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Abstract. We give a new diffeotopy theorem on the standard sphere, and an
estimate for some geometric invariants concerning positively curved Riemannian
manifold. By using these results we prove that a complete, simply connected and
0.654-pinched Riemannian manifold is diffeomorphic to the standard sphere.

Introduction. Let (M", g) be a complete, simply connected and J-pinched Rie-
mannian z#-manifold. In this paper we prove that if §=0.654, then M is diffeomorphic
to the standard sphere S™.

For a §(>1/4)-pinched Riemannian n-manifold, an orientation preserving dif-
feomorphism f of S"~! is naturally defined, and is used in the proof of the dif-
ferentiable sphere theorem [3, 4]. In fact, if there exists a diffeotopy from f to an
isometry f, of S"~!, then M is diffeomorphic to the standard sphere. In order to find
the minimum of such §’s it is important to construct a diffeotopy in as many different
ways as possible. In this paper, we propose a new construction of a diffeotopy. The
statement of our diffeotopy theorem and the construction of diffeotopy in it are fairly
simple in comparison with these in [4]. Furthermore, by giving new estimates concerning
f and its differential df we prove the differentiable sphere theorem above. In this paper
we use the same notation as in [4, §2-§6].

The author would like to thank the referees for careful reading of the previous
versions of this paper and for valuable suggestions for improvements.

1. (> 1/4)-pinched Riemannian manifolds. Let (M", g) be a complete, simply
connected and &(> 1/4)-pinched Riemannian n-manifold, i.e., the sectional curvature
K of M satisfies 6 <K<1 everywhere. We denote by D the Levi-Civita connection
induced by the Riemannian metric g. First, we review the definitions of the
diffeomorphism f, mentioned in the Introduction, and the differentiable map
a: S""'sx>a,eS0(n, R), which is regarded as an approximation of df, and related
results in (A) and (B) below (cf. [4]). Let S"~ ! be the standard sphere with sectional
curvature 1, i.e., S""'=S8""1(1). We denote by d(x, y) the distance between x and y
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16 Y. SUYAMA

on S"~ 1. Secondly, we estimate d((df),X/(df). X |, o, X) and de, .V, «_ V) for any xe S
and any unit vectors Xe T (S" ') and Ve R" in (C) and (D), which are necessary for
the diffeotopy theorem.

(A) Diffeomorphism f: S""!—S""!. The manifold M is homeomorphic to the
standard sphere by the sphere theorem. In particular, we use the following properties
of M. Let ¢, and g, be a pair of points with maximal distance d,/{(q,, 4,) on M, where
d,s denotes the distance function induced by g. We put

My={peM|dy(p,qo)<du(p.q))} »
M1={PEM| du(p. 40)=du( P, 1)} »
C={‘IEM| Anlq, 90) = dm(q, ‘11)} .

Let S, and S, denote the unit spheres in the tangent spaces T, (M) and T,,(M) of points
qo and q,, respectively. The exponential maps Exp, and Exp, with centers at ¢, and
q,, respectively, are bijective maps if restricted to an open ball of radius n. Then we
can define a diffeomorphism f: S,—S; by requiring the geodesics Expq(tx) and
Exp,[tf(x)] to coincide at some ¢=1#(x) satisfying n/2$t(x)5n/2ﬁ . We put
g(x)=Expo[t(x)x]. Note that g(x)e C for xe S,.

We indentify T, (M) with T, (M) by fixing their orthonormal bases. Then we can
regard f as a diffeomarphism of S"~!. We fix a minimal geodesic y =y(t) joining g, = y(0)
to g, =7[d(qo, q1)]. Let {X;, X,,..., X,} be an orthonormal basis of T, (M) with
X,=7(0). The orthonormal basis {X, ..., X,} of T, (M) is now defined by the parallel
translation with respect to D of {X,, ..., X,_,, —X,} (c T, (M)) along y. Then we have
the following Proposition. We denote S"~! simply by S from now on.

