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Abstract. We investigate those deformations of affine toric varieties (toric sin-
gularities) that arise from embedding them into higher dimensional toric varieties as
a relative complete intersection. On the one hand, many examples promise that these
so-called toric deformations cover a great deal of the entire deformation theory. On the
other hand, they can be described explicitly. Toric deformations are related to de-
compositions (into a Minkowski sum) of cross cuts of the polyhedral cone defining the
toric singularity. Finally, we consider the special case of toric Gorenstein singularities.
Many of them turn out to be rigid; for the remaining examples the description of their
toric deformations becomes easier than in the general case.

Introduction.
(1.1) We want to investigate germs of complex, algebraic singularities Y by

describing their deformation theory. At least for isolated singularities there exists the
so-called (mini-) versal deformation which induces all other ones by specialization of
parameters. This flat family carries much information about the original singularity. It
is a source for many numerical invariants.

(1.2) If Y is a complete intersection, then each perturbation of the defining
equations defines a deformation of Y. In particular, its versal base space Sγ is smooth
(and the dimension is well known). On the other hand, if Y^CW is given by more
equations than its codimension, then the relations among these equations may cause
obstructions in creating deformations of Y. Even if Y is still Gorenstein, the versal base
space might consist of several components, or it might be non-reduced.

(1.3) EXAMPLE. Let Y^ C5 be the cone over the rational normal curve of degree
four. Y is β-Gorenstein, and it is given by the equations

r a n k ( ί °
Destroying the symmetry by introducing three parameters t = (t1, t2, 3̂) induces a flat
family Yy^C3 defined by

rankί ">
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On the other hand, Y could be defined by the equations

/Jo y\ yi\

rank! yx y2 y3 J <1 ,

\7 2 7 3 yj

too. They provide a one-parameter deformation YS->C via

The versal deformation of Y equals the union of these two families. Its base space is

the union of a hyperplane and a line in C 4 . (In particular, it is not possible to find any

flat family over a smooth parameter space containing both deformations Yt->C3 and

Y.-+C.)

(1.4) The previous example has been taken from the class of two-dimensional

cyclic quotient singularities. They are among the easiest singularities beyond complete

intersections. Many of them admit non-smooth or even non-reduced versal base spaces.

Starting with Riemenschneider [Ri], many people have investigated the deformation

theory of two-dimensional cyclic quotients: In [Ar] the versal family was described by

explicit equations. Then, based on results of Kollar and Shephard-Barron using

three-dimensional geometry, Christophersen and Stevens obtained a qualitative

description at least of the reduced structure of the versal base space. Its components

are smooth, they correspond one-to-one to so-called P-resolutions of the singularity,

and their number can be obtained by a combinatorial approach using continued frac-

tions (cf. [KS], [Ch 2], [St 1]).

(1.5) The class of two-dimensional cyclic quotient singularities coincides with the

class of two-dimensional affine toric varieties (cf. [Od]). Moreover, as a by-product of

his computations, Christophersen observed that (at least after some finite base change)

the total spaces over the components of the reduced versal base space are toric varieties,

too. Immediately, the following questions arise:

(1) Is it possible to generalize this result to higher-dimensional toric varieties?

(2) How can the toric varieties occuring as total spaces over components (or their

defining rational polyhedral cones) be obtained by combinatorial methods?

(3) What is the versal deformation of a toric variety?

(1.6) In the present paper we address the second question. Let Y be an affine

toric variety. A deformation of Y is said to be toric, if the total space X together with

the embedding of the special fiber Y are contained in the category of toric varieties.

(Cf. Definition (2.1); see [KPR]and [Od] for basic facts about deformation theory

and toric varieties, respectively.) Then, we have obtained the following results:

( i ) If A" is the total space of a toric deformation of Γ, then Y a+ X can be defined
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as the zero set of a binomial regular sequence (cf. Proposition (2.3)). In particular, Y
is a relative complete intersection in X. On the other hand, those regular sequences
induce flat maps from X to some affine space Cm (with Y as special fiber). These
deformations can be considered to be more or less equivalent to the original ones; at
least they are induced from the same component of the versal deformation (cf. (2.4)
and (2.5)).

(ii) There is an elementary geometric construction producing all possibilities to
embed Y equivariantly as a hypersurface into some affine toric variety X (yielding
one-parameter toric deformations of Y). Roughly speaking, this construction works as
follows:

— Let σ denote the rational, polyhedral cone defining Y. Choose some affine
hyperplane intersecting σ in a polyhedron Q. (We can get σ back by taking the
cone over Q.)

— Take a decomposition Q = R0 + Rί of Q into Minkowski summands meeting
certain properties, put Ro and Rx into parallel affine hyperplanes of some larger
affine space, and define P as the convex hull of R0\JR1 (see Figure 1). Then,
dimP = dimg+ 1, and the cone over P (call it σ) provides the toric variety X.

— We find Q back as the intersection of P with the hyperplane sitting between
those containing Ro and Rl9 respectively. In particular, we can embed σ into σ
obtaining the inclusion Ya+X.

(See §3. Actually we will discuss the more general case of so-called homogeneous toric
deformations (cf. Definition (3.1)).)

(iii) The Kodaira-Spencer map of the toric deformations obtained in (ii) is com-
puted in §5.

(1.7) In §6 we focus on the particular case of isolated, toric β-Gorenstein sin-

FlGURE 1.
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gularities of dimension at least three. Using infinitesimal calculations, we first obtain
that they will be rigid,

• if they are not Gorenstein, or
• if they are at least four-dimensional.

For three-dimensional, isolated, toric Gorenstein singularities (given by some lattice
polygon Q) the general theory developed so far becomes easier. Non-trivial deformations
exist in one single degree only; hence, the homogeneous ones cover the whole theory.
They correspond to decompositions of Q into Minkowski sums of other lattice polygons.
(As will be proved in a forthcoming paper, all components of the versal deformation
can be seen in that way.)

ACKNOWLEDGEMENT. I am grateful to Bernd Sturmfels for his question (after my
talk about toric deformations at Cornell University) whether Minkowski sums might
be involved in this subject. Moreover, I would like to thank Duco van Straten who
computed several versal base spaces using the computer program Macaulay, Rob
Koelman, whose permanent interest has helped to figure out two serious errors, and
the referee for many useful comments.

The paper was partly written during a one-year-stay at M.I.T., and I enjoyed the
excellent working conditions there.

2. Toric deformations.

(2.1) Let Y be an affine toric variety over C We want to investigate deformations
of Y with toric total space. For the notation of toric varieties see [Od].

DEFINITION. A deformation of Γ, i.e. a flat map / : X->S with an isomorphism
Y^f-\0) (OeS), is said to be toric, if

( i ) X is an affine, toric variety,
(ii) Ϊ: Y^f~1(0) a+X is a morphism in the category of toric varieties, i.e. it

induces an algebraic group homomorphism Tγ c_> Tx between the embedded tori which
makes / equivariant, and

(iii) / sends the closed Γy-orbit in Y isomorphically onto the closed Γ^-orbit
in X.

REMARK. The rather technical condition (iii) could be replaced by the weaker
(and perhaps more natural) one that asks for mapping the closed Γr-orbit in Y into the
closed rx-orbit in X. This would not essentially change the notion of a toric deformation,
but the actual version of (iii) makes the theory more convenient. In most applications
the closed orbits under the torus action are points, anyway. Since we are actually
interested in the germs of Y, X, and S only, the condition (iii) arises quite naturally
then.

EXAMPLE. Both families Yt-+C3 and Γs->Cof (1.3) are toric deformations of the
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cone over the rational normal curve of degree four.

(2.2) For X and Y as before we introduce the following notation:
• Let M, N be ̂ -dimensional, mutually dual lattices; let σ be a rational poly-

hedral cone in NR\ = N®ZR that does not contain any linear subspace. These
objects are used to build Z=SpecC[a v nM]. (σv denotes the dual cone
ofσ).

• Analogously, we use M, N (of dimension n — m), and σ to obtain Y=
SpecC[σ vnM].

Let Y and f:X-+S meet the conditions (i) and (ii) of Definition (2.1). Then, the

equivariant closed embedding i: Yc^X corresponds to an embedding

on the level of lattices. The dual map i* induces a surjection

/*: <τvnM—» <τvnM

even between the semigroups. The kernel L: = ker i* ̂  M is an m-dimensional sublattice,
and we obtain

N=Nr\L1; σ =

LEMMA. The condition (iii) of Definition (2.1) is equivalent to σ v n L Λ = {0}.

PROOF. The condition that / maps the closed orbit of Y into the closed orbit of
X can be written as

ί*(σv\σ1)£σv\σ-L.

