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Abstract. We study the Leray spectral sequence for the integral /-adic cohomology

of torsors for abelian schemes. For an abelian scheme over a smooth, geometrically

irreducible curve over a finite field, we relate the question of whether a torsor is determined

by its etale cohomology with the conjectured finiteness of the set of all such torsors.
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Introduction.

(0.1) The theme of this paper is the Leray spectral sequence for the integral /-adic

etale cohomology of torsors for abelian schemes, with special regard to the case of

varieties over finite fields. As motivating background for our interest in the subject, we

recall the following.

(0.2) The Tate conjecture (cf. [12, Conjecture 1]) in codimension 1 can be reduced

to the case of surfaces. Over finite fields, this particular case of the conjecture is amenable

to an earlier conjecture, asserting the finiteness of the Shafarevich-Tate group of an

abelian variety over a global field—here of finite characteristic, say p0—(cf. [14], [5]).

Actually, it would be sufficient to show the finiteness of a single primary component

of this group—for a prime different from 2, if po = 2—(cf. [14], [8]). Now, for any

prime / different from p0, this is equivalent to the statement that, given an abelian

scheme stf over a smooth geometrically irreducible (but not necessarily projective) curve

B over a finite field of characteristic p0, the set H1(B, <s/)(l) of torsors for s/ killed by

a power of / is finite.

(0.3) Torsors are a geometric incarnation of cohomology. The set of all torsors

for s/ constitute the etale cohomology group H1(B, srf). A possible way to split up the

finiteness question occurs when one has attached an invariant to each torsor in some

natural way. One can first try to prove the finiteness of the set of invariants so obtained—
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a necessary condition—and then hope that the invariant be strong enough to deter-

mine the torsor it comes from.

Here we are interested in testing a linear algebraic realization of the twist that

makes up a torsor, extracted from its cohomology. Something reminiscent, in a sense,

of the Tate module of an abelian variety over—say—a finite field, which is a Galois

module that determines the isogeny class of the abelian variety it comes from (cf. [13]).

It turns out that, sticking to H1(B, J/)(/) with / fixed (outside an a priori determined

finite set of primes), this invariant satisfies the first condition—its range is finite—and

that the second condition—its strength—is equivalent to the finiteness statement itself.

That is, it provides a quite exact measurement of the problem—although no step is

made towards its solution.

(0.4) Write k for the finite groundfield and k for an algebraic closure of k. For

a A:-scheme X (resp. a fc-morphism/) we shall write X=X®kk (resp. f=f®kk). Fix a

prime lφp0. For a torsor 9£ for «s/, denoting by χ.^^B and α: stf-*B the respective

structure maps, the higher direct image sheaves Riχ4(.Zι^, />0, do not bear any

information, for they are canonically isomorphic for all 3C': Riχ*Zιt$ = Rιδί^Zι ^. On

the other hand, it turns out that for all but at most a finite set of primes /, the Leray

spectral sequence

(0.5)

degenerates for all j^-torsors *3C (for rational /-adic coefficients this holds without

exception, by Lefschetz duality, cf. [3]; cf. [2, p. 153] for the projectivity of χ in the

present circumstances). This provides us with short exact sequences of continuous

Zz[G]-modules (G = Gtd{Jc/k))

(0.6) 0 - Hp+ λRq- %Zl9j -+ F p / / p + « Z ^ / F p + 2 i / * + * Z z ^ -> H*R*at+ZuJ - 0 ,

and hence with natural maps, for any prime number / as above:

(0.7) H\B, si) - Exti l [ G 1(/^Λ%Z I t^, H*+ lR«~ %Z^).

This map is actually a group homomorphism, and the first group is a torsion group,

while the second one is a ZΓmodule of finite type. Hence (0.7) boils down to a group

homomorphism into a finite group:

(0.8) H\B, ^){l) - T o r s ί E x t i ^ ^ Λ ^ Z ^ , H*+1R*~ %ZltJ?)).

The injectivity of this map would settle the finiteness question (0.2). Our result in this

paper goes in the opposite direction: we show that, conversely, for (p, g) = (0, 2), the

finiteness of H\B9 srf)(l) implies the injectivity of (0.8) (Here, as before, /is taken outside

a certain a priori determined finite set of primes).

For (p, g) = (0, 2) the sequence (0.6) reads

(0.9) 0 -> H'R^Z^--> H2Zu3tIH2ZuΈ - H0R2at+Zl%si- 0 .
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(0.10) This sequence is reminiscent of, and related to the exact sequence defined
by the torsor #* (cf. [11, pp. 162, 192]):

0 • Λ ' 4 / B > P"xiB

(0.11) II

At least with a slight additional hypothesis, the sequence (0.11) determines the torsor
#", as follows: Let λ: srf^si be a polarization of the abelian scheme J / . The image
\β£'^<EH\B, J) of λeH°(B, Jί^IB) by the connecting homomorphism δ of (0.11) is
given by the pullback diagram

I I
hence δ{λ) = \β>ic%jB~\. The class of this si-torsor equals the sum of [&icjjB~\ and the
image λ [ # ] of [ # ] by the morphism λ: #*(£, sJ)-^H\B, J). As 2 [ ^ 4 / β ] = 0 by [9,
p. 121], it follows that 2λ[9Γ\ = 2δ(X). Let rf=deg(λ), and put d=μλ for a suitable
μ: J-^sJ. Then 2ί/[^Γ] = 2μ(5μ). If the period of \βΓ\ is prime to 2d, then [^] is
determined by F], and hence by the sequence (0.11).

We shall mimic (0.10), with the sequence (0.11) replaced by (0.9). It turns out that,
sticking to torsors [#"] such that l^^eH\B, stf)(l) with / an odd prime as in (0.4)
and furthermore / prime to the degree of a previously arbitrarily chosen polarization
of s/, a torsor is determined by its corresponding sequence (0.9) up to a divisible element
of H1(B, stf)(l). Hence, if this group is finite, 9£ is uniquely determined in this way.

In Sections 1-3 we study the Leray spectral sequence

I *(0.12) HpRqoc^(Z/mZ)^ =>Hp+q{Z/mZ)v, meNnΓ(B, ΘB)

for a torsor χ: #"-• B for an abelian scheme α: stf^>B over a general base scheme B
and, specifically, the following aspects of it:

( i ) Computation of the differentials dψ.
(ii) Degeneration of (0.12), if the torsor ΘC is sufficiently highly w-divisible.
(iii) When B is a scheme over a finite field k, and the torsor 3C, obtained by base

change to k, is sufficiently highly m-divisible, computation of the class of the extension
of discrete (Z/mZ)[G]-modules

(0.13) 0 - H"+ίR"-%(ZlmZ)j -+ / ^ p ^ ^ - H'R"^{ZlmZ)d - 0 .

This is applied then, in Section 4, to the purpose explained in this introduction.
Due to expository reasons, (i) and (ii) above are treated in reverse order.
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(0.14) NOTE. In Sections 2 and 3 we shall use the Cech cohomology as a working

tool. Cech cohomology agrees with derived functor cohomology, for instance for

quasicompact schemes such that every finite subset is contained in an affine open subset

(cf. [1], or [7, p. 104]). This happens in particular for quasiprojective schemes over

affine schemes, hence the condition holds for all schemes in Section 4. In Sections 2

and 3 we shall simply assume that this condition is satisfied everywhere. This is sufficient

for our purposes. (It would be nice to understand things from the more generic perspective

of derived categories, but we have not investigated this).

1. Divisible torsors.

(1.1) Let B be an arbitrary scheme, and let α: s/^B be an abelian scheme over

B. We shall consider torsors ( = principal homogeneous spaces) χ: 3£^>B for sέ'. We

refer to [2, p. 152] or [7, p. 120] for definitions. The set of all isomorphism classes of

such torsors is a subgroup of the etale cohomology group H1(B9 s/\ written H1(B, <stf)τep

(cf. [7, p. 123]). In [11, p. 178] (cf. also [7, loc. cit.]) one finds conditions ensuring that

H1(B,ts^)rep = H1(B,^). In particular, this equality will hold throughout in Section 4

below. We shall write \β~\ GH1(B, S/) for the isomorphism class of the torsor SC.

(1.2) Let meNnΓ(B,ΘB)*. For all q>0, the higher direct image scheaves for

the etale topology Rqχ^(Z/mZ)a: and Rqoί^{Z/mZ)^ are canonically isomorphic: If
ύM = {Ui)ieI is a covering of B in the etale topology trivializing the torsor 2£, choose

isomorphisms of j/^.-torsors φt: stfυ. -3. 3Cυ.. Any two choices differ by a transla-

tion by a section of sfυ., and, similarly, the restrictions of φ{ and ψj above UiXBUj

differ by a translation by a section of jtfUiXBUj. Since translations act trivially on the

etale cohomology of the geometric fibers of α, it follows that the isomorphisms

ψf ' (RqX*(z/mZ)<r)\Ui ^ (Rq^(Z\mZ)J)\Ui are independent of the choice of the φt and

that they coincide on the UiXBUj, fitting together into a canonical isomorphism

We shall identify these sheaves throughout. Thus the Leray spectral sequence for

the sheaf (Z/mZ)^ with respect to the structure map χ reads

(1.3) HpRq(x^(Z/mZ)^ => Hp+q{Z/mZ)^ .

