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Abstract. We prove a precompactness theorem concerning the spectral distance
on the set of isometry classes of compact Riemannian manifolds and study the comple-
tion of a precompact family.

Introduction. For a compact connected Riemannian manifold M=(M,g), we
denote by pM(t, x, y) the heat kernel of the Laplace operator of M with respect ot the
normarized Riemannian measure μM (= dvg/Vol(M)). Given two compact connected
Riemannian manifolds M and N, a mapping / : M->N is called an ε-spectral ap-
proximation if it satisfies

e-{t + llt)\pM(U x, y)~PN(t, f(x)9 Ry)) I <ε

for all />0 and x,yeM. The spectral distance SD(M, N) between M and N is by
definition the lower bound of the positive numbers ε such that there exist ε-spectral
approximations / : M-^N and h: N^M. The distance SD gives a uniform structure
on the set Mc of isometry classes of compact connected Riemannian manifolds.

Riemannian manifolds are considered as metric spaces endowed with Riemannian
distances. From this point of view, the set Mc has another uniform structure introduced
by Gromov [18], called the Hausdorff distance HD. In [18], the conditions for a family
of Jic to be HD-precompact are described and it is shown that the boundaries of such
a family consist of certain metric spaces, called length spaces. This decade has seen
intensive activities around the convergence theory of Riemannian manifolds with respect
to the Gromov-Hausdorff distance. These includes some works from the viewpoint of
spectral geometry, for instance, [14], [4], and [23]. In [25], motivated by these results,
we introduced the spectral distance SD mentioned above and discussed some basic
properties of the distance on a set of compact connected Riemannian manifolds of the
same dimension with diameters uniformly bounded from above and Ricci curvatures
uniformly bounded from below.

In the present paper, we are concerned with a certain precompact family of Jίc

and its compactification with respect to the spectral distance. More precisely, the main
results are stated as follows.
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(1) (Theorems 2.3 and 2.6) Let positive constants a, v, and τ be given and let

^{a, v, τ) be a family in Jίc such that the heat kernel pM(t, x, y) of each Me^(a, v, τ)

satisfies

(0.1)
' ' " ' J

 tv/2

for all 0<t<τ and xeM. Then tf(a, v, τ) is precompact with respect to the spectral

distance SD and also the Gromov-Hausdorff distance HD.

(2) (Theorem 3.1) Let {Mn: n = 1, 2, ...} be an SD-Cauchy sequence in ^(a, v, τ).

Suppose that the diameter of Mn is bounded away from zero uniformly by a positive

constant. Then there exist a compact metric space X= (X, Θ), a (positive) Radon measure

μ on X, a nonnegative continuous function p on (0, o o j x l x l , Borel measurable

mappings Fn: Mn-+X, Hn: X-^Mn, and a sequence of positive numbers {εn} converging

to zero as n->oo, which satisfy the following properties:

(i) p(t, x, y) is the heat kernel of a strongly continuous semigroup {Tt: t>0} on

L2(X, μ) associated with a regular Dirichlet form on L2(X, μ);

(ii) the push-forward Fn*μMn of the normalized Riemannian measure μMn of Mn

by the mapping Fn converges, as «—•oo, to the measure μ with respect to the vague

topology;

(iii) the z-th eigenvalue λni of Mn for each / converges, as «->oc, to the /-th eigen-

value λt of the infinitesimal generator if of {Tt: />0};

(iv) the mappings Fn: Mn-+X and //„: ̂ ^ M n are επ-spectral approximations,

namely, they satisfy

Mn(t, x, y)~P^ Fn(*\ Fn{y)) I <sn

e-(t+1/t)\pMn(t> Hn(xf% Hn(y'))-p(t, x\ / ) | <εn

for all />0, x,yeMn, and x',y'eX, and also one has

θ(FHoHJtx'),x')<εH

for X 'GA';

(v) letting a positive integer / be given, for each eigenfunction u of (Mn, μMn) with

eigenvalue λni and unit norm in L2(Mn, μMn), there is an eigenfunction υ of i f with

eigenvalue Λ,f and unit norm in L2(X, μ), such that

sup I u(x) - v(Fn(x)) \<εnΛ; sup | u(Hn(x)) - v(x) \<εnA,
xeMn xeX

where {εni} is a sequence of positive constants tending to zero as «->oo.

We remark that the measure μ is not necessarily supported on the whole of X and

the trivial eigenvalue λo = 0 may be of multiplicity greater than one (cf. Sections 5, 7

and 8 for such examples).
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Given a positive integer m and positive constants K and Z>, we denote by Jί*(m, K, D)
the subset in Jic consisting of compact connected Riemannian manifolds of dimension
m whose diameters are not greater than D and whose Ricci curvatures are bounded
from below by —K. Then the main results of [25] are stated as follows.

(3) ^#*(m, K, D) is precompact with respect to the spectral distance SD, and the
above assertions (1) and (2) certainly hold for an SD Cauchy sequence in this class.
Moreover the semigroup {Tt: ί>0} on the limit space X satisfies the Feller property,
namely, for each continuous function u on X,

\imsup\Ttu(x)-u(x)\=O
f->0 xeX

and in fact it possesses the Lindeberg type property, that is, for a compact subset K in
X and an open subset G including K,

limsup—7;(Λ_G) = 0,
ί^O xeK t

where J>A stands for the characteristic function of a set A.
(4) On Ji*(m, /c, D\ the uniform topology given by the spectral distance is finer

than that of the Gromov-Hausdorff distance. In fact, if a sequence {Mn} in Jί*(m, K, D)
converges to a boundary element (X, μ, p) with respect to the spectral distance, then
there is a distance d on X such that the metric space (Mn, dMn) endowed with the
Riemannian distance dMn converges to (X, d) with respect to the Gromov-Hausdorff
distance. Moreover one has

lim At log p(t, x,y)=— d(x, y)2

r->0

for all x,yeX.
The assertion (3) will be valid for larger classes considered in [32]. In fact, let A > 1

be given further and consider the set of equivalence classes of M=(M, g), denoted by
^#*(m, K, D; A), which admit Riemannian metrics h such that (M, h)eJί*(m, K, D) and
A~1h<g<Ah. Then we shall show

