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Abstract. We give a new diffeotopy theorem on the standard sphere, and an
estimate for some geometric invariants concerning positively curved Riemannian
manifold. By using these results we prove that a complete, simply connected and
0.654-pinched Riemannian manifold is diffeomorphic to the standard sphere.

Introduction. Let (Mn, g) be a complete, simply connected and <5-pinched Rie-
mannian ^-manifold. In this paper we prove that if (5 = 0.654, then M is diffeomorphic
to the standard sphere Sn.

For a δ(> l/4)-pinched Riemannian n-manifold, an orientation preserving dif-
feomorphism / of S"'1 is naturally defined, and is used in the proof of the dif-
ferentiable sphere theorem [3, 4]. In fact, if there exists a diffeotopy from / to an
isometry fx of S"1"1, then M is diffeomorphic to the standard sphere. In order to find
the minimum of such <5's it is important to construct a diffeotopy in as many different
ways as possible. In this paper, we propose a new construction of a diffeotopy. The
statement of our diffeotopy theorem and the construction of diffeotopy in it are fairly
simple in comparison with these in [4]. Furthermore, by giving new estimates concerning
/ and its differential df we prove the differentiate sphere theorem above. In this paper
we use the same notation as in [4, § 2—§ 6].

The author would like to thank the referees for careful reading of the previous
versions of this paper and for valuable suggestions for improvements.

1. <5(>l/4)-pinched Riemannian manifolds. Let (Mn,g) be a complete, simply

connected and (5(>l/4)-pinched Riemannian π-manifold, i.e., the sectional curvature
K of M satisfies δ<K<\ everywhere. We denote by D the Levi-Civita connection
induced by the Riemannian metric g. First, we review the definitions of the
diffeomorphism /, mentioned in the Introduction, and the differentiable map
α: S"'1 3x\-+ocxeSO(n, /?), which is regarded as an approximation of df, and related
results in (A) and (B) below (cf. [4]). Let S"1"1 be the standard sphere with sectional
curvature 1, i.e., Sn~1 = Sn~1(l). We denote by ds(x, y) the distance between x and y
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16 Y. SUYAMA

o n ^ " " 1 . Secondly, we estimate ds((df)xX/\\(df)xX\\, ocxX) and ds(ocxV, α_xK) for any xe S

and any unit vectors Xe TJ^S"'1) and VeRn in (C) and (D), which are necessary for

the diffeotopy theorem.

(A) Diffeomorphism / : Sn"* -• S""1. The manifold M is homeomorphic to the

standard sphere by the sphere theorem. In particular, we use the following properties

of M. Let q0 and ^ bea pair of points with maximal distance dM(q0, ^ ) on M, where

dM denotes the distance function induced by g. We put

Mo = {peM\ dM(p, qo)<dM(p, qx)} ,

M1 = {peM\dM(p9qo)>dM(p,q1)} ,

Let So and Sι denote the unit spheres in the tangent spaces Tqo(M) and Tqi(M) of points

q0 and qu respectively. The exponential maps Exp0 and Expj with centers at q0 and

qu respectively, are bijective maps if restricted to an open ball of radius π. Then we

can define a diffeomorphism f:S0->S1 by requiring the geodesies Expo(ίx) and

Expi [*/(*)] t o coincide at some t = t(x) satisfying π/2<t(x)<π/2yj~δ. We put

q{x) = Έxpo\_t{x)x']. Note that q{x)eC for xεS0.

We indentify Tqo(M) with Tqι(M) by fixing their orthonormal bases. Then we can

regard / as a diffeomorphism of Sn ~*. We fix a minimal geodesic y = y(t) joining q0 = γ(0)

to q1=γ[d(qθ9q1)]. Let {Xl9 X2, . . . , Xn} be an orthonormal basis of Tqo(M) with

Xn = y(0). The orthonormal basis {Xl9..., Xn} of Tqι(M) is now defined by the parallel

translation with respect to D of {X1,..., Xn-U —Xn} ( c Tqo(M)) along y. Then we have

the following Proposition. We denote 5 " " 1 simply by S from now on.