(For notational convenience, we shall often drop the symbol for the etale site on which

a sheaf is defined, when referring to its cohomology). The differentials in the r-th term

of this spectral sequence, r > 2 , will be denoted ί/ r ( f )=©ί/f 9 (J) . Note that, as

HpRqoi^ZlmZ)f, = {) for ? > 2 d i m β ^ + l , one has dr(&) = 0 for r > 2 d i m β t ^ + 2.

We start with a sufficient condition for the degeneracy of the Leray spectral sequence

(1.3), in terms of w-divisibility of the torsor 9L'. Given seN, let us say that the torsor

SC is s times m-divisible, if there exists a torsor %0 such that [3C] = ms[βC0~\.

(1.4) PROPOSITION. Let B be an arbitrary scheme, and let oc: stf^B be an abelian

scheme. Let m>2 be an integer relatively prime to the residual characteristics of B and
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such that m contains no prime factors that are less than or equal to 2 dimβtc/. Let χ: SC^B

be a torsor for stf. If % is s times m-divisible, then dr(&) = 0for all 2<r<s+ 1. Thus, if

3C is 2ά\mBstf times m-divisible, the her ay spectral sequence for (ZjmZ)^ degenerates.

(1.5) REMARKS, (i) Our reason for imposing the second restriction on the prime

factors of m, here and in several other statements below, is technical. We do not know,

whether these results continue to hold without this condition.

(ii) The proposition applies in particular to the trivial torsor Θ£ = s0. As a matter

of fact, the arguments in the proof dwell on the original idea of Lieberman for this

special case, in which actually more can be said (cf. [3, p. 116]):

Suppose that the integer m in the statement of (1.4) has no prime factors which

are less than or equal to 2dimB<p/+1 (instead of 2dimβj/). Then we have a canonical

direct sum decomposition, for all n>0: Hn(Z/mZ)^= 0p + q = nHpRq(x^(ZlmZ)^. Al-

though this decomposition is well known, even at the more basic level of (relative)

motives, we give a proof here, since we are dealing with torsion coefficients. For each

fixedp = 0,..., n-1 write n=p-\-q and set Fp = FpH\Z\mZ)sd and Rj = R'&J&lmZ)*.

There exists deZ>x such that, for a l l/=0, . . . , q— 1: dj—dq is a unit in ZjmZ. From

the diagrams for i=p9p+1,...,«:

0 • Fi+ί • F • WR"-1 • 0

T £/*-</« I d*-dq I d"-f-d*

0 > F ί + 1 > Fι > WR*'1 > 0

(d* being the maps deduced from multiplication by d on the abelian scheme sf)9 we

deduce by descending induction that d* — dq are isomorphisms on F\ i>p+1 and, since

this is 0 on WR""1, that Fp = Fp+1@Mq, where Mq is the kernel of the map d*-dq

on Fp, and Mq Z, HpRq. It follows that, for all reZ>u r* = rq on Mq. Hence finally

a decomposition FpHp+q(ZlmZ)s/ = Mq®Mq_1@--'®M0, where the piece Mt is

characterized by the property that r* = rι for all reZ>v

The following two remarks will be used in the proof of (1.4) and also at other

places, below.

(1.6) Given a morphism φ: $4γ^$# of abelian schemes over 2?, and an equivari-

ant morphism / : SCγ^3C between respective torsors, there is attached functorially

a morphism of spectral sequences, which at the £2-level equals φ*: HpRq(x^{Z/mZ)^^

HpRq^ZImZ)^x, and which converges to /* : Hp+q{ZlmZ)^Hp+q(Z/mZ)a:ι.
We shall apply this to the following morphisms of abelian schemes and respective

torsors over B, deduced from s/ and 3C\
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where Σ is the summation map, resp. the action of s/ on SC. For simplicity, let us write
here R} = R}^{Z\mZ)^ and R^R^Z/mZ)^, where ά: sί-*B is the structure map.
The Kύnneth formula reads Rq=@}+ί-Ri®Rj'

(1.7) Given a morphism φ: st^st of abelian schemes over B, and respective
torsors 3CX and 9C for them, there exists a morphism of 2?-schemes / : #\-»#* which
is 0-equivariant if and only if the morphism φ: H\B, ^1)-^H1(B, stf) satisfies

= φ[β£{\. Moreover, the map / is then uniquely determined up to translations of
by global sections of stf.

(1.8) PROOF OF (1.4): Case s=\. Let Xo be a torsor such that
Let / : 3£0^>2£ be a morphism of ^-schemes, equivariant for m: s/^><srf. Following
(1.6), we put £/ = stf xBs/, and 2t'' = &' xBsέ\ $o = &oxB<stf are torsors for J/. The
map fxBm: §t^§t is equivariant for m = mxBm: J/->^/, hence [β£~\=m[β£^\ in
HX(B, si) and, in particular, §£ is m-divisible.

(1.9) We claim that the differential dψ(βt): H^^H^2^'1 can be written as
dp

2\$)=®λi for suitable morphisms λt: Hp{Rl<g>R^^H^^R1'1 ®R*'1). To see
this, for arbitrary ί/eZ>1? the equivariant map 1 xBd: $-*$ for 1 xβί/: s£-*s£yields
a commutative diagram (cf. (1.6))

Hp+2Rq~1 < Hp+2Rq~\
(1 XBfl*

Since (1 xBd)* is the direct sum of dq-ι\ Hp{Rι® R^^H^R1® Rq~l\ it follows
that the entry λiV: Hp(Ri®Rq-i)^Hp+2(Ri'®Rq-1~i) of dψ(9t) satisfies: (rf*"1"'1'-
rfί~iMii' = 0 Hence, by our assumption on m, λw = 0 if i' Φi— 1.

(1.10) On the other hand, from the equivariant map f xB\\ $^% for
m xβ 1: s£-±s£ one deduces a commutative diagram

lι®Rq~ι)

kt-i@o) I

which, for /= 1, yields λί=0.
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(1.11) Finally, the equivariant map Σ: 9t-+£ for Σ: jί-+st yields the right hand

side square of the following commutative diagram

H\Rγ®Rq-γ) < p r o j HpRq < Σ* HpRq

Hp+2(R°®Rq-1) < . Hp+2Rq~1 < Σ* Hp+2Rql .

As the bottom row is the identity, we deduced that dp

2

q(βC) = 0.

(1.12) PROOF OF (1.4): The induction step. Suppose that the statement is true

up to s—1>1, and that [ ^ ] = w s [ ^ 0 ] for some torsor &0. Put [%{]=ms~ι[β£0\ so

that [β£~\=m[βC{]. We apply the induction hypothesis to the j/-torsors St^

{\_S{]=ms~1\β0~\) and 9t ([^ζ] = m[^ζ

1]), as well as to 9£. We have therefore

Ep%,(&) = HpRq, Ep

s

q

+1(£) = HpRq, and Eftάg^HtR*. As in (1.9), one sees that

dpq

+1(^)=®λf+1) for suitable morphisms λ\s+1): / ί p ( ^ ί ( χ ) ^ - ι V / / p + s + 1 ( ^ I ' " s ®

Λβ~0. Then, as in (1.10), one proves that λ{

s

s+l) = 0. Finally, as in (1.11), we deduce a

commutative diagram, in which the composite map of the bottom row is the identity:

Hp(Rs®Rq~s) < p r o j

I ^s+1) = 0

thereby concluding that dζlί(X) = 0.

The rest of this section is devoted to the proof of the following fact, which will be

used in Section 3 below. (Note that this is a step in the direction of (1.5) (ii), for more

general ra-divisible torsors).

(1.13) PROPOSITION. Let B be an arbitrary scheme, and let α: stf-±B be an abelian

scheme. Let m>2 be an integer relatively prime to the residual characteristics of B, and

such that m contains no prime factors that are less than or equal to 2 dimBs/. Let χ: ΘC^B

be a torsor for sέ'. If ΘC is 4dimβ ts/ times m-divisible, then the exact sequences of

(ZfmZ)-modules arising from the degeneration of the Leray spectral sequence for (Z/mZ)^

(cf (1.4)):

are split exact sequences.

(1.15) PROOF OF (1.13): Case q = 1. Write [#"] = m[#*0], with #"0 a torsor which

is 2 d i m β j / times w-divisible. By (1.4), the Leray spectral sequences for (Z/mZ)^ and
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(ZlmZ)Xo degenerate. Let / : S£o-+2£ be an equivariant map for m: stf-+stf. This induces
a morphism of exact sequences

0 - Hp+1R0^(Z/mZ)^ -> FpHp+1(Z/mZ)Xo -

II I /*
0 -> Hp+ιR00L^ZImZ)sί -> FpHp+1(Z/mZ)x -> ^R'oc^Z/mZ)^ -* 0,

hence the bottom exact sequence splits.
(1.16) We shall need case </= 1 in a slightly more general form. Let ^ be a flat

(Z/raZ)β-module and consider its inverse image ^#^ in 9C. By the projection formula
(cf. e.g., [4]), we have, canonically, for all q>0: Rqχ^Jί x = {Rqχ^ZlmZ)x)® Jί =
(Rqa^Z/mZ)^) ®Jί = Rq<x^Jί^. We write, for all r > 2, dr(β£, ΛT) = 0 dpq(β\ Jί) for the
differentials of the Leray spectral sequence for M% with respect to χ:

Keeping in mind the projection formula, one can mimic the proof of Proposition (1.4)
and show that, if 3C is s times w-divisible, s> 1, then dr(β£, Jί) = 0 for all 2<r<s+ 1.
Hence, if s>2dimBstf, the Leray spectral sequence for Jίx degenerates. Secondly, the
same argument as in (1.15) above then shows that, for 9£ as in (1.13), the sequence of
(Z/mZ)-modules

(1.17) 0 -+ Hp+1R°a^Jί^ -• FpHp+ιJίπ -> HpRx(x^Jί^ -• 0

is a split exact sequence.