(5) (Theorem 4.3) the assertion (3) certainly holds for M{m, K, D; A).
However the assertion (4) is not true in general for this class (cf. 4.3 Example).
These results will be verified in Sections 2 through 4. As the first step, in Section

1, we exhibit the method of embedding compact Riemannian manifolds into a certain
metric space of infinite dimension in connection with the spectral distance defined above.
It should be mentioned here that Berard, Besson and Gallot [4] defined a family of
spectral distances on the set of compact Riemannian manifolds by embedding them
into the Hubert space of real-valued, square integrable series. However their distances
are different from ours. We consider a point of a compact Riemannian manifold as
a curve in the Hubert space, taking the Sturm-Liouville decomposition of the heat
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kernel into account.
In Sections 5 through 9, we shall exhibit some geometric classes which satisfy uniform

diagonal estimates (0.1) for the heat kernels. It is well known that (0.1) is equivalent
to inequalities involving the energy forms, Sobolev and Nash inequalities (cf. Theorem
2.1). In Section 5, we consider conformal classes of positive Yamabe invariants and
derive Sobolev inequality for a class of conformal metrics in terms of the Yamabe
invariant and a certain integral bound of scalar curvature. Section 6 concerns a family
of Riemannian submanifolds in a complete manifold and a heat kernel bound (0.1) is
shown with constants involving an upper bound of the volumes and a certain integral
bound of the mean curvatures. Section 7 is devoted to exhibiting SD-precompact families
of Riemannian manifolds with increasing topological type. In Section 8, we show a
sequence of Riemannian metrics on a compact surface which degenerates along simply
closed curves while keeping the heat kernels bounded uniformly. Riemannian sub-
mersions with totally geodesic fibers are taken up in Section 9 and a typical defor-
mation of such metrics on a total space is discussed. In addition, some observations are
made concerning Riemannian manifolds with certain integral bounds on curvatures.

As in [25], from the nature of the problem discussed here, we shall in fact investigate
Riemannian manifolds endowed with weight functions and the associated operators
rather than Riemannian manifolds and the Laplace operators. When we fix a compact
connected diίferentiable manifold and consider a family of Riemannian metrics and weight
functions, the topology of the spectral distance are closely related to those studied by
many authors (see for instance, [27], [30], [20], [31] and references therein).

Most of the results in this paper were presented in the lecture notes for the
proceedings of the second GARC Symposium on Pure and Applied Mathematics,
February 1993, Seoul National University, and also Geometry and Global Analysis,
July 1993, Tόhoku University.

The first author is grateful to Professors Y. Ogura, M. Takeda and K. Akutagawa
for helpful conversations.

1. Spectral embedding and spectral distance. In this section, we review some

definitions introduced in [25].
1.1. Let M=(M, g) be a compact, connected Riemannian manifold of dimension

n and w be a positive smooth function on M. We consider an elliptic differential operator
j£?w of second order defined by

^wφ= div(wVφ) = -AMφ-dφ(Snogw),
w

where ΔM stands for the Laplace operator of M acting on functions. This operator ϋ?w

is associated with the Dirichlet integral $ on the space C"°(M) of smooth functions
defined by
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M

where we write μw for the (Radon) measure wdvM of density w with respect to the

Riemannian measure dvM. The operator f̂w is essentially self-adjoint, and in this paper,

its closure in L2(M, μw) is also denoted by the same letter. Let pw(t, x, y) be the heat

kernel of the operator j£fw. Since M is assumed to be compact, we have the eigenfunction

expansion of the kernel:

00

pjt, x, y)= Σ e'^u^u^y).
i = 0

Here 0 = λo<λ1<λ2- are the eigenvalues of JS?W and Φ = {wJ is a complete ortho-

normal system of L2(M, μw) consisting of eigenfunctions with ui having eigenvalue λ v

Now let us recall a spectral embedding of M used in [25]. To begin with, we define

two Hubert spaces l2 and h1 by

= ](«i)i = o.i.2....: Σ af<+co\

We denote by C^dO, oo), l2) the space of continuous curves y: [0, oo)-^/2 such that the

/2-norm |y(/)|Z2 of y(t) tends to zero as t-+oo. This space is endowed with the distance

djy, σ): = swp\y{t)-σ{t)\h .
r>0

We note that given a positive constant C and a nonnegative continuous function

on [0, oo) tending to zero as ί-»oo, if we set

K(Q η): = {ye CJfl), oo), / 2 ) : | y(ί) |fcl < η{t) for all r > 0 ,

\y(t)-y(s)\l2<C\t-s\ for all ί ,5>0},

then K(C, η) becomes a compact metric subspace of €^([0, oo), /2), and hence the set of
closed subsets of K(C, η) is also compact with respect to the Hausdorff distance δH.

Let a complete orthonormal basis Φ = {ui] of L2(M, μ j as above be given. For a

point xeM, we shall define an element Fφ[x~\ of £^([0, oo), l2) by

Then the map F φ of M into C ί̂CO, oo), l2) gives rise to a continuous embedding of M,

which will be called the spectral embedding of M with respect to the given basis Φ = {wj.

We observe that for all x.yeM and t>0,
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<Fφ[x](ί), FΦίy-](φh = e'{t+mpw(t, x, y),

and

sup e~« + ιl'\pw{t, x, x) +pw(t, y, y) - 2pjt, x, y))
ί > 0

Putting

\ l / 2

, x, x)+pjt9 y, y)-2pjt, x, y))
t>o J

for x,yeM, we have a distance ΘMw on M which induces the same topology of M.