PROPOSITION 1 (cf. [3] and [4]). Let f be a diffeomorphism of S as above. We

assume that there exists a differentίable map F: [0, l]x5'->5' satisfying the following

conditions:

(1) F(0, •) = /•

(2) F1=F(1, ) is an isometry of S.

(3) Ft = F(t9 •): S-+S is a diffeomorphism for each t e [0, 1].

Then M is diffeomorphic to the standard sphere Sn.

We call F in Proposition 1 a diffeotopy constructed from /.

REMARK 1. We can replace the assumption of Proposition 1 by the following:

There exists a differentiable map F: [0, 1] x S^Rn — {0} satisfying the following

conditions (1), (2) and (3).

(1) F0 = f.

(2) Fx is the restriction to S of a linear automorphism of Rn.

(3) Π o Ft: S-^S is a diffeomorphism for each te [0, 1], where Π: Rn- {0}^>S is

the natural projection.
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This fact was pointed out in the discussion with Takashi Sakai, Tetsuya Ozawa

and Atsushi Katsuda, and turned out to be useful for our construction of the

diίfeotopy.

(B) The properties of /. Let τι

x (i=0, 1) be a geodesic defined by τ^(/) = Expt(tx)

for x E S. Let VE Tqix)(C). We define tangent vectors V° and V1 at q{x) for VE Tq(x)(C) by

respectively. We extend V° and V1 to the Jacobi fields along the geodesies τx and τ}(JC),

respectively, satisfying V^(x)=V°, K€
1

(JC)=F1 and V%o=Vq\=0. By the definition of/ ,
we have

n = Dfix)V
1 for VETqix)(C).

The Toponogov comparison theorem yields the following estimates:

), f(y)) > *J~~δ sin(π/2v

/ΓX)ds(x, y) for (x, y) e S x S .

' δ siφβJJ) < W f ) * n < ίJJ sin(π/2yy)] " ' for X Φ 0 G ΓJS).
(1.1)

We put

(1.2) L = L((5) = ̂ 7 sin(π/2N/T).

We now define a difϊerentiable map α: »S 9 x i—• αx G 5Ό(n, /?) (cf. [4, Prop. 2]):

(1) ccxx=f(x) for XES,

Λz) αxvLτxJo v ) — Lτ/(jc)Jo v I O Γ K e i # ) l L ) '

where [τx]o(x) denotes the parallel translation with respect to D along τχ9 and each vector

in (1) and (2) is the component vector with respect to the basis {X1,..., Xn}.

(C) The estimate for ds((df)xX/ \\ (df)xX\\, ocxX).

LEMMA 1 (cf. [4, Prop. 2]). Let c = j(\+δ)/2. Then we have

\\{df)xX-OLxX\\ <B0{\\X\\ + \\W)XX\\) for XE TX(S) ,

where

l-δ
υ 2(1 +c 2 ) 1

We have

(1.4) (df)xX=axX+(dxoc.)x for XeTx(S)

by (1.3).
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PROPOSITION 2. Assume Bo<\. Then we have

ds((df)xX/\\(df)xXlzxX)<θ2

for(x,X)eSxS with (x,X) = 0, where θ2 = Θ2(δ) = cos"\ 1 -2B$).

PROOF. We put u = || (df)xX\\,

) and S.i./,
\\(df)xX\\ J \ \\(dxa.)x\\

where L < w < L - 1 . We have

M2 = (1 + \\(dxa.)x\\ cos0)2 + | |(dxα.)x||2 sin2 0

by Lemma 1 and (1.4). If Bo< 1, then we have

( ) ^ ^ ^
w 2M

The minimum in (1.5) is attained at u= 1. q.e.d.

REMARK 2. We have £0(0.373) = 0.997251. Therefore, if <5> 0.373, then B0(δ)<\

holds.

