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MINIMAL SURFACES IN R3 WITH DIHEDRAL SYMMETRY

WAYNE ROSSMAN
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Abstract. We construct new examples of immersed minimal surfaces with catenoid
ends and finite total curvature, of both genus zero and higher genus. In the genus zero
case, we classify all such surfaces with at most 2n +1 ends, and with symmetry group
the natural Z 2 extension of the dihedral group Dn.

The surfaces are constructed by proving existence of the conjugate surfaces. We
extend this method to cases where the conjugate surface of the fundamental piece is
noncompact and is not a graph over a convex plane domain.

1. Introduction. Recently, new examples of immersed minimal surfaces of finite
total curvature with catenoid ends have been found. Among these examples are: the
genus-zero Jorge-Meeks n-o\ά with symmetry group DnxZ2 [JoMe], the genus-one
w-oid with symmetry group Dn x Z 2 [BeRo], the genus-zero Platonoids with symmetry
groups isomorphic to the symmetry groups of the Platonic solids [Xu], [Kat], [UmYa],
and the higher genus Platonoids with Platonic symmetry groups [BeRo]. (See Figures
1 (l)-(4), 2(1).) By Dn x Z2, we mean the natural Z 2 extension into 0(3) of the dihedral
group Dncz50(3).

In this present work we find more examples with symmetry group Dn x Z 2 (see
Figures 2(2)-(4), 3(l)-(3)), of both genus zero and higher genus. Then, in the genus
zero case, we classify all such surfaces that have at most 2n +1 ends.

To prove existence of these surfaces we use the conjugate surface construction, by
an approach similar to that of [BeRo]. Generally speaking, the conjugate surface
construction seems to require a high degree of symmetry of the surface. In fact, all of
the known techniques for creating examples of minimal surfaces seem to benefit from
symmetry assumptions.

The examples we construct here are less symmetric than the examples mentioned
in the first paragraph, in the sense that their fundamental pieces have higher total
Gaussian curvature. It is therefore harder to prove existence of the conjugate surfaces
to these fundamental pieces. Hence the constructions we need are more delicate than
those in [BeRo]. For less symmetric surfaces, the conjugates may no longer lie over
convex plane domains, thus making Nitsche's theorem no longer applicable. In fact,
they may not even be graphs, or may not even be embedded.
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(1) Jorge-Meeks 3-oid (2) genus-one 3-oid

\

(3) genus-zero tetroid (4) genus-zero octoid

FIGURE 1.

Another consideration is the period problem. In general, integration of the
Weierstrass integral (described in the next section) about a nontrivial cycle produces a
period vector. Translation by this period vector in R3 will produce an isometry of the
surface. Thus, if the surface has finite total curvature, the period vectors must be the
zero vector for all cycles. Ensuring that this is the case is called "removing" or "killing"
the periods.

Often it is possible to remove one period with an intermediate-value-theorem
argument, but for surfaces with more than one period cycle this will not suffice. If there
are two periods to remove, it is usually quite difficult to theoretically argue that both
can be removed simultaneously. In our case we are able to make an argument to kill
two periods (the proof of Theorem 1.2).

Since it is well known [Os] that the Gauss map of a finite-total-curvature minimal
surface extends continuously to each end of the surface, we shall simply refer to the
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(1) genus-seven octoid (2) Jorge-Meeks n-oiά fence

with n = 3

(3) (4)

and 0 = 45 degrees and 0 = 45 degrees

FIGURE 2.

extended Gauss map at an end as the normal vector at that end.
The naming scheme for the surfaces discussed here is OA(B, C), where: A is the

genus of the surface, B is the number of ends of the surface, and C represents the
parameter for a one-parameter family of surfaces. C is either an angle flora weight w
of an end, and is omitted when there is no relevant one-parameter family. In each case
O is replaced by hopefully informative lettering. (^ represents "prismoid",
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(1) (2)

and and w«

(3) j/s/0(2n, Θ) ΐoΐn = 2 and 0 = 30 degrees

FIGURE 3.

represents "Jorge-Meeks surface", βMV represents "Jorge-Meeks surface with added

vertical ends", s$1V represents "surfaces with alternately weighted ends", and j/«a/

represents "surfaces with alternating angles between ends".)

THEOREM 1.1 (the prismoids). For each n>2, there exists a one-parameter family

of immersed minimal surfaces %(2n, θ\ O<0<π/2, satisfying the following:

(1) 0o(2n, θ) has genus zero.

(2) έ?0(2n, θ) has 2n catenoid ends, and the normal vector at each end makes an

angle θ with a horizontal plane.
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(3) The symmetry group of0>o(2n, θ) is DnxZ2.

THEOREM 1.2 (the higher genus prismoids). For each n>2, there exists a one-

parameter family of immersed minimal surfaces ^_ 1 (2n, θ), O<0<π/2, satisfying the

following:

(1) ^_i(2n, θ) has genus n-\.

(2) ^_ 1 (2n, θ) has 2n catenoid ends, and the normal vector at each end makes an

angle θ with a horizontal plane.

(3) The symmetry group o / ^ _ 1(2n, θ) is Dn x Z 2 .

THEOREM 1.3 (the genus-zero w-oids plus two ends). For each n>2, there exists

a positive constant c(ή) so that, for any w>c(ή), there exists an immersed minimal surface

fJί'V0(n + 2, w) satisfying the following conditions:

(1) fJίY^n + 2, w) has genus zero.

(2) /Jίi^n + 2, w) has n catenoid ends with weight one, and the normal vectors

at these ends all lie within a horizontal plane and are symmetrically placed.

(3) fJtY0(n + 2, w) has two catenoid ends of weight w with vertical normals point-

ing in opposite directions.

(4) The symmetry group of fJίi/

0(n + 2, w) is DnxZ2.

By "symmetrically placed" in the second condition above, we mean that, up to a

rotation of fJfi/

0(n + 2, w) if necessary, the n ends with weight one have normal vectors

whose stereographic projections to the complex plane are the n-th roots of unity. This

arrangement of ends is the same as for the Jorge-Meeks surface. The remaining two

ends of fJiyo(n + 2, w) have normal vectors whose stereographic projections are z = 0

and z=oo.

Roughly speaking, the weight of a catenoid end is a measure of the size of the

catenoid to which it is asymptotic. We give an exact definition in the next section. In

the previous theorem, the condition w>c(n) seems to be unnecessarily restrictive, but

is necessary for the proof we give here [Xu], [KUY], [Kat].

THEOREM 1.4 (the 2«-oids with alternating weights at the ends). For each n>2

there exists a one-parameter family of immersed minimal surfaces s/i^(2n, w), 0 < w < oo,

satisfying the following:

(1) j/'#o(2tt, w) has genus zero.

(2) j/#^(2n, w) has 2n catenoid ends. These ends have normal vectors all lying

within a common plane and symmetrically placed. (That is, up to a rotation of the surface

if necessary, these normal vectors stereographically project to the 2n-th roots of unity.)