Moreover, to obtain equality of both orbits, the map /* has to induce a bijection
σ 1nM^>σ 1nM, which is equivalent to the injectivity of i* on σL. Now, these two
conditions can be translated into

1 ) = σJ- (i.e. σvnL^σλ) and σ i nL={0} ,

which is equivalent to σ v n L = {0}. •

(2.3) PROPOSITION. Let f: X^S be a toric deformation of Y. Then, the germ
(£,()) is smooth, and the ideal 7: = ker(C[σ vnM]->C[σ vnM]) defining Y^X can be
generated by m binomials xrX-xs\...,xrm-xsmeClσyΐλM']{r\sieσ'/ΐ\M\ri-sieL).
In particular, they form a binomial regular sequence, and Y is a relative complete inter-
section in X.

PROOF. Step 1: A deformation diagram
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Y <=L X

I® I'
{0} c^. S

induces a deformation of the corresponding torus Tr:

1 ® ) /
{0)=.S.

Tγ and Tx are smooth. Hence, Tx splits locally into a product Tx^Tγx S, and the
germ (S, 0) has to be smooth, too.

Step 2: On the level of local rings (at the general points of the closed orbits and
at the special point of S, respectively) we obtain the following diagram:

{flat

Therefore, I'(9x^ = \nS0'ΘX0 is generated by m elements gl9..., gm ((S, 0) is smooth),
and by the Nakayama lemma we can choose these generators among the elements of
the form xr — xs (r, s e σ v n M ; r—seL),

Step 3: Let ϊ: = (gl9..., flfw)^C[σvnAf]. Then, / £ / are ideals in C [ σ v n M ]
meeting the following properties:

( i ) /and /are homogeneous with respect to the M-grading;
(ii) / = / in the local ring ΘXt0.

We want to show /= /. For that purpose, let gel be an arbitrary M-homogeneous
element. By (ii) there exists an ΛeC[σ v nM] with h gel and

hφmo:= 0 C-xr

reσv f)M
rφσ±

(i.e. h contains a term of C[σx n M]); by (i) we can additionally assume h to be M-
homogeneous. Since σ v n L Λ = {0}, this implies that h is a monomial of C[σ x nM],
i.e. h is invertible. •

REMARK. The m vectors rί—s1,..., rm—sm built from the exponents of the bi-
nomial regular sequence generating / are free generators of the sublattice L^M.

PROOF. Let L': = spanz(r1— s1,..., rm—sm)^L. In particular, the ideal / is
homogeneous under the M/Z/-grading of C[σ v n M].

Now, for each leL there are r, seσ v n M such that l=r—s. The monomials xr and
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xs map onto equal functions in Γ(Y, Θγ), hence xr — xsel. Since / does not contain
monomials at all, xr — xs has to be M/L'-homogeneous itself, i.e. r — seL. •

DEFINITION. Those binomial regular sequences defining a relative complete inter-
section between affine toric varieties satisfying (2.1) (ii) and (iii) (as in the previous pro-
position) are said to be toric regular sequences.

(2.4) Christophersen [Ch 1] developed the notion of relative deformations.

DEFINITION. If Yc+Xis a relative complete intersection (i.e. given by a regular
sequence in X), then a relative deformation (of Yin X) over S is given by a commutative
diagram

Ϋ a+XxS

1 ' !•
S = S

(/ is flat) and an isomorphism Y^f~ *(0) compatible with the embeddings into X. Two
relative deformations are said to be equivalent, if they are so as abstract deformations
(without regarding the embeddings).

Relative deformations can be obtained by arbitrary perturbations of the regular
sequence. In particular, they form a smooth subfunctor Defy^x of the deformation
functor Defy. If Y admits a versal deformation with base space Sγ, then the versal
relative deformation of F c ^ I equals the subfamily over some smooth subscheme
Sy^j^Sy. Christophersen has worked out that SY(=+X should be a good candidate
for components of the reduced base space (SV)red.

(2.5) Let / : X-+S be a toric deformation of Y. Then, the diagram

„ (id'Λ

prs

s = s
and Proposition (2.3) show that / : X^S is a relative deformation for the embedding
Ycz+X given by the toric regular sequence g: = (jtfl — xs\ , xrm — xsrn). In particular,
it is induced by some morphism S^>SY^X. If, moreover, / equals the restriction of
the versal family of Y to some component S of (Sγ)red, then S and Sγ ^ x are equal as
germs.

On the other hand, the regular sequence g itself provides a special toric deformation
by regarding the (flat) map g\ X^>Cm. f and g need not be equivalent in general.
However, similar to the case of/, the deformation g is induced by some map Cm-+Sγ ^ x,
i.e. S and Cm map at least into the same component of (Sy) r e d. If, moreover, S=SγζZ^x

(for instance, if / is a component of the versal deformation), then Cm-*SY<=¥X = S is
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an isomorphism, i.e. f=g.

3. Constructing homogeneous, toric regular sequences.

(3.1) The previous section provides motivation for looking for those pairs (Y, X)

of affine toric varieties such that Y is a relative complete intersection in X, given by a

toric regular sequence g.

One possibility for doing so is fixing the "big" space X and searching for those

binomial regular sequences yielding a toric variety as zero set. This was the principal

approach in [Al 2]. However, starting with Y and looking for toric X to map into, is

a completely different story. In this section we will solve this problem, if the sequences

are additionally assumed to be homogeneous:

DEFINITION. If g = (xrl— xs\ . . . , xrm — xsm) is a toric regular sequence defining

Fc_> X, Then the common images FιeM of r\ sιeM are called the degrees of g. The

sequence g (and its associated toric deformation) is said to be homogeneous of degree

r, if r = F1= = rm. (Obviously, if m= 1, then this will always be the case.)

LEMMA. Up to Z-linear transformations, a homogeneous, toric regular sequence g

has the shape g = (xrl —xr°,.. .,xrm — xr°), i.e. ro = s1 = ••• —sm.

PROOF. Choose an arbitrary ^ e j r 1 , . . . , rm, s1, ...,sm}. Then, since rl — r°, sι —

r°eL, the 2m binomials xrl — xr°, xsl — xr° (i= 1, . . . , m) are contained in /. Moreover,

since xrl — xsl = (xrl — xr°) — (x$ι — xr°), they generate this ideal, and we can choose m

among them still doing so (cf. the proof of Proposition (2.3)).

It remains to show that this changing of generators could be done using a Z-linear

transformation only. We regard the following, more general situation: Let xr — xs be

contained in an ideal /generated by binomials xrl — xs\ . . . , xrm — xsm, and assume that

all exponents r, s, rf, .s^eM map onto a single reM. Using the natural M-grading, all

these binomials are homogeneous of degree r. Hence, representing xr — xs as a

C[σ v n M]-linear combination of the generators of/can be done by using homogeneous

coefficients of degree OeM only. Since σ v n L = {0}, they have to be constants. Moreover,

it is obvious that they can be taken even from Z then. •

R E M A R K . If g = (xrί-xr\ ...,xrm-xr°\ then

L=Σ Z'i^-r0)^ X Z O '-V^kerfdeg: 0 Z-r1^
i = l i,j = O \ i = 0

(deg(rf): = 1). The elements r ° , . . . , rm are linearly independent in MR.

(3.2) Now, we approach our main issue. We will produce homogeneous toric

regular sequences (yielding pairs (F, X)) from so-called deformation data.

DEFINITION. Let {A, L) be a pair of a real vector space A and a lattice L^A. A

deformation datum of size m is a tuple (Ro, . . . , Rm; C; p) admitting the following
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properties:
( i ) C^A is a rational polyhedral cone with apex in OeA, and p> 1 is a natural

number.
(ii) Ro,..., Rm^A are rational polyhedra with C as their cone of unbounded

directions, i.e., R{-, = Rt; + C for suitable compact polytopes /£f, / = 0,..., m. (It is possible
to choose these polytopes in a canonical way by taking the convex hull of the vertices
ofRt.)

(3.3) For a given polyhedron P^A and a linear form teA* (tφO, t bounded

below on P) we denote by F(P, t) the face of P that is defined by t being minimal on it.

DEFINITION. A deformation datum (Ro,..., Rm; C; p) is said to be admissible, if
it meets the following conditions:

Case 1: p = 1. For each teCv^A* at least m of the m+ 1 faces F ^ , ί) of Rt

(/ = 0,..., m) contain lattice points.
Case 2: /? > 2. Rx,..., Rm are lattice polyhedra, i.e. they admit only lattice points

as vertices.

The following alternative description will be useful:

LEMMA. A deformation datum (Ro,..., Rm; C; p) is admissible, if and only if for
each teL*nCv the values oft on at least mofthem+l faces F(Rh t) of Rt (/=0,. . . , m)
(or exactly on the faces F(Rl91), . . . , F(Rm, t), if p>2) are integers.

PROOF. Linear forms ί e P n C v yield integers as values on lattice points. Hence,
admissible deformation data always admit the property described in the lemma. To
obtain the opposite implication we proceed in three steps:

Step 1: Perturbing the linear form teCv slightly (inside the cone C v ), the cor-
responding faces F(Rh t) of Rt will at most be replaced by smaller ones. Hence, it will
be sufficient to regard only those / such that each F(Rt, t) is a vertex of Rt. Moreover
if convenient, it will be possible to replace t by suitable linear forms t'eCv close to /
again; they provide the same vertex as /.