The spectral embedding Fφ: (M, ΘM,vv)^(Coo([0, oo), /2), d^) is thus distance preserving;

the distance ΘM w will play an important role in this paper. The Riemannian distance

between two points x, y of M is denoted by dM(x, y); (M, μ j will stand for a pair of a

compact connected Riemannian manifold M=(M,dM) and a (Radon) measure μw =

wdvM with density w.

1.2. We are given two pairs (M, μv = vdvM) and (N,vw = wdvN). A mapping

/ : M-+N is called an ε-spectral approximation for a positive number ε if

sup{e- ( ί + J / ί ) | A,(t, x, y)-pjίt, f(x), f(y)) | : / > 0 , x j e M } < ε ,

where pv and /?w are respectively the heat kernels of (M, μy) and (TV, vw). The spectral

distance between (M, μ j and (TV, vJ, denoted by SD((M, μ j , (TV, vj), is by definition

the lower bound of the numbers ε > 0 such that they admit ε-spectral approximations

/ : M^N and h: N->M. We observe that

if and only if there is a homeomorphism / : M^N which preserves the heat kernels

and the measures, namely,

pΌ(t, x, y) =pjt, /(x), f(y)) for all t>0, x,yeM; f^μv = vw .

Indeed, suppose first that SD((M, μv), (TV, vj) = 0. Then there are εM-spectral approxi-

mations /„ : M-*N with εn tending to zero as n-+co. Then by the definition of the

distances ΘM v on M and ΘN w on TV, we see that

I θMtΰ(x, y)2 - ΘNJfn(x), fn(y))2 \<4εn

for all x, y e M. Now we choose an increasing sequence of finite subsets Ak of M in

such a way that Ak is (l//r)-dense with respect to ΘMv. For each k, we take a subsequence

{/»!(*)} °f {/»} s u c n t n a t fn(k)(x) converges for all xeAk as «(A:)^oo. We may assume that

{/*(* +1)} ̂  {/n(fc)} Then by the diagonal argument, we can find a subsequence {/m} which

converges for every point xe [j Ak as ra->oo; we set /(x) = limm^00/m(x) (xe | J >4k). The

mapping / : (J Ak^N preserves the distances, namely,
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for all x, y e (J Ak. This shows that / can be extended uniquely to a distance preserving
mapping, denoted by the same letter /, of M onto TV, because [j Ak is dense, and both
of M and N are compact and connected. Moreover since /„ are ε-spectral approxi-
mations with lim,,^^ επ = 0, the mapping / actually preserves the heat kernels. It is easy
to see that / also preserves the given measures, because, for a continuous function ψ
on N,

ί φ{f{x))dμυ{x) = \ϊm[ ί PJit9f(x)9b)ψ(b)dvJb)dμJίx)
JM ^OJMJN

f f Pw(tJ(x\ f(y))Φ(f(y))dμv(x)dvw(f(y))
JM

f pv(t,x,y)ψ(f(y))dμv(x)dvw(f(y))
JMM .

= ί Φ(f(y))dvw(f(y)).
JM

In our situation, the mapping / : M^N as above induces an isometry between M
and N which preserves the given measures, since it is well known that

lim 4ί log/?w(ί, x,y)=- dM(x, y)2

for all x,yeM (see [34], [11], and [25]).
Now identifying two pairs (M, μv) and (N, vw) when there is a mapping of M onto

N which preserves the heat kernels and the measures, we obtain a metric space

1.3. We shall consider a triad of a compact, connected Riemannian manifold M,
a measure μw = wdvM as before and a complete orthonormal system Φ = {ui]i = 0Λ^_ in
the Hubert space L2(M, μw) such that ut is an eigenfunction of the operator ^MfW having
the ϊ-th eigenvalue λt. Given such triads α = (M, μv, Φ = {ui}) and β = (N,vw, Ψ = {vi}),
we set

SD*(α, β): = 5H(^Φ[M], FΨ[N]) ,

where ^H stands for the Hausdorίf distance on the set of closed subsets of the metric
space ^ ( [ 0 , oo), l2). Obviously SD*(α, β) = 0, that is, /7

Φ[M]=F<F[Λ^], if and only if
there exists a homeomorphism f of M onto N which preserves the heat kernels, the
measures and further the given orthonormal systems, f*Ψ = Φ. In what follows, we
shall identify these triads and denote by ^Jίc^ the set of equivalence classes of elements
(M, μw, Φ = {«.}) endowed with the distance SD*.

Now let π: 3FJlc^^Jίc^ be the canonical projection from &*Jlc^ onto Jίc^
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sending (M, μw, Φ = {wf}) to (M, μ j , and set

p(M, μw): = sup{e-it+1/t)pw(t, x, y):t>0, x,yeM} .

Then for α, βe^JίCM> we have

SD(π(α), π(j?))<2max{p(π(α)), p(π(j8))}SD*(α, j8).

Therefore a subset 9* of ^#c w is SD-precompact, provided that p(M, μ j is uniformly

bounded from above on Sf and π " 1 ^ ) is SD*-precompact. Thus we can deduce from

the observations in 1.1 that 9 is SD-precompact, if there exist a positive constant C

and a positive continuous function η on [0, oo), with η(t) tending to zero as ί-»oo, such

that

2. Upper bounds for heat kernels and precompactness. In this section, we shall

give sufficient conditions for a given subset Sf of Mc^ to be precompact, in terms of

uniform upper bounds for the heat kernels and also the measures.

2.1. We are given a pair (M, μw) of a compact connected Riemannian manifold

M=(M,g) and a Radon measure μw with density w. In what follows, for a function

φeLp(M, μw), we write ||</>||p for the norm of φ:

\\Φ\\P:

We shall first recall some basic results on bounds of the heat kernels pjt, x, y) and

inequalities involving the quadratic forms S.