(3) Half of the 2n ends have weight one, and the other n ends have weight w, and

they alternate between each other.

(4) The symmetry group ofs/Ψo(2n, w) is DnxZ2.

THEOREM 1.5 (the 2n-oids with alternating angles between the ends). For each
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n > 2 there exists a one-parameter family of immersed minimal surfaces <s/jtfo(2n, θ),

0<θ<π/n, satisfying the following:

(1) s/stfo(2n, θ) has genus zero.

(2) s/<s/0(2n, θ) has 2n catenoid ends. These ends all have weight one, and have

normal vectors all lying within a common plane.

(3) The angles between adjacent ends alternate between θ and (2π — nθ)/n.

(4) The symmetry group of srfstfr

0(2n, θ) is DnxZ2.

THEOREM 1.6 (classification). Any genus-zero catenoίd-ended immersed minimal

surface with symmetry group Dn x Z2 and at most 2n+\ ends is either the Jorge-Meeks

n-oid, %(2n,θ)for some θeR9 /JίΨ^n + 2, w) for some weR, £/Ψ~0(2n,w) for some

weR, or jtfs/0(2n, θ)for some θeR.

In this classification we do not need to place any restrictions on the ranges of θ

or w. The proof of this theorem given in Section 4 is independent of the values of θ

and w. (Note that fJΐi/

0(n + 29 w) with w = 0 and jtfψ"o(2n9w) with w = 0 are simply

the Jorge-Meeks «-oid.) We caution, however, that we have not proven existence of

^0(2n, θ) (resp. s^^0(2n, θ)) when θφ(O, π/2) (resp. θφ(O, π/ή)), and of / ^ ^ ( n + 2, w)

(resp. jtfΨoQn, w)) when w<c{n) (resp. w<ϋ).

The author wishes to thank: Jorgen Berglund, Frank Morgan, Shin Nayatani,

Kotaro Yamada for helpful conversations; Rob Kusner for suggesting the research and

for critical readings; Shin Kato, Masaaki Umehara for helpful conversations and for

correcting an error in a preliminary draft; and Seiki Nishikawa for his support.

2. Preliminaries.

2.1. The conjugate surface construction. Consider a simply-connected finite-

total-curvature immersed minimal surface M in R3 with a boundary consisting of a

finite number of piecewise smooth curves. As proven by Enneper and Weierstrass, there

exists a meromorphic function g and a holomorphic 1-form η defined on the unit disk

in the complex plane such that M has the parametrization

,p/(l-g2)η\

) = Re i(l+g2)η ,
J p o \ 2qη I

Φ(P) = RQ\ [ i(l+g2)η ) , /?e{zeC such that | z | < l } .

We refer to {g, η} as the Weierstrass data for M, and to Φ as the Weierstrass

representation of M. The map g is stereographic projection of the Gauss map from the

sphere to the complex plane. The conjugate surface M c o n j of M is the minimal surface

with the same parametrization, but with Weierstrass data {g, ίη}; that is, η is replaced

with iη in the parametrization above. We shall call this conjugate Weierstrass rep-

resentation Φconj(p). Note that the conjugate of the conjugate of M is given by the

Weierstrass data {g, —η}, giving us the original surface reflected through the origin.

Thus we have the maps zi—• Φ(z) and zι-> Φconj(z) from the unit disk to M and M c o n j ,
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respectively. This induces a map 0 = Φ c o n j oφ" 1 , the conjugate map, from M to Mc o n j.
The conjugate map φ is an isometry and preserves the Gauss map. It also has the
following property, which we shall use in an essential way: φ maps planar principal
curves in M to planar asymptotic curves in Mc o n j, and maps planar asymptotic curves
in M to planar principal curves in Mconj. From this we can conclude that φ maps
non-straight planar geodesies to straight lines, and vice versa. And since the Gauss map
is preserved by φ, it follows that if φ maps a non-straight planar geodesic α c M t o
a line segment /?cMconj, the line segment β must be perpendicular to the plane contain-
ing α.

In the cases we consider here, M is bounded by piecewise smooth boundary curves
that consist of a finite number of planar geodesies, and hence Mc o n j is bounded by
piecewise smooth boundary curves that consist of a finite number of line segments,
rays, and complete lines.

Recall from [Scnl] that an end of a complete minimal immersion in R3 is a regular
end if a neighborhood of this end is a graph / with bounded slope over some plane
(without loss of generality, the x^-plane), so that / has the following asymptotic
behavior:

clXl+c2x2_+ ( 1

χi+χi

If a = 0 we have a planar end, and if aΦO we have a catenoid end. In this paper we
shall use the terminology more loosely. We shall say that a minimal end is a catenoid
end (resp. planar end) if it satisfies the above asymptotic condition with aφ§ (resp.
a = 0), even if the minimal immersion has a nonempty boundary and there exist bound-
ary curves which extend to the end. With this more general definition in mind, we shall
say that a minimal surface has a helicoid end if the corresponding end of the con-
jugate surface is a catenoid end.

For more detailed information on the conjugate surface construction, see [Kal],
[Ka2], [Ka3], [Ka4], [BeRo].

2.2. Weights. Here we define a useful quantity (see [KKS]) that is a vector
associated to each Jordan curve in a minimal surface. We then describe some properties
of this weight vector that are pertinent to our situation.

DEFINITION 2.1. Let α l 5 . . . , ock be the boundary curves of a compact immersed
minimal surface MaR3. Let υ be the outward pointing unit conormal of M along α̂ .
Then the weight (also called flux) of the boundary curve αf is

w(oCi) = υds.
J CCi

It is a well-known application of Stoke's theorem that the weight vectors satisfy
a "balancing" condition
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Furthermore, the weight vector can be defined by the same integral for any closed curve
α on any complete oriented minimal surface M, up to a sign. The signature depends
on the choice of orientation of the conormal along α.

It readily follows that the weight vector w(α) associated to each closed curve α <= M
is an invariant of homology. That is to say, if α, jβ<=M are homologous closed curves
with the same orientation of the conormal, then w(α) = w(β) (cf. [HoMe], [KKS]).

Thus, by considering any closed loop about each end of a complete finite-total-
curvature immersed minimal surface, there is a well defined weight vector associated
to each end. It is easily seen that an embedded finite-total-curvature end is a catenoid
end if and only if it has a nonzero weight vector, and is a planar end if and only if its
weight vector is zero.

We say that a set of n vectors is in a balanced configuration if their sum is zero.
If a minimal surface M with n catenoid ends has these n vectors as the weight vectors
of its ends, we say that this configuration of vectors is realized by M. Clearly, if the
configuration is not balanced, it cannot be realized by any minimal surface.

Suppose a catenoid end E of a minimal surface M is asymptotic to a catenoid #,
and E has weight vector w(E). From the Weierstrass representation, we can see that <&
is, up to a rigid motion of /?3, a catenoid whose Weierstrass data is

, . , U .
z 4π

where the base Riemann manifold is C\{0}. It follows that \w(E)\ is proportional to
the "size" of E.