Step 2:

CLAIM. Let b°, bιsA \ L , and let teCv \{0}. Then, there exists a linear form
ί'e(Z,*nCv)\{0} such that

• ί'/IUΊI and tl\\t\\ are arbitrarily close to each other, and

PROOF. First we try to meet the latter condition. Choose t°, t1eL* having no
integer value on b°, b1, respectively. If there exists a tj among them such that both
<b°, tj), (b\ tj}φZ, then take t': = tJ. Otherwise, we know that <Z>°, t1}, (b\ t°}eZ
and <Z>°, t°), (b1, tx}φZ. Hence, tf\ = t1 + t2 has the desired property.

Now, we have to improve our linear form t' to obtain the additional property
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t'eC\ If seL* n (int C v), and if NeN\{0} such that N b°, N b1 are contained in the
lattice L, then <Z>°, N's}, <61, N s}eZ. Each element of L* can be put into the cone
C v by adding a sufficiently large multiple of s. Hence, we substitute t' : = t' + (kN)ms
(with k»0).

Finally, we can add sufficiently large multiples of t (which are contained in the
lattice and yield integers as values on b°, b1) to /'. This operation ensures that the
directions t'/\\f\\ and t/\\t\\ are arbitrarily close to each other.

Step 3: If a deformation datum (Ro,..., Rm; C p) is not admissible, then there
exists an element /e C v such that two of the faces F(Rh t) 0 = 0,..., m) equal vertices
(denoted by b°, bι) that are not contained in the lattice (Case p>2: one of the faces
F(Rh t) (/= 1,..., m), denoted by ft0^1).

Let t' be a linear form as constructed in the second step; suppose that t and t'
define the same vertices of Ro,..., Rm (including b° and b1). Then, /' violates the
conditions of the lemma. •

(3.4) To a given deformation datum (Ro,..., Rm; C; p) we associate the following
objects:

(3.4.1.) Define the polyhedron Q to be the Minkowski sum

Q: = R0+ . . . . + * m = C + 0Ro+ .. +KJ = A .

We embed the whole space as an affine hyperplane in a higher-dimensional space:
• NR: = AxR is a vector space containing the lattice N: = LxZ

In particular, φi(Q) is a polyhedron in NR. Denoting by

φ: A <=-rNR; a\->(a90)

the associated linear embedding, we can define F: = SpecC[σ vnM] as the affine toric
variety that is given by the cone

(3.4.2) To define σ and X, we put the polyhedra Ro,..., Rm into parallel affine
planes of a vector space that is large enough.

• NR: = AxRm + 1, N: = LxZm + i; MR: = N$, M: = N*. Denote by Φ:NR^
Rm+1 the projection onto the second factor.

• φ.: A CL» NR; a\-+\ . (e°9...,'e
m denotes the stan-

[ (a,eι) for * = l , . . . , m
dard basis of Zm+1). On the homogeneous level, the affine maps φ0, . . . , φm cor-
respond to the trivial embedding φ: Ac+NR (ακ(α,0)).

Now, we denote by P the convex hull
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and define X: = Spec C[σ v n M] as the affine toric variety given by the cone

(3.4.3) If pr f: R
m+1 ->R denotes the projection onto the i-th factor, we can define

linear maps r°,..., rm: N-+Z by

/? (pr0oφ) for i = 0

prf o φ for / = 1,..., m .

By construction, these maps correspond to elements r ' e d v n M .

(3.4.4) N can be considered as a sublattice of N via the inclusion map

Nc^N, (a; l)ι-»(<z; 1,/?, . . . , p ) .

This embedding admits the following properties:

( i ) N=Nnf)ij(ri — ri)1 = Nn ΠΓ=i (^ — f0)1

(ii) σ = σ(\NR.

In particular, we obtain a map Y-*X which sends 7 into the special fiber of the morphism

X-*Cm defined by the regular functions xrl-xr°, . . . , / m - / ° e C [ σ v n M ] .

(3.5) THEOREM. Starting with an admissible deformation datum (Rθ9..., Rm;

C; /?), the previous construction provides a pair (Y, X) of affine toric varieties such that

Y<ΞLX is given by a homogeneous toric regular sequence xrl — xr°,..., jcrm —JCΓ°. (Looking

at (3.4.4), Y equals the special fiber of X-^Cm.) Moreover, all those pairs (Y, X) arise

in that way.

The proof is contained in §4.

REMARK. Up to isomorphisms, the construction (3.4) will yield the same result,

if the polyhedra Rt from the deformation datum (Ro,..., Rm; C; p) are shifted via vectors

from L (for i> 1) or from p~xL (for /=0).

(3.6) Eventually, let us switch to the natural viewpoint that an affine toric variety

7=SpecC[σ v nM] is given, and we are asking for its (homogeneous) toric de-

formations.

Fixing some degree reσv nM corresponds to the choice of an affine cross cut Q

of the cone σ^NR. Then, the previous theorem tells us that homogeneous toric

deformations of Y arise from certain decompositions of Q into a Minkowski sum.

More precisely, we have to proceed as follows:
(i ) Define the vector space Ao: = {a e NR \ <α, r> = 0}, which contains the lattice
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(ii) Let p be the greatest common divisor of the coordinates of r, i.e. p~ιr is a

primitive element of M.

(iii) Define the affine spaced : = {aeNR\ <α, r> = l}. Fixing some point OeAn

p~1N,v/e obtain a sublattice via L: = 0 + Lo. (In case p = 1, L equals A n TV.) Moreover,

we can use the point 0 to identify {A, L) with the pair (Ao, Lo) providing a linear

structure which was assumed in (3.2).

(iv) Let C: = σ n Ao and Q: = σ n A. Then, by Theorem (3.5), homogeneous regular

sequences of degree r (in some larger affine toric variety X) correspond to admissible

splittings of Q into a Minkowski sum Q = Ro + + Rm.

4. Proof of Theorem (3.5).

(4.1) Let an admissible deformation datum (Ro,..., Rm; C p) be given. We have

to show that the associated data σ, σ and r ° , . . . , rm (cf. (3.4)) provide indeed a toric

regular sequence.

(4.1.1) σv n M—» σv nM is surjective: Let 5 e M such that

<(c°+ ••• +cm;p-\ l , . . . , l ) , s > > 0 for c'eΛ,, /=0, . . . , m

(i.e. c°+ ••• + c m e 0 ;

it means that s maps onto an element seσv r\M. We have to show that s can be lifted

to σ v n M .

Projecting s to the Λ*-component, we obtain an element t = s\ΛeL*n C v . Since

our deformation element is admissible, we may assume that, on the faces

F(RU ή,..., F(Rm, t), the linear form t provides integers only. Hence, even on the

embedded polyhedra φ^Ri),..,, φm(Rm)^NR, the minimal value of s is contained in

Z. Denote these values by kt and suppose that they occur at points (c1, e ' )e $,•(/£,•)£

Modifying s by s:=s — Y^=1ki'r
i + (^=1ki)

9r°, we can assume that s is

negative on φ^RJ,..., φm(Rm)^NR and, moreover, <(cf, e'), s> = 0 for /= 1, . . . , m.

Now, if c°eR0 (embedded as ( C ° , / 7 ~ 1 ^ ° ) G ( / ) 0 ( Λ 0 ) ^ Λ ^ | I ) is given, we obtain

Σ Λ>

Hence, 5 is contained in σ v .

(4.1.2) σv r\LR = {0} ( L Λ : = ker(MR—»• MR)): The cone σ contains points from

Φ~1(e°)9..., Φ~1(em). In particular, a non-trivial element of L Λ = ker(deg: 0 ^ = o / ?

r1—»• R) cannot be contained in σ v .

(4.1.3) JΓe show that 7 = k e r ( C [ σ v n M ] — * C [ σ v n M ] ) w generated by xrί-

xr°,. ..,xrm — xr°: Let x r — x s e 7 be any binomial element of /, i.e. r, s e σ v n M ,

r — seL. Hence,
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Defining

this linear form will equal r or s, if it is restricted to the polyhedra φi(Ri) with gt<0
or #£>(), respectively. In particular, q is non-negative at P, i.e. qeσvnM. Now,
expressing x r — xs as a linear combination of the generators xrl — xr° is straightforward.

(4.2) It remains to prove that all homogeneous, toric regular sequences can be
obtained from deformation data. Hence, in the remainder of §4 we assume that we are
given such a sequence xrί — xr°,..., xrrn — xr° defining a relative complete intersection

LEMMA. Let r,seσvnM such that r — seL\{0}. Then, there are two different
indices ϊ,;e{0,..., m) satisfying r — r\ s — rjeσv.

PROOF. Since xr — xsel, there must be some equation

xr-xs = Σcμx
tμ(xrHμ)-xr°) (cμeC; tμeσvnM).