(D) The estimate for ds(ocxV, ot-xV). Let us take (x, V)sSxS. Then V can be

written as F=sinξx-hcosξ7, — π/2<ξ<π/2, by a unit vector YeTx(S) (<=/?"). For a

while we assume cos ξ φ 0. Let x(ί) (0 < / < π) be a geodesic joining x = x(0) to — x = x(π)

with x(0) = Y. We have x = cos ί x(/) - sin t x(t), Y= sin t x(t) + cos / x(ί) for / e [0, π]. Thus

we have V=sin(t + ξ)x(t) + cos(t + ξ)x(t) for te[0, π] . Therefore we have

(1.6) ds(*xV,0L_xV)

-Γ
JoWe study the integrand of (1.6). We choose N^δ) (i=2, 3) satisfying

(1.7) \\(dxoc.)x\\ <N2(δ), \\(dxoc.)X\\<N3(δ)

for any xeS and any unit vector XeTx{S). We can take N2 = N2{δ) = B0(\ + L " 1 ) by

(ί//)Λ.Z=αxJ!fH-(ί/xα.)x and Lemma 1. Furthermore, we put ||(ί/xα.)F|| ^N^δ) for any

unit vector VeRn. As for the estimate of N^δ) we refer to [4, Lemma 8]. We can take

Λ f ^ ^ i V ^ ) , but we estimate N3 = N3(δ) more sharply in §3 and §4 below.
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Now, we put ds((df)xX/\\(df)xX\\, axX) = θ. Then we have

I ((dxa.)X, (dxa.)x} I < \\(df)xX\\ \\(dxa.)X\\ sin θ

LEMMA 2. Assume Bo<\. Then we have

||(df)xX\\ sin θ < NA for any unit vector Xe TX(S),

where, taking v = min{L~\ (2B% +1 + ̂ SBQ + 1 )/(2(l -B$))}9

N4 = N4(δ) = -^J(\-B2)lB2(\+v)2-(l-v)2l.

PROOF. We put u= \\(df)xX\\. We have

wcos0>— {1

by (1.5). Thus we have

w 2sin 20<— {\+ύ)2{\-B%
4

q.e.d.

Thus, by (1.6) and the continuity for V of ds((xxV, oc_xV) we have the following:

PROPOSITION 3. Assume Bo<\. Then we have

for (x,V)eSxS,

where θ1 = θ1(δ) = 2$π

(J
2 y/Nl-[Nl-N2

2~] sin21 + 2(N3N4)sin tcos tdt.

REMARK 3. (1) We have

ds((xxx, oc_xx)<π(l— L(δ)) for xeS

by (1.1). By the cumulation in §5, we have π(l -
(2) We can always take θ1=N1π. The estimate of 0 t in Proposition 3 is more

precise than Nxπ.

2. A diffeotopy theorem. Let / be a diffeomorphism of S and α a differentiable
map of S into SO(n, R) with f(x) = ocxx. We choose numbers Nl9 θx and θ2 satisfying

X, ^
\\{dj)x

for any xeS and any unit vectors Xe TX(S) and VeRn.
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THEOREM 1. If N1π + θι + 2θ2<2π, then there exists a diffeotopy F constructed

from f

PROOF. We fix xoeS, and define a differentiable map G: [0, l ] x ^ Λ " by

G(t,x) = tθLXox + (l-t)aιxx. If G(t, x)eRn-{0} for (ί,x)e[0, 1] xS, then we define

F{U x) = ΠoG(t, x), where Π: J?"-{()}-• S is the natural projection. We have F(0, x) =

f(x) and F(l,x) = ocXox. Therefore, if Ft: S-+S is a diίfeomorphism for each te[0, 1],

then F is a diffeotopy constructed from /.

We put G(t,x)= ||x||(?(ί,x/||x||) for xeRn-{0}. We have

(2.1)

for(x,X)eSxS with <x, X> = 0. If (dGt)x is regular for xeS, then (dFt)x is also regular

by (dGt)xx = G(t, x). Therefore we must show that G(ί, x)eRn-{0} for (ί, x)e[0, 1] x 5,

and (dGt)x is regular for (ί, x)e [0, 1] x S. But, if (dGt)x is regular for (ί, x)e [0, 1] x S,

then G{t, x)eRn- {0} for (t, x)e [0, 1] x S holds from the first equation of (2.1). Let us

take a unit vector Z e Tx(Rn) for x e S , and write it as Z = ax + bX, a2 + b2= 1, by using

a unit vector Xe TX(S). Then we have

o = G(t9 x),

(dGt)xX=taXoX+(l-t){(dxθL.)x + ocx

(2.2)

by (2.1). Since | 6 | < 1 at (2.2), we have only to show {dGt)xXφ0 for (t,x,X)e

[ 0 , l ] x S x S with <x, X} = 0.

