;- Let Z denote the set of all integers, and let {P;} ;. be a sequence of projection
operators in B[ X] satisfying the following conditions:

(P-1) The projections P;, je Z, are mutually orthogonal, ie., P;P,=4;,P, for
all j, ne Z, where §;, denotes Kronecker’s symbol.

(P-2) {P;};ez is fundamental, i.e., the linear span of |J;.,P;(X) is dense in X.

(P-3) {Pj}czis total, ie., if fe X and P;(f)=0 for all je Z, then f=0.

For each neN,, let M, be the linear span of {P;(X); |j|<n}. Note that M, is a
closed linear subspace of X. For a given fe X, we define

E(X; N)=nf{|f—glx: geM,},
which is called the best approximation of degree n to f with respect to M,. Obviously,
EX; N)ZE(X; /)= ZE(X; )= 20,
and Condition (P-2) implies that

limE (X; /)=0 for every feX.

In this paper, we relate the rapidity with which E,(X; f) approaches zero to certain
smoothness properties of f, which can be described in terms of its moduli of continuity
of higher orders with respect to a strongly continuous group of multiplier operators on
X associated with Fourier series expansions corresponding to {P;}.

2. Moduli of continuity. Let {7,:7eR} be a uniformly bounded strongly
continuous group of operators in B[X], i.e., a family of operators in B[X] satisfying
the following conditions:

(T-1) A=sup{||T,llpx;: t€R} <00 .

(T-2) T,=I (I=identity operator).

(T-3) T,,,=T,T, foralls, teR.

(T-4) For each fe X, the mapping ¢+—T,(f) is strongly continuous on R, i.e.,
lim, | T,.(f) — T.(f)|x=0 for all ueR.

We define
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M G(f)=lim

t=0

TN-f
P

whenever the limit exists in the sense of strong convergence, and let D(G) denote the
set of all '€ X for which the strong limit in (1) exists. Evidently, D(G) is a linear subspace
of X and G is a linear operator of D(G) into X. This operator G is called the infinitesimal

generator of the group {7,}. For r=0, 1,2, ..., the operator G" is inductively defined
by the relations

G°=I, G'=G,
D(G)={f: feD(G™Y), G""'(f)eD(G)}
and
G'(N=GG"(f) (feD(G",r=1,2,3,..)).

Then for each re N, D(G") is a dense linear subspace of X and G” is a closed linear
operator with domain D(G") (cf. [3, Propositions 1.1.4 and 1.1.6]). For further extensive
list of properties of semigroups of operators on Banach spaces, we refer to [3], [6],
[7] and [8].

For each re N, and te R, we define

40=1, A:=(T,—1)'=i(—1)'—“<’>Tm, r=1,
m=0 m

which stands for the r-th iteration of 7,—I. Clearly, 4] belongs to B[X] and
[ZH
where
A,=min{(4+1),2°4} .
If re Ny, feX and 6 >0, then we define
w,(X; £, 0)=sup{[4i(Nlx: 118},

which is called the r-th modulus of continuity of f with respect to the family {7,}. This
quantity has the following properties:

LEMMA 1. LetreNand feX.

(2) o (X; f,6) <A fllx

for all 6=>0.
(b) /X f, ) is a non-decreasing function on [0, 00) and w,(X; f,0)=0.

© @4 X; f, 6) < A0 (X; f, 0)
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for all se Ny and all 6>0. In particular, we have
lim w/ (X; f,8)=0.
5-+0
(d wlX; £, E0) <A1+ &) w/(X; f, )
for all £,6>0.
() If0<6<é, then
w/(X; f, E)E' <2 Aw,(X; f, 6)/0" .
(f) If feD(G"), then
@, (X; f, 6) < 480 (X; G'(f), 6)
for all se N, and all 6 >0.

PrROOF. Statements (a) and (b) are obvious. (c) follows from the semigroup property
of 47 and (a). (d) is well-known if 4; is fefined by the translation group, and the present
case is proved similarly. Since

Ai(f)=f f . f Ty s+ +u Gty duy - -~ du,

0J 0 0

(cf. [3, Proposition 1.1.6]), we have

tt t
Af+s(f)=J f o J‘ Ty +uy+ - +uy (G (f))du,duy - - - du, ,

0J0 0

and so

147 (N x <Al 144G (x5
which gives (f). q.ed.

For re N and a>0, an element f € X is said to satisfy an r-th Lipschitz condition
of order a with constant M, M>0, or to belong to the class Lip,(X;a, M) if
o (X; f, 6)< Mo for all $>0. Also, for re N and a>0 the class Lip,(X; «) consists of
all feLip(X; a, M) for some constant M >0. Note that D(G") cLip,(X; r) for each
re N and that if a>r, then fe Lip(X; o) if and only if w(X; f, §)=0(6") as 6— +0.