In particular, both exponents r and s have to occur somewhere on the right hand side
providing the existence of the desired r\ rj. Moreover, if rl = r\ then we could apply
that procedure to r' \ = r%—rι and sr : = s — ri again. This recursion eventually stops. •

(4.3) LEMMA. Denote by reM=M/L the common image of the elements r °, . . . ,
rm via the surjection M—* M. We obtain:

(1) f is not trivial on σ^NR.
(2) Let f=p*f' (peN, r' eM primitive). Then, without loss of generality, r° is also

divisible by p and can be written as r°=p r°. Moreover, the elements r°, r1, . . . , rm equal
a part of a Z-basis of the lattice M.

PROOF. Step 1: If r were trivial on σ, not only f but also — r would belong to
σ v . In particular, there would be an r e σ v (lifting — r) such that

r + r i 6 σ v n L = {0}, i.e. - r ' e σ v for i=0,..., m .

Hence, the linearly independent vectors r° — rι would have to be contained in σ v n L =
{0}, which is impossible.

Step 2: Since σ v n M — » σ v n M is surjective, the element F'eσvnM can be
lifted to some f ε σ v n M. Then, p r differs from r°, . . . , rm by L-elements only, and we
can apply the previous lemma. There has to be an index is {0,..., m} such that p r — r1

is contained in σ v . On the other hand, p r — rι is obviously contained in the lattice L,
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and we obtain/? f— r i e σ v n L = {0}. We may assume that /=0.
Step 3: We will show that there are lattice elements WGN for / = 0 , . . . , m such

that

p for /=0
and

1 for / = 1 , . . . , m

for jφi.

Since, for a fixed /, (rι — rj)je{Otm}^{i} is a basis of the lattice L^M, it is possible to
choose an element bleN such that (b\ ri — rj} = \, i.e.

<^r'"> = <6 l>'>+ 1 (for jΦΐ).

r ' eMis primitive, hence, there is a bEN=LLnN such that <ft, r'> = 1. Therefore,

(h,rjy=p for 7 = 0, . . . , m .

Case 1: /> 1. The equation <#, ri} = {bi, rj} +1 O'#0 implies

in particular, p|<fe£, r /> for jΦί. Hence, there is a keZ such that the improved
tf'.^W + k b additionally yields (b\ rj} = 0 (jφi).

Case 2: /=0. Here, we have to use the modification b° :=p-b° + k-b (with suita-
ble keZ) to obtain the equations <*°,r /> = 0 (y> 1). •

(4.4) LEMMA. Lei rsM be such that, for each index i = 0,..., m, ίί cαw fee pushed
into σ v without using rι\

r+ Σ λ)-rjeσw {for some λ)eZ).

Then, r itself is contained in σ v .

PROOF. We will proceed by induction on Σjλj. To do so we first have to modify
the presumption of the lemma slightly: For reM suppose that

r + ΣΛ,j r ' e σ v with λjeZ, λ\<Q, and Σλ) is constant in/.
j j

(The latter fact can be obtained by increasing some of the coefficients λ) W\\h jφί.)
Now, on the one hand, the sum Σj^j is bounded below. (Look at the vector space MR:
Subtracting f sufficiently often from a given point leads out of the cone σv.) On the
other hand, as soon as the elements r + Σjλj-rj are not equal to one anothers (for
different /), we can apply (4.2) to all these elements. We obtain r + £\(Λ,jy H e σ v

with {λfi = λ) or λ)-\ and Σ Γ ^ o ί ^ ^ Σ Γ ^ o ^ i " 1 - Therefore, only the case that the
coefficients λ] do not depend on / is left. This implies λ] = λj < 0; hence, with r + Σ jΛ)' r\ r

has to be contained in σ v, too. •
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COROLLARY. We can replace the fact Lnσ v = {0} by an even stronger statement:
If any linear combination Σ™=oλj'rj (with integer coefficients λjβZ) is contained in

σ v n Λf, then each of the coefficients will be non-negative.

PROOF. Assume that λj<0. Then, the element r: = λi ri admits the following
properties:

r+Σλj rjeσv and r - V r 4 e σ v .

In particular, r fulfils the assumption of the previous lemma. We obtain — rιeσv, but
this cannot be true (cf. Step 1 in the proof of Lemma (4.3)). •

(4.5) Now, we start with the direct construction of the deformation datum that
shall induce the given toric regular sequence. Let

(^,L): = [(r°)±n ••• n ^ ^ r Y n ••• nίr^nΛΓ] and

C: = (ro)λ n ••• n ^ n f f c ^ ,

Fixing some point in each of the sets

{aep-1N\{a9r
oy = l,(a,rjy = 0 for jΦO} and

{aeJV|<a,rf> = l, <a,r'> = 0 fory#i] (for ι = l , . . . , m ) ,

we obtain m +1 different affine embeddings A c=-+NR which induce isomorphisms

\(a9r
i) = l,(a,rjy = O for jφϊ) (/>0) and

L-*U{aeN\(a,riy = l,<a,rjy = O for jφi) (only for i>\ oτ p=\).

Hence, with

Ri: = ΦΓί(σn{aeNR\<a,riy = l,(a,rJy = O for jφi})

we have got w+1 polyhedra Ro,..., Rm^Λ admitting C as their cone of unbounded
directions (i.e. R{ = C+compact set).

LEMMA.

(1) The polyhedra Ro,..., Rm are not empty.

(2) σ = CuΛ^0 conv(UΓ=o^W))

PROOF. (1) We define some auxiliary cones in NR:

(for / = 0 , . . . , m ) .

Then, the claim RtΦ0 is equivalent to the fact that the cone C is properly contained
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in C{. We will switch to the dual level showing Cf

v <= C v : The dual cone Cv ^ MR can
be obtained as the pull back of C v regarded as a subset of MR/spanR(r°9..., rm).
Moreover, the latter one equals the image of σv via the canonical projection. Looking
at Cι in the same way (taken spanκ(r°,..., r\ . . . , rm) instead of spanR(r°,..., rm)),
we obtain

Hence, it suffices to check that —r^φCϊ: The opposite would mean that there is an
r e σ v such that r and —r{ differ by an element of «5?(r°,..., r\ ..., rm) only, i.e.

r + r * = Σ λj-rj in MR .

Enlarging the coefficients λj9 we may assume that they are integers, but then the fact
— r ί + ̂ ^.:?t.AJ r JGσ v contradicts the previous corollary.

(2) The second part of the lemma is equivalent to the facttσ = ̂ ^ = 0 C ί (or to

σ

 v = f| ™=0 cy). However, since

C? =σv + £ R rj (obtained in the first part of the proof),

this was already shown in Lemma (4.4). •

(4.6) We finish the proof of Theorem (3.5) by showing that the deformation
datum just constructed is admissible:

Step 1: Let ί e L * n C v , and assume without loss of generality that it has no
integers as values on the faces F(R0, i) and F{RU t) (or only on F(RU i) in case of p>2).
Let b°,...,bmeNR be points of the faces F(R0, t),..., F(Rm, t)in the embedded
polyhedra φo(Ro),..., φm(Rm) Then, teL* can be lifted to TeM such that

<Z>°, Ty;(b\T>φZ (even in the case p > 2).

(For /> 1 or p= 1, the value of t on F(Ri91) equals <#, T} in Q/Z. In the case ι = 0,
p>2, the value of (Jb°, T} is determined up to ρ~ιZ only. In particular, we can choose
T in such a way that this value is not an integer.)

Step 2: Denote by q0, qxeQ the numbers qt: = (b\ T}. Then, there is an integer
k>\ such that [kqo + kq1'] = [kqo'] + [kq1'] + 1. ([•••] denotes the integral part, and k
can always be obtained as one of the two possibilities k = 1 or k = (common denominator
of q0, <7i) — 1.) Therefore, we obtain

if / and T are replaced by kt and A:Γ, respectively. (This operation does not change the
faces F{Ri9t) of RJ

Step 3: Now, we modify our T by adding elements of spanR(r°, . . . , rm); it re-
mains a lifting of t, and the values of (b\ Γ> do not change in QjZ. It is possible to
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obtain the following situation:

<Λ°,Γ>e[-l,0) and <#, Γ>e[0, 1) (for i = l , . . . , m),

i.e. Γis not contained in the cone σ v and even cannot be put into σ v by adding vectors
of the sublattice L^M only. On the other hand, the result of the second step yields that

m \

Σ b\T)=0.
I

This means that Γis non-negative on the cone σ = CuR>0-(φ0(R0)+ + φm(Rm)).
Hence, we have found an element of σv nM that cannot be lifted to σ v nM. This is a
contradiction to the fact that σ and r°,. . ., rm define a toric regular sequence.