ProposITION 1 (cf. [3] and [4]). Let f be a diffeomorphism of S as above. We
assume that there exists a differentiable map F: [0, 1] x S—S satisfying the following
conditions:

() FO, )=/f.

(2) F,=F(, -) is an isometry of S.

(3) F,=F(t, *): S-S is a diffeomorphism for each te[0, 1].

Then M is diffeomorphic to the standard sphere S".

We call F in Proposition 1 a diffeotopy constructed from f.

REMARK 1. We can replace the assumption of Proposition 1 by the following:
There exists a differentiable map F: [0, 1]x S—R"—{0} satisfying the following
conditions (1), (2) and (3).

) Fo=7f.

(2) F, is the restriction to S of a linear automorphism of R".

(3) M- F,: S-S is a diffeomorphism for each 1e[0, 1], where IT: R"—{0}—-S is
the natural projection.
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This fact was pointed out in the discussion with Takashi Sakai, Tetsuya Ozawa
and Atsushi Katsuda, and turned out to be useful for our construction of the
diffeotopy.

(B) The properties of /. Let % (i=0, 1) be a geodesic defined by t%(r) = Exp;(tx)
for xe S. Let Ve T,,,(C). We define tangent vectors V"% and V' at g(x) for Ve T,(,(C) by
{ VO=V—g[V, tAt(x)]i2At(x),
= V_g[V’ f}(x)(t(x))]f}(x)(t(x)) s
respectively. We extend V° and V' to the Jacobi fields along the geodesics 12 and 1 ),
respectively, satisfying Vo, =V, V), =V"' and V9 =V} =0. By the definition of f,
we have

(df) D V) =D, V! for VeT,,(C).

The Toponogov comparison theorem yields the following estimates:
d(f(x), )=/ 8 sin(n/2/ 6 )d(x,y)  for (x,y)eSxS.
V8 sin(mf2y/ 6 )< —— 220 1@ Xl <[/ é sin(m/2/6)]""  for X#0eTyS).

1]

(1.1)

We put

(1.2) L=L0)=1/ 6 sin(n/2./5).
We now define a differentiable map a: S5 x+>a,e SO(n, R) (cf. [4, Prop. 2]):

{(1) o x =£(x) for xeS§,

1.3
4 2) al[IVO)=[tju]s? V' for VeT,,(C),

where [71]4* denotes the parallel translation with respect to D along t., and each vector
in (1) and (2) is the component vector with respect to the basis {X|, ..., X,}.
(C) The estimate for dy(df), X/ I(df) X, o, X).

LEMMA 1 (cf. [4, Prop. 2]). Let c—\/—m)v Then we have
1(df)X — o X < Bo(| XTI + 1) X1)  for XeTLS),

Bo=By)=——° { ( )/( e )_1}
0= B0 =2v ey NCL ANV AR
We have

(1.4) (df) X =a, X +(dyo.)x for XeT\(S)
by (1.3).

where
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PROPOSITION 2. Assume B,<1. Then we have
df(@df).X/(df) X1, . X) <0,
Jor (x, X)e S x S with {x, X =0, where 0, =0,(6)=cos (1 —-2B2).
Proor. We put u=|(df),X],

0=d, (—(‘—iﬁf—/\:—, o X > and 0= ds<och g M) ,
I(df )X ll(dxa.)x]|

where L<u<L~!. We have
u? =(1+ ||(dxa.)x|| cos 0)% + ||(dxe.)x| % sin @
=1+42|(dya.)x] cos 8+ ||(dya.)x] 2
<1+2|/(dyet.)x| cos 8+ BE(1 +u)?
by Lemma 1 and (1.4). If By<1, then we have

_ 1+ l(@yo)xlcosf  1+u?—B3(1+1)?

>1-2B2.
u 2u

(1.5) cosf

The minimum in (1.5) is attained at u=1. q.ed.