3. Multiplier operators and convolution operators. For any f e X, we associate
its (formal) Fourier series expansion (with respect to {P;})

@ i~ 3 P

j==w

An operator Te B[X] is called a multiplier operator on X if there exists a sequence
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{7;}jez of complex numbers such that for every f€ X,

00

()~ Z Tij(f),

j=—o
and the following notation is used:

00

3) T~ Y 1,P

. it
j=-o

(cf. [5], [15], [16], [22]).

ReEMARK 1. The expansion (2) is a generalization of the concept of Fourier series
in a Banach space X with respect to a fundamental, total, biorthogonal system { f;, f¥} ;¢ 2.
Here {f;};cz and {f¥},.z are sequences of elements in X and X* (the dual space of X),
respectively such that the linear span of { f;: je Z} is dense in X (fundamental), f¥(f)=0
for all je Z implies f =0 (total), and f¥(f,)=9;, for all j, ne Z (biorthogonal). Then (2)
reads

f~ 3 1S,

j=-o

(cf. [2], [13], [20]).

" Let M[X] denote the set of all multiplier operators on X, which is a commutative
closed subalgebra of B[ X] containing the identity operator I. Let {T,: te R} be a family
of operators in M[X] satisfying Condition (T-1) and having the expansions

@) T~ 5 exp)P; (t€R),

j==w

where {4;};.z is a sequence of complex numbers. Then {T,: e R} becomes a strongly
continuous group of operators in B[X] and there holds

(N~ S BP(H  (feD@G)

j==w

(cf. [15, Proposition 2]). Let ¢: R— R be a continuous function. If k is a function in
L3, having the Fourier series expansion

ki~ S k*(Gexpliit)

j==w

with its Fourier coefficients
1 (" .. .
k%ﬁ=3;J k(exp(—ijtydt  (jeZ)

and if Te B[X], then we define the convolution operator (kxT)(¢; *) by
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(ks T)(<p;f)=2l—n j MOT,oTUNd (fEX),

which exists as a Bochner integral (cf. [15]). Clearly, (k+T)(¢; ) belongs to B[X] and
I(kxT)(@; )l psa < Bkl 1 Tl pyxs »
where
B=sup{|| Ty llpxy: 111<7} .

LEMMA 2. Let ke L), and let T be an operator in M[X] having the expansion (3).
Then (kxT)(@; *) belongs to M[X] and

a0

Q) (kxT)(@; )~ Y. ci(@; k)T;P(*),

j==w

where

o= j " kexpUp)dr (e 2).

PROOF. Let jeZ and fe X. Then we have

1 n
P(kxT)(@; f))= o f k(P (T oy(T(f)))dt

=%f k(D) exp(Lp() PAT( e

= j(q); k)Pj(T(.f)) = j(‘P; k)Tij(f) s
which implies (5). q.ed.

For each ne N,, we set
n(p)={keL},: c{p;k)=0 whenever |j|>n},
which is a closed linear subspace of L},. For ae R, we define ¢ (f)=at, te R, and put
(ks T)o(*)=(k*TX P53 *) 5 Tona=Tn(@,) -

Let re N, ke L}, and consider the following linear combination of the convolution
operators (k+l);, 1 <j<r,

L,=Y (—1)f+1<f>(k*1)j.
j=1 J

Then we have the following key estimate for the operator L, ,.
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LEMMA 3. LetreN,kelL},, k"(0)=1 and fe X. Then

|Le ()~ flix < Aw,(X; £, 8) ZO (J’ )5-fu(k;j) 6>0),

where

| B
lt(k;j)=——2 j [2]7] k(2) ldt
T -n

denotes the j-th absolute moment of k.
ProoOF. Since

(_1)r+1 n
L, (f)—f = k() A1(f)dt

and

145 I < 0,(X: f. | t|)sA(1 +%)'w,(x;f, 5)

by Lemma 1 (d), we have

r r . l n .
1L N = flix<Aw,X; £, 8) 3. ( .>5-1_j |21’ k(1) dt,
j=o\J 2n ) .
which implies the desired inequality. qg.ed.