5. The Kodaira-Spencer map.

(5.1) Let (i? 0,.. ., Rm;C;p) be an admissible deformation datum (Ri9 C^A).
Then, in (3.4) we have defined cones σ^σ^NR and elements r°,. . ., r m e σ v nM such
that the map

Spec C[σ v n M] — -̂> Cm (defined by the regular functions

xrί-xr\ . . . , jc r M -x r °eC[σ v nM])

yields a deformation of the special fiber y=SpecC[σ v nM]. Now, we will compute
the Kodaira-Spencer map

Q: Cm=T0C
m^TΪ

associated to this deformation. (Ty is the vector space of infinitesimal deformations of
Y. Turning out to equal the tangent space of the versal base space Sγ, it can originally
be defined as

T} = Hom(///2, C[σ vnM])/Hom(C[σ vnM]w, C[σ v nM])

here / denotes the kernel of some surjective map C\_zl9..., zw]—» C[σ n M] providing
an embedding of Y into Cw, and I/I2 maps to C[σ v n M ] w via taking partial derivatives.
For basic facts about deformation theory see [KPR].)

(5.2) For toric varieties the vector space T$ is M-graded. In [Al 1, Theorem (2.3)]
we have determined its homogeneous pieces Tγ( — R) (ReM) as

7? (- R)=(L( U .! ̂  Σ

(Explanation of the used notation:
(1) If σ^NR is given by its fundamental generators σ = <α 1 , . . . , aN} (i.e. ajeN

are the primitive edges of <τ, and σ v = { r e M R | <V, r>>0 for 7= 1,..., N})9 then we
define the following sets:
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E: = {s1,..., s™} = set of generators of the semigroup σ v n M

« \ s v } < ( a \ R ) } 0 = 1 , . . . , N) .

(2) For any subset of MR we denote by L( ) the R-vector space of all linear

dependences among its elements. In particular, there is a canonical embedding

Moreover, the monomials xsV (sveE) generate the algebra C [ σ v n M ] , i.e. they

provide a special surjection C[zu . . . , z w ] — * C [ σ v n M ] . Its kernel / is generated by

binomials za — zβ satisfying the condition Σv ocvs
v = Σvβvs

v. Now, if φ: L(E)^R is some

linear map vanishing on £^L(isf), then via the previous formula it induces the same

elements of Tγ( — R) as does the map

/// 2 -C[σ v nM]; za-zβ^φ(<x-β) χΣv*«*v-R

via the defining equation of T$ in (5.1) (see [Al 1, §3] or [Al 3, Theorem (3.4)]).

(5.3) The cone σ was defined as the cone over the polyhedron Q = Ro + + Rm

embedded into the affine hyperplane { ( Φ , / ? " 1 ) } ^ ^ XR = NR. Hence, the elements of E

can be written as

sv = tcv,ηv] with cveL*nC\ ηveZ, and

<α, -pcv}<ηv for aeQ (since ({a,p~ι\ [_c\

Let {s\...,sm} be an arbitrary lift of E to σvnM^M=L* xZm + 1, i.e.

sv = ίcv;ηvo,...,ηv

m-] with ^ f e Z , ^ + / » / ϊ + ' * ' +pηv

m = rjv and

5 for aeR0

η? for aeRi (*>1).

REMARK. Those integers η? exist, because the given deformation datum is ad-

missible. In m out of the ra + 1 possibilities ί = 0 , . . . , m the linear form cv has integer

value on F{Ri9 cv), and we can take this value for — η?.

THEOREM. ( i ) The Kodaira-Spencer map sends the whole space Cm into the

homogeneous summand Ty( — r). (The lattice point reσvnM was defined as either the

common image [0,/?] of r°, . . . , r m , or by the fact that Q is contained in the affine

hyperplane [r = 1] of NR.)

(ii) Using the T\-formula of (5.2), the Kodaira-Spencer map equals

( I N

induced by the bilinear map Rm x L(E)-*R that is described by the matrix
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η{ ...η

REMARK. The previous theorem justifies the notions "degree" or "homogeneous"

built up in (3.1). On the other hand, it shows the limits of the concept of toric

deformations; only "strictly negative" degrees (i.e. — r with reσvr\M) occur in the

image of the Kodaira-Spencer map.

(5.4) PROOF. Step 1: We show that the map ρ(eι') L(E)-+R(q = (qv)v=u fW\-+

ΣΓ=i tfϊQv) a r e trivial on each L{E]).

First, we notice that

EjΦ0oajφCo(aJ, r}>0<=>aj corresponds to a vertex of Q .

Let aj = (a*, P~*) be one of the fundamental generators of σ that meets these properties.

Then, α* splits into a sum β* = α £ + + α * , and a^eRt are vertices defined all by

the same hyperplane / e I * n C v as a*eQ. Since our deformation datum is admissible,

m of these vertices (say af,..., α*) have to be contained in the lattice L.

For an element qeL(E) the property "qeL(E])" means that the components qv

are allowed to be non-trivial at most for <(#*, p~x)> [ ^ */"]>< <(<**> P1), O Since

r = [0,/?], this condition is equivalent to

Restricting ourselves to those indices v, we obtain

<ηvo+pηvi+ •••

The numbers <αί*, —pcv} (ι> 1) are contained in pZ; hence

η! = <ar,-cυ> (for i = l , . . . , / w ) and IJS = ̂ + Σ <***,/*">

Therefore, if qeL(E]\ the equation Σ « , ^ β [ ^ I?T = ° implies Σ υ ^ ^ = 0 for ι = 0 , . . . ,

m.

Step 2: To compute the image of the /-th canonical unit vector e ' e C m via the

Kodaira-Spencer map, we may assume without loss of generality that i= 1 and consider

the ring

2 , x
2-xr\ . . . , xrm-xr°).

Via ε κ ( / - x r ° ) this is a flat C[ε]/ε2-algebra and, moreover, Λ\ = A® C[ε]/ε equals

the ring C[σ v nM]. Spec^ is the infinitesimal deformation of Γ=Spec^4 obtained by

restricting our toric deformation to the tangent vector e1 eCm= T0C
m, and the
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corresponding class in Ty is induced from the ^-linear map φ: I/I2->A described by

V " ' o — (computed in A) \eA .

x —x J

We compute xjj for P(z) = za — zβ (as already mentioned in (5.2), those binomials generate

the ideal /). Inside the semigroup σ v n M it is possible to write

(av-βv)-s' = £ grr
ι LeZ, Σft=θ)

i=0 \ i /v=l

CLAIM. ^ " - Z ^ ^ J C ^ ^ - ^ I

PROOF. Similar to (4.1.3) we know that

g:= Σ α r . ^ - Σ ft

+ r'= Σ ^ ' ^ - Σ
y = l i = 0 y = l i=0

is contained in σ v nM. Hence,

=x" ( Π {x'Ψ ~ Π (^r')9Γ ) (in the ring C[σ v n M]),
\i=0 1=0 /

Assuming ^ ! >0, we obtain in the ring A:

)-9t-( J (jC r > +

In particular,

Step 3: To finish the proof, we have to involve the η's. Since

= (θ; J ηvo(«υ-βv),

^ ^ f Σ fS(«.-Λ)) ' 0 + Σ ( Σ *"(«„-/*.

we obtain g f 1 = Σ 1 ) ' ί ϊ ( ^ - ^ ) Hence,
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and we are done by the last remark of (5.2). •

(5.5) The set of Minkowski summands of /?> 0 Q itself forms a polyhedral cone.
Regarding summands homothetic to Q as trivial (i.e. projecting the associated poirits
in the cone onto 0), the cone of Minkowski summands turns into a vector space denoted
by T1(Q). We will compare this so-called vector space of Minkowski summands of Q
with the homogeneous piece Tγ( — r).

DEFINITION. Using the notation of (5.2), let Fj be the set of normalized (i.e. integral
and primitive) fundamental generators of the face σv n(aj)L<σv. Then, we define

if aj corresponds to a vertex of Q
F

J [0 otherwise

and, similar to the Tγ( — f)-formula of (5.2),

Tγ{-r): =

REMARK. The inclusions L{F))cL{E]) and L((J^F])cL(|J^£f) yield a canon-
ical linear map 0: Tγ( — r)^f}( — r) which is, in general, neither injective nor surjec-
tive. (Compare with Lemma (6.4) in the Gorenstein case!) Composed with the Kodaira-
Spencer map it equals

θoρ: Cm-+fγ(-r); ^ [ ^ Σ ^ maxOR,, -c">] .
V

PROOF. Only a brief notice to the latter formula is necessary. The composite map
θoρ is still given (as ρ itself) by (e\q)h^»Σvη?qv. However, if [cv,ηv~\e\JjFj9 the
general inequality <β, —pcv}<ηv becomes sharp {[cv, ηv]eFj implies <αJ', —pcv} = ηv);
hence ί/5 = max<Λ0, — pcv} and f//; = max<Λi, — cv} (ι= 1,..., m). •

If R is a Minkowski summand of some positive multiple of β, it will be given by
inequalities similar to those describing Q. We define the class [K]e Tγ{ — r) via

[*]•• tf = (ί,)p'->Σmax<J?, -cvy .
V

PROPOSITION (cf. [Sm]). Taking the class of a Minkowski summand provides an
isomorphism of vector spaces T1{Q)®RC -3. Tγ( — r).

Using this identification, the Kodaira-Spencer mapθ°ρ : Cm-+Tί(Q)® C sends

the i-th unit vector eι onto the /-th Minkowski summand Rt.