REMARK 2. We have B((0.373)=0.997251. Therefore, if 6 >0.373, then By(d)<1
holds.

(D) The estimate for dyo,V, a_,V). Let us take (x, ¥)e Sx S. Then V can be
written as V'=sinéx+coséY, —n/2<E<m/2, by a unit vector Ye T,(S) (= R"). For a
while we assume cos £ #0. Let x(f) (0<t<n) be a geodesic joining x =x(0) to —x=x(n)
with x(0)= Y. We have x =cos ¢ x(¢) —sin ¢ X(¢), Y =sin t x(t) + cos t x(¢) for t € [0, ]. Thus
we have V=sin(t+ &)x(t)+ cos(t + £)x(¢) for te[0, n]. Therefore we have

n

(1.6) d(a,V,a_V) gj dt

0

d AV
ar

= r lIsin(z + &) d e )x(r) +cos(t + Ed . )X(2) |1 dt .
0o

We study the integrand of (1.6). We choose N;(d) (i=2, 3) satisfying
(1.7 [(dxa)x| S N,(0),  l(dxa) X[ < Ns(6)

for any x€S and any unit vector X e T,(S). We can take N,=N,(3)=B(l +L™ 1) by
(df) X =0,X+(dya.)x and Lemma 1. Furthermore, we put |(dxa.)V| <N,(0) for any
unit vector ¥ € R". As for the estimate of N,(5) we refer to [4, Lemma 8]. We can take
N5(6)= N,(J), but we estimate N,=N;(d) more sharply in §3 and §4 below.
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Now, we put d((df),X/I(df), X, a,X)=06. Then we have
[<(dxa) X, (dxa.)x)| < [I(df). Xl [I(dx.) X ] sin 6
by {(dya.)X, o, X >=0.
LEMMA 2. Assume By<1. Then we have
Idf)X|Isin0 <N,  for any unit vector XeTyS),
where, taking v=min{L™', (2B2+1+./8B2+1)/(2(1— B2))},

1
“2”’ A= BB+ —(1—0)].

Ny=Ny(d)=
ProOOF. We put u=||(df),X|. We have
1
u008027{1+u2—33(1+u)2}

by (1.5). Thus we have

uzsinzas% (1+u)*(1 — BA[B2(1 +up —(1 —w)?] .

q.e.d.
Thus, by (1.6) and the continuity for V of dy(a,V, «_,V) we have the following:
PROPOSITION 3. Assume By <1. Then we have

dfo V,a_.V)<0, for (x,V)eSxS,

where 0, =0,(0)=2[%? /N3 —[N2—N2]sin’t+2(N3N,)sinzcos 1dt.
ReMARK 3. (1) We have
dyox, a_.x)<n(l— L)) for xeS

by (1.1). By the culculation in §5, we have (1 — L(d)) < 6,(d).
(2) We can always take 6, = N,n. The estimate of 6, in Proposition 3 is more
precise than N;7.

2. A diffeotopy theorem. Let f be a diffeomorphism of S and « a differentiable
map of S into SO(n, R) with f(x)=oa,x. We choose numbers N, 0, and 0, satisfying

(df)xX>
dyo)VIISN,, doaV,a_ V)<0,, dfa X, —2" )<p
(dxa)VII <Ny (0 V, 00 V)<0, (a 1@NX1 2

for any xe€ S and any unit vectors Xe T,(S) and Ve R".
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THEOREM 1. If Nym+0,+20,<2n, then there exists a diffeotopy F constructed

from f.

ProOF. We fix x,€S, and define a differentiable map G:[0,1]x S—R" by
G(t, x)=tou, x+(1—t)ax. If G(t,x)eR"—{0} for (t,x)e[0,1] xS, then we define
F(t,x)=II-G(t, x), where IT: R"—{0}—S is the natural projection. We have F(0, x)=
f(x) and F(1, x)=a, x. Therefore, if F,: S—S is a diffeomorphism for each r€[0, 1],
then F is a diffeotopy constructed from f.