(1.18) PROOF OF (1.13): General case. Let s/ = s/xBs/, $ = &xBs/ as before
(cf. (1.6)). Denote by χ: $^>B the structure map for this j/-torsor. Let moreover p and
η be the projection maps in the product diagram

(1.19) , | \.

(χ = χp = oίη). By means of the projection map p, the scheme $ is an abelian scheme
over ΘC. By our assumption on SC, the Leray spectral sequence for (Z/mZ)^ with respect
to χ and the Leray spectral sequence for (Z/mZ)$ with respect to χ degenerate, as well
as, more generally, the Leray spectral sequence for Mx with respect to χ, for any flat
(Z/mZ)β-module Jί. (Actually, since the lower bound for the prime factors of m is
2dimβe£/+ 1 and not 2dimβ j/+ 1, a slight change is needed in the proof of (1.4), to
cover the case of (Z/mZ)$. It suffices to replace, in (1.9), the map 1 xBd by the maps
1 xβ(l xBd) and 1 xB(dxB\)). Furthermore, the Leray spectral sequence for (Z\mZ)$
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with respect to p degenerates, too (cf. (1.5)). In order to distinguish between the ultrations

induced by the Leray spectral sequences with respect to χ and p, we shall write them

F$/B and F^^ respectively. To simplify the notation, Fιg/B (resp. Ffe/g) will stand for

Fιg/BH
n(Z/mZ)g (resp. Fι£/% Hn(Z/mZ)g), when the degree n is clear from the context.

Also F^ jβ will indicate filtrations induced by the Leray spectral sequence with respect

to χ (formerly referred to without subscript), and Fι^ίB will stand for F[ / β //"(Z/mZ) f .

Finally, as before, we write R^R^Z/mZ)^ and Ri = RiS.J<Z\mZ)j.

We aim at constructing a canonical morphism of exact sequences

0 -• Hp+ί(R°®Rq-1) -> FPr/BH
p+1(x*Rq~1) -> H^R1®!**-1) -• 0

(1.20) || t T
+ ' l $2 -> HpRq ->0

where the bottom row is (1.14) and the top row is (1.17) with Jί = Rq ι . By (1.16), the

top row splits, and so will do then the bottom row, too, as has to be proved.

The morphism (1.20) is obtained as the composition of

d 2 1 ) \Σ* jz ]Σ*
0 γ T p i 1 j 3 Q — 1 ΈJ^P I ΈJ*P • 2 Ύ TΌ Ύy o f\

• JΊ xv • " gciBl " SCIB y Λ~l t\. • U

(cf. (1.6)) with a morphism

0 ^ Hp + 1(R

(1.22) T ΐ ΐ

0 -> Hp+1Rq~1 -> F\lB\F%l ^ HpRq

It remains to explain the diagram (1.22). The left hand side vertical arrow is the projection

map from the Kύnneth decomposition, whence the identity map on the left hand side

in (1.20) (cf. also (1.36)).

Let G("^) = (0-* G(°f j - ^ G ^ ) - ^ •) be a Godement resolution for the sheaf (Z/mZ)g

(cf., e.g., [7]). The cohomology of (Z/mZ)$ can be computed as the hypercohomol-

ogy of the complex p^G[^ and also as the hypercohomology of the complex

χ+Gί^χJβ+Gfa). The respective second spectral sequences of hypercohomology

are the Leray spectral sequences for (Z/mZ)g with respect to p and χ respectively. The

standard map z*(z4{(p^G("^)))^ps |cG(

#^) defines a morphism between these spectral

sequences, that converges to the identity of H'(Z/mZ)g. It yields an inclusion of

filtrations Fg^cFgig and it yields furthermore, at the 2s2-level, the map

©q

i = 0H
p(Ri®Rq-i) = HpRq^Hp(χ*Rq) which is projection onto the factor HP(R°®

Rq) = HpRq followed by the obvious map HpRq^>Hp(χ*Rq). We deduce in
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particular a morphism (n=p + q): F%IBIF$ll^Fp&lxIFpgll = Mq®Mq-1 (cf. (1.5)(ii)).

Comparing this map with the projection onto Mq_γ and following this by the

canonical isomorphism Mq_x ^> Hp+1(χ*Rq~ί), we obtain a commutative diagram

1) ^ Hp+1{χ*R*-χ)

(1.23) ΐ ΐ

(1.24) We whall show that the image of F\lB\F%2

B lies inside FP

τ/BH
p+1(χ*Rq-1).

The diagram (1.22) and hence the proof of Proposition (1.13) follows at once from this.

Unfortunately, we will have to do quite an extra work for this. In the first place,

the maps d* deduced from multiplication by deZ>ι on the abelian scheme 3t\9C

obviously preserve the filiations F'^^ and F$/B of Hn(Z/mZ)g. Thus, since the

projection F%jXIFp^-^Mq_ ί is a linear combination of d* and (d*)2 if d and d— 1 are

both invertible in Z\mZ, this projection maps the image of F\^B\FP^\ in F^/^/F^^

into itself. Therefore:

(1.25) In order to prove (1.24), it is sufficient to find a (Z/raZ)-submodule of

Fvstιs\F% intersecting F^/FΫ^H^^R^1) along FpHp+\χ*Rq~') and con-

taining the image of F^/β/F^β.

To this end, we replace the resolution G^} of (Z/mZ)$ conveniently, in order to

have a better hold on the machinery that underlies the Kύnneth formula in the present

situation. Let G' be a Godement resolution for (Z/raZ)^, and let G ^ be a Godement

resolution for (Z/mZ)^ Write Z f=:ker(G l '->G i + 1), Z{Λ ) = ker(Gj5r)-»G{ί)

1), B* =

lm(R0(x^Gi-1^R0oc^Gi) and Bi

m = lm(R°χ:¥G
i^)

1^Roχ^Gi

w). For a module over the

ring Z/mZ, to be flat, projective or injective is one and the same thing (that is, locally free,

if m is a prime power). It is then easily seen that G', Gf^, Z\ Z\^ are flat sheaves (i.e.,

that their fibres are flat (Z/mZ)-modules) for all /, and that the same thing holds for

R^VL^G1 and Roχ^G{^y From this one deduces by induction, by using that the Rι are

locally free sheaves, that Λ°α5|sZ
i, Roχ^Zi

{ar) and B\ B\^ are, too, flat sheaves.

(1.26) The total complex G" of the double complex p *G(V> ® η*G' is a resolution

of (Z/mZ)$, which is χ-acyclic and p-acyclic: The exactness of G * follows from (either

of) the spectral sequences of the double complex p *G(V> ® η *G'. The χ-acyclicity follows

from the Kunneth formula (cf., e.g., [7, p. 258]) and the p-acyclicity follows from the

proper base change theorem. By that same theorem, we have also (cf., e.g., [4, p. 101]):

(1.27) The double complex G(V)®χ*(/?°αs|eG ) is a χ-acyclic resolution of the
complex x*(R°a*G"), hence
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( = Hn(Z/mZ)g) and the second spectral sequence of hypercohomology (SSH, for short)

of the complex (R°χ^G^) ® R°oc^G # ) t o t can be interpreted as the Leray spectral sequence

(LSS, for short) for the complex χ*(R0oc^G") with respect to the map χ\

We recall that, by (1.26), the same SSH is also interpreted as the LSS for the sheaf

{Z/mZ)$ with repect to χ. On the other hand, via the quasi-isomorphism between

χ*(R°0L+G') and ( G ^ φ χ ^ R ^ G " ) ) ™ , the second SSH for the complex χ*(R0(x*G')

coincides with the second SSH for the complex (G(V> ®χ*(R°cc*G "))tot, which, by (1.26),

is the LSS for the sheaf (Z/mZ)$ with respect to p.

Note that, by (1.4) and our hypothesis in (1.13), all the spectral sequences mentioned

in this paragraph (1.27) are degenerate.

(1.28) For a complex of sheaves E' =(£tι'X>0 we shall write Sq(Em) to denote the

subcomplex 0->£°-> -^Eq~1-*Z9^09 and &q + 1(E') will indicate the quotient

complex 0-^Bq^>Eq-+Eq+1^> (the term Bq has degree q-1). One should take care

not to confuse the complex &q(E') with the term Zq(E') = Zq, and, similarly, @q+1{E')

with Bq + 1(E') = Bq+1. The filtration of the second SSH for E' is given by

FpHp+qE' =Im(Hp+q&q(E')->Hp+qE ). If the second SSH for E' degenerates, then

the same thing happens for £?q(E') and &q+1(E') for all q, and we have short exact

sequences, for all n and q: 0^Hn^q(E')^HnE' -+Hn@q + ί(E')-*0 (hence FpHp+qE' =

Hp+q&q(E') in this case).