(5.6) Let (Ro,..., Λm; C p) be an admissible deformation datum. Just to dem-
onstrate that the construction described in (3.4) almost never produces trivial defor-
mations, we will explain what it means for our deformation datum to induce a trivial
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Kodaira-Spencer map.

PROPOSITION. The Kodaira-Spencer map ρ: Cm-*Ty is trivial, if and only if, up to

certain shifts of the polyhedra (cf Remark (3.5)), the deformation datum fits in one of

the following two classes:

(A) With at most one single exception (which has to be Ro, if p>2) the polyhedra

Rι equal the cone C. In particular, Q equals the exceptional summand.

(B) p— 1, and there exist a lattice polyhedron R and natural numbers gteN such

that Ri = gi-R + C(i = O,...,m).Inparticular, Q = (Σ?=oβi)'R + C'

PROOF. It is easy to check that deformations of type (A) or (B) yield trivial

Kodaira-Spencer maps. Hence, we focus on the opposite implication. First, linear alge-

bra tells us that, if

1
m- ' Άm

induces a trivial bilinear map Rm x L((J .E])^R, there exist elements bteA, βteR such

that

(*) ηϊ = <bhc
v} + βiη

v for sve \J E) (ϊ = 0 , . . . , m ) .

The set (J .E) contains all pairs {cυ, ηv~\ that are necessary to define Q via the inequalities

< , —pcuy<ηv. Since the adapted inequalities < , —pcvs)<pn\ (or <η£) characterize

the Minkowski summands Rt then, we obtain

Ro^-p-^o + βo Q + C and Rt=-bi+pβrQ + C (/>1).

(If the coefficient β( does not vanish, then adding C in the formula for Rt is not neces-

sary.)

Having assumed (Ro,..., Rm; C;p) to be admissible, we know that for every

c e L * n C v there are m special indices out of {0,..., m) (but only for p= 1 the choice

may really depend on c) featuring certain properties described in (3.3). We distinguish

two cases:

Case 1: There is a ceL* n C v such that j8f = 0 for all associated special indices /.

Let i= 1,..., m be these special indices for c. Since βx= = βm = 0, we obtain

Rι= — bι + C for i> 1. On the other hand, admissibility implies that the &f's have to be

lattice points; we have obtained (A).

Case 2: For every ceLr\Cv there is at least one of the associated special indices

/such that βiΦO.

Assume i= 1,..., m to be the special indices associated to some c. We choose a

vertex a*eQ providing minimal value of the linear from c on β. As usual, a* splits

into a sum a* = aξ+ . . . + # * , and a^eRt are vertices minimizing c on Rt.
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CLAIM. Let ηeZsuch that η-p<(a*, —pc}<η. Then, <<z*, —pc) = η.

PROOF. The vertex a* of Q corresponds to some of the fundamental generators
aj = {a*,p~1) of σ. Then, the assumptions of the claim are equivalent to the facts
[c, 7/] e σ v and (aj, [c, η\}< (a\ r>, and we have to show that <αJ, [c, η\) = 0.

We may additionally assume that [c, η] is an irreducible element of the semigroup
σ v n Af, i.e. [c, 77] e£J. Then, Step 1 of (5.4) shows that ιy, = <αi*, -c> for ι= 1,..., m.
Combining this with (*) and the previous formula for the Rt's (implying

), we obtain

= ηi = (a?, -c} = <-bi+pβia*, -*> = <&„ c>+ft<α , -pc) .

Hence, βiη = βi(a*, —pc} for i= 1,..., m. Since βtφ0 for at least one of these indices,
we are done. Π

Applying this claim to 77: = [<#*, — pc}] + \ (the smallest integer greater than
<<z*, —pc)), we obtain two important facts: /?= 1, and

<α*, -c> = max<<2, - c ) e Z .

In particular, Q has to be a lattice polyhedron, and, by admissibility, so do the summands
Ro,..., Rm. Moreover, we know that they are all homothetic to Q, and this means (B).

D

(5.7) Deformation data of type A yield trivial deformations: The element r =
[0,/?]e<τvnM (cf. (5.3)) induces a regular function xreΓ(Y, Θγ). Now, given a de-
formation datum of type A, the associated toric deformation Y^X^Cm can be
described as follows:

• X=YxCm.
• If zl9..., zm denote coordinates on Cm, then the flat projection X-tC" is given

by (zί — x\ . . . , zm — xr). Hence, Y is defined by the equations zt = =zm = xr

in X.
A change of coordinates in X (zf

i: = zi — xr) shows that this deformation is indeed a
trivial one.

(5.8) Description of type B deformations: First, we should remark that non-
trivial deformation data of type B (i.e. gt >0 for at least two indices /) do not exist, if Y is
smooth in codimension two. (If/?= 1 and Q is a lattice polyhedron, then this smoothness
condition is equivalent to the fact that the edges do not contain interior lattice points.
In particular, Q cannot equal a non-trivial multiple of some other lattice polyhedron.)

Now, if a deformation datum of type (B) is given, denote by V the affine toric
Gorenstein variety induced from the polyhedron R in the same way as Y is induced
from Q. Then, the relations among V, Y and X can be described in the following way:

( i ) The lattice point FeM defines coordinate functions t and z on V and F,
respectively. On the other hand, z: Γ-*Ccan be obtained from t: V-+C via base change
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π: C-+C, z\-^zg.

(ii) The elements r ° , . . . , r m e σ v n M define variables z0, . . . , z m on X. Then,

(z0, . . . , z j : A r -^C m + 1 can be obtained from t\ K->C via base change C m + 1->C,

( z 0 , . . . , zm) γ-+ zg° zj,m. In particular, there is a natural map πx: .Γ-* V.

(iii) Γ ^ x i s given by the equations z:=zo= = z m .

EXAMPLE. tf = [0, l ] ^ / ? 1 ; m = l ; go = g i = l, g = 2.

Then, we obtain

F=C 2 (x,) ;) and t = xy,

γ= lz2=xy-\ <= C3(x, y, z) and

= xy] c C4(x, y, z0, zx) .

The maps π : F-> F and πx: A"-> F equal the projections onto the (x, y)-coordinates,

respectively.

PROPOSITION. Let (g0-R,..., gm-R; C; 1) be a deformation datum of type B. Let

Q = g R with 0: = ΣΓ=o0ί' and ^et Y> V> ^ z> and t he as mentioned above.

(1) The deformation datum {RQ: = {U}, R1: — R;C;g) defines a one-parameter

deformation of Y (of degree g f) which is equal to
(π,z)

Y cz_> VxC(z)

{0} c ^ C.

(2) The toric deformation induced by (go

mR,..., gm R; C; 1) can be regarded as a

relative deformation of Y inside VxC.

PROOF. All statements made in the proposition and the previous remarks are

straightforward; the only thing we have to do is to describe the embedding of the

original deformation / : X-+Cm into the trivial deformation of VxC:

cm = cm

with i=(πX9 zo; st :=zt — z0). Π

EXAMPLE. We continue our previous example: The one-parameter deformation

of Y—[z2 = xy~\^C3 (described in (1) of the proposition) is given by the flat map

z2-xy:C3->C.

Now, we can regard sx: X-+C as a relative deformation of Y inside C 3 : The map

i: X<=-+C\x, y, z, s j , (x, y, z0, z1)\-^{x, y, z0, z±— z0), makes X the closed subset of

C3 xC that is given by the equation
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z 2 — xy + s1z = z(s1+z) — xy = 0.

Moreover, since (z + ̂ /2)2— sf/4 = z(s1 + z), the deformation st: X-+C\s equivalent to
the relative deformation obtained from the perturbation

(z2-xy)-s2/4 of (x2-xy).

In particular, this deformation is not a trivial one; the vanishing of the Kodaira-Spencer
map comes from the occurrence of s2 instead of sx.

6. Toric β-Gorenstein singularities.
(6.1) A variety Y is said to be (Q-) Gorenstein, if (the reflexive hull of some tensor

power of) the dualizing sheaf ωγ is an invertible sheaf on Y. This class of singularities
can be considered the next more general one beyond complete intersections.

FACT. Let Γ=SpecC[<τvnM] be an affine toric variety given by a cone σ =
<α\ . . . , aN} with a1,..., aN eNprimitive. Then, Y is Q-Gorenstein, if and only if there
are a primitive element R*eM and a natural number gsN such that

(aj,R*} = g for each j=l,...,N.

Moreover, Y is Gorenstein, if and only if g = l.