We put G(t, x) = || x||G(¢, x/||x||) for xe R"—{0}. We have

(dG)x=t0, x+(1— 1), x=G(t, x),
.1 (dG) X =10, X+(1—1){(dyo)x+ 0, X}
=to, X+(1—t)df).X,

for (x, X)e S x S with {x, X >=0. If (dG,), is regular for xS, then (dF)), is also regular
by (dG,)x=G(t, x). Therefore we must show that G(t, x)e R"—{0} for (¢, x)e [0, 1] X S,
and (dG,), is regular for (t, x)e[0, 1] x S. But, if (dG,), is regular for (t, x)e[0, 1] x S,
then G(t, x)e R"—{0} for (¢, x)€ [0, 1] x S holds from the first equation of (2.1). Let us
take a unit vector Ze T (R") for xe S, and write it as Z=ax+bX, a>+b>=1, by using
a unit vector Xe T,(S). Then we have

2.2) (dG)Z=to, Z+(1 —t)a, Z +(1 —t)b(dyar.)x

by (2.1). Since |h|<1 at (2.2), we have only to show (dG,), X#0 for (¢, x, X)e
[0, 1] x Sx S with {x, X>=0.

Let us take (x, X)e Sx .S with {(x, X>=0 and xe S—{x,, —x,}. Let n=n(t) be a
geodesic in S which joins x, =#(0) to — x,=n(rn) and passes through x. Then the length
of the curve a,,,X (0<t<n)in S is given by

2.3) Ao, X, e X)+do X, o X)< j () Xl dt <Ny .
0

Now, we assume 6, <N;7 and (N,;n+0,)/2<=n. We take a point pe .S which satisfies
the following (1) and (2):

(1) pis on the geodesic which issues from o, X and passes through a_, X.

(2)  dJo,X, p)=(N,m+0,)/2.
Then we have

dy(ote, X, p)>max{dyo, X, a0, X)| 0< 1< 7}

by (2.3) and dyo, X, a_, X)<0,. Therefore we have dyo, X, X)<(N,n+6,)/2.
Furthermore, if (N;n+0,)/2+ 60, <7 holds, there exists no constant ¢ (>0) such that
o X =—cldf) X by d((df).X/Idf).Xll,x.X)<0,. Therefore, if N;n+6,+20,<2n
holds, then we have (dG,), X #0 by (2.1). g.e.d.
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3. The stabilized tangent bundle E of M. In this and the following sections we
estimate N3 = N;(9) such that ||(dye.)X|| < N,(5). As we remarked it in § 1, (D), we estimate
N5(6) more sharply than N,(d) such that |(dyo.)V|| < N,(). To estimate N,(d) we used
the second inequality of (3.1) below [4]. On the other hand, we use the first inequality
of (3.1) to estimate a main term of ||(dyx.)X||. To start with, we review several results
for the stabilized tangent bundle of M in (A).

(A) A connection with small curvature on E. The stabilized tangent bundle E of
M is given by E=T(M)® 1(M), where T(M) and 1(M) are the tangent bundle and
trivial line bundle M x R, respectively. Let e: M 3p+se, € E be a cross-section defined
by e,=(0,, 1)e T (M) x R. Let h be a fibre metric on E given by

WX, Y)=9g(X,Y), hX,e)=0 and hle,e,)=1
for X, Ye T (M). An h-metric connection V on E is given by
VxY=DyY—cg(X, Y)e, Vye=cX

for X, Ye T(M), where c¢=./(1+0J)/2. The connection V has the curvature tensor
RY=R—c?R, where R is the Riemannian curvature tensor on M and R is the algebraic
expression for the curvature tensor on the standard sphere S"(1) in terms of the
Riemannian metric g on M. We have RY(X, Y)e=0 for X, Ye T(M) and

3.0 IRY(X, N)YI<(1-9))2, [RY(X, Y)Z|<2(1-4)/3,

for X, Y, Ze T(M) with | X||=||Y || =||Z]|| = 1. In fact, the first inequality of (3.1) implies
that (M, g) is o-pinched. As for the second inequality we refer to [2].