THEOREM 2.1. Let (M, μw) andpw be as above. Let ve(0, oo) be given. If

a
(2.1) pw(t,x,x)<

,v/2

/or stfrae <z > 0 and τ > 0, and for all t e (0, τ] αrcd x e M , //ze« //zere w a constant A depending

only on v and a such that

(2.2)

for all φ e C^iM). Conversely (2.2) implies that (2.1) holds for some a>0 depending only

on v, A and τ. Moreover in the case when v>2, (2.1) is also equivalent to a bound of the

form:

(2-3) \\Φ\\ll(v-2)<A'{S(φ, Φ) + τ-1\\φ\\2

2}

for all fe C^iM), where A' (resp. a) is a constant depending only on v and a (resp. v, A'
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and τ) ι/(2.1) (resp. (2.3)) holds.

Moreover we use local Sobolev inequalities and off-diagonal estimates for the heat

kernels.

THEOREM 2.2. Let (M, μw) andpw be as above. Let ve(0, oo), a point xeM and

re(0, + OO] be given. Suppose that

\\Φ\\lnv2)Wφ, φ) τ-1\\φ\\l} (v>2)

l { ' l } i (v = 2)

for some A* andτ, and for all φ e C£(B(x, r)). Then one has a diagonal estimate of the form:

(2.5) pw(t,y,y)<C(v)A*v/2(l+τ-1tγ/2(\+r-2t)(r-2 + Γ1γ/2

for allt>0 andy e B(x, r/2), where C(v) is a positive constant depending only on v. Moreover

if (2.4) holds for another point x'eM, then the following off-diagonal estimate holds:

(2.6) pjt, x, x')<C(v)A*v/2(\ +τ-1tγ/2Γv/2(l + Γ1dJx9 x')2)1+v/2exp(- ^ M ( X ? * ) j

for 0<t<rdM(x,x')(<oo).

We refer the reader to [29], [35], and [8] for the proof of Theorem 2.1. See also

[13]. So for as Theorem 2.2 is concerned, adapting the arguments in [29] (see also [9])

and [33] will yield the above estimates.

2.2. We shall now prove the following:

THEOREM 2.3. Given a subset £f of Jίcw, suppose that (2.1) holds for some positive

constants v, a, and τ and for all elements (M, μw)e£f and moreover suppose that the total

measure μw(M) of any (M, μw) e £f is not greater than a positive constant b. Then Of is

precompact with respect to the spectral distance SD.

PROOF. This follows from the lemma below. Indeed it can be deduced from the

lemma that there exist a positive constant C and a positive continuous function η(t) on

[0, oo), tending to zero as /-»oo and depending only on the given constants v, a, τ and

b, such that

for any (M, μw, Φ)eπ 1{&?). q.e.d.

LEMMA 2.4. Let (M, μw, Φ = {ut: i = 0, 1, 2...}) be an element of &JΐCtW such that

(2.1) holds for some positive constants v, a and τ. Then the following assertions hold.

( i ) The i-th eigenvalue λt satisfies

( 1 + i \ 2 / v

λM — if λ^τ-1; \+i<aeμw(M)τ^2 if λ^τ'1 .
\ aeμw(M) J
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(ii) The eigenfunctίon utfor each i has a bound of the form:

\ui

(iii) Given σ>0, one has

for all t>0 and xeM, where C is a positive constant depending only on v, a, and σ.
(iv) Given σ>0,

T<λi

for all T>τ~\ t>0 andxeM.

PROOF. We first observe that for each λ > 0, and for all xεM,

(2.7) Σ uf(x)<aemax{λv/2, τ~v/2} .
λi<λ

Indeed,

Σ u2{x)<e Σ e-λί/λu2{x)<e £ e~Xi/xu2(x)
λt<λ λi<λ i = 0

= epw{\/λ, x, x)<aenmx{λv/2, τ~v/2} .

Integrating the both sides of (2.7) over M, we get

#{Af: λi<λ}<aemax{λv/2, τ"v/2}μw(M).

Thus the first two assertions follow.

Now for each point x ε M, we define a measure ηx on the real line R by

00

ηx=Σ"ϊ(x)K>

where δλ stands for the Dirac delta measure at λ. Since ηx((— oo, λ]) = ηx([O, λ])<
aemax{λγ/2, τ"v / 2}, we have

oo Λ o o

ί = 0 J-oo

(tλσ-σλσ-1)e-tληx((-oo9 λ])dλ
Jo

Λoo

<αe tλσe-tλmax{λγ/2, τ~v/2}dλ
Jo
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This shows the assertion (iii).

It remains to verify the last assertion. Observing that

f -(t+ l/t)-tλ <-

for all / > 0 and λ > 0, we have

-1+V5 +A

Λoo

JT

Γ α

<2αe
Jr

\λ

Coo

i
JT

te-{tΛ

>

v /5+4Λ< r 'Λ -2Λ/ λ

λ'e'λdηx(λ)

tλσe-tληx((-oo,λ])dλ

q.e.d.

2.3. Now we shall derive some geometric estimates on (M, μw)eJίcw from the

Nash inequality (2.2).

LEMMA 2.5. Let (M, μ j 6e β« element ofJίcw such that (2.2) holds for some positive

constants v, 4̂ ««J τ. 77ze« the following assertions hold.

( i ) 77ze /oίfl/ measure μw{M) is bounded from below by A~v/2τv/2.

(ii) For all points xeM and any r e (0, τ 1 / 2 ] , the measure of the geodesic ball B(x, r)

of M=(M, dM) around x with radius r satisfies

(iii) The diameter of M=(M, dM) satisfies

dmmM<C(v)A1/2μw(M)1/v if d i a m M < τ 1 / 2 ;

dmmM<C(v)Av/2τ~(v-1)/2μw(M) if d i a m M > τ 1 / 2 .