We can then see that | w(E) | is the length of the fundamental period vector of the
helicoid which is conjugate to (€. (If one also considers periods of the helicoid that do
not preserve orientation, then the length of the fundamental period vector is | w(E) |/2.)

2.3. Known results. Before proving the theorems in this paper, we give some
preliminary results that will be needed for the proofs. Here we state some results that
come from previous works, and in Subsection 2.4 we prove three lemmas that are
designed specifically for our purposes.

The following well-known lemma is the maximum principle for minimal surfaces.
It is a special case of a lemma in [Scnl], and is proven there. We apply this lemma
later in a variety of situations.

LEMMA 2.1. (Interior maximum principle.) Let Mx and M2 be minimal surfaces
in R3. Suppose p is an interior point of both Ml9 M2, and suppose ΓJ,(Λf1)=ΓJ,(Λf2). If
Mx lies to one side of M2 near p, then M1 = M2.

(Boundary point maximum principle.) Suppose Mu M2 have C2-boundaries C l 5
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C2, respectively, and suppose p is a point of both Cί9 C2. Furthermore, suppose the tangent

planes of both Mί9 M2 and Cl9 C2 agree at p: that is to say, suppose Tp(Mί)=Tp(M2),

Tp(C1)= Tp(C2). If, near p, M1 lies to one side of M2, then Mγ = M2.

The following theorems are special cases of a result by Meeks-Yau [MeYa], and
a result by Nitsche [Ni], [JeSe], [BeRo], [MeYa]. These theorems will be needed later
to show that the Plateau solutions for certain polygonal contours are embedded.

THEOREM 2.1. Let M be a ^-dimensional compact submanίfold of R3 so that dM

is piecewise smooth and consists of the smooth pieces {Hu ..., Ht}. Assume the following

two conditions:

(1) Each Hi is a compact subset of some minimal surface in R3.

(2) Whenever Ht and Hj meet along a curve, the angle between the two surfaces is

at most 180 degrees, with respect to the region M.

Let α be a Jordan curve in dM. Then there exists a branched minimal immersion

from a disk D into M with boundary cc, which is smooth in the interior of D and has

minimal area among all such maps. Furthermore, any branched minimal immersion of the

above type must be an embedding.

THEOREM 2.2. Let D be a bounded convex domain in a horizontal plane, so that its

boundary dD is piecewise smooth. Let dD = dD\{p1,..., pr}. Then there exists a solution

(as a graph over D) of the minimal surface equation in D taking on preassigned bounded

continuous data on the arcs ofdD. As a surface, this solution contains vertical line segments

over the jump discontinuities of the boundary data.

2.4. Lemmas. Consider a finite-topology minimal surface M (with boundary
dM) with an end that is a 180 degree arc of a helicoid end. Denote a neighborhood of
this end by E. By rotating if necessary, we may assume that the normal vector at this
end is vertical. Suppose that outside a compact ball in R3 the boundary dE is a pair
of straight (necessarily horizontal) rays rί9 r2. The conjugate surface 2sconj of E is a
surface with a 180 degree arc of a catenoid end that, outside a compact ball in R3, is
bounded by two infinite planar geodesies st, s2 asymptotic to catenaries. The curves sί9

s2 lie in parallel vertical planes. For this situation, we have the following lemma.

LEMMA 2.2. The two planar geodesies sί9 s2edEcon] lie in the same plane if and

only if the two conjugate straight boundary rays r1,r2e dE lie in a common vertical plane.

PROOF. Assume that rx and r2 lie in a common vertical plane. Let Rotx be the
180 degree rotation about the line containing rl9 and let Rot2 be the 180 degree rotation
about the line containing r2.

The surface Eu Rot2(£) is a smooth embedded end asymptotic to a 360 degree arc
of a helicoid end; and outside of a compact ball in R3, it is bounded by two parallel
rays rl9 Rot2(r1), which also lie in a common vertical plane.

We choose the orientation for £ΊιRot2(£) so that the normal vector at the end is
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(0,0, —1). Thus the Weierstrass data for this end can be given, in a punctured

neighborhood of the origin in C, as

The conformal transformation z\-^z/cί preserves the origin, so we may therefore assume

that cί = l.

Since Rot2°Rot1 is a vertical translation, the surface Eϋ Rot2(£) is a portion of a

helicoid end that is periodic in the x3 direction. Therefore, in the Weierstrass rep-

resentation with this data, integrating around a small circle {zeC such that | z | = ε}

about the origin results in a vertical period. From an examination of the first two

coordinates of the Weierstrass representation, we see that c3 must be 0.

Now consider £ c o n j and its reflection Ref(iiconj) through the plane containing s2.

We wish to conclude that Ref^) and sx are the same curve. The Weierstrass data for

this catenoid end is

Since this is a catenoid end with vertical normal vector, it satisfies the asymptotic

condition in Subsection 2.1, therefore it cannot have any periodicity in the JC3 direction.

Examining the third coordinate of the Weierstrass representation for this data shows

that c2 is purely imaginary. It follows that integrating around {zeCsuch that | z | =ε}

produces the zero vector. Thus Ref^J and sx are indeed the same curve. Hence sί and

s2 He in the same plane.

The above argument can be reversed to produce the converse conclusion. •

The following lemma will be needed later to extend compact embedded Plateau

solutions to stable noncompact embedded minimal surfaces. We use the term stable in

the following sense: A noncompact minimal surface M (possibly with boundary) is

stable if the second derivative of area is nonnegative at M for all smooth variations of

the surface with compact support (and fixing the boundary dM).

LEMMA 2.3. Let {Ci}^=1 be a sequence of compact Jordan contours in R3 so that

the following conditions hold:

(1) Each Cι is a piecewise smooth contour consisting of a finite number of line

segments.

(2) Each Cι bounds a least-area minimal disk M{.

(3) For any ball BR of radius R in R3, there exists NReZ so that Ct nBR = C} n BR

for any Uj>NR.

(4) There exists a fixed δ>0 and a compact ^-dimensional region MaB^^czR3 so

that MitxMΦφ and dist(Q, M)>δ for all i.

(5) {Ci}^Lί converges (in the topology of compact uniform convergence) to a
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noncompact contour C, and C is a piecewise smooth contour consisting of a finite number
of line segments, rays, and complete lines.

Then a subsequence of {Mi}^=1 converges to a nonempty stable minimal surface M
{possibly disconnected) with boundary C. Furthermore, if each M, is embedded, then M
is embedded.