(1.29) LEMMA. We keep the preceding notation. One has, for all r, n, q:

Fv/BHWR0x*G ))nHn(&q(χ*(R0^G^

(1.30) REMARK. The nitrations that appear in this formula correspond to the

Leray spectral sequence for the complexes χ*(i?°αJ|cG *) and 2tρ(χ*(i?°αs|cG *)) respectively,

with respect to the map χ. By (1.27) and (1.28), we may write this formula also as

follows: For all r, n, p, setting Hn = Hn(Z/rnZ)g:

In particular, for r=p this gives, in view of the inclusion FvgίBH
n<^F\ixH

n

(1-31) FpgIBH" = Fp

XIB{Fp

ilxH
n).

PROOF OF (1.29). The exact sequence

0 -• 2" (R\G •) -* R^G -> ̂ q+1(R0^G )-»0

yields, by the flatness of Λoχ*<?(V)> an exact sequence of double complexes

(1.32) 0 - R°χ+Gl
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Let us introduce, for short, 0->(I) -•(II) ->(III)->0 as an alternative notation for the

sequence of total complexes deduced from (1.32), just to be used in the next two

diagrams. Putting n = r + s, we deduce from it an exact sequence of complexes

(1.33) 0 -> ̂ S ( I ) -> iTs(Π) - iTs(III) -• 0 .

(The only thing which has to be cared for is the surjectivity of the morphism

Z^R^G^^R^G^^Z^R^G^^Λ^R^G'))^. This is checked by

direct inspection, and bearing in mind the flatness of the sheaf Bq + 1).

From (1.32) and (1.33) we deduce a commutative diagram with exact rows

I 1 I
- //"(I) -+ H\ll) -> H\\ll) -

II II II
0 -* Hn(^%χ*(R°^G'))) -> Hn(χ*(R°^G')) -* Hn(^+1(χ*(R°^G'))) -> 0.

By (1.28), the lemma will follow, if we show that the third vertical arrow is injective.

Actually all three are so, this being due, again by (1.28), to the degeneration of the

second SSH of the corresponding complex appearing in the middle row. This is clear

for the complex ^x+G^® R^G')^ (cf. the last remark in (1.27)). To see this for

the complex (R°χ^G^)®^q+1{R°oί^G'))toV observe that the morphism of complexes

(Λ0X*G(V)®Λ θ α*G')tot^(Λ0χ*G(V)®Λ ί + 1(Λ°α#G ! '))tot induces a split surjection be-

tween their cohomology sheaves:

i+j=t i+j=t

Therefore the morphism induced between their second SSH yields surjective maps at

the 2s2-level, and we conclude inductively that d2 = d3= = 0 for the second SSH of

(R°χ*Gί%)®@q+1(R°(XχG'))toV (A similar argument, with injective maps replacing

surjective ones, proves the analogous statement for the complex {^X^G^)®

^G "))tot, but we shall not need this). This completes the proof of Lemma (1.29).

We turn finally to the proof of the facts announced in (1.25), which will finish the

proof of Proposition (1.13). Consider the exact sequence of complexes
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(1.34) 0 -»

0 ->

0 -•

T
Bq~ι -•

II

0

T

ΐ
R°a^Gq-1 -+

ΐ

T
0

II
R0oc*Zq

T
0

-^ 0

-• 0

0

T
z
ΐ

Jί

ΐ

ΐ
0

(degree = # for the term R°oc^Zq). Writing n=p + q, the exact sequences

0 - Fiji/Fiji - F*m\F%l - F | / ^ | ^ - 0

ί Hpχ*Rq

are part of the hypercohomology sequence of the inverse image of (1.34) by χ:

0 -> H\χ*@ •) -> Hn(χ*Jί') -> Hn(χ*%") -+ 0

(cf. (1.27) and (1.28)).

(1.35) We claim that the submodule Fp%IBH
n(x*Ji') of H\^Jί') \

satisfies the requirements of (1.25). It contains the image of F\^B\FV^\^ since we have

seen in (1.31) that FpgjB is contained in (in fact it equals) Fp^/BH
n(^q(χ*(R°oi^G'))) and,

on the other hand, this is mapped into Fv%\EHn(χ*J(%).

It remains to show that F^/BH
n(χ*^')nHn(χ*^') = F^/BH

n(χ*^'). More gener-

ally, one has, for any r, n: Fr*ηBH
n(χ*JΪΛ)nHn(χ*@ ) = Fr«ηBH

n{χ*@*). This is proved

in a way similar to Lemma (1.29): From the exact sequence

and denoting again for a while 0->(I)->(Π)->(III)-*0 the corresponding sequence of total

complexes, we deduce exact sequences (writing r + s = n):

0 -+ %\l) -+ Z'QJ) -> iTs(IΠ) -> 0 ,

and the result follows from their hypercohomology sequences:

I \ 4
//"(I) ->

Hn(χ*J(') - Hn{χ*2f) -» 0,
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by showing, as before, that the third vertical arrow is injective (we ignore the other

ones). This follows again from the degeneration of the second SSH of the complex

which here follows because this complex is quasi-isomorphic with

l and because, by the hypothesis of (1.13), the LSS for χ*Rq with

respect to χ degenerates (cf. (1.16)).

This proves the claim of (1.35) and hence ends the proof of Proposition (1.13).

(1.36) REMARK. Throughout the above proof we did not care about the precise

value of the right hand side vertical arrow in the diagram (1.22). As one may guess,

this is (as it was the case for the left hand side vertical arrow, too) the projection map

from the Kunneth decomposition. We shall need this in the next section.

The proof is condensed in the following diagram, in which we use freely facts and

items from the proof of (1.13), and which is self-explanatory except for the details that

we list below.

Λ I
P+1X*Rq~1)=Hn3rq(RXG w®a )t0t — H-iR^

• I i
F'sixIFΊtώ =H"Z\R0

UG {X)®J( \ol -» H"(R°®R^Q

1 I

G ' ) i o t — H'R*.

( i ) All horizontal mappings are constructed as follows: Starting with a complex

E' of sheaves, we take the morphism induced on Hn by the morphism of complexes

^ % £ " ) - • Jf %E")M, where tf\Em) indicates the <?-th cohomology sheaf of the complex

E'.

(ii) p + q = n.

(iii) Other unnamed arrows are the obvious ones in each case. The morphism g

is the restriction of the canonical projection map onto Mq_x (cf. before (1.23)), andy

is the inclusion map. The composite map jg is induced by the morphism deduced

functorially from the endomorphism of Jίm given by (\/(d- \)d2q~2)(dqd*-d*2), where

deZ>i is chosen such that d,d—\ are invertible (modra), and where d* : Jί% ^Jί* is

deduced from a morphism of complexes d* : R°OL^G' -^R°a^G', obtained by the yoga

of Godement resolutions from the multiplication by d maps on sf.

(iv) The diagram is commutative except, possibly, for the second rectangle from
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above. Since the upper right arrow is injective, it follows that this rectangle is

commutative, too, and this completes the proof.

2. The £2-teπn of the Leray spectral sequence.

(2.1) Throughout this section we assume that all schemes satisfy enough conditions

ensuring that Cech cohomology agrees with derived functor cohomology on their etale

site (cf. (0.14)).

Let B be a scheme. Let m>2 be an integer relatively prime to the residual

characteristics of B. Let α: srf-+B be an abelian scheme, and χ: 9£^>B a torsor for si.

In this section we compute the differentials.

(2.2) d\q =

for the E2-term of the Leray spectral sequence for the sheaf (Z/mZ)% with respect to

the map χ.

By means of the cohomology of the exact sequence

(2.3) 0 >ms4 >si-^si .0,

the class [#*] e//*(#, si) provides us with an element b\β£~\eH2(B, msi). On the other

hand we have a duality pairing

(2.4) ms4 ® R^Z\mZ)M -> R^Z/mZ)^ = (Z/mZ)B

whence, by the canonical isomorphism Rqocή.(Z/mZ)^ = ΛqR1cc4ι(Z/mZ)^, an inner

contraction morphism

(2.5) msό ® R«a*(Z/mZ)^ -> R'-^Z/mZ)* , u® ζ h-> ι(μ)ζ .

This induces:

(2.6) H\B, m^)®HpRqa^(Z/mZ)^ -• Hp+2Rq-1^{ZlmZ)^ , oc®β h-> ι((x)β .

(2.7) PROPOSITION. Assumptions are as in (2.1). We suppose furthermore that m

has no prime factors that are less than or equal to q. The following formula holds:

The proof will take the rest of this section. We start with a few preliminary remarks.

(2.8) For a sheaf G of abelian groups on (the etale site of) a 5-scheme η: $/-+B,

the E2-term for the Leray spectral sequence of G with respect to η can be computed

explicitly from a resolution G' of G, acyclic with respect to η, as follows. From the

complex R°η^G' we deduce exact commutative diagrams

0 -» ROη^Z"-1 -> ROη^G*1-1 -• R°η*Zq -> Rqη*G-* 0

(2.9) 1 1 II II
0 -> Rq~^*G -> ( •) -> R°η*Zq -» Rqη*G-+ 0 ,
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where Z ' ^ k e ^ G ' - ^ G ^ 1 ) , and the left hand side square is a pushout diagram. Then

dp

2

q = {-\)pdd\ HpRqη^G-+Hp + 2Rq~1ηitίG, with dd the iterated connecting homomor-

phism of the bottom row in (2.9).