PROOF. Since toric varieties are normal, the dualizing sheaf can be obtained as
the push forward of the canonical sheaf on the smooth part. Hence, in our special
situation, ωγ equals the Γ-invariant fractional ideal that is given by the order function
mapping each fundamental generator aj onto 1 e Z. On the other hand, the suggested
condition means that the g-th multiple of this order function equals some linear form
from M, i.e. corresponds to some invertible sheaf. (See Theorem 1.9 in [Ke].) •

Affine toric varieties of dimension two (the two-dimensional cyclic quotient singu-
larities) are always β-Gorenstein. The deformation theory has been well studied (cf.
(1.4)) and appears to be different from that of the higher-dimensional singularities. In
the present section, we will focus on the deformation theory of toric β-Gorenstein sin-
gularities that are smooth in codimension two; assume that F=SpecC[σ v nM] has
this property. Denoting by Q the convex hull Q: = conv(β1,..., aN), we know that

• Q is a lattice polytope (i.e. compact lattice polyhedron) contained in the affine
hyperplane [< , i ? * > = ^ ] c M B (since Yis β-Gorenstein), and

• the one-dimensional edges of Q do not contain any interior lattice point (since
Y is smooth in codimension two).

REMARK. In most cases we will assume g=l. Then, the previously defined
polyhedron Q coincides with the older, equally named one (introduced in (3.4.1) or
(3.6)) for the special degree r: = R*. Since R* will turn out to be the most interesting
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(and in many cases the only non-trivial) degree for the deformation theory of toric

Gorenstein singularities, this slight abuse of notation should be more helpful than being

a problem.

(6.2) LEMMA. Let Y be a Q-Gorensteίn variety which is smooth in codimensίon

two. If REM is a degree such that (aj,R}>2for some ye{l,..., N}9 then Tγ( — R)

= 0.

PROOF. In general, if Y is not necessary β-Gorenstein but smooth in codimension

two (i.e. if all two-dimensional faces (a\ aj}<σ are spanned by a part of a Z-basis of

the lattice N), there is an additional formula for T} (cf. [Al 1, (4.4)]). Let REM: then,

with

0 for (aj,R}<0

[aj = 0] £ MR for <αJ, R} = 1

MR for (aj,R}>2,

it says

®VS)I( Σ V?nVf)-^ Kf+ ••• + F * T .
/ \<α'fβJ><σ / J

Now, let Y and R as assumed in the lemma. Defining

we obtain a hyperplane in NR that subdivides the set of fundamental generators of

σ. The sets H~, H, and H+ contain the elements aj meeting the properties <αJ, i^><0,

(aj, R} = 1, and <αJ, R}<2, respectively. Our assumption on R implies that the latter

class of generators is not empty. Moreover, we can fix a map

such that for each ajEH the element aφij) is contained in H+ and adjacent to aj (i.e.

{aj, aφU)}^σ spans a two-dimensional face of σ).

Assume that we are given an element v = (vu . . . , VN)E Vf ® 0Kjf such that

v1 + +vN = 0. Adding the terms [ — Vj ej + Vj eφU)~] (for <αJ, R} = 1) does not change

the equivalence class of v modulo Σ < β i α J > < ( T V*n Vf. However, non-trivial components

survive for (aj, R}>2 (corresponding to Vf = MR) only.

The set of those special generators aj is connected by two-dimensional faces of σ.

Moreover, by slightly perturbing R inside MR, we can find a unique a* among these

edges on which R is maximal. Then, each aj E H+ is connected with a* by an Λ-monotone

path (consisting of two-faces of σ) inside H+. Now, we can use the previous method

of cleaning the components of v once more; the steps from aj to aφ(j) are replaced by

the steps on the path from aj to a*. There remains an TV-tuple v which is non-trivial

at most at the α*-place. On the other hand, the components of v sum up to 0, but this
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yields ι? = 0. •

(6.3) If <V, R} < 1 for every y e {1,..., TV}, then equality holds on some face τ < σ.
The cone τ is top-dimensional in the linear subspace τ — τ^NR, and it defines a variety
γτ = Spec C[(τ v n M)/(τλ n M)] which is even Gorenstein. The corresponding element
R* eM\(τL n M) can be obtained as the image of R as well as that of g~XR* using the
canonical projection MR—>• MR\τL.

LEMMA. In general (even the Q-Gorenstein assumption can be dropped), let τ<σ
by a face such that (aj,R)>\ for ajeτ and (aj,R)<0 otherwise. Then, T$(-R) =

τ1). In the special situation discussed previously this means Tγ( — R) =

PROOF. The ^-formula of (5.2) remains true, if E is replaced by an arbitrary (not
necessarily minimal) generating subset of σ v n M; even a multiset (featuring its elements
with multiplicities) could be allowed. Hence, for computing Tγτ( — R + τL), we can use
the image E of E via the projection

<τvnM—»((σv + τ ± )nM)/(r L nM).

For ajeτ, the corresponding sets Ef+τl£ E coincide with the images of the subsets Ef.
For ajφτ, the notion Ef+τ± does not make sense, and the Ef are empty, anyway. It
remains to show that the canonical map

4 \jE*)h UEf) -+ L( U Ef+A I Σ L(Ef+τ±)

is an isomorphism.
The vector space τ 1 is generated by τ-Ln(P|β i e t£

r*). Hence, by choosing a basis
among these elements, we can embed τ 1 into j?τ±n(Πτ£i) to obtain a section of

Π f ( Γ
aJeτ \J= 1

(..., λr,.. \e\j»=ίEj •-» Σ λr-reτ±^

In particular, we obtain

L(Ef+τ±) = L(Ef)@τ1 (ajeτ) and L( \J E?+A = L( (j

D

(6.4) LEMMA. Let Y be an affine torίc Gorenstein variety (i.e. g = l) induced from
a lattice polytope Q. Then, in degree —R*9 the linear mapθ: T}(-R*)^>f}(-R*)
introduced in (5.5) is an isomorphism. In particular, the vector space Tγ( — R*) equals the
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complexified vector space Γ * ( 0 (x) C of Minkowskί summands of Q.

PROOF. For the special degree R*EM we have Ef* = Er\(aj)L. Now, let

se\JN

j=1Rf*^dσw be an element that is not a fundamental generator of σ v . Then,

there is a minimal face α < σ v containing s (as a relatively interior point), and we can

choose some fundamental generators s1,..., ske<x providing s = YJ

k

v=1λυs
v (λveR>0).

For each Ef* containing s (which is equivalent to α < ( α J ) 1 n σ v ) this defines a

decomposition

L(Ef*) = L(Ef*\{s})®R-[relation s = Σ λ v

i.e. the second summand can be reduced in the formula for T}(-R*) (cf. (5.2)). Since

the map θ consists of those steps only, we are done. •

(6.5) We collect the results of (6.2)-(6.4). Let Y be an affine toric β-Gorenstein

variety which is smooth in codimension two; let Q = conv(α * , . . . , aN) ^ [< , R * > = #] ^

NR be the corresponding lattice polytope. Using the notation of (5.5) (and fx(0): = 0),

we obtain the following two equivalent descriptions of Tγ .

THEOREM. (1) Let REM. Then

T1(conv{aj I <y, R} = 1}) ® C if (aj, R} < 1 V/

0 otherwise.

(2) Let τ<σ be a face of σ. Then

Tγ(l-g~ίR* + int(σvnτ1)] n M)=T1(Qnτ).

TY vanishes in the remaining degrees.

Immediately, we can state some applications as a corollary:

COROLLARY. (1) If every two-face of Q is a triangle (for instance, if Y is smooth

in codimension three), the Y is rigid, i.e. Tγ=0.

(2) If Y is Gorenstein (g=l) of dimension at least four (dim Q > 3), then the existence

of a two-face of Q that is not a triangle implies dimΓy = oo.

(3) Let Ybe not Gorenstein, i.e. g>2. Then, dimΓy <oo implies Tγ=0.

PROOF. (1) Smilanski has shown that poly topes with only triangular two-faces

admit at most trivial Minkowski decompositions (cf. [Sm, Corollary (5.2)]). In

particular, the vector space f1 vanishes for every face of Q.

(2) Two-dimensional polygons with at least four vertices have a non-trivial f1.

Hence, a non-triangular two-face of Q yields a proper face τ < σ with Γ ^ β n ^ / O .

On the other hand, "proper" means that [ —Λ* + int(σ v nτ 1 )]nM contains infinitely

many elements, and Tγ is non-trivial in all those degrees.

(3) Assume that TγΦ0. Then there must be a face τ < σ and an element
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T}(-R)=f(Qnτ)φO.
For τ = σ we would obtain [-gf"1

JR* + inf(σ vnτ-L)] ΐ\Ai={-g- 1R*}nM=0.
Hence, τ<σ must be a proper face, and the same argument as in (2) applies. •

REMARK. Let Y be an isolated, toric β-Gorenstein singularity. The previous
corollary implies that, unless Y is three-dimensional and Gorenstein, this singularity is
rigid. On the other hand, if 7is a three-dimensional, isolated toric Gorenstein singularity,
then

and this vector space has dimension TV—3.