Let P be a principal bundle over M of (n+ 1)-frames with structure group O(n+ 1, R)
associated to E. Then the connection form w and the curvature form QY induced by V
satisfy the structure equation do= —w A w+Q". We take a cross-section u'=(u’, ...,
uly1): M;—P|y, (i=0, 1) as follows: First we choose u°(go)=(X, ..., X,, €,,). Second,
we define a section u® on M, by moving the (n+ 1)-frame u°(q,) by parallel translation
with respect to V along the geodesic from g, to points in M,. Next, we choose
u'(g))=(Xy, ..., X,, —e,)). Then we can also take a cross-section ul: M1—->P|Ml anal-
ogous to u°.

There exists a differentiable map «/: C=M,n M, —O0(n+ 1, R) such that u%qg)./(q)=
u'(q) for ge C. We note

(32 A(g)([z1, ..., 217 D="[z0, ..., 25" ]

for Z=Y"1zh?), =Y "+ 2 (u}), € E,- 19 (g€ C). We put B, =/(q(x)) for xe S,.
(B) Relation between a, and f,. Let w(x) be a vector of T,,(M) defined by

- [z 2]2x)x - [T}(x)]ﬁx)f (x)
TR ISP a ORI

where [12]%) and [T} ]5x denote the parallel translation with respect to D along the
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geodesics T3 and T f,, respectively. Note that [T 3]5,,x — [T ) ]ix f(X) #0 for xe S,. We
also denote [u'(gq)]” 'w(x)e R"** by w(x), where u'(g): R"*'—E, is the natural linear

isomorphism. Let us put
0
o‘zxz[ax’ ] for xe€S,.
0, —1
LEmMMA 3 (cf. [4, Prop. 3 and its Cor.]). We express '‘B.=[a,(x), ..., a,,(x)]

and a,=[b,(x), ..., b,,,(x)] in terms of the column vectors a;,(x) and b,(x) in R"**.
Then we have b;(x)= a;(x)—2<{a;(x), w(x))W(x). In particular, we put

sin u(x) - a(x)

a,,+1(x)=[ ] for a(x)eR".

cos u(x)
Then we have

|:sin(u(x)/ 2)a(x):|
w(x)= .

cos(u(x)/2)
We have
(3.3) cos u(x)=h(uy 1, uy . 1)(g(x))
= —cos*(ct(x))—sin*(ct (x))g(¢3, © j)(q(x))
= — L+sin(ct(x)[1 —g(t 2, © jo)g(x))]
> — 1 +sin*(en/2./ 8 )[1—cos(y/d m)],
and
(3.4) cosz(u(x)/Z)Z% sin?(cn/2,/ 8 )[1 —cos(y/d m)],
by [4, (2.1) and (2.2)]. We should correct [4, the second equation of (2.2)] as follows:
2.2 (#a+ 1)1 = —cos(ct)e+sin(ct)x .
We put

(3.5 cos(u/2)=sin(cm/2\/6 )/ (1 —cos(\/& m))/2 .

(C) The norms of (dyo.) and (dyf.). Let Xe T,(So)=T,(S). We also denote the
X
(n+1) vector [ O] by X.
LeMMA 4. For any unit vector X € T(S,)=T(S), we have

I(dxa.) Xl cos u/2 < ||(dxB.)[0X —(cos u(x)/2) "' & X, W(x)Den+ ]Il -
PROOF. By ||(dxa.) Xl = ||(dx'a. ) Xl = lI(dx'a. )@ X)ll, we estimate |[(dx'a.) @ X)|.
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For Ze R"*! with {Z, w(x)) =0, we have ||(dy'd.)Z|| cos(u/2) < ||(dxB.)Z| by [4, (5.3) and
(5.7)]. Since we have

36 {(dx'o‘c.xofo)=(d;oz.)[o‘ch—(cos u(x)/2) " HaX, w(x)De, 1]
’ (8, X —(cos u(x)/2) " L& X, w(x)De, s 1, (X)) =0
by (dy'd.)e, ., =0, we are done. q.e.d.