For example, one can use a Godement resolution G' of G. In this setting, given a

morphism / : (Wι-^(W2 of ^-schemes and a morphism of sheaves f*G2^>Gu the yoga

of Godement resolutions (cf. [7, p. 90]), provides us with a blueprint (depending on

choices) for a morphism of complxes / * : R°y\2^2^R°η1^G[ inducing the maps

/ * : Rqη2*G2-+Rqη1*G1, and also, more generally, the morphism of spectral sequences

converging to / * : H'(W2, G2)-+H'(WU Gx).

In the particular case where G2 is a constant sheaf, the map / * : f*G2^>G<l is

independent of choices, because the fibres of G2 are then trivial Galois modules.

Moreover, for q= 1 the diagram (2.9) is reduced to the sequence

(2.10) 0 -• R°η*G -• R°η*G° -• R^Z1 -• R^η^G -+ 0

so that, for G2 a constant sheaf, f*G2-+G1 induces a canonical morphism between the

sequences for G2 and Gx respectively:

0 ->

0 - . R°η2*G2 -+ R°η2*G°2 - ^°^ 2 s | e Zi - Λ ^ 2 i | l G 2 ^ 0 .

This will depend functorially on /, when sticking to constant sheaves Gl9 G2.

(2.12) We give an explicit description of the morphism (2.4). Setting %/ = <$/ and

G = (Z/mZ)^ in (2.8), the multiplication by m map on si leads to a diagram (2.11) that

now reads:

0 -> R°(x^(Z/mZ)^ -> Λ ^ G 0 -• R^Z1 -> R^Z/mZ)^ -• 0
<113> ιι I - I -

0 - R0^(Z/mZ)^ - Λ \ G 0 -> i ^ V 1 ^ R'oc^Z/mZ)^ ^ 0

W r i t e ( c f . ( 1 . 2 5 ) ) ^ ^ V V

Let uGΓ(U,ms/) and ζeΓ(U9 R^Z/mZ)^) be local sections. We describe

ι(u)ζGΓ(U,(Z/mZ)B). The question being local, we may assume, by restricting t/ if

necessary, that ζ is the image of some ZGΓ(U, R0^1). Then m*zeΓ(U, B1), and we

may suppose again that m*z is the image of some heΓ(U, R°a^G°). Then, writing

τu: siυ^siυ for the translation by M, we have: ι(μ)ζ = τ*h-heΓ{U, R°oc^(Z/mZ)^) =

Γ(U, (Z/mZ)B).

(2.14) PROOF OF (2.7): Case q = 1.

(2.15) Let W = (Ui)ieI be a covering of 5 in the etale topology, trivializing the
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torsor X. Write Utj= Ut xBUp ^i = ̂ Vi, ^i = ̂ Ui9 &ij = %'Uij and s^ij = ̂ Vij. We have

isomorphisms of j^-torsors, φt: s/t ^ Xh and commutative diagrams, for each /, j :

with Sij e Γ(UΦ d). The class [5*] e Z / 1 ^ d) is represented by {jίy} e Hx{%, si). Refining

% if necessary, we may assume that the sections stj lift by the multiplication by m map

(cf. (2.3)): sij = msij for suitable ^ eΓ(ί/ 0 , si). Then b\βC\^H\B,msi) is represented

by {σyfc} G H\%, msi\ with σUk = sjk-sik + fo e Γ(C/i</Jk, mj/).

(2.16) As in (1.25), write G(V> for a Godement resolution of (Z/mZ)%, and Zj ί r ) =

j-^GjiJ), Λ(Λ ) = Im(Λoχ]|IG{ϊ)

1->Λoχ1|lG{Λ )). The sequence (2.10) for

0 - R*χAZImZ)x - ^°χ*G (% -, *°χ*Z(V) - R>U{Z\mZ)x -* 0 ,

can be thought of as obtained from the analogous sequence (2.10) for

0 _• R0Qc^ZlmZ)^ -• Λ \ G 0 -> Λ V 1 -> R^iZ/mZ)^ -• 0 ,

by glueing its restrictions to the C/£:

0 - R^iZ/mZ)^ - R \ A -> ̂ °a i 5 NZ^ i -, ̂ a J Z / m Z ) ^ - 0 ,

by means of transition maps

0 - R^iZ/mZ)^ - Λ o α I Λ G i υ - ί V ^ i o - R ^ Z )

0 -, RXjJZ/mZ)^ -+R0*ij*G0

JgiJ^R0*ίj*ZlgtJ^ R^Z/mZ)^ -, 0.

The identification is given by the isomorphisms

0 - tf°αίsK(Z/mZ)^ - Λ ^ G i , ^ / J ^ Z ^ - Λ^^Z/iwZ)^ - 0

0 - R^(ZlmZ)Xi -> Λ ^ G ^ - ^li^m^ - R^Z/mZ)^ -> 0.

(2.17) Let ξeHPR^Z/mZ)^ represented by a cocycle {ξio...ip}eZp(<V9

R1oit(Z/mZ)s,). By the canonical isomorphism R1χ*(Z/mZ)χ >̂ i^α^Z/raZ)^, given

by the φf (cf. (1.2)), this becomes an element of Z p ( ^ , R1χ^(Z/mZ)3Γ). Refining ^ if

necessary, (actually it is not), we may assume that there exist t'io...ipeΓ{Uio...ip,

such that the cochain f = {t'io...ip) maps to the given cocycle. Then ί / ' e Z p + ^

and, refining °U again if necessary, there exist λ'io...ίp + 1eΓ(t/ ί o... i p + 1, R
oχ+Gf3n) mapping
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to (δt')i0...ip + ί =Σv = o ( " l)v'io »S,-ιp + 1. The cocycle M ' e Z ^ 2 ^ i? °z*(ZK) f ) carries
over to a cocycle ^ = k o . . , p + 2 } e Z p + 2 f t Λ°αJZ/ιwZ)J, and dp

2\%)(ξ) is given by

(2.18) We compute *(<5[#*])£ In the notation of (2.15) and (2.17), ι(δl&])ξ is
represented by the cocycle {ι{σijk)ξkkv..kp}eZp+2{ύll, R0(x^(Z/mZ)^). We compute this,
according to (2.12). The elment tio...ip^=φ^/io...ipGΓ(Uio...ip, R^Z1) maps to ξio...ip.
Refining % if necessary, there exists hio...ipeΓ(Uio...ip, R°oc^G°) mapping to m*tio...ip, and
ι(σijk)ζkki kp

 = τσijj
lkkx kp ~ "kky kp

(2.19) We compare both results. We have, in Γ(t/io...ίp + 2, R°<x*(Z/mZ)J:
ni0-ίp+2 = ̂ > ^ Σ ^ o ( - 1 ) v ^ o -ίv«.ιF+a The image in R°^G0 of the element
™*Φ%λ'jo .jP+ι * ΣP

μt\ ( -1)^% 0 . .^ . .. i f + 1 + τ ϊ l J β « \ * + 1 . It follows that there exists
an element wJo...Jp+ι e Γ(UJo...Jp+ι, R°ot^Z/mZ)J such that m * φ ^ } 0 . . . J p + ί = (δh)jo...jp+1 -

^ i "ip + i + τ?i1jo
A>i-^+i + w io »i,+i Writing w = {w;0...,.p+1} for the (/7+l)-cochain so

obtained, one finds that ^ o . ί p + 2 = (<5w)ίo...ίp + 2 + τ ^ ^

(δw)i0-iP + 2 + τΐ-<TiOili2)
hi2~iP+2-hi2-iP+2' T h i s s h o w s that η represents ϊ (-5[ar] )ξ , hence

that ( - \)pη represents ( - l)p+ xi(5[^])ξ, as claimed.
(2.20) To deal with the general case, we shall need a slight generalization of the

case q = 1. Let Jί be a flat (Z/mZ)β-module (in our application, this will be actually a
locally free module of finite rank). Then, in the Leray spectral sequence for Jί % with
respect to χ (cf. (1.16)) the differentials

rfjWjftar, ΛT): HpR1(x^Z/mZ)s,®Jΐ^Hp+2Jί

are given by (— 1 )p + x i(£[#*]), as before. Above we have considered the case M = (Z/mZ)B.
Replacing all sheaves by their tensor product with Jί, and all morphisms by their tensor
product with \M, the proof holds verbatim in this situation.

(2.21) PROOF OF (2.7): General case. In the notation of (1.6), we claim that
dp

2

q{$)=®dp

2

i{%,Rq-i). This sharpens the statement of (1.9). We will not use that
statement, but prove instead directly that the following diagram is commutative, for all /:

Let G(V), G' and G^)9 respectively, be Godement resolutions for (Z/rnZ)%, (Z/mZ)^
and (Z/mZ)#. Let R°χ^ίG^)(S)R°oί^G'-^R°χ^G^) be a morphism of complexes in-
ducing the Kϋnneth maps Rij = Rl(g)Rj <=^Ri+j. We derive from it the following
commutative diagram with exact rows:
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ΐ

t T I T
ker ^^Vm1®^V ί"^^Vm®ΛV?"^^ ί®Λ

i 1 I I

i I II II
( ) - • R q l -> (•••) -> Roχ^Z\^) -+ Rq ->0 .