(iv) The i-th eigenvalue λt has an upper bound of the form:

for i^iAτ112)-1 άiamM.

Here C(v) is a constant depending only on v.
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PROOF. The inequality (2.2) applied to a constant function yields:

This proves (i).

Now for a point xeM and a positive number r, we write p for the geodesic distance

d\ί (*> χ) to t n e point x and we choose a test function as follows:

1 if 0<p(y)< —

2-~p(y) if L.

0 if /-<

Then ζxr satisfies

I VCx,r I < - supp I VCx,r | = B(x, r) - B{x, r/2).
r

Hence applying (2.2) to the function ζXtΓ, we see that

μJ[B(x9 r/2))1 + 2>*<Al4r-2{μw(B(x, r))-μJ[B(x9

This implies that for r 2 < τ ,

Now we put V(t):=μJB(x,t)\ α: = v/(v + 4), )8: = (v + 2)/(v + 4), and rm\ =

(m= 1, 2, . . .) . Then it follows that

V(rJ>(5A)-*rl<V(rm+1f (m= 1, 2, . . .)

and hence

(l-/?w)/(l-/3) r2α(l -β™)/( 1-/3) FT 2 " 2α(j- DβJ~ ι yίγ \βm

 >

7=1

Since K ^ + i ) ^ tends to 1 as ra->oo, we obtain

for some constant C(v) depending only on v. This proves the second assertion (ii). In

particular, in the case when the diameter of M is not greater than τ 1 / 2 , we see that

μw(M) > C(v)A ~ v/2(diam M ) v .

Now we shall consider the case when d i a m M > τ 1 / 2 . We put first r o : = τ 1 / 2 and also
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n0 : = [diamM/2r0] + 1 , where [x] stands for the greatest integer n satisfying n<x. Let

γ: [0, diam(M)]->M be a distance minimizing curve joining two points x.yeM such

that dM(x, y) = diam M. Set xk: = γ(2kr0) (/c = 0, 1, . . . , n0— 1). Then we get a disjoint

family of geodesic balls {B(xk, r0): k = 0, 1, . . . , n0— 1}. Therefore we see that

Since diamM<2ro«o, we obtain

This shows (iii).

It remains to prove (iv), for which we use the Rayleigh principle. Let x, yeM and

γ: [0, diamM~\^Mbe as above. Given an integer / greater than diamM/4τ1 / 2, we have

a disjoint family of (/+ 1) geodesic balls B(xp r) and linearly independent test functions

ζx r defined as above, where we set Xj: = γ(2rj) (j=0, 1,...,/) and r: = diam M/2i. Taking

the variational characterization of the /-th eigenvalue λt into account, we see that for

some (a0, . . . , a^sR1*1 — {0},

,Φ)

Hence we can deduce the last assertion (iv). Indeed, we have

2C(vμ~v/2(r/2)v
(by

where C'(v) is a constant depending only on v. q.e.d.

It should be mentioned that the main estimate (ii) of Lemma 2.5 is essentially due

to Akutagawa [1] and we have adapted the method employed in [1, Theorem 2.1] for

proving our estimates (cf. Remarks (ii) below).

As an application of Lemma 2.5 (ii) and (iii), we have the following:

THEOREM 2.6. Given positive numbers v, a, τ and b, the set of isometry classes of

compact Riemannian manifolds M=(M, g\ which admit weight functions w such that (2.1)

with these constants v, a, τ holds for (M, μw) and the total measure μw(M) is bounded

from above by b, is precompact with respect to the Gromov-Hausdorff distance HD.

PROOF. In view of Theorem 2.1 and Lemma 2.5 (iii), we see that the diameter of

M is bounded from above by a positive constant depending only on the given v, a, τ



84 A. KASUE AND H. KUMURA

and b. Moreover let a positive number r be given and take a family of disjoint geodesic
balls B(xb b) around points xt of radius r. Then the number k of such balls is not greater
than a constant depending only on the given ones v, a, τ and b. Indeed, it follows from
Lemma 2.5 (ii) that

i=ί

k

> Σ /U#(*p r J) (r* : =min{r, τ1/2})
ί = l

>kC(v)A~γ/2rl .

Hence a result due to Gromov [18] shows that the set of isometry classes as above is
HD-precompact. q.e.d.

REMARKS, (i) Let v, A, and τ be given and (2.2) hold for a pair (M, μw). In the
case when v = dim M, it follows from Lemma 2.5 (ii) that the density w must be uniformly
bounded away from zero.

w(x) > C\ή)A ~ntl > 0 (n = dim M)

for all xeM, where C'(ή) is a positive constant depending only on n.
(ii) Let N=(N, h) be a (not necessarily complete) Riemannian manifold and μ a

Radon measure on N. Let A", R, τ, v and p be given positive constants such that
Rp<τ and v>/?. Suppose that the closure of the geodesic ball B(x, R) around a point
x e N of radius R is compact, and moreover

! \φ\pμ
B(X,R) / \JB(x,R) J B(x,R)

for all φeC${B(x, R)). Then we have

μ(B(y, ή)>A"-v/p2-v(v + 1)/prv

for all geodesic balls B(y, r) included in B(x, R) such that

\ogμ(B(y,ε))

lim sup — — ^ < + oo .
ε̂ o logε

This can be verified by the same argument as in the proof of [1, Theorem 2.1] or
Lemma 2.5 (ii). See 9.3 for a related result.

3. Convergence of eigenvalues and eigenfunctions. In this section, we shall study
a certain SD-Cauchy sequence and the limit element. In addition, we shall discuss the
resolvent convergence in some sense.