4. Direct theorems. Recall that 7, is the set of all trigonometric polynomials
of degree at most ». In this section we suppose that

(6) T, ) n,m foreach neN,.
m=1
REMARK 2. Let {A]}JGZ = { - ij}jeZ'
@) T ,<(\mez~(0n,m for every ne Ny,
and so (6) always holds.
(b) If p=09,, me Z\ {0}, then (5) reduces to

(kxT),,~ i k*(jm)t;P

i
j=-—w

and in particular if ke 7, then

(kaT)p= D, k"(jm)t;P;,

[J] <In/im|]
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where [A] denotes the largest integer not exceeding 4>0.
Now we have the following general estimate:

THEOREM 1. Let reN. Then for all f € X and all ne N,,

E(X; f)<inf{| L ,(f)— flx: ke T4}
<06 £.9) 3 (7)o utkps 50 ke 7).
j=o\J
where
T rl={keT, k" (0)=1}.
ProoF. Let ke J, and fe X. Then by Condition (6) and Lemma 2 we have
kxDu(N)= . cf@m IPLS)
J=—n
for all me N, and so L, ,(f) belongs to M,. Therefore, we are done by Lemma 3. q.e.d.

Here we consider the generalized Jackson kernel given by

sin(nt/2)

2m
Jn,m(’)=cn,m< sin(t/2) ) (n, mEN) s

where the normalizing constant ¢, ,,>0 is taken in such a way that

T

Jun (0= f Jun(di=1
Y

(cf. [12]). Note that
n—1 ;
Jn,l(t)=Fn(t)= _=;_ (1 _%> exp(l]t)

is the Fejér kernel, and so J, ,(f)=c, ,n"Fy(f) is a non-negative, even trigonometric
polynomial of degree m(n—1). Also, we have

3 sin(nt/2) \*
AN — ( i ”>,
n(2n*+1) \ sin(¢/2)
which is the Jackson kernel (cf. [9], [14]).

LEMmA 4. We have

2m—1 2m-—1
2_1(2m—1)1/2"'<i> Sc,,,msz—ln<l> .

n
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PrOOF. By definition,

11 "< sin(nt/2) >2mdt

Com o\ sin(t/2)

The lemma follows from the well-known inequality

@) (2/m)x<sin x<x 0O<x<*/2).
g.e.d.
LEMMA 5. We have
P 4m nz 2m
I m(®) <min<| — | — 0<|t|<n).
ool n(Z) W oeiien
Proor. This follows from (7) and Lemma 4. q.ed.
LEMMA 6. We have
. . am P g+12m
W, m;])S2’+1<1> ( j+l > ni.
’ 4 Jj+1 \2m—j—1
PROOF.
N N 1 am 1
ﬂ(']n,m;.’)=— tJJn,m(t)dt‘:_ + =_(a+ﬁ) ’
T Jo T V] afn. T
say. By Lemma 5 we have
4am ajn 4m J
<(5) ), v (5) e ()
2 o 2 Jj+1 n
and
© 1 aV
B<n4m2-2mn1—2mf t1—2m dt=7t4m2_2m a~—2m+1<_) .
- an 2m—j—1 n
Choose a so that a=2((j+ 1)/(2m—j—1))}/?™. q.ed.

We are now in a position to establish the following Jackson-type result:
THEOREM 2. Let reN. Then for all fe X and all ne N,

® E(X; )<ACo X; f,1/n),

where C,=2"3(n/2)*"**.

ProoF. Let m=[(r+3)/2] and g=[n/m]+ 1. Then J, ,, belongs to 7 ,. Therefore,
by Theorem 1 we have
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E(X; /)< Ao/X; f, 1/n) ; (}r )n"u(J.,,m;j) :

By Lemma 6 we get our estimate. q.ed.
CoroLLARY 1. (a) If feLip,(X; a, M) for some re N, then for all ne N
E(X; f)<AMC,n"*.
(b) If feD(G") for some re N, then for all ne N
® E(X; SACIG(f)lxn™" .
(©) If fe2,D(G"), then for every 1>0

lim n*E,(X; f)=0.

n— oo

The following result gives an improvement of the estimate (9) in terms of the moduli
of continuity of higher orders.

THEOREM 3. Let re N and f € D(G"). Then for all ne N and all s€ N,,
E(X; )SA*C, n" "o (X; G"(f), 1/n).
ProOF. By Theorem 2 and Lemma 1 (f), we have

En(Xa f)SACr+sa)r+s(X; f, l/n)SAZCr+sn—rws(X; Gr(f): l/n) .
q.e.d.

As an immediate consequence of Theorem 3 we have the following.