LEMMA 5. For any unit vector X € T (S,)=T,(S), we have
<°—CxX7 W(x)> = - <tﬂxX’ W(x)> ) l <&xX? W(X)> l <¢,

where ¢, =/(1+cos(/5 m))/2.

ProOOF. We have &, X=".X—2{'B,.X, w(x)>w(x) by Lemma 3. Therefore we have
<&xX’ w(x)) =- <'ﬁxX9 W(.X)> Since ﬁxan+ 1=€n41 and

w(x)=sin(u(x)/2)a(x) + cos(u(x)/2)e, . ,
= (sin(u(x)/2)/sin u(x))@, + 1 (x) — cos u(x)e, + ) +cos(u(x)/2)e, +
= (sin(u(x)/2)/sin w(x))a, 1 1(xX) + (2 cos(u(x)/2)) " ‘e, 1

by Lemma 3, we have

(3.7 CBX, w(x)) = (X, Bowl(x)) =X, Beey+12/(2 cos(u(x)/2))
by (X,e,.,>=0. We put B.e,,;="zs..., zp*1], then we have (#;4),0=
SrEl zi (@), by (3.2). Thus we have
n+1
(3.3) —cos(ct(x))e +sin(ct(x))i b= 2. 25Uy
i=1
by [4, (2.2)]. Furthermore, we put X="[a’, ..., a"], then we have
(39) Z ai(”?)q(x) = [Tg]gx)X

i=1
by [4, (2.1)] and <{x, X »=0. Since (3.7), (3.8) and (3.9), we have
(B X, w(x)) = (sin(ct(x))/2 cos(u(x)/2))g (%} [T 2TiX) -

Finally, we have

I<a,X, w(x)}lsw-\;?— V(1 —=cos(./§ n))"lcos<ﬁ n—%)

=\/17 Ja —cos(,/d m)~ ' sin(\/ 7) ,

by (3.3). q.e.d.
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4. Holonomy estimate for the stabilized tangent bundle. Let X'e T,(S,)=T.(S)

. X . . .
with || X|| =1. We again denote the (n+ 1)-vector [ 0 ] by X. In this section we estimate

| (dyB.)[&X — (cos u(x)/2) ™ 1{a, X, w(x)De, ]|, which appeared in Lemma 4.

(A) Let x(s) be a differentiable curve in S, with x(0)=x and Xx(0)=X. For the
curve g(s) =19, [#(x(s))] in C, v°(s) and v'(s) are the horizontal lifts to P of g(s) satisfying
v°%(0)=u"[4q(0)] and v'(0)=u'[q(0)], respectively. Then there exist O(rn+ 1, R)-valued
functions b°(s) and b'(s) satisfying

{ v°(s)=u"[q(s)1b°(s) d { v'(s)=u'[q(s)]b(s)
an
b°(0)=E b'(0)=E.
Then we have

. Bt — Be=[0%s)— E1B[b' (1" + B,L(6*(s) ' —ET,

because of B, =b%s)B[b ()]~ *.
Let D;(s) be a surface in M, swept out by geodesics joining g; to g(s) (i=0, 1). We
“have, for i=0, 1.