PROOF. Schoen [Scn2] has proven that the Gaussian curvature on a stable minimal
surface Mc=/?3 is bounded by | K(p) \<c/r2, where r is the distance within M from the
point peM to the boundary dM, and c is a universal constant. Let Jf&C) be an
ε-neighborhood of C. From Schoen's estimate and the fact that Ci(\BR = CnBR for i
large enough, we see that the function \K\ is bounded by c/ε2 on Mt n (BR\jVε{C)) for
/ large enough. Thus by a well-known compactness theorem for surfaces with uniformly
bounded Gaussian curvature (see, for example, [An]), there exists a subsequence of
the sequence {Mi}^°=1 which converges in Bί/ε\jYE(C). The limit of this sequence is
nonempty if ε < δ, by the fourth assumption of the lemma. Also, by the compactness
theorem in [An], if each Mi is embedded, the limit surface is embedded.

By considering a sequence {SJ}™= i so that ε, \ 0 asy->oo, and by repeatedly applying
the above argument, we can create a nested sequence of convergent subsequences. The
first subsequence {MU}?L x converges in B1/εί\jVει(C); the second subsequence {M2i}Γ= 1
is a subsequence of {Mu}j°=i and converges in Bί/E2\J^ε2(C); the third subsequence
{M3i}?=ί is a subsequence of {M2i}™=i and converges in B1/E3\J^E3(C); and so on. By
a Cantor diagonalization argument, the subsequence {Mii}^sl of the sequence {Mi}^=1

converges in R3. The limit surface M is a surface with boundary C. Furthermore, M
must be stable, for if it were not, if follows that some Mu would not be least-area.

D

The following lemma will be used to prove the classification theorem.

LEMMA 2.4. Suppose that M is a genus-zero finite-total-curvature complete im-
mersed minimal surface. Suppose that φ is a nontrivial orientation-preserving isometry of
M. Then the set of points and ends ofM that are fixed by φ contains at most two elements.

PROOF. The surface M is conformally the sphere with a finite number of points
removed [Os]; that is, we have a bijective conformal map

The points {pu . . . , p j represent the ends of M, and Φ can be extended conformally to
the points {pl9... ,pt}. The map (Φ)~ίoφoφ extends to a bijective conformal map of
Cu {oo} to itself. If φ were to fix three or more points or ends of M, then the extension
of (Φ)~1oφoφ would have three fixed points, and thus would be the identity map.
Therefore φ would be the identity map, a contradiction. •

3. Previously known minimal surfaces. In this section, using results from the last
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section, we prove existence of some previously known minimal surfaces. We do this to

introduce the methods that will be later used to prove existence of the new examples,

and because nowhere in the literature have these old examples explicitly been proven

to exist via the conjugate surface construction.

The proofs in [BeRo] depend on the fact that the Jorge-Meeks «-oids and genus-

zero Platonoids exist. The known existence of these genus zero surfaces is used to prove

the existence of higher genus analogues [BeRo]. We prove here the existence of these

genus-zero examples.

THEOREM 3.1 (the Jorge-Meeks w-oids). For each n>2, there exists an immersed

minimal surface fJίo(n\ satisfying the following:

(1) fJio(ri) has genus zero.

(2) βJίo(ή) has n catenoίd ends with equal weight, and the normal vectors at these

ends all lie within a plane and are symmetrically placed.

(3) The symmetry group of fJίo(ή) is DnxZ2.

FIGURE 4. A fundamental piece of the Jorge-Meeks surface, boundary contour C
of the conjugate of the fundamental piece, and the compact boundary contours

ct.

PROOF. Let M be any immersed smooth minimal surface with a planar geodesic

α in its boundary, and let Ref(M) be the reflection of M across the plane contain-

ing α. It is well known, by analytic continuation properties of minimal surfaces, that

M u Ref(M) is a smooth surface along α, which is now an interior curve of the sur-

face [Ka2]. Therefore the surface fJίo(ri) exists if its fundamental piece exists, and

its fundamental piece would look as in Figure 4.

The fundamental piece exists if its conjugate surface exists. If the conjugate surface

exists, it would be a surface with an end which is a 90 degree arc of a helicoid end.

The boundary C of the conjugate surface, up to a homothety and rigid motion of R3,

consists of a line segment from px = (0, 0, 0) to p2 = (0, cos(π/«), sin(π/«)), a ray pointing

in the direction of the positive x1-axis with endpoint p2, and a ray pointing in the
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direction of the positive *2-axis with endpoint px. This follows from the properties of
the conjugate map, as described in Subsection 2.1. The points px and/?2 are the singular
points of the boundary C, and the angles that C forms at these two points are determined,
since the conjugate map preserves angles.

Thus we only need to prove existence of a minimal surface with a 90 degree arc
of a helicoid end and boundary C. We do this by finding a sequence {Ci}?Lί of compact
contours converging to C and satisfying all the conditions of Lemma 2.3 (see Figure 4).

We now describe the finite contour Cf. Consider the additional points p3 =
(/, cos(π/fl), sin(π/«)), /?4 = (ί, i, sin(π/«)), p5 = (i9 i, 0), p6 = (0, /, 0) in R3. Let /f be the line
segment connecting pt to pi+1 for /= 1,..., 5, and let l6 be the line segment connecting
p6 and px. Then Ct = /x u l2 u /3 u /4 u/5 u /6.

The fact that each Cf bounds an embedded least-area disk follows from either
Theorem 2.1 or Theorem 2.2. Thus, by Lemma 2.3, we have a minimal surface Mc o n j

which is bounded by C. By Theorem 2.2, each M{ is a connected graph over a convex
domain R{ in the x2.x3-plane, a n d ^ c ^ for j>i. It follows that M c o n j is a connected
graph, and is therefore conformally a disk.

We do not yet know that the end of Mc o n j is a 90 degree arc of a helicoid end. To
show this we first show that Mc o n j has finite total curvature. Choose an orientation on
Mconj, and consider the Gauss map G: Mconjh->52. Let P be the plane containing the
points pί9p2 and/>3. Let Im(Mconj) c= S2 be the image of M c o n j under G. Note that since
Mc o n j is a graph, the image Im(Mconj) must lie within a hemisphere. Let TV be the normal
vector to P, chosen so that G(p2)= +N. Note that M c o n j lies to one side of P and that
C makes a 90 degree angle at/?2. It follows that G cannot be branched atp2. Furthermore,
by comparing the plane P and the surface Mc o n j along C and applying the boundary
point maximum principle, we can conclude that the set G~1(N) n C consists only of the
point p2. Thus the branched covering map G: Mconj ι-> Im(Mconj) must be a finite covering
map, in fact it must have degree one. In particular, M c o n j has finite total curvature.

Since conjugation is an isometry, we know that the fundamental piece M also has
finite total curvature. We can extend M by reflection to a complete smooth finite-
total-curvature surface M c o m p. Since M is a graph over both the x1x3-plane and the
x2x3-plane (cf. [Ka3]), we can see that the ends of M c o m p are embedded. Thus they
must be of either catenoid or planar type [Scnl]. Suppose they are of planar type. Then
Mc o n j must have an end which is asymptotic to a plane. But the two boundary rays of
Mc o n j do not lie in a common plane, so the end of M c o n j cannot be asymptotic to a
plane. Hence the ends of M c o m p must be of catenoid type. This shows that the end of
Mc o n j is a 90 degree arc of a helicoid end.