Let us take (x, X)eSx S with (x,X} = 0 and xeS-{x0, -x0}. Let η = η(t) be a
geodesic in S which joins xo = η(0) to — xo = η(π) and passes through x. Then the length

of the curve 0Lη{t)X (0 < / < π) in 5 is given by

(2.3) dJL*X0X9 axX) + ds(ocxX, a_X0X)< f * | | ( ^ ( t ) α . ) ^ l | Λ ^ ^ π .
Jo

Now, we assume Θ1<N1π and (Λ/r

1π + θ 1)/2<π. We take a point peS which satisfies

the following (1) and (2):

(1) p is on the geodesic which issues from ocXoX and passes through oc_XoX.

(2) ds(*X0X,p) = (N1π + θ1)/2.

Then we have

dJί*xoX> P) ̂  max{^s(αX0X, aη(t)X) \ 0 < t < π}

by (2.3) and dJioL^X.oc.^Kθ^ Therefore we have d^X.

Furthermore, if (N1π + θ1)/2 + θ2<π holds, there exists no constant c (>0) such that

0LXoX=-c(df)xX by ds((df)xX/\\(df)xXlθixX)<θ2. Therefore, if N1π + θί+2θ2<2π

holds, then we have (dGt)xXΦ0 by (2.1). q.e.d.
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3. The stabilized tangent bundle E of M. In this and the following sections we

estimate 7V3 = N3(δ) such that ||(dxa.)X\\ < N3(δ). As we remarked it in § 1, (D), we estimate

N3(δ) more sharply than N^δ) such that | |(^a.)K|| <Λ X̂((5). To estimate N^δ) we used

the second inequality of (3.1) below [4]. On the other hand, we use the first inequality

of (3.1) to estimate a main term of ||(ί/χα.)AΊ|. To start with, we review several results

for the stabilized tangent bundle of M in (A).

(A) A connection with small curvature on E. The stabilized tangent bundle E of

M is given by E=T\M)@ l(M), where Ί\M) and \{M) are the tangent bundle and

trivial line bundle Mx R, respectively. Let e: M3p\-+epeE be a cross-section defined

by ep = (op, l )e Tp(M) x R. Let h be a fibre metric on E given by

p) = 0 and h(ep,ep)=\

for X, Ye Tp(M). An /z-metric connection V on E is given by

Vx Y= Dx Y- cg(X, Y)e , Vxe = cX

for X, YeT(M), where c = Λ/(l+<5)/2. The connection V has the curvature tensor

Ry = R — c2R, where R is the Riemannian curvature tensor on M and R is the algebraic

expression for the curvature tensor on the standard sphere Sn(l) in terms of the

Riemannian metric g on M. We have R^{X, Y)e = 0 for X, Ye T{M) and

(3.1) \\R\X, r)r||<(l-<3)/2, \\R\X, Y)Z\\<2(\-δ)/3,

for X, Y, Ze Tp(M) with \\X\\ = | | 7 | | = \\Z\\ = 1. In fact, the first inequality of (3.1) implies

that (M, g) is <5-pinched. As for the second inequality we refer to [2].

Let P be a principal bundle over M of (n + l)-frames with structure group O(n + 1, R)

associated to E. Then the connection form ω and the curvature form Ω v induced by V

satisfy the structure equation dω— — ω Λ ω + Ω v . We take a cross-section uι = (u\,...,

ifί+i): M f -•Pl^ (Z = 0, 1) as follows: First we choose u°(qo) = (X1, . . . , Xn9 eqo). Second,

we define a section u° on M o by moving the (w+ l)-frame u°(q0) by parallel translation

with respect to V along the geodesic from q0 to points in Mo. Next, we choose

uι(qγ) = (Xu . . . , Xn, —eqι). Then we can also take a cross-section u1: M1-+P\Ml anal-

ogous to M°.