3.1. The main result is stated as follows:
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THEOREM 3.1. Let Sf = {(Mn,μWn = wndυMn):n=l,2,...) be a sequence of Mc%yt

such that for some positive constants a, v, τ and b, the heat kernel pWn(t, x, y) of(Mn, μwj

satisfies (2.1) and the total measure μWn(Mn) of Mn is bounded from above by b. Suppose

that Sf is an SΌ-Cauchy sequence and further the diameter of Mn = (Mn, dMn) is bounded

away from zero uniformly by a positive constant. Then there exist a compact connected

metric space X=(X, Θ), a (positive) Radon measure μ on X, and a nonnegatίve continuous

function p on (0, o o j x l x l , Bore I measurable mappings Fn: Mn-+X and Hn: X-*Mn,

and a sequense of positive numbers {εn} converging to zero as n-+co, which satisfy the

following properties:

( i ) p(t, x, y) is the heat kernel of a strongly continuous semigroup {Tt: t>0} on

L2(X, μ) associated with a regular Dirichlet form on L2(X, μ).

(ii) The push-forward Fn*μWn of the measure μWn by the mapping Fn converges, as

n-+co, to the measure μ with respect to the vague topology.

(iii) The total measure μWn(Mn) of μWn and the i-th eigenvalue λni of(Mn, μWn) for

each i converge respectively, as n-> oo, to μ(X) and the i-th eigenvalue λ( of the infinitesimal

generator & of {Tt: t>0}.

(iv) The mappings Fn\ Mn-*X and Hn: X-+Mn are εn-spectral approximations,

namely, they satisfy

pwβ> x, y)-p(U FH(x), Fn(y))\<εn;

wβ> Hn(x')9 Hn(y'))-p(t, x', / ) | <εn

for all t>0, x,yeMn, and x',y' eX, and also one has

Θ{FnoHn{x'),x')<εn

for allx'eX.

(v) Letting an positive integer ί be given, for each eigenfunction u of(Mn, μwj with

eigenvalue λni and unit norm in L2(Mn, μWr), there is an eigenfunction v of $£ with eigen-

value λi and unit norm in L2(X, μ), such that

sup I u(x) - v(Fn(x)) I < εnΛ sup | u(Hn{x)) - v(x) \<εnJ,
xeMn xeX

where {εnj} is a sequence of positive constants tending to zero as n^ΌO.

PROOF. The proof of the theorem will be divided into three steps.

Step 1. We set <9>* : = π " \Sf\ which is an SD*-precompact subset of 3FJlc^ and

choose a sequence an = (Mn, μWn, Φn = {unΛ}) of 5^*. In addition, we put

v: = lim sup μWn{Mn) λt: = lim sup λnΛ (i = 1, 2, . . . ) .
n~* oo n—*• oo

Since the diameter of Mn is assumed to be bounded away from zero uniformly by a

positive constant, we see by Lemma 2.5 (iv) that λt is finite for each /.
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Now we shall assume in this step that απ is an SD*-Cauchy sequence, and further

that as «-κx), μWn(Mn) and λni converge to v and λb respectively. We denote by Xn the

image of the embedding FΦn: M^C^fljO, oo), /2). Then by the definition of the distance

SD*, Xn converges, as «->oo, to a compact subspace X of C^ffO, oo), /2) with respect

to the Hausdorίf distance δH there. Hence we we can define (not necessarily continuous)

mappings / „ : Xn->X and hn: X^>Xn in such a way that

dJy,fn(y)Xδn

(3.1) djy'9h,ly'))<>δn

for all γ'eX, where δn is a sequence of positive constants tending to zero as n-+oo.

Moreover these mappings have the following properties:

djy, hnofn(γ))<2δn djy\ fnohn(y'))<2δn

for all y, σ e Xn, y', σ' e X. In particular, the 2(5/Γneighborhood of the image fn(Xn) covers

X and also the 2(5n-neighborhood of the image hn(X) covers Xn.

Now for an element y of X, we denote by y^t) the z-th component of y(t) in /2, and

set hn(y):=Fφ*(hn(y)). Then inequality (3.1) reads as follows:

for all t > 0 and yeX. In particular, it follows that

for any / and for all />0 and yeX. Now we define yo(t) and yt(t) respectively by the

identities

7o(0=<? ( t + 1 / t ) / 2»1 / 2yo(0;

γi(ή = eit+lιmeλ"/2yi{t).

Then the last two inequalities are written as

Therefore in view of Lemma 2.4 (ii), by letting n tend to infinity, we see that y0 = 1 and



SPECTRAL CONVERGENCE OF RIEMANNIAN MANIFOLDS 87

un/hn(y)) converges to yf(ί). This implies in particular that yt does not depend on the

parameter /, and hence we may write uxi(y) for yf(ί). These uxi ( z = l , 2 , . . . ) are

continuous functions on X, which separate the points of X9 namely, for any pair (y, σ)

of distinct points of X, uXΛ(y)φuXΛ(σ) for some /.

Now if we define a function px(t, y, σ) on (0, o o j x l x l by

then this can be decomposed as follows:

(3.2) px(t, y, σ)= £ e-λ*uXti(γ)uXti(σ),
i = 0

where the convergence holds uniformly on [ s , o o ) x ! x J for each s>0. Moreover the

mappings fn: Mn-+Xand hn: X->Mn defined respectively by/π =fnoFΦn and hn = F ^ 1 °/*„

provide formally spectral approximations between (MM, μWn, /?Wn) and (X, px). Namely

we have

(3.3) e- ( I + m\pW n{t, x, y)-px(t, /„(*), L(y))I

for all ί>0 and x,yeMn;

(3.4) e - ( ' + 1 / ' W ί , 5^7), ^ ( ^ - ^ ( ί , y, σ ) | < C A

for all />0 and y,σeX, where Cx is a positive constant depending only on v, a and τ.