By setting fJt0(
n) = Mcomp, the proof is completed. •

The same method will be used in all of the following proofs (except the proof of
Theorem 1.6). Therefore, in the following proofs, we shall only emphasize the differ-
ences from the previous proof. We ask the reader to refer to the proof of Theorem
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3.1 to find information that is left unstated in the following arguments. The proofs of
Theorems 1.1 and 1.2 also include additional period-killing arguments.

THEOREM 3.2 (the Platonoids). The following genus-zero minimal surfaces with
catenoid ends exist:

(1) (The genus-zero tetroid.) A surface with four ends and symmetry group
isomorphic to the symmetry group of a tetrahedron.

(2) (The geus-zero cuboid.) A surface with eight ends and symmetry group
isomorphic to the symmetry group of a cube.

(3) (The genus-zero octoid.) A surface with six ends and symmetry group isomorphic
to the symmetry group of an octahedron.

(4) (The genus-zero dodecoid.) A surface with twenty ends and symmetry group
isomorphic to the symmetry group of a dodecahedron.

(5) (The genus-zero icosoid.) A surface with twelve ends and symmetry group
isomorphic to the symmetry group of an icosahedron.

Pi

FIGURE 5. The boundary contour C of the conjugate of a fundamental piece of
the tetroid, and the compact boundary contours C{.

PROOF. We give here the proof only for the tetroid, as the other four cases are
similar.

The surface exists if its fundamental piece exists. The fundamental piece exists if
its conjugate surface exists; that is, if the noncompact contour C (see Figure 5) bounds
a minimal surface with a 60 degree arc of a helicoid end. Again, there exists a sequence

™=1 of compact contours which bound least-area embedded disks, and which

Pi

FIGURE 6. The conjugate of a fundamental piece for the prismoids, and the cor-
responding finite contours Ct .
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converge to C in the sense of Lemma 2.3. The curve Cf can be chosen to be a polygonal
contour with vertices ^=(0,0,0) , P2 = {-^Ψ,^JW, 1), P*=P2 + (i,il>β,Q), P* =
(Ϊ, i, 1), p5 = (U U 0), and /?6 = (0, i, 0), connected in the same way as for the proof of
Theorem 3.1. Note that Cf makes an angle of 60 degrees at pγ and an angle of 90
degrees at p2.

The result follows just as in the previous proof. •

4. Proofs of the main results.

PROOF (of Theorem 1.1, prismoids). Using either Theorem 2.1 or Theorem 2.2,
there exists a sequence of compact contours Ct bounding least-area embedded disks
Mh so that the compact contours converge to the noncompact boundary C of the
conjugate of a fundamental piece. All the conditions of Lemma 2.3 are satisfied. The
Jordan contour Cf can be chosen to consist of straight line segments from px =(0, 0, 0)
to p2 = (-ίcos(π/n), —/sin(π/«), 0), then to p3 = (U —tsin(π/n), 0), then to /?4 = (ΐ, — U
tsin(π/ή)cot(θ) — ίcot(θ)), then to p5 = ( — U ~U —icot(θ) — s)9 then to /?6 = ( —i, 0, — s),

then to pΊ = (0, 0, — s), and then back top x. Thus the noncompact contour C consists of
a line segment from pγ to p2, a line segment from px to pΊ, a ray with endpoint p2

pointing in the direction of the positive x^axis, and a ray with endpoint pη pointing
in the direction of the negative x raxis.

Therefore by Lemma 2.3 the conjugate surface Mc o n j of the potential fundamental
piece exists (see Figure 6). Mc o n j is conformally a disk, and has an end that is a 180
degree arc of a helicoid end.

We now know that the fundamental piece M exists, and has a 180 degree arc of
a catenoid end. The boundary of this fundamental piece dM consists of two finite planar
geodesies and two infinite planar geodesies. The two infinite planar geodesies lie in
parallel planes. If these two infinite planar geodesies lie in the same plane, then the
entire complete surface exists. Thus there is one period to kill. The numbers s, t > 0 can
be chosen so that the two infinite boundary rays of Mc o n j lie in a common plane that
is perpendicular to the end of Mconj, thus satisfying the conditions of Lemma 2.2 (up
to a rigid motion). We conclude by Lemma 2.2 that, for these values of s and /, M
extends to a complete finite-total-curvature minimal surface. Thus the period is zero,
and the proof is completed. •

REMARK (Jorge-Meeks «-oid fence). By the method of the first two paragraphs
in the previous proof, we can construct embedded minimal disks Ms, se(0, oo) with
the following properties: Ms is bounded by a straight line segment from (0, 0, 0) to
(0, — cos(π/«), -sin(π/«)), a straight line segment from (0, 0, 0) to ( — s, 0, 0), a ray with
the endpoint (0, — cos(π/n), — sin(π/«)) pointing in the direction of the negative x^axis,
and a ray with the endpoint ( —s, 0, 0) pointing in the direction of the negative x2~

a χi s

Furthermore, Ms has a single end that is 90 degree arc of a helicoid end, and Ms is a
graph over the region {(0, x2, x3)\ — sin(π/«)<x3<0, x2<cot(π/n)'x3}.
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Consider the conjugate surface to Ms and this conjugate surface's extension by
reflection across boundary planar geodesies to a complete minimal surface. We call the
resulting surface the Jorge-Meeks n-oiά fence (see Figure 2(2)). It is a surface with
translational symmetry in one direction. The portion of the surface which generates the
entire surface under the translation has n symmetrically placed ends, just as for the
Jorge-Meeks «-oid. The complete surface looks like an infinite collection of ft-oids
regularly spaced along a single direction, with each pair of adjacent "«-oids" connected
by a handle.

There is a one-parameter family of Jorge-Meeks n-oiά fences, one surface for each
value of s>0. In the case « = 2we have the catenoid fence (cf. [Ka3]). •

FIGURE 7. The conjugate of a fundamental piece for the higher genus prismoids.

PROOF (of Theorem 1.2, higher genus prismoids). Again the conjugate surface of
the fundamental piece exists by Theorem 2.1 or Theorem 2.2, followed by Lemma 2.3.
The finite polygonal contours Ci can be chosen to consist of straight line segments from
p1 = (-s, 0, 0) to p2 = (09 0, 0), then to /?3 = (0, 0, -t), then to p4 = (i, 0, - 0 , then to
P5 = (U — U — t — ίcot(0)), then to p6 = ( — i, — U — icot(θ) + usin(π/n)cot(θ)), then to
PJ = ( — U — Msin(π/«), 0), then to p8 = (u cos(π/«) — s, — wsin(π/«), 0), and then back to
pί. Thus the limit contour C consists of a line segment from px to p8, a line segment
from pγ to /?2, a line segment from p2 to p3, a ray with endpoint p8 pointing in the
direction of the negative q-axis, and a ray with endpoint p3 pointing in the direction
of the positive x^axis. Furthermore, the limit surface Mc o n j bounded by C has a normal
vector at its end which makes an angle of θ with a horizontal plane (see Figure 7). The
conjugate surface Mc o n j is conformally a disk, and has an end that is a 180 degree arc
of a helicoid end.