There exists a differentiate map stf\ C = M 0 n M 1 - > 0 ( « + 1 , /?) such that u°{q)s/{q) =

ux(q) for g e C . We note

(3.2) s*{q)d[zl . . . , z ; + 1 ] ) = f |>έ, . . . , z"0

+ 1]

for Z=Σ°:ϊz'oiuf^Σ^lz\(uϊ)qeEπ-Hq) (qeC). We put βx = ̂ (q(x)) for xe5 0.
(B) Relation between ocx and j5x. Let w(x) be a vector of Tq(x)(M) defined by

t ) _ [ τ g ] ( V - [ τ } w ] (

ll[τ°] (V-^/(χ)].

where [ τ ^ ] ^ and [τj ^ ]^) denote the parallel translation with respect to D along the
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geodesies τ° and τj (JC), respectively. Note that [τ2]°(x)x — [ T } ( X ) ] ° ( X ) / ( Λ : ) # 0 for xeSo. We

also denote [u1(q)\~1w(x)eRn*1 by w(x), where u1(q): Rn+1^Eq is the natural linear

isomorphism. Let us put

α,= **' ^ for x e S 0 .

LEMMA 3 (cf. [4, Prop. 3 and its Cor.]). We express tβx = [a1(x),..., απ + 1(x)]

α«ί/ αx = [A1(x),..., bn + ι(x)~] in terms of the column vectors a^x) and b^x) in Rn+1.

Then we have bi(x) = ai(x) — 2(ai(x), w(x)}w(x). In particular, we put

. . Γsin u(x) - a(x)
an + 1(x) = \

[_ cos u(x)

Then we have

ΓsinM*)/2)α(x)Ί
w(x) = \

L cos(W(x)/2) J

We have

(3.3) cos u(x) = h(u®+1, u\ +1)(^(x))

= -cos2(cί(x))-sinVW)^(τ^ τ}(

= _ i +sinVW)[l -ΰ(i°X9 ifix))(q(

>-l+s in 2 (cπ/2 > /J) [ l - (

and

(3.4) cos2(w(x)/2) > — sin2(cτi

by [4, (2.1) and (2.2)]. We should correct [4, the second equation of (2.2)] as follows:

(2.2) («ί+i)τi<r)=-c<

We put

(3.5) cos(«/2) = sinίcπ/l/^VO -cos(^fδπ))/2 .

(C) The norms of (dxa.) and {dxβ.). Let XeTx(S0)=Tx(S). We also denote the

(w+1) vector by X.

LEMMA 4. For any unit vector Xe TX(SO)= TX{S), we have

IK^α.μfllcosH/2^ \\(dxβ.)lάxX-(cosu(x)/2)-\δixX, w(x)}en + j\\ .

PROOF. By | | ( ^ α . ) ^ | | = IK^'α.Xα^H = \\(dx>ά.)(όixX)\}, we estimate \\(dx'δi.)(oixX)\\.
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For ZeRn + 1 with <Z, w(x)> =0, we have ||(<Vα.)Z|| cos(u/2)< \\(dxβ.)Z\\ by [4, (5.3) and

(5.7)]. Since we have

Γ (ί/x

rα.)(άJCAr) = {dχd.)\βxX— (cos w(x)/2) ~*(όίxX, w(x)}en + J
( 3 6 ) ) _ !

by (ί/y'ά.^n + i = 0 , we are done. q.e.d.

LEMMA 5. .For α«y wmϊ v^c/or A'e TX(SO)=TX(S), we have

where cx = ^/(l+cos(χ/^"π))/2.

PROOF. We have 6ίxX=tβxX—2ζtβxX, w(x)}w(x) by Lemma 3. Therefore we have

{dxX, w(x)}=-(^xX, vφc)>. Since βxan + 1=en+1 and

= (sin(u(x)/2)/sin u(x))(an +1(x)- cos w(x)^ + x

= (sin(w(x)/2)/sin w(x)K + x(χ) + (2 cos(w(x)/2))" ιen + x

by Lemma 3, we have

(3.7) (>βxX, w(x)> = (X, βxw(x)> = <X, β*en + x>/(2 cos(w(x)/2))

by <X,e n + 1 > = 0. We -put- j8Jcell + 1 = ί [ z S , . . . , z S + 1 ] , then we have K 1

+ 1)< z ( j c ) =

Σ ^ i 1 zo(»?)q(X) by (3.2). Thus we have

w + l

(3.8) — cos(c/(x))e + sin(c/(x))τj ( x ) = Σ zΌ(u?)q(x)

by [4, (2.2)]. Furthermore, we put X=t[a1,..., α π ], then we have

n

Π Q ^ V /7Ϋiιo>\ — Γτ°~l° Y
\3 y) La a \Ui )q(x) — LτxJt(x)Λ

by [4, (2.1)] and <x,X) = 0. Since (3.7), (3.8) and (3.9), we have

(*βxX, w(x)> = (sin(cί(x))/2cos(w(x)/2Mτ}(jc), \τxlSixyX).