We recall also that the distance of X, denoted by Θx for consistency, is given by

l/2

(3.5) 6>x(y, σ)= ^Ve-{t + llt\Px{U 7, γ)+Pχ{t9 σ, σ)-2px(t, 7, σ))
\0 ί > 0

and the metric space (MM, ΘMnWr) converges, as «->oo, to X=(X, Θx) with respect to

the Gromov-Hausdorff distance via the mappings/,: Mn^>X and hn\ X^>Mn, namely,

I Mn,»P y) χ(M), L(y)) \<δn;

I θMntWβH(γ)9 hn(σ))-Θx(y, σ)\<δn

for all x,yeMn and γ9σeX. These mappings/, and hn may be assumed to be Borel

measurable.

Step 2. Let X, px, v, {AJ, {uXti}9fn: Mn-+Xand Λn: X^Mn be as in Step 1. Then

we have a family of Radon measures {fn*μWn} on X with uniformly bounded total

measure, fn*μWn(X) = μWn(Mn)<b. This sequence contains a subsequence which converges

to a Radon measure μ o n l with respect to the vague topology. For simplicity, we

suppose that this is the case for the sequence {fn*μWn} itself. Then the family of

continuous functions {uXΛ} is orthonormal in L2(X, μ):
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where ( , )μ stands for the inner product of L2(X, μ).

Now we have a contraction semigroup of symmetric operators {T\μ)\ t>U) on

L\X, μ) with continuous kernel px(t, x, y) defined by

T\μ)φ(x)=\ px(t,χ,y)φ(y)dμ(y)
Jx

00

= Σ e~λ"("x,r Φ)μux,i{x), Φ e L2(X, μ).

The semigroup {Tf: t > 0} is Markovian and conservative:

Each ux i is an eigenfunction of T\μ) with eigenvalue e ~λit:

Associated with the semigroup {T\μ)}, we have a symmetric closed form i(μ) with domain

D\β(μ)] in L2(X, μ) which are given by

w\ΛφeL\X, μ): lim — {φ- T\μ)φ, φ)μ<+oo
I t-o t

, φ) = Km — (φ- T^φ, ψ)μ , φ,φe
ί-^0 ί

We observe that for two bounded elements φ, φ e D[_S{μ)'] n

, φφ)1/2

l/2

- <AW I +1 Φ I oo I 0 ( ^ ) " 0(*) l)2/^x(^ ,̂ y)dμ(x)dμ( y)jlimJ-ίf(|
ί-o It JJ

<\Φ\J Jim~

/ l ΓΓ λ 1 / 2

+ ' ψ L { ?ΐ} Ύt 11 ' φ i y ) ~ φ{x) l2pχ(t< x' yWvWtiyη

(see e.g., [15, Theorem 1.4.2 (ii)]). It follows that the subalgebra ^({uXJ}) generated

by the family {uXΛ} in C(X) is contained in D[$(μ)~\ and also dense there with respect

to the norm S{μ\ , ) + ( , )μ. Moreover since %>{{uXΛ}) separates points of X, we can

deduce from the Stone-Weierstrass theorem that ^{{uxi}) is also dense in C(X) with
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respect to the C° norm. In particular, ^{{uXΛ}) is dense in L2(X,μ). Thus ^{{uxi}) is

a core of the form ${μ) and hence ${μ) is a regular Dirichlet form on L2(X, μ) (see [15,

Chap. 1]). This implies that the corresponding semigroup {T\μ)\ t>U] on L2(X,μ) is

strongly continuous. As a result, {uXi\ z = 0, 1,...} is a complete orthonormal system

of L2(X, μ), and a limit measure μ is in fact unique. Thus the push-forward fn*μWn of

μWn converges to μ as n-+co in the vague topology.

Step 3. In Steps 1 and 2, we have assumed that the given sequence {an} in 3FJ(C^

is SD*-Cauchy, and also that the total measure μWn(Mn) and the z-th eigenvalue λni of

(Mn, μWn) converge as n-+co. But as seen from the above discussions, the latter assump-

tion is a consequence of the former.

Now suppose that we have two SD*-Cauchy subsequence, say, {an,} and {oin,,},

of {αn}. Then for the sequence {<v}, we have a compact connected metric space

X' = (X', Θx), a (positive) Radon measure μ', a nonnegative continuous function

pX'(t, x\ y') on (0, oo) x X' x X\ a divergent sequence of nonnegative numbers {AJ }, a

sequence of continuous functions {ux>ι} on X\ a sequence of positive numbers {δn>} with

l i n v ^ ^ = 0, and Borel measurable mappings Jn.: M,,,-^' and /zπ,: A"->Mn,, which

satisfy the assertions (i) through (iv) in the theorem. For the other {αM-}, we have

correspondingly X", μ", px,., {λ?}, {ux..ti}, {δn..}, Jn..\ Mn,,-*X" and \..\ X"^Mn...

Since the given sequence {ocn} is SD-Cauchy, we have <5wV/-spectral approximations

ξn>n>>: (Mn,, μWn,)->(Mn'., μWnlt) with δn.n.. tending to zero as n',n"^co. Using these

mappings, we get a family of mappings between X' and X" as follows:

Then these mappings give spectral approximations between (X\ μ\px) and (X", μ",pX").

To be precise, these mappings satisfy

e~(t+ m\px(u χ\ y')-Px'iu Fn.n..(x'\ Fn'n'iy')) I < c A- + cxδH.. + δn.n..

ΐoτ z\\ t>0 ana x'9y'eX'\

e-(t+1/t)\PAt, x", y")-pAt, HH.Ax'% HH.Λy")) I < Cγδn. + CA» + K n

for all t>§*xΔx'\y"sX".