Here we have two periods to kill. Let oct be the unbounded boundary curve on the
fundamental piece M that corresponds (via the conjugate map) to the boundary ray of
Mc o n j with endpoint p8. Let α2 be the unbounded boundary curve of M corresponding
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to the boundary ray of Mc o n j with endpoint/?3. Let α3 be the bounded boundary curve
of M corresponding to the boundary line segment of Mc o n j with endpoints px and p2.
To kill both periods we must show there exist choices of s, ί, w>0 so that α1? α2, and
α3 all lie within a common plane.

Values can be chosen for u, t so that the two boundary rays of Mc o n j lie in a
common plane that is perpendicular to the end of Mc o n j. Then, by Lemma 2.2, we
conclude that a1 and α2 lie in a common plane P. Note that these values of w, t are
independent of the value of s.

We now show that for some value of s > 0, the curve α3 also lies in P. The surface
Mc o n j varies smoothly in se [0, oo), and is a graph over a fixed region in the x2

JC3"P^ane

for all se[0, oo). As s->0, Mc o n j converges smoothly to the conjugate surface of a
fundamental piece of %{2n, θ). We shall refer to this fundamental piece of %(2n, θ) as
FM.

S&0 s»0 period killed for some s>0

FIGURE 8. The conjugate images of the line segment from p2 to p3 for various

values of s, in the proof of Theorem 1.2.

To describe the behavior of Mconi as s -• oo, we first describe a portion of a helicoid.
Let H be a portion of a helicoid with a single end that traverses 180 degrees, and has
boundary consisting of the line segment from p2 to p3, the ray with endpoint p3 point-
ing the direction of the positive x^axis, and the ray with endpoint p2 pointing the
direction of the negative x^axis. Choose H so that it is a nonempty graph over
{(xl5 x2, 0)eR3\x2 <0}, thus H is unique. As s-» oo, %{2n, θ) converges smoothly to a
surface which looks similar to H, except that its end is "slanted" by the angle θ, hence
we call this limit surface SH. Note that dSH = dH.

By the maximum principle, H and SH are disjoint in their interiors, and H lies
above SH. (This can be argued rigorously by a "sliding" argument, see [BeRo].) Thus,
as one travels downward along the boundary line from p2 to p3, the normal vector of
H must be turning ahead of the normal vector of SH. The same is then true of the
corresponding boundary curves of the conjugate surfaces (with respect to arc length
along these two planar geodesies). Since the catenoid is the conjugate surface of the
helicoid, the conjugate image of the boundary line from p2 to p3 with respect to H is
a half-circle. The conjugate image of the boundary line from p2 to p3 with respect to
SH is not a half-circle, but it has the same length as the half-circle, since conjugation
is an isometry.

It follows that for large values of s, the curve α3 lies strictly to one particular side
of P. By an examination of the placement of FM in R3, we see that for values of s
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close to zero, the curve α3 lies strictly to the other side of P. Thus, by the intermediate-
value-theorem, there exists some value of s so that a3czP (see Figure 8). •

FIGURE 9. The construction of Mt in the proof of the genus-zero H-oids plus two

ends.

PROOF (of Theorem 1.3, genus-zero «-oids plus two ends). For this proof there
is no period problem, but since the conjugate of the fundamental piece is not a graph
over a convex plane domain, Nitsche's theorem cannot be applied to show existence of
the conjugate piece. Thus Theorem 2.1 must be used for this, followed by Lemma 2.3.

We describe now the construction of compact 3-manifolds Mf c R3 and the finite
polygonal contours C^SM^ We construct Mt so that it satisfies the hypotheses of
Theorem 2.1, and thus Q bounds a least-area embedded disk Mf. The result follows as
in the previous proofs.

Assume that w>n/2, thus w/2n>\/4. Later we shall need to assume that
w > c(n) > n/2, for some constant c(ή) depending only on n.

The skeletal structure of M{ is given in Figure 9. Let pγ = (0, 0, 0), p2 = (0, 0, 1/4),
p 3 = (<U 1/4), p 4 = (-ί+l/4,ί , 1/4), P 5 = (-ΐ+l/4,i,0), />6 = (-i+l/4,0,0), p7 = (l/4,
0,0), p 8 = (w/2n,0,0), p9 = (w/2n, - i , 1/4), Pl0 = (w/2n, -ij\ p n = ( l / 4 , - U ) , Pi2=(0,
— i, 0, Pi3 = (°, -^1/4), /714 = (w/2π,0, Ϊ), /?15=(l/4,0, 0, /?16 = (0,-i, itan(π/«)), and

/?! 7 = (w/2n, - U i tan(π/n)).
Consider the polygonal contour defined by connecting the following vertices by

line segments: p2 to /?7, pΊ to p6 (through pγ), p6 to /?5, p5 to /?4, /?4 to /?3, and /?3 back
to p2. By Theorem 2.1 or Theorem 2.2, this contour bounds a minimal graph M'. Let
Rot(M') be the surface that results from rotating M' by 180 degrees about the line
through p2 and pΊ. Then M'uRot(M') is a smooth disk, which we shall call Mn. Let
Cn be the boundary of Mn. Thus Cn is the polygonal contour defined by connecting
the following vertices by line segments: p3 to /?4, /?4 to /?5, p5 to /?6, /?6 to pΊ (through
PiX Pi to pls, pί5 to /?11? p n to /?12, /?12 to /?13 (through p16), and ^ 1 3 back to p3

(through p2).
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Consider the polygonal contour defined by connecting the following vertices: p2

to/?!,/?! to p6, p6 to p5, p5 to /?4, /?4 to p3, andp3 back to /?2. Again by either Theorem
2.1 or Theorem 2.2, this contour bounds a minimal graph M'. Let Rot(M') be the
surface that results from rotating M' by 180 degrees about the line through p2 and px.
Thus we have the smooth disk M'uRot(M'). Let P be the plane {x1=w/2n}. Then
(M'u Rot(M'))\P has two components. Consider the component in the region
{*! < w/2n}, and name it M i 2. Let Ci2 be the boundary of Mi2. Thus C ί2 is the polygonal
contour defined by connecting p3 to p4, /?4 to p5, p5 to /?6, p6 to /?8 (through /?! and
pΊ),p$ to p9,p9 to/713, and/?x3 back to p3 (through p2). All these connections are made
by straight lines, except for the connection from/?8 to/?9, which is made by the nonstraight
planar curve α = ?nRot(M').

For our construction to be valid, we need that the line segment from/?8 to p1Ί lies
above α, with respect to the positive x3 direction. Note that the surface M' u Rot(M')
in the previous paragraph converges to a portion of a helicoid as i -• oo. Thus the function
dx3/dx1 along α approaches zero as w and / become large. It follows that there exists
a positive number c(n) so that if w > c(ή), then the line segment from/?8 to/?17 lies above α.