The top and bottom squares on the left hand side are pushout diagrams. Moreover, if

we add the Kunneth maps on the outer left and right hand sides, Rι~1 ® Rq~ι-+Rq \

Ri®Rq~i-+Rq, the resulting diagram stays commutative. It follows that we have a

diagram

^ — ^ - > 7P+ 2(ker)

1* I

in which the top square and the outer rectangle are known to commute (as they stem

from morphisms between complexes). In order to prove that the bottom square

commutes, it will be sufficient to show that the map φ is surjective. This follows from

the next result:

(2.22) LEMMA. Let, as above, G' be a Godement resolution of (Z/mZ)^. Write,

as usual, Bι = Im(Rocc^Gl~Λ-+R°0CχGι). Suppose that the integer m does not have prime

factors less than or equal to q. Then the exact sequence of (Z/mZ)B-modules 0->

Bq^R°oί^Zq-^Rq^O splits.

PROOF. We prove this by induction on q. For q = 0 it is obviously true. As in (1.9)

above, our tool in this proof is the following one (and variations of it): Suppose that

we have a natural morphism φ: Ri(x^(Z/mZ)J^^Rj(x^(ZlmZ)^ iψj, in the sense that it

depends functorially on si. Then, by using the multiplication maps by integers d> 1

on J / , we get (dj — di)φ = 0. If i,j are bound to stay less than or equal to q, and m has

no prime factors less than or equal to q, then there exists d such that di — di is a unit

in Z\mZ, and hence φ = 0 follows.

The splitting of the sequence of the lemma is equivalent to the vanishing of
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the map H°{Rq®(Rqy)^H1(Bq®(Rqy). Write Ji = {RqY for this locally free

(Z/mZ)B-module. The sheaf (R°oc^G1)® Ji = R0^^ ® JίJ) is acyclic, since it is a

flabby sheaf (in the terminology of [7, p. 87]). Therefore Hι(Bq®Ji) ^

H2((R°oiil.Z
q~1)® Ji) canonically. By the induction hypothesis we have an exact

sequence ΰ^H2^1 ®Ji)-+H2{(R0oc^Zq-1)®Ji)-+H2(Rq-1 ®Ji)^0. The mor-

phism given by the composition H°(Rq ® M)->H\Bq ®Ji)^ H2((R°a^Zq~ x) ® Ji)^>

H2(Rq~1 ® Ji) is natural with respect to the first factor, hence, by (an obvious variation

of) the remark at the beginning of this proof, it is zero. So the map we started with can

be viewed as a morphism H°(Rq®Jί)^>H2(Bq~1®Jί). Iterating the procedure, this

morphism is reduced succesively to a morphism H°(Rq® Ji)-^Hi+1(Bq~ι® Ji) as /

increases, and it becomes eventually zero, as claimed.

The ends the proof of Lemma (2.22) and hence of the claim at the beginning of (2.21).

Application of (1.6) now yields the right hand side square of the following

commutative diagram

HpRq < Σ* HpRqp r o j

Hp + 2(R°®Rq-ί) < Hp+2Rq~ί < Hp+2Rq~ί

proj Σ*

The composite map of the bottom row is the identity. And the composition of the upper

row with dfiβC, Rq~1) = (-\)P+Iι(δl%"]) is (-l)p+1ι(δl%Ί): HpRq-+Hp+2Rq~1. This

completes the proof of Proposition (2.7).

(2.23) REMARK. Proposition (2.7) thus gives an explicit computation of the nat-

ural mappings H\B9 ^)τep-^Hom(HpRqoc^(Z/mZ)^ Hp+2Rq-1oc^(Z/mZ)J given by

3Ch^dψ(βC). In a different direction, one has also natural mappings H°(B,s/)^>

Hom(HpRqoc^{Z/mZ)J!/, Hp+1Rq~1oc:i:(Z/mZ)^), again at least under certain restrictions

on the integer m. Namely, if m has no prime factors less than or equal to 2dim β j / ,

then the Leray spectral sequence for (Z/mZ)^ degenerates (cf. (1.4)). Then, given

seH°(B, s/), one has commutative diagrams (τs = translation by s)

u —> / 7 F Λ y OLΛZ, mZ,)^ —• — —> tίμKH0LΛΔ mZj-f —> U
FpHp+q(Z/mZ)Λ

Fp+2Hp+q{Z/mZ)Λ

Fp+2Hp+q(Z/mZ)Js
H'R aJZImZ), - 0

and hence induced morphisms τ * - l : HpRqoCχ(Z/mZ)s,-*Hp+1Rq~1oc:iι(Z/rnZ)^. By

arguments similar to the preceding ones in this section, one can show that this map is

given by ( - iγ+1ι(δs), δseH\B, ms/).
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This allows one then to compute the endomorphism τ * of Hn(Z/mZ)^ in terms of

the canonical direct sum decomposition Hn(Z/mZ)^ = ®p+q=n HpRqa^(Z/mZ)^, where

now we are supposing that m has no prime factors which are less than or equal to

2 d i m β ^ + l (cf. (1.5) (ii)). Writing τ*=Σ ί ^.0g ) with θ\f: Hn-iRi-+Hn-!R\ we have:

0}?= 1 and 0$_! = ( - iγ-i+ίι(δs). Then, using the relations τ*+f = τ*τ*, s, teH°{B, s/)

and τ*r* = r*τ*, reZ, seH°(B, si\ one finds that

3. Extension classes.

(3.1) Throughout this section we keep the assumptions of (2.1) on the validity of

the equivalence between Cech cohomology and derived functor cohomology. Let k be

a finite field, p0 its characteristic, and B a Λ -scheme. Let α: s/->B be an abelian scheme

and let χ: &-+B be a torsor for J / . By base extension from k to k we obtain a torsor

χ: S^B for the abelian scheme α: sf->B. Suppose that this torsor is 4dimβ es/ times

m-divisible, for a given m e Z> l 9 prime to /70, and such that m has no prime factors less

than or equal to 2 d im β j / . By Proposition (1.4), the Leray spectral sequence for (Z/mZ)g

degenerates, and by Proposition (1.13) the corresponding exact sequences

(3.2) 0 -» Hp+1Rq~1otAZ/mZ)j/ -> — _ JU. Ά > HpRqΰλZ\mZ)d -+ 0
* Fp+2Hp+q(Z/mZ)^ *

of discrete (Z/mZ)[G]-modules (G = Gal(k/k)) are split sequences of (Z/mZ)-modules.

Our aim is to compute the class of the extension (3.2). The result is stated below, in

Proposition (3.7). We need to define three maps, before:

(3.3) Let H1(B, s^\mλ<^H1{B, stf) be the subgroup consisting of those elements

whose image in H1(B, s#) is w-divisible. There is a natural group homomorphism

β±: H\B, j2/)[m] -> H\k, H\B, m j/))

obtained as follows. We have a commutative exact diagram

> H\B, £) -^U H\B, d ) > H\l

H\B, */) • H\B, si) > H2

H\k,
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the horizontal sequences coming from the multiplication by m map sequences for d

and J / , respectively, and the vertical sequence coming from the Hochschild-Serre spectral

sequence. It follows that H\B, sί\mλ is the inverse image of H\k, Hι{B, msί)) by the

connecting homomorphism <5, and this map induces βx.

(3.4) We call

β2: H\k, H\B,

the map obtained functorially from the morphism H\B9 md)^Homz/mZ(HpRqδί:¥(Z/

, Hp+1Rq~1δί^(Z/mZ)^) defined by the inner contraction map (2.5) for j / .

(3.5) For any pair of discrete (Z/raZ)[G]-modules M and N, with M finite, the

spectral sequence Hp(k, Ext z / w Z (M, N)) => Extfz+*Z)[G](M, N) gives, in low degrees, a

canonical isomorphism

(3.6) H\K Hom z / m Z (M, N)) *

where the right hand side member is the (Z/mZ)-submodule of Ext ( z / m Z ) [ G ](M, TV)

consisting of the extensions which split as extensions of (Z/mZ)-modules. Given

such an extension 0->iV->( )->M-»0, one forms the exact sequence of discrete

(Z/mZ)[G]-modules

0 -* Hom z / m Z (M, N) -+ Hom z / m Z (M, (•••))- Hom z / m Z (M, M) -> 0

and takes the image of 1 M by the connecting homomorphism of the associated

cohomology sequence. This is the element of H1(k, Hom z / m Z (M, N)) to which the

sequence corresponds, under the above isomorphism.

We let

be the inclusion map given by (3.6).

Now we can state:

(3.7) PROPOSITION. In the notation and under the assumptions o/(3.1), the class

of the extension (3.2) is given by {-ψβ3β2βi{L^Ί)'

The class of the extension (3.2) belongs to the image of β3. Identifying by /?3,

we may consider it therefore as an element of H1(k, Homz/mI(HpRqaίJkZ/mZ)Jr,

Hp+1Rq~1δc^(Z/mZ)j)). We prove that this element coincides with ( - \)pβ2βA%Ί)

(3.8) PROOF OF (3.7): Case q= 1. Let χ': %'^B be a torsor for d such that

[^] = m [ ^ ' ] in H\B, s/). Let / : %'->% be a 5-morphism, equivariant for m: d-+d.