(6.6) In §3 we have described how to construct homogeneous toric deformations

of Fin some given degree reM. Now, we apply this to the Gorenstein case (and degree

r: = Λ*)

THEOREM. Let Ybe an affine toric Gorenstein variety induced from a lattic poly tope
Q. Then, toric m-parameter deformations of degree R* correspond to Minkowski decom-
positions of Q into a sum Q = R0+ +Rm of m + \ lattice poly topes. The Kodaira-
Spencer map sends the parameter space Cm onto the linear subspace span c([i£0],...,

PROOF. AS already mentioned in Remark (6.1), for r: = R* the polytope Q
coincides with σnA used in (3.6). Moreover, it is obvious that C = 0 and/?=l in this
context. On the other hand, since Q is a lattice polytope, the admissibility condition
for a deformation datum (Ro,..., Rm; C=0;/?=l) (with Q = R0 + ••• +Rm) means
that R0,...,Rm have to be lattice poly topes, too.

The statement concerning the Kodaira-Spencer map is a direct consequence of
(5.5) and Lemma (6.4). •

REMARK. Let Fbe a three-dimensional, isolated toric Gorenstein singularity given
by some lattice polygon Q^R2 with primitive edges dj: = aj+1—aj (jeZ/NZ). Then,
since Tγ = Tγ( — R*), the previous theorem describes all toric deformations obtained
by toric regular sequences. Moreover, decompositions of Q into a Minkowski sum of
m+\ lattice summands correspond to decompositions of {d1,..., dN} into a disjoint
union of m +1 subsets each summing up to 0.

(6.7) Finally, we want to discuss a relation between the toric varieties Y and Γ v

induced by σ and its dual cone σ v , respectively.
Let Q^A be a lattice polytope with primitive edges. As usual, via embedding Q

into a affine hyperplane of height one in NR (cf. (3.4.1) with p= 1), we obtain σ^NR

as the cone over Q. Now, we have got two affine toric varieties

Y = Spec C[σ v n M] and F v = Spec C[σ n # ]
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Y is the toric Gorenstein singularity we know from the previous discussions, and Yv

is the cone over the projective toric variety P(Q) defined by the (inner normal fan of
the) poly tope Q.

According to [Od, Chapter 2], there is a one-to-one correspondence between lattice
summands R of positive multiples of Q on the one hand, and nef line bundles &(R)
on P(Q) on the other hand. Moreover, &(R) is even ample, if and only if R is
combinatorially equivalent to Q9 i.e. if and only if both polytopes have the same inner
normal fan.

For dim Q = 2, this implies the following result:

PROPOSITION. (1) J?(Q) is an ample line bundle on P(Q), and

TV1 = (Pic(P(β))/if(β))(χ)zC=Pic(Fv \{0})(χ>zC.

(2) Toric m-parameter deformations of Y correspond to decompositions of J£(Q)

into a tensor product of m+l nef invertible sheaves on P(Q).

7. Examples.

(7.1) We start with three-dimensional toric Gorenstein singularities that are
defined by polygons Q. containing one and only one interior lattice point ("reflexive
polygons"). Those polygons were classified by Batyrev and Koelman for different reasons
(cf. [Ba], [Ko]); the corresponding singularities are cones over two-dimensional toric
Fano varieties with Gorenstein singularities.

Our additional assumption of Y having only an isolated singularity causes that
only five polygons Q survive from the original list (containing 16 items). However,
including the dual polygons β v (the cross cuts of the dual cones σ v), we will actually
see nine of them.

(7.1.1) See Figure 2.
Yt is the cone over P1xP1 embedded by 0(2, 2). Q1 is a quadrangle, hence T1 is

one-dimensional. Moreover, Qx is the Minkowski sum of two line segments, i.e. there
exists a toric one-parameter deformation which is versal. The total space is an isolated,
four-dimensional cyclic quotient singularity.

Polygon Qx. Dual polygon

FIGURE 2.
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Polygon Q2. Dual polygon

FIGURE 3.

Polygon Q3 Dual polygon

FIGURE 4.

Polygon QA. Dual polygon

FIGURE 5.

Polygon ρ 5 =

FIGURE 6.

(7.1.2) See Figure 3.

Y2 is the cone over P2 embedded by 0(3). Since Q2 is a triangle, Y2 is rigid.
(7.1.3) See Figure 4.
Y3 is the cone over the Del Pezzo surface of degree eight (the blowing up of

(P 2, 0(3)) in one point). The vector space T1 is one-dimensional. However, there are
no lattice polygons that are non-trivial Minkowski summands of Q3. That means, Y3

does not admit any toric deformation at all. Indeed, as Duco van Straten has computed
with Macaulay, the versal base space £3 of Y3 equals SpecC[ε]/ε2.

(7.1.4) See Figure 5.
F 4 is the cone over the Del Pezzo surface of degree seven (obtained from (P 2, 0(3))

by blowing up two points, or from (P1 xP1, 0(2, 2)) by blowing up one point). T1 is
two-dimensional, but β 4 admits one decomposition into a Minkowski sum of two lattice
polygons (of a line segment and a triangle) only. This yields a one-parameter deformation
of F4, and its total space is the cone over P(0P2 00 p 2 ( l ) ) . The versal base space S4 is
a line with one embedded component (computed by Duco van Straten using Macaulay).
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(7.1.5) See Figure 6.
Y5 is the cone over the Del Pezzo surface of degree six (obtained by blowing up

the projective variety of (7.1.4) at one more point). T1 is three-dimensional, and Q5

admits two different extremal Minkowski decompositions:
( i ) £?5 equals the sum of two triangles; the corresponding one-parameter family

has the cone over P1 xP1 xP1 as its total space (see Figure 1).
(ii) Q5 also equals the sum of three line segments. This corresponds to a two-

parameter family with the cone over P2 x P2 as its total space.
Again, Duco van Straten has computed the versal base space; it is reduced and

equals the transversal union of a plane with a line. These components correspond to
the toric deformations we have just seen.

(7.2) The cone over the rational normal curve of degree four (cf. Example (1.3))
is a two-dimensional cyclic quotient singularity. These singularities are toric, and this
special one is given by the cone σ: = <(l, 0); (—1, 4)>c/?2. The dual cone equals
(jv = <[0, 1], [4, 1]>, T1 is four-dimensional, and the homogeneous pieces T\ — R) are
non-trivial only for Λ = [l, 1], [2, 1], [3, 1].

Now, we cut σ with the affine hyperplanes corresponding to these values:
( i ) A : = [< , [1, 1]> = 1]; L: = A n Z2 (in particular/? = 1). To get an isomorphism

(A, L) ̂  (/?, Z) we have to choose and fix an origin (contained in L) and a Z-basis of L:

(A, L) = [(0, 1) + Λ ( - 1 , 1), (0, 1) + Z ( - 1 , 1)] .

In particular, g : = σnΛ = [(l, 0), (-1/3, 4/3)] corresponds to [ -1 , l/3]c/?9 and this
interval admits only one admissible decomposition into a Minkowski sum:

[ - U / 3 ] = [-1,0] + [0,1/3].

(ii) Analogously, we consider Λ: = [< , [3, l]> = l] = (0, 1) + Λ ( - 1 , 3) (/?=l).
Then, β = [-l/3, 1] splits into [-1/3, 1] = [-1/3, 0] + [0, 1].

(iii) Let A : = [<#, [2, l ]>=l] = (0, 1) + Λ ( - 1 , 2) (p = 1). Then, β = [-l/2, 1/2]
admits two different decompositions:

[-1/2, 1/2] = [-1/2,0] + [0,1/2] = {1/2} + [ - 1 , 0 ] .

The decompositions (i), (ii) and the first one of (iii) provide the (three-dimensional)
Artin component in the versal deformation of our singularity; the remaining de-
composition of (iii) yields the other (one-dimensional) component. The corresponding
families equal Yt-+C3 and Ys-+C from (1.3), respectively.

(7.3) Finally, we want to determine those two-dimensional cyclic quotient sin-
gularities that correspond to rational intervals of length one in R. (Considering ad-
misslbe Minkowski decompositions, those intervals seem to be very interesting; they
admit the funny decomposition into [0, 1] and an interval of length zero.)

For a given parameter peN, each positive rational number can be written as a
quotient x/(pd) (x, deN with gcd(x, d)= 1). Then, the interval Q = [x/(pd), x/(pd)+ 1]
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yields the cone σ = ((x/(pd), 1/p), (x/(pd)+l9 !//?)> = <(x, d\ (x+pd, </)>.

( i )
d

x d
= xd+pd2-xd=pd2.

This is the order of the cyclic group acting on C2.
(ii) We will regard x as an (invertible) element of Z/dZ. Then, we obtain

i.e. both components are divisible by pd2.
Hence, Q corresponds to the cyclic quotient singularity X(pd2,pdx~ί — 1) which

equals Ap_1 for d— 1 and which is called a Γ-singularity for d>2. Those singularities
from the fundamental bricks for building P-resolutions (cf. § 3 of [KS]). The canonical
decomposition [x/(pd), x/(pd) + 1] = {x/(pd)} + [0, 1] corresponds to the one-parameter
deformation presenting X(pd2,pdx~1 — 1) as a hypersurface in a three-dimensional
cyclic quotient singularity (of type (d; x, d — x)).
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