Let Mi3 be the plane rectangle with vertices /?7, /?8, /?14, and p15. Let M ί 4 be the
plane rectangle with vertices p9, /?10, p12, and /?13. Let Mi5 be the plane rectangle with
vertices /?10, />11? p14r, and /?15. Let M ί 6 be the plane region in P bounded by the line
segment from p8 to /?14, the line segment from /?14 to p10, the line segment from p10 to
ρ9, and the curve α from /?8 to p9.

By the maximum principle, the surfaces Mtp j= 1,..., 6, are pairwise disjoint in
their interiors. Their union forms the boundary of a compact 3-manifold Mi9 and it is
clear that Mt satisfies all the conditions of Theorem 2.1. Let Ct be the polygonal Jordan
curve connecting the following vertices by line segments: p3 to p4, /?4 to /?5, p5 to p6,
p6 to p8 (through px and p7), p8 to /?17, p1Ί to p 1 6 , p16 to p 1 3 , and /?13 back to p3

(through p2). Since Q is a curve in the boundary of Mh we have by Theorem 2.1 that
Ct bounds a least-area embedded disk, as desired. •

PROOF (of Theorem 1.4, 2«-oids with alternating weights). If w< 1, we can apply
a homothety with dilation factor l/w to get an equivalent surface, but with w> 1. So
we may assume w > 1. And since the case w = 1 is the known Jorge-Meeks 2«-oid, we
may further assume w > 1.

There is no period problem here, but Nitsche's theorem again does not apply, so
Theorem 2.1 followed by Lemma 2.3 is necessary. We describe now the construction
of compact 3-manifolds Mfc:/?3 and the finite polygonal contours C^dM^ We show
that Mt satisfies the hypotheses of Theorem 2.1, and thus Q bounds a least-area
embedded disk Mh and the result follows as before.

The skeletal structure of Mf is given in Figure 10. Let p2 = (0,0,0), p3 = ( — i,
0,0), /?4 = (-U,0), />5 = ( - U V 4 ) , />6 = (-U,w/4), />7 = (0,i,w/4), />12 = (0, i, 1/4),
pί6 = (U 0, 0), /?9 = (0, — cot(π/2n)/4, 1/4), /?i=/?9-h^(0, cos(π/n), — sin(π/n)) with s =
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Pl6

FIGURE 10. The construction of M, in the proof of the 2rc-oids with alternating
weights.

(4sin(π/2n)cos(π/2n))~\ p8=p9 + (l -w)(4sin(π/n))"1(0, cos(π/n), -sin(π/n)), pX3 =

p9 + (/ + (l/4)cos(π/2n))(0, cos(π/«), -sin(π/w)), p14=p13 + (U 0, 0), p15 =p164-ί(0,

cos(π//i), -sin(π//i)), pί0=p9 + ( — U 0, 0), and pίl=ps + ( — i,Q90).

Let Cn be the polygonal contour defined by connecting the following vertices by

line segments: p8 to p9, p9 to p10, p10 to p1ί9 and /?! ί back to /?8. Let Ci2 be the contour

connecting p3 to /?4, /?4 to p6 (through p5), p6 to plί9 pxl to /?10, and p10 back to /?3.

Let Ci3 be the contour connecting p9 to /?12, /?12 to pΊ, pΊ to /?8, and p8 back to p 9 . Let

Ci4 be the contour connecting p12 to /?5, /?5 to p6, p6 to /?7, and pΊ back to /?12 Let Ci5

be the contour connecting pη to /?6, /?6 to pll9 pxl to /?8, and p8 back to /?7. These five

contours all bound plane regions, which we shall call Mil9 Mi2, Mi3, M i 4 , and Mi5,

respectively.

Let Ci6 be the contour connecting pt to p2, p2 to /?3, /?3 to p10, p10 to /79, and p9

back to /?!. Let Ci7 be the contour connecting pt to /72? ^2 t o ^lβ^ ^16 t o ^ I S * Pis t o

pί4,pί4 to/?!3, and/71 3 back t o / ^ . By Theorem 2.1 or Theorem 2.2, these two contours

bound minimal graphs Mi6, Mπ, respectively.

Consider the contour connectingp2 t o p 3 , p 3 to p4,p4 top 5 ,p 5 topί2,p12 top9, and

p9 back to p2. By Theorem 2.1 or Theorem 2.2, this contour bounds a minimal graph

M'. We rotate M' by 180 degrees about the line through p2 and/?9 to obtain the surface

Rot(M'). Then Mi8 = M' u Rot(M') is a smooth embedded minimal disk. Let Ci8 be the

contour connecting p3 to p4, p4 to p5, p5 to /?12, /?12 to /?9, /?9 to p13 (through px), p13

to p14, p14 to /?15, p15 to ^ 1 6 , and /?16 back to p3 (through p2). Then δMi8 = Ci8.

The surfaces Mipj= l y . . . , 8 are pairwise disjoint in their interiors, by the maximum

principle. Therefore, the union of these eight surfaces forms the boundary of a region

Mi in R3. Let Cx be the contour connecting p3 to p4, p4 to p6 (through /?5), p6 to p 7 ,
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pη to ps,ps top13 (through p9 andp x \p 1 3 to/?14,/?14 to pls,pls to p16, and/?16 back
to p3 (through p2). We wish to show that Mt satisfies the conditions of Theorem 2.1,
thus Ct would bound an embedded least-area disk Mv Mt clearly satisfies the conditions
of Theorem 2.1, except possibly along the line segment between pί and/?2, and possibly
along the line segment between p2 and p3.

Let 12 be the line through p2 and p3. We now start to rotate Mi6 about l2 (in the
clockwise direction with respect to the vector from/?2 top3). By the maximum principle,
the first moment of contact between Mi8 and the interior of Mi6 cannot occur as a
tangential contact along l2 and cannot occur at a point in the interior of Mi8. Thus it
must occur as a nontangential contact along the line segment from p12 to p9, which
occurs only after the rotation has traversed an arc of 180 degrees. This implies that the
angles between Mi6 and Mi8 along l2 must be at most 180 degrees with respect to the
interior of Mf. Thus the conditions of Theorem 2.1 are satisfied along the line segment
from p2 to p3.