We may find a covering qi = (Ui)ieI of B in the etale topology trivializing the torsor 9C

and such that the covering # = ( ί/ i ) ί e / of B deduced by base change trivializes 9C\ in a

way compatible with /. In the abreviated notation introduced in (2.15), this means that
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we have isomorphisms of j/Γtorsors φi: sdi -^ S£t and isomorphisms of jaΓΓtorsors
φ'. j ^ " ^ #7 making the following diagrams commutative:

X't — £t

Over C/y we have φj = φiτSi. and, over C7fJ : φ'j = φ'sζs>^ with {^- jeZ^f,^),
( j ί j . J e Z 1 ^ , / ) , describing [X^H\B9s/) and [ ^ Π e i / 1 ^ <#) respectively. More-
over, sij = ms'ip where {syJeZ^f, s/) is deduced from {jy} by base change.

We have commutative exact diagrams of sheaves on (the etale site of) B (cf. (2.11))

o -> R°ι

(3-9) || } m . }m* }o

0 -> Ro

x'jiZ/mZ)t. -> Λ ^ Cgn -> Λoχ;z(V., -> R'χ'tiZ/mZ)*.

(3.10) - j / * f/ |/ | θ

The restriction of these two ladders to C/j are connected by morphisms (φ'io)* (top rows)
and φf (bottom rows) giving a commutative diagram.

(3.11) We compute β2βi(L%Ί)' Given γ e G, we have j y =
 y j y = wyjy, hence, putting

σy = 's/i./-1V wσy = 0 and {σyJeZ^Φ, mj/). The map G-^H\B, mj/), yi-^ίσy} is a
1-cocycle defining /^([ίΠ)G ^ H ^ ̂ H ^ , m^/ ))• In this notation, β 2 βi([^]) ί s represented
by the cocycle G

(3.12)

By (2.12), i({σ l 7}):i/^ 1αJZ/mZ)^-^^+ 1^°α s | !(Z/wZ) j / is described as follows
(cf. also (2.18)). Given ξeHpR1δί^(Z/mZ)^9 refine successively ^ , if necessary, in order
that the following be feasible (cf. the diagram (3.9)): Represent ξ by a /?-cocycle
of Rl6tJ^ZImZ)j- which is the image of a /?-cochain {fίo...ίp}eCp(t, Λ ^ Z 1 ) . Let
{Aio...ίp}eCp(f, R°ΰL^G°) be a /?-cochain mapping to {/w*z'0...ίp}. Then i({σo })ξ =

(3.13) On the other hand, it follows from (3.5) and (1.15) that the element of
H\k^omzlmZ{HvR^^(Z\mZ)d, Hp+1R°oί^Z/mZ)^)) which is sent by β3 to the
extension class given by the exact sequence

(3.14) 0 - Hp+iR0^(Z/mZ)j^ FpHp+1(Z/mZ)^ - HpRγ^(Z\mZ)d^ 0
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is described by he cocycle G^Homz/mZ(HpR1όί^(Z/mZ)^
yt-*f* — v(/*) (The right hand side member is an endomorphism of FpHp+1(Z/mZ)g,
which actually corresponds to a map HpRxΰ^Z\mZ)d^Hp+1R*ΰif(Z\mZ)J). Since
γ(f*) = yf*y~1=(y~1)*f*y*, this can be written in the form

(3.15) y*~*f*~(y~ί)*f *y* .

(3.16) We compare the cocycles (3.12) and (3.15). First we recall that, modulo
the canonical identifications (given on £7f by φf) R^^Z/mZ)^ -3. Λ'αJZ/raZ)^, the
exact sequence (3.14) comes from the exact sequence of hypercohomology of the short
exact sequence of complexes (written vertically, and deg/?°χ5l:Z(

1^)= 1):

0 0

ΐ ΐ

ΐ II ΐ

ΐ ΐ

ΐ T

o o,
specifically:

Now consider again ξeHpR1oί^(Z/mZ)J^2ίs in (3.11). Write ξ^eHpR1χJ<Z\mZ)^ for
the element to which it corresponds under the natural identification. By the degeneration
of the Leray spectral sequence for (Z/mZ)%, the map HpR°χ^ιZl^)-yHpR1χ^(Z/mZ)^ is
surjective (cf. (2.8)). Let {zio...ip}eZp(l, Λ ^ Z ^ j ) be a /7-cocycle mapping to ξx.
Together with the zero element of Zp + 1(€, R°χ^G^)\ t h i s describes a (p+1)-
hypercocycle of M\ defining an element oϊHp+1Jί' =FpHp+1(Z/mZ)g which maps to
ξg by (3.14) ( = (3.17)). The image of this element by / * lies in Hp+1R°δL*(Z/mZ)^,
and is obtained as follows: Refining °l/ if necessary, let g = {gio...ip}€Cp($, R°χ'χG<j*%-Ί)
be a /7-cochain mapping to {f*zio...i^eZp(9ί,R0χ'+Z{x.)). Then the image of
( - l ) p + 1 ^ e Z p + 1 ( t , R°χ^{Z/mZ)^) in R°δί^Z/mZ)^ gives the claimed image. That
is, the class of the cocycle (io i,+ 1)ι->(- l ) ' + 1 Σ ^ o ( - m<P'u)*9h-~h-iP + ί

 o f

R°δί^(Z/mZ)^. In this way, letting moreover g' = {g'io...ip}eCp(<%9R
ox+Gi3r)) map to

{/ y zi0...ίj,}eZ^Φ,Λ°χ;z(V)), it follows that (f*-(y-ψf*y*)(ξ)eHp+'R°^(Z/
mZ)d is represented by the cocycle (-l) p + 1{Σ?io(-l) v(φίo)*^o ιV»ip + i-
(rTI-oi-ir^^io-^p^}-

Now let us choose the cochains g and g' suitably: as {φfozio...i } and {zio...ip} both
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map to ξ, we may assume that there exists a cochain {eio...ip} e Cp(^9 R°δί^G0) mapping
t 0 {φ*oV i p - 4 ϋ τ h e n {m*eio-iP + hio iP}

 m a P s t 0 {(φίo)*/%»-i,} W e c h o o s e

{gio...ip} as determined by the condition (φ'i()*gio...ip = m*eio...ip + hio...ip. Secondly, {g'io...ip}

may be taken as determined by the condition {(Φίo)*0;o..ip} = {y*(φίo)*0io..ip} With
these choices, one finds that (/* — (y"1)*/*?*)^) is represented by the cocycle
{(-l^τ ^ ^ τ * ^ A(l...ίp + 1 -\ . . . l p + I )} , which equals(-l)'{τ o i iV... t, t l-A l l.wp +J, since
sections of 7?oα5|c(Z/mZ)^are invariant under translations. Thus the cocycles (3.12) and
(3.15) differ by a factor (— l)p, and this proves Proposition (3.7) for q= 1.

(3.18) As in previous sections (cf. (1.16), (2.20)), in order to deal with the general
case we shall need the case q—\ in a more general setting. Notation being as in (3.1),
let furthermore Jί be a locally free (Z/raZ)β-module of finite rank (in (3.8) we had
Jί = (Z/mZ)B). By (1.16), the Leray spectral sequence for Ji% degenerates, and the exact
sequence of discrete (Z/wZ)[G]-modules

(3.19) 0 ->H p + 1R°ti^Jί sϊ-+F pH p + ιJ{%->H pR γ^Jίd^^

splits as a sequence of (Z/raZ)-modules. The arguments of (3.8) apply to show that the
extension class of (3.19) is given by (-l)p/?3,^/?2 ,^/?i(DO, where β2M and β3 M are as
follows. The map β2^: H\K H\B, mj/))-^/^1(fc, H o m z / m ^ # p / ? % ^ - , Hp+ 1R°δί^j/))
is deduced functorially from the inner contraction map (2.5), and by using the pro-
jection formula Rid:¥Jί^=Ri6Lj<ZlmZ)s^®Jίβ. The map β3 M is deduced from (3.6),
like β3.

(3.20) PROOF OF (3.7): General case. We use freely the notation of (1.6) and,
in particular, Rι stands now for RΉ^Z/mZ)^. We have a canonical commutative
diagram of discrete (Z/mZ)[G]-modules, deduced from (1.20) and (1.36):

0 -> Hp+1(R°®Rq-1) -> FP

f/SH
p+1(χ*Rq-ί) -> H^R^R*-1) - 0

ί ί
0 HR ,

F'+2Hp+*(Z/mZ)s

Here t; = (proj)°Γ* is the composite of Σ * : H"Rq^>HpRq with the Kϋnneth projection
proj: H"Rq^Hp{Rι ® Rq~ι). It is now elementary, that, calling

H\k, Homz/mZ(//"(/?ι ® Rq- % H"+ ι(R°

' + ι(R° ® Rq~1))

Ext (

1

z / m Z ) [ G ] ( ίFΛ' ' ,
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the morphisms induced by v, one has, for ^ = /^~1α^(Z/mZ)^:t;*/?2 ^ = /?2 and
v*β3fJ( = β3v*. Therefore, the formula of (3.7) follows from the one in (3.18), and this
ends the proof of Proposition (3.7).