Finally, we have

\(άxX,

by (3.3). q.e.d.
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4. Holonomy estimate for the stabilized tangent bundle. Let XeTx(S0)=Tx(S)

with || AΊI = 1. We again denote the (n +1)-vector by X. In this section we estimate

\\(dxβ.)[ocxX-(cosu{x)/2) 1((XXX, w(x)>^π + 1 ] | | , which appeared in Lemma 4.

(A) Let x{s) be a difTerentiable curve in So with x(Q) = x and x(0) = X. For the

curve q(s) = τx(s)[t(x(s))'] in C, v°(s) and v1(s) are the horizontal lifts to P oϊq{s) satisfying

v°(0) = u°[q(0)'] and υ\0) = uί[q(0)], respectively. Then there exist O(n +1,/?)-valued

functions ό°(5) and b 1^) satisfying

b°(0) =
and

Then we have

(4.1) i

because of fc(s) = A 0 ^

Let Di(ί) be a surface in M, swept out by geodesies joining qt to q(s) ( ί = 0 , 1). We

have, for i=0, 1.

(4.2)
J Di(s) J 0

i(q(ήmb\ή-EW,

where ώ is a connection form which makes u' to a parallel cross-section on each .P|M .

(cf. [4, (6.2)]). Therefore we have, for ZeRn+1,

(4.3) \\(dxβ.)Z\\ < ~b°jβxZ

ί
ds

t{x)

dss = 0

\\R\m,τo

x{t))u\τ°x{tWxZ\\dt

•Γ
Joby (4.1) and (4.2), where 7° and Y1 are, respectively, the Jacobi fields along τx and

Tj {x) with (Y°)qo = (Y1)qi = 0 and (yr°)β(O) = (y 1 ) g ( O ) = ̂ (0), and we simply denote (70)^"o(ί)

and (y% ( χ ) i t ) by (70),1 and (Y1)}-, respectively.

LEMMA 6. We have

R * vβχ\ α x ^ -
(άxX, w(x)>

cos u(x)β cos u(x)/2

PROOF. We have
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Γ (axX, φ)> Ί Γ <dxX,w(x)} Ί

L cosu(x)/2 J L COSM(X)/2 J

= X+ (cos M(X)/2) - J <αxZ, w(x)>en + j ,

by Lemma 3 and (3.6).

We have the following proposition by (4.3) and Lemmas 5 and 6.

PROPOSITION 4. We have

< f
Jo

\\R\Y°)t, τS(0)«°

(B) We put

B - {l~δ)2

1 3(l+c2)J0

Γ
sin2(cmsinhί sin(ct)}dt.

M/2) / (. c

3c(l + c

H-δ)

sinh(π/2VX) χ\ C«'^δ

sin(cn/2yj δ) J J 0

1 +
cos(u/2)

sin2(c

/i + ( C l )
Jo V Vcos(«/2)/

sin2(c/) sin(cί)dt.
2c Jo V Λcos(κ/2),

The following lemma is proved in (C) and (D) below.

LEMMA 7. We have

Γt(x)

Jo
jsr+-

cos (M/2)
dt<B1+B3,(1)

(2)

By Lemmas 4 and 7 and Proposition 4, we have the following:

PROPOSITION 5. We have

cos(u/2) \\{dxa.)X\\ <{\+L~ 1^B1 + B2) + 2B3

for any unit vector Xe TX(SO)=TX(S).

q.e.d.
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Thus we can take

(4.4) N3 = N3{δ) = -
cos(w/2)

(C) THE PROOF OF LEMMA 7, (1). We have

cos u/2 ) cos M/2

by [4, (2.1)] and ̂ (X,x) = 0. We put Ft° = (l/c)sin(c/)[τ2]t

0^. Since (YX= Ϋ°o = 0 and

DX{Y°)1 = DX(Ϋ°) = X, we have

(4.5) \\(Y°)}—Ϋ?\\ <4-
2
4 Γ ^ j2 1+c I

by [4, Proof (2), (c) in Prop. 2]. We put

-7f = [τ2] f°^-c1(cosw/2)-1 sm(ct)τ°x(t).