Let /x be the line through px and p2. Note that lγ is perpendicular to the line
through p2 andp9. Here we start to rotate Mi6 about lx (in the clockwise direction with
respect to the vector from pγ to p2). By arguing just as in the previous paragraph, we
conclude that the angles between Mi6 and MiΊ along /t are at most 180 degrees with
respect to the interior of Mf. Thus the conditions of Theorem 2.1 are satisfied along
the line segment from px to p2. •

PROOF (of Theorem 1.5, the 2«-oids with alternating angles between the ends).
The proof of Theorem 1.5 is identical to the proof of Theorem 1.1, once we replace
the points pί9... ,/?7 in the proof of Theorem 1.1 by the points pγ =(0, 0, 0), p2 =
(0, —tcos(π/ή), —tsin(π/n)), p3 = (i, —tcos(π/n), —tsin(π/n)), /?4 = (/, — /, (t cos(π/«)
-0tan(fl/2)-/sin(π//i)), p5 = (-/,-/, (j-/)tan(β/2)), p6 = (-i, -s, 0), and pΊ = (0,
s,0). D

PROOF (of Theorem 1.6, classification). Let M be any complete genus-zero im-
mersed catenoid-ended minimal surface with symmetry group DnxZ2 and at most
2n+l ends. We can place M in R3 so that its planes of reflectional symmetry are
i>0 = {*3=0}, Pi = {xi=cot((iπ/n)x2)} for ι = l , . . . , n - 1 , and / ^ { x ^ O } . Thus the
x3-axis is the axis for the rotational symmetry of order n of the surface M.

Choose an orientation on M. Consider an end E of M with limiting normal vector
ΰ. Let /(£) be the central axis line of the end E. Let Orb(£) be the orbit of E under the
symmetry group Dn x Z2 of M.

If E is not invariant under any element of the symmetry group, then Orb(£) would
consist of An distinct ends, which contradicts our hypothesis. So E must be invariant
under reflection through Pt for some L It follows that ϋ e Pt for some /. Clearly E cannot
be invariant under reflection through all Pi9 so Orb(£) must contain at least two ends.
In fact, the following list represents all possibilities for Orb(£):

(1) If the limiting normal vector ΰ of E is neither vertical nor horizontal, then
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Orb(£) consists of 2π ends.
(2) If veP0 but vφPi for all i> 1, then Orb(£) consists of In ends.
(3) If veP0 and vePt for some i> 1 but the central axis l(E)φPi for that value

of i> 1, then Orb(£) consists of 2n ends.
(4) If ΰeP0 and tJePj for some ί>l and l(E)ePι for that value of Ϊ > 1 , then

Orb(£) consists of n ends.
(5) If ΰ is vertical and l(E) is not the x3-axis, then Orb(£) consists of 2n ends.
(6) If ΰ is vertical and l(E) is the x3-axis, then Orb(E) consists of 2 ends.
Claim 1: E is the unique end of M with normal vector v and axis l(E).
Suppose that E' is another end of M with normal vector v, and that l(E) = l(E').

In all six cases above, the only end contained in Orb(£) that has both the same normal
vector and same central axis as £ is £ itself. Therefore, E' φ Orb(£).

If Orb(£) contains In ends, then Orb(£) u Orb(F) contains at least 2n + 2 ends, a
contradiction. So in cases 1, 2, 3, and 5 above, E' cannot exist.

Consider case 6. In this case Orb(£) u E' consists of three ends all with central axis
the jc3-axis. Thus all three of these ends are invariant by a nontrivial rotation about
the jc3-axis. This is impossible by Lemma 2.4, so E' cannot exist.

Consider case 4. In this case we may assume (by rotating in R3 about the x3-axis
if necessary) that l(E) is the Λ -̂axis and ΰ=(l, 0, 0). Let R be rotation by 180 degrees
about the xr-axis. Note that Orb(£) u Orb(Ef) contains all the ends of M. By Osserman's
inequality, since we have a genus zero minimal surface with In embedded ends, we see
that the Gauss map is a branched covering from M to the unit sphere with order In—I.
Let S be the set of In— 1 points on M with Gauss map (1, 0, 0) (including ends, and
counting with multiplicity). S is invariant under R as a set, and there are an odd number
of points in S. Since RoR is the identity map, it follows that there must be an odd
number of fixed points of R contained in S. The ends E and E' represent two such
points, so there must be a third. But R cannot have three fixed points, by Lemma 2.4.
Thus E cannot exist.

This proves Claim 1.
Claim 2: The ends of M can have at most one orbit consisting of exactly two ends.
Suppose {Eu E2] is one orbit consisting of two ends, and suppose {E3, E4} is

another orbit consisting of two ends. Then Eu E2, E3, and E4 all have central axis the
x3-axis. Thus two of these ends must have the same normal vector, but that contradicts
Claim 1.

This proves Claim 2.
So the only possibilities are the following:
(1) The ends of M have a single orbit consisting of n ends. Then M is equivalent

to /Jto(n).
(2) The ends of M have two orbits, each consisting of n ends. The M is equivalent

to s^iV^n, w) with vv^O, 1.
(3) The ends of M have two orbits, one consisting of two ends, and one consisting
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of n ends. Then M is equivalent to /Jd^n + l, w).
(4) The ends of M have a single orbit consisting of In ends. Then M is equivalent

to 0>o(2n, β) or jΛtfo(2n, 0).
M cannot have only two ends, for in this case M would be a catenoid (cf. [Scnl]),

whose symmetry group is not DnxZ2. This completes the proof. •

5. Open problems. One can ask whether the following immersed minimal sur-
faces with catenoid ends and symmetry group Dn x Z 2 exist:

(1) The prismoids %{2n, θ) and ^_1(2n, θ) plus two vertical ends (analogous to
the way /Jti^n + l, w) is the Jorge-Meeks surface plus two vertical ends).

(2) The surface J^ΨQ(2Π, W) plus two vertical ends.
(3) A 3n-oid with weight one at every third end as one travels around the circle

of ends, and weight w at the other In ends, we(0, oo).
(4) The example mentioned in the previous item, plus two vertical ends (assuming

the surface is placed so that the first 3n ends have horizontal normal vectors).
(5) Prismoids with k layers of catenoid ends, still with symmetry group Dn x Z 2,

both genus zero and higher genus. If k is odd, this surface would have n ends with
horizontal normal vectors, otherwise it would have no ends with horizontal normal
vectors. In either case, it would have n ends with normal vectors pointing upward
making an angle θ± with a horizontal plane, and n ends with normal vectors pointing
downward making an angle θ1 with a horizontal plane, 0<θ1<π/2. The same would
then be true for some angle θ2 with θ1<θ2<π/2. And again this holds for some angle
θ3 with θ2<θ3<π/2. This continues up to the angle θ[k/2], where [/c/2] is the greatest
integer less than or equal to /c/2.

(6) Prismoids with k layers of catenoid ends plus two vertical ends.
Solving some of the conjectures above might lead to a generalization of Theorem

1.6 to higher numbers of ends.
A broader open question is the following:

CONJECTURE 5.1 (Kusner's conjecture). Any balanced configuration {vi9...,vn}

of n vectors', such that for all i and j , vtΦr Vjfor any positive real r, can be realized as

a genus-zero immersed minimal surface with n catenoid ends.

Kapouleas [Kap] has some corresponding results for the nonminimal constant-
mean-curvature case.

Shin Kato, Masaaki Umehara, and Kotaro Yamada have some results in the
direction of these open questions [KUY], [Kat], [UmYa].
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