4. Abelian schemes over curves.

(4.1) Let k be a finite field of characteristic p0. Let B be a smooth, geometrically
connected (not necessarily projective) curve over k, and let α: s/^B be an abelian
scheme over B. It follows from [11, p. 178] (cf. also [7, p. 123]) that, in the notation
of (1.1), H\B, j / ) r e p = //1(S, d\ and H\B9 ^)rep = H\B, si). For all meZ>ί prime
to p0, the groups H\B, md) and H\B, msi) are finite. The groups H\B, sϊ) and
H1(B,si) are torsion groups and, for all primes lφp0, the primary components
H\B, sϊ){l) and H\B9 si)(l) are of cofinite type (cf., e.g., [6, p. 242]). The coranks
of the groups H1(B, J/)(/), lΦpQ are all equal—given by the Ogg-Shafarevich formula
(cf. [10])—, and, for all but a finite set of primes lφp0, the group H1(B9 sϊ){l) is di-
visible. Similar facts are expected to hold for the groups H1(B, si)(l), with the common
corank equal to zero. In other words, it is conjectured that the group HX(B, si)(nonp0)
is finite. This is equivalent (cf. [15]) to the fact that H1(B9 si)(l) be finite for at least one
prime lφp0.

By the assumptions on B, the 5-scheme si is projective (cf. [2, p. 153]). Let
λ: s4-+sί be a polarization of s/ and fix an odd prime number / (cf. (4.8) (ii)) which
is prime to the degree of λ, different from /?0, and such that the group H1(B, s/)(l) is
divisible. This excludes a finite number of choices.

(4.2) REMARK. The group H1(B, jtf)(nonp0) is divisible, when B is not projective.
On the other hand, when Bis projective, the finite group H1^ d)(l)/H1(B, sϊ){l)άϊy is
dual to H°(B, j/χ/)///°(5, J){l)ά{Λ/. This is the /-primary torsion subgroup of the finitely
generated Z-module M=A{k(B))/^Q(k)9 where ,4 is the generic fibre of α: J / - > 5 and
AQ is its £(5)/£-trace. Therefore, when B is projective, the primes lφp0 such that
H1{B9 s?){l) is not divisible are precisely those primes lφp0 which appear as torsion
coefficients of M.

(4.3) Putting m = Γ, reZ>u in (3.3) and taking projective limits, we obtain a
commutative diagram

H2(B,

(4.4) J ^ \
d \ \K H\E, TVs/)).

Next, a procedure analogous to that in (3.4) for m = Γ, rsZ>u carried out in the limit,
yields a morphism

β2: H\k, H\B, T,d)) -* H%
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Thirdly, proceeding as in (3.5), with continuous Zf[G]-modules, we obtain similarly
an inclusion

j53 : H\k,

The composite β3β2 equals the projective limit of the corresponding composites from
Section 3. Putting it all together, we obtain a group homomorphism

(4.5) βj2βί: H\B, sJ) -> ExtZl{G{H>R*a+ZltJr, H> + 1R*-%Zltj).

Section 3 then gives the following result, where we repeat the assumptions of (4.1), for
the reader's convenience:

(4.6) PROPOSITION. Let k be a finite field of characteristic p0. Let B be a smooth,

geometrically connected (not necessarily projective) curve over k, and let α: si-+B be an

abelian scheme over B. Let I be a prime number, different from 2 and from p0, prime to

the degree of a given polarization λ of si, and such that the group Hι(B, sΐ)(l) is divisible

(cf (4.2)). For any torsor ΘC for si, the Leray spectral sequence HpRqΰ%Zιd => Hp+qZιS

degenerates. The extension class of the exact sequence of continuous Z^G^-modules

(4.7) 0 -• Hp+ίRq-%ZltJf -• FpHp+qZιSjF
p+2Hp+qZιS -• HpRqΰ.%Zιd^> 0

is givenby (-\)pβτβ2

(4.8) REMARKS, (i) The groups HpRqόί^(Z/mZ)^2iτc zero if p> 3 or if B is not
projective and/?>2. Therefore the only meaningful sequences (4.7) are those with/? = 0
or with p= 1, whenever B is projective.

(ii) By the same reason, dr(&) = 0 for r>3, and the degeneration of the Leray
spectral sequence follows also from Proposition (2.7): Note that we have replaced the
condition l>2dimBsi+ 1 that appears in (3.1) and in (1.4) by />2, since that condition
was used fully only in the proof of (1.4), while in (1.13) and in (1.36) we only needed
/>2 (cf. (1.24) and (1.36)), and in the proof of (2.7) />2 is sufficient here (cf. (2.22)).

(iii) If B is not projective, then the Leray spectral sequence HpRq6ί^Zι d=>
Hp+qZlf% degenerates for any prime number lφp0. If B is projective, then the maps
d\q(β)\ H0Rq^Zx d^H2Rq-γΰ^Zx d (and only these) might be non zero (cf. also
(4.12)).

The left hand side member of (4.5) is a torsion abelian group, and the right hand
side member is a finitely generated Zrmodule. Thus the morphism (4.5) vanishes on
all primary components of H1(B, si) other than H1(B, si)(l) (hence the extensions (4.7)
are trivial for the corresponding torsors), and the only meaningful part of (4.5) is the
induced morphism

(4.9) β: H\B,
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The right hand side group is finite. Thus, if β is injective, then H\B, stf){l) is a finite
group. The following result completes (4.6):

(4.10) PROPOSITION. With the assumptions of (4.6), for (p, q) = (0, 2) the kernel of
the map β equals H\B, j/)(/)div, the divisible subgroup ofH\B, sΐ)(l). Hence H\B, s/)(l)
is finite if and only if this map is injective.

PROOF. In view of diagram (4.4) and of the injectivity of β3 (cf. (4.3)), it suffices
to show that the map β2 is injective. We show that the map H\B9 7>/)->
Hom^f/f 0 ^ 2 ^^ ^, H1R1oc^Zl jr) inducing β2 is a split injection of continuous
Z^G^-modules. The polarization k H o m ^ j / ) is defined by a section λe
H°(B, <sV^/B\ and this section yields a cohomology class λeH®R2ΰ^Zιd(\\ On the
other hand, the Weil pairing TlsI®TlsI^ZhB(\) together with the pairing
Ttj^® R1δί^Zι^^Zhβ (cf. (2.4)) give a canonical isomorphism Ttsl^ Rιδί^Zι

Consider then the following diagram of continuous Zj[G]-modules:

( 4 1 1 )

I Homμ, 1)

where the isomorphism on the bottom row comes from the identification just mentioned,
and the right hand side vertical arrow is evaluation at λ. The commutativity of this
diagram is standard. Then, since the degree of λ is prime to /, λ induces an isomorphism
TtjJ'-3, Txsi, and so the left hand side vertical arrow is an isomorphism, too, thereby
ending this proof.

(4.12) REMARKS (cf. (4.8)). (i) Notation being as in (4.1), let now / be any odd
prime number different from p0 and prime to the degree of λ. For all torsors 3t for sί
one has: The Leray spectral sequence HpRqd^Zι ^=> Hp+qZι ^ degenerates if and only
if the torsor % is infinitely /-divisible. Indeed, by Proposition (2.7) (cf. (4.7) (ii)), the
morphism dφ(9t)\ HpRqδί^Zι^-^Hp+2Rq-1δί^Zι^is given by (-l)p+1ι(δ[S?]). And
one has δ[βt~\ = 0 if and only if ^ is infinitely /-divisible. The if-case follows immediately
from this (cf. (4.8)). For the converse, a diagram similar to (4.11) shows that the map
H2(B, Tιjf)-+HomZι(H°R2όίχZιtjf, H2R^ZU^) given by ξv-+ ι(ξ) is injective. Hence,
if d22(&) = 0, then & is infinitely /-divisible. (We note that, as remarked in (4.2) and in
(4.8) (iii), the present equivalence is obvious in case B is not projective over k).

(ii) Keeping the notation of (i), a somewhat different version of the map
d\\S)\ H°R2δί^Zι^^H2R1δί^Zι^ is obtained by twisting with Z,(l) (this actual-
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ly corresponding to the Leray spectral sequence for the sheaf Zt %(l)): As in (4.11),
identify first H2R1d^Zl^(\) = H2{B, T{d). Then, since d°2

2{β\\) varies additively with
9t, the image of this morphism lies in Tors(/f 2(5, T^)). This group is identified with
the first term of the exact sequence (deduced from the sequences (2.3) for si and m = Γ,
r>\)

0 -> H\E, Jw/H'iB, J~)(l)diy -> H2(B, TtJ) -> Tξ{H 2(5, j/)) -> 0 .

Then, by using (2.7), one finds that the morphism

is as follows: Consider the inclusion HQR2ΰ^Zιit^(l)cHom^(«/(/), ^(/)), which un-
derlies the inclusion F°(S, . / ^ - ^ J c H o m ^ j / , « / ) . Compose this with the obvious
maps Hom5-(/(/), i

άϊy\ and then evaluate at the image of [ # ] in H\
The opposite of this map is d°2

2{^)(\).
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