Then we have

c
ύn{ct)\\R\Xt, τ°x{t))Xt\\

< | | ^ v ( ( r γ - y?, τ°x(t))xt\\ + - surety
c

s i n h ' - 7 i

by (3.1). Thus we have Lemma 7, (1) by R(X, Y)e = 0.

(D) THE PROOF OF LEMMA 7, (2). We have u 1(τ1

f{x)(ί))dxX= \τ) {x)~\^xX by δίxX=

axX and g(ocxXJ(x)) = 0. We put

ήnίrAΓr1 l°nr Y Π1 — Sm(Ct> ΓT1 ηί(x)/ylU
Sm\Cΐ)lτf(x)MOίXΛ J ^ ί — . . . . . L T /(x)J ί l ^ Λ(X) 5

c sin(c/(x))

F, 1 =-s i
c

Then we have

(Yi)

We have
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1),1- V) || <i-
2

LA --L sin(cί)U-'J2 1+c2

by Z) / ( x )(r1)-L = (rf/);cA'and [4, Proof (2), (c) of Prop. 2].

About \\Ό\-V\\\: By ί/I(x) = ( F 1 ) ^ ) , £7J = ( r ^ = 0 and [4, Proof (2), (b) and (c)

of Prop. 2], we note

l-δ

2(1 + c 2 )
_ t ,

Therefore we have

-^11=—sin(cθ
c

= — sin(ct)
c

_ 1

c

l-δ

sin(cί(x))

c

sin(ct(x))

2c(l+c2)

About \\Ul-Ϋ}\\: We note

sinh(ί(x))

sin(c/(x))

sin(ct(x))

_ |i/yθ\l
sin(ct(x))

K1 )t(x) lτxJt(x)Λ

— Y \ sinh(/(x)) sin(cφc)) \ ,
2 1 + c 2 I c )

l γθ ιι
t(x)~ It(x)\\

by §1, (B) and (4.5). Therefore we have

Thus we have Lemma 7, (2) in the same way as in (C).

5. A differentiable sphere theorem.

THEOREM 2. Let (M, g) be a complete, simply connected and 0.654-pinched Rie-

mannίan manifold. Then M is dίjfeomorphic to the standard sphere.
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We calculate the numbers N1 = N1(δ), Θ1 = θ1(δ) and Θ2 = θ2(δ). The number

N1=N1(δ) is given by

(5.1)
3 δ cos2(w/2)

(cf. [4, Lemma 8]). We denote

(5.2) ϋ=(2B* + ]

in the culculation in Tables 1 and 2.

TABLE 1.

δ

L
L~

x

cos(u/2)

Bo

Bt

B
2

B
}

V

N
2

JV
4

θ.

θ
2

def.

(1.2)

(1.2)

(3.5)

Lemma 1

§4, (B)

§4, (B)

§4, (B)

(5.2)

(5.1)

(1.7)

(4.4)

Lemma 2

Prop. 3

Prop. 2

0.652

0.751487

1.3307

0.93611

0.207329

0.0259119

0.0721266

0.260914

1.17304

0.946395

0.48322

0.801536

0.442148

2.53017

0.417687

0.653

0.752502

1.3289

0.936546

0.20625

0.0256736

0.0714361

0.259767

1.17122

0.940627

0.480336

0.796216

0.439556

2.51406

0.415483

0.654

0.753516

1.32711

0.936981

0.205177

0.0254372

0.0707516

0.258624

1.16942

0.934895

0.47747

0.790935

0.43698

2.49805

0.413289

TABLE 2.

δ

0.652
0.653
0.654

2π-(N
1
πΛ-θ

1
+2θ

2
)

-0.0555507
-0.0169031
0.0214957

We have Theorem 2 by Tables 1 and 2, Theorem 1 and Proposition 1.
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