4.2) bi(s)— E= — j

Di(s)

Wy Q¥ — j ' (0= D)L — Eldr

0

where @ is a connection form which makes ' to a parallel cross-section on each P| M,
(cf. [4, (6.2)]). Therefore we have, for Ze R"*?,

)

Sft(:c) ”RV(( YO),J', fg(t))uo[rg(l)]ﬂleldt

0

@.3) I(dyB)Z] < H (-j— b°>ﬂxz
AY

s=0

t(x)
+ f IRY(Y™), £ feo(u* [T fIZd
0

by (4.1) and (4.2), where Y° and Y! are, respectively, the Jacobi fields along 2 and
T f With (Y°),,=(Y"),, =0 and (Y°),,=(Y")40,=4(0), and we simply denote (Yo)fg(,)
and (Yl),l}(x)(,) by (Y°);} and (Y1)}, respectively.

LEMMA 6. We have

ﬁx[&xX—Mem]:“M

cos u(x)/2 cosu(x)2 "1

PrROOF. We have



DIFFERENTIABLE SPHERE THEOREM

ﬁx[&xx_w e, 1]= t&x[&xX_M €, 1:'

cos u(x)/2 cos u(x)/2

=X +(cos u(x)/2) @ X, w(x)>e,+ 1 ,

by Lemma 3 and (3.6). q.e.d.

We have the following proposition by (4.3) and Lemmas 5 and 6.

PROPOSITION 4. We have

I(dx B[ X —(cos u(x)/2) "<& X, w(x)De,+ ]

t(x)
SI IRY(Y ), ¢ 2)uLeAO)ILX +(cosu/2) " c e, 4 ]|t
0

t(x)
+ J IRYAY M), fof(t)u [T () ILEX —(cOS u/2) ™ P14 1Tt .
0

(B) We put

(Bl (1_6)2 me\/ <—> s1n2(ct){smht—~sm(ct)}dt
3(1+4c? cos (u/2)
(152 { sinh(/2\/5) ”"/2“\/ ( ¢ >2 P
B= St r e sinemnds) S Js P cosaz) ) S (e sintendt.

_(1_5) n/zJE\/ ( ¢, )2 -, )
B,= o JO 1+ os2) sin?(ct) sin(ct)dt .

The following lemma is proved in (C) and (D) below.

LEMMA 7. We have

t(x)
o

t(x)
@ J

0

By Lemmas 4 and 7 and Proposition 4, we have the following:

dt<B,+ B,

RY(YO), 3(1))u°[f°(t)][X+ (/2) n+1:|

dt

RV(( Y, f}(x)(t))u l[t}(x)(t)][o?xX—@- €y 1:|

<L YB,+B,)+B,+B;.

PROPOSITION 5. We have
cos(u/2)" [[(dxa)X|| <(14+ L~ ')B, + B,)+2B;

for any unit vector X € T(Sy)=T(S).
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Thus we can take

(1+L"YB,+B,)+2B,

(4.4) Ny=N,(6)= costu?)

(C) THE PROOF OF LEMMA 7, (1). We have

c¢,(—sin(ct)t (1) +cos(ct)e)
cosu/2

(X425 ) e

by [4, (2.1)] and g(X, x)=0. We put Y°=(1/c)sin(ct)[t2]°X. Since (Y°)§ =Y 3=0 and
D(Y%'=D/(Y° =X, we have

- 1 1-0 . 1 .
4.5) (YO — Y2 S; 1o {smh t——c~ s1n(ct)}

by [4, Proof (2), (c) in Prop. 2]. We put
X, =[t2°X —c,(cosu/2)~ *sin(ct) Az) .

Then we have

IRY(Y ), ¢ 2K, < IRV(YO) — Y7, 1) Xi] +% sin(ct)|| R¥(X,, ¢2()) Xl

|

RV(Y,,fz(z) G0, B “Xuz))?

1=6)* (. 1. 1-9) .
<| ,II{T—)<smht——c—sm(ct)>+ o sm(ct)},

by (3.1). Thus we have Lemma 7, (1) by R(X, Y)e=0.