COROLLARY 2. LetreNand feD(G"). If G'(f) belongs to Lip(X; a, M) for some
SEN, then for all ne N

E(X; f)<A*MC, ;n~ ",

For r=1 and s=1, 2 the above-mentioned results may be compared with our
previous results in [17] and [18], in which we employed the Fejér-Korovkin kernel
given by

kD)=, 3, A(e " (neNg 1eR),
where
A () =sin((j+ Dn/(n+2)) (j=0,1,2,...,n)
and

A=A O) + 2D+ Q)+ - + A7 m) ™!
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(cf. [11]). Note that k,e 7, and

k()=1+2 Y 6,(m)cosmt,

m=1

where
0, (m)=A4, Y, t(Di(m+j)  (m=1,2,...,n)
j=0
with

0,(1)=cos(n/(n+2)) .

Theorem 2 also yields other results on the best approximation as well as the
convergence of Fourier series (2):

THEOREM 4. Let {U,},cn, be a sequence of operators in B[X] satisfying U,(g)=g
for every ge M,, and let re N. Then for all fe X and all neN ,

10— fllx < Ul sy + DELX; f)
<AC(1 Ul pxy + Do (X5 £, 1/n) .
Proor. If g is an arbitrary element in M, then
10N = fllx< N0 =lx+ 19— flix
< Ullpx+ DIf —9llx,
which implies
1U.() = fllx <1 Unll iy + DELX; f)
<SAC(1U,llgxy + Do (X; £, 1/n)
by virtue of (8). q.ed.
CoroLLARY 3. Let {U,},.n, be as in Theorem 4, and let feX. If
im, , o, | Upll g En(X; f) =0, then

(10) lim | U,(f)— fllx=0.

n—o

In particular, if lim,_, || U, | pxy0(X; f, 1/n)=0 for some re N, then (10) holds.

Let {S,},cn, be the sequence of the n-th partial sum operators associated with the
Fourier series (2), that is,

S,= Y P; (neN,).
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Then by Theorem 4 we have the following Lebesgue-type estimate for the n-th partial
sum operators S,.
THEOREM 5. Let re N. Then for all fe X and all ne N,
18:(/) = fllx < ISl pxy + DELX; )
<AC(IS,llppxy + Do (X f, 1/n) .

COROLLARY 4. If lim,, ,||S, |l px;En(X; f)=0, then the Fourier series of f con-
verges to f, i.e.,

an jf— S P

j=-n

-0 as n—o.
X

In particular, if lim,_, ,||S, || px;@.(X; f, 1/n)=0 for some re N, then (11) holds.
Let o,, ne Ny, be the n-th Cesaro mean operators, that is,
0, =(So+ 81+ +8)/m+ D)= Y (1-|jl/n+1)P;,
j=-n
and let ¥, be the de la Vallée-Poussin operator
Vnz(Sn+Sn+1+.“+S2n—-1)/n=20’2n—1_6n—1 (neN).

Suppose that {0,},n, is uniformly bounded, i.e.,

C=sup{|lo,llpx): n€No} <0 .

Applying Theorem 4 to the case U,=V,, we derive the following de la Vallée-
Poussin-type estimate:

THEOREM 6. Let re N. Then for all fe X and all ne N,

Ep i(X; NSV = FlIx<BC+DELX; f)
<ABC+1)Co(X: f,1/n).

5. Applications to homogeneous Banach spaces. Here we restrict ourselves to the
case where X is a homogeneous Banach space, i.e.,

(H-1) X is continuously embedded in L},, i.e., there exists a constant M >0 such
that || f]; <M| f|x for all feX.

(H-2) X is a Banach space with norm |- || .

(H-3) The translation operator 7, defined by

TN()=/C—-0 (feX),

is isometric on X for each e R.
(H-4) For each f e X, the mapping ¢+—T,(f) is strongly continuous on R.
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Typical examples of homogeneous Banach spaces are C,, and L3,, 1<p< . For
other examples see [15] (cf. [10], [19]).
Now we define the sequence {P;};., of projection operators in B[X] by

PN =" Dexpi*)  (feX),

which satisfies Conditions (P-1), (P-2) and (P-3) just as in Section 1 (cf. [10], [15]).
Note that each T, has the expansion (4) with A;= —ij, and so for ¢ =¢,,, meZ, the
expansion (5) reduces to

ke~ 3 KAGm)s;P

. i
j=-wo

and

M,=7,c () =,
qeZ \{0}

for each ne N, (cf. Remark 2). Furthermore, for f € X we have

r _fr .
AN=f 4= _20(— 1y ’(j )f(' —jn (r=1).
i=
Consequently, in the above setting all the results obtained in the preceding sections
hold with 4= 1. In particular, Theorems 2 and 5 and Corollary 4 for r=1 and Corollary
1 (b) include Theorems 9.3.3.1 and 9.3.4.2 and Corollary 9.3.4.3 and Theorem 9.3.3.2
in [19], respectively.
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