_ _ 1.
<||IRY(YO)*r—Y?, ¢ 2(1)) X, || +— sin(ct)
C

(D) THE PROOF OF LEMMA 7, (2). We have u!(t },(£))@X =[7 j] 2. X by @, X=
o, X and g(o,.X, f(x))=0. We put

sin(ct)

sin(c(x))

- 1 . _
Yt1 = ? Sln(Ct)[T}(x)]?axX ’ l]t1 = [’C }(x)];(X)(Yl)szx) ’

_ 1
v —? Sm(Ct)[Tf(x)]: DY )t
Then we have
(Y ={(Y) =V +{V -0 +{0; =Y} + 7! .
We have
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_ 1 1-6 1.
I(YHE=T7H S? Tac? {sinh t—7 sm(ct)}L‘ !

by D;(Y") =(df),X and [4, Proof (2), (c) of Prop. 2].
About |U! —VHI: By U,y=(Y")in» Us=(Y')5=0 and [4, Proof (2), (b) and (c)
of Prop. 2], we note

||Df(x)[(Y1)L -0'l<

1-6 { sinh(#(x)) } 4
c —1>L™".
2(14c¢?) sin(cx(x))

Therefore we have

1
||U1 Vl” = sm(c Wl f(x)] (x)(Yl)t(x) [Tf(x)] Df(x)(Yl)l

n( t(x))

1 . .
= sin(ct)||—————[7 )14 )(Yl):l(x)—Dﬂx)(Yl)l“

si (t())

1 —
= sin(ct)| D s LU — (Y1)

< 5 1-0 - L7} {c si‘nh(t(x)) — l}sin(ct).
c(1+c¢?) sin(c#(x))
About |U} —Y}!||: We note
1Tk Pholl = ”(Y Yoo T et T X }
- “(Y").#x)—w (£ ’ = 1Y)y — P2
1 1-6 . |
<17 {smh(t(x))——7 sm(ct(x))} ,

by §1, (B) and (4.5). Therefore we have

o sin(ct) ., o
O~ ¥ = |OL,— L <
1U; =Yl Sin(e(x) Uiy — Yigml

1-6 { sinh(#(x))
c

- — 1} sin(ct) .
2¢(1+c?) sin(c#(x))

Thus we have Lemma 7, (2) in the same way as in (C).

5. A differentiable sphere theorem.

THEOREM 2. Let (M, g) be a complete, simply connected and 0.654-pinched Rie-
mannian manifold. Then M is diffeomorphic to the standard sphere.
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We calculate the numbers N;=N,(6), 6,=0,(5) and 6,=0,(5). The number
N, =N,(0) is given by

21— 1
(5.1) N=21 0

3 6  cos¥u)2) +L7%,

(cf. [4, Lemma 8]). We denote
1=(2B3+1+./8B3+1)/(2(1—-B%)

in the culculation in Tables 1 and 2.

(5.2)

TABLE 1.
é def. 0.652 0.653 0.654
L (1.2) 0.751487 0.752502 0.753516
L! (1.2) 1.3307 1.3289 1.32711
cos(u/2) 3.5 0.93611 0.936546 0.936981
B, Lemma 1 0.207329 0.20625 0.205177
B, §4, (B) 0.0259119 0.0256736 0.0254372
B, §4, (B) 0.0721266 0.0714361 0.0707516
B, §4, (B) 0.260914 0.259767 0.258624
[} (5.2) 1.17304 1.17122 1.16942
N, 5.1 0.946395 0.940627 0.934895
N, (1.7) 0.48322 0.480336 0.47747
N, 4.4 0.801536 0.796216 0.790935
N, Lemma 2 0.442148 0.439556 0.43698
0, Prop. 3 2.53017 2.51406 2.49805
6, Prop. 2 0.417687 0.415483 0.413289
TABLE 2.
14 2n—(N;n+6,+26,)
0.652 —0.0555507
0.653 —0.0169031
0.654 0.0214957

We have Theorem 2 by Tables 1 and 2, Theorem 1 and Proposition 1.
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