Now taking subsequences of {FnW,} and {//„„} respectively if necessarily, we may

assume that they converge to mappings F: X'->X" and H: X"-^X\ respectively, which

preserve the functions px> and px,,\

(3.7) Px{t,x\y')=px,{uF{x'\F{y'))

for all O

for all />0 and x",y"eX". In particular, these mappings preserve the distances and



90 A. KASUE AND H. KUMURA

hence they give isometries between X' and X".

Now we arrange the nondecreasing sequence {λ[} so that we have a strictly increasing

sequence, say {/If}, together with a sequence {ra } of multiplicities. We note that ra'o
may be greater than one, though it is bounded from above by a constant depending only

on the given constants α, v, b and τ (cf. Lemma 2.4 (i)). Similarly we obtain such

sequences, say {λf"} and {m'i}. Then (3.7) reads

oo mi oo mi

(3.8) Σ e~λ>'' Σ <J(Φ'iJ(y)= Σ e-λ'"' Σ F*ul{x)F*ul{y)
ΐ = 0 j=ί i=0 k=l

for all />0 and x,yeX'.

Now we claim that λf' = λf" and m\ = m" for all z = 0, 1,2, . . . , and further the

functions u\. (j= 1, . . . , ra ) span the same vector space as the functions F*u"k

(k= 1, . . . , m"). To see this, let us put Vi = F*ux,.ti and v = (F~1 )^μ" for simplicity. Then

{ux',i} (resp. {vι}) is a complete orthonormal system of L2(X\ μ') (resp. L2(X\ v)). Now

for any 7, multiplying ux> j(y) by the both sides of (3.8), and integrating them on X'

with respect to the measure dμ'(y), we obtain

oo m'i Γ

e-λ>ux,j(x)= Σ e-ϊ'Ί Σ vik(x) υik{y)ux>J{y)dμ\y).
i = 0 k=ί JX'

Since this holds for all t > 0, we see that

(3.9)
m'i Γ

Σvik(x)\ v

This shows that if λf'φλ) for all /, then ux.j must vanish identically. This is a

contradiction, because ux>tj has unit norm in L2(X\ μ'). Thus we see that {λf"} a {λf'}.

By the same way, we can deduce that {λf'}<^{λf"}, and hence these sets coincide.

Moreover the argument above proves that m'—m" for all / and the functions u\k

(k= 1, . . . , raj) span the same vector space as the functions υik (k= 1 , . . . , m'(). Thus our

claim is verified. In addition, examining the case j=0, we easily see that ux>0 = ux - 0 ,

namely, μ \Xf) = v{X') = μ "{X").

Finally multiplying the both sides of (3.9) by v^x) and integrating them with respect

to the measure v, we obtain

Vi(x)uχ'j(xW(x)= Vi(
JX' JX'

This shows that {vt} is also a complete orthonormal system of L2(X\ μ') and hence these

measures μ' and v are actually identical. Thus the mapping F: X'-*X" preserves the

measures μ' and μ" on X' and X" respectively and also the heat kernels px> and px.. of

the symmetric Markov semigroups {T(

t

μΊ} and {T\μ"}} respectively. Moreover we can

interpret the mapping F as the spectral embedding of (X', μ', px) with respect to a
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complete orthonormal basis {vt} oϊL2(X\ μ') with vt being eigenfunction of the generator

of the semigroup {T\μ>): t>0}, and also (X\ μ' ,px>, {ι?J) as the boundary element of

1FJ(C^ to which a" = (Mn,,, μWn,t, {un>>}) converges as w"-»αo. We note that the basis

{vt} itself may depend on the choice of a limit mapping F: X'-*X" of {Fn.n.,}, but as a

boundary element of 3FJ(C^ (X', μ\px>, (t J ) is uniquely determined, because of the

definition of &*JtCyyr

Thus we have found the limit elements, say (X, μ, /?), of the given SD Cauchy

sequence £f and mappings Fn: Mn-^X, Hn\ X^Mn having the properties (i) through

(iv) described in the theorem. It is easy to verify the last assertion (v). q.e.d.

REMARKS, (i) As seen from the proof of Theorem 3.1, the theorem certainly

holds without the assumption that the diameter of Mn is bounded away from zero

uniformly by a positive constant. But if we drop this assumption, it may occur the case

that as «->Ό0, the i-th eigenvalue λnΛ of (Mn, μ w j diverges for some / (and hence for

all 7> Ϊ); as a consequence of Lemma 2.4 (iv), the Hubert space L2(X, μ) is of finite

dimension. For example, this is the case when the limit space X itself consists of a single

point.

(ii) In Theorem 3.1, the limit measure μ is not necessarily supported on the whole

of X and the trivial eigenvalue λ0 = 0 may be of multiplicity greater than one. See

Sections 5, 7 and 8 for such examples.

3.2. Let us observe that in Theorem 3.1, the resolvent of J£Wn converges to that

of the generator i f of the semigroup Tt as n->co in some sense. To be precise, given

σ > 0, we define a bounded linear mapping ^ * σ of the space of continuous functions

C(X) into that of bounded measurable function L°°(Z) by

Λ * > = iy*o(^W n + σ/)- 1 oF*(0), φeC(X),

where Hn and Fn are (Borel) measurable mappings as in Theorem 3.1. Then we have

the following

COROLLARY 3.2. Let &t*ttr\ C(X)^LCO(X) be a bounded linear operator defined as

above. Then for each φ e C(X) and xeX,

(J?x + σIΓ1φ(x)= lim « χ x ) .
n—* oo

PROOF. Let {T\n): />0} be the semigroup of (Mn, μWn) in L2(Mn, μ w j with kernel

pWn. The resolvent (Jδf̂  + σ/)" 1 is given by

e-σtT(n)ώ

Since T\n) defines a contraction semigroup on L°°(X), we have

Γ 0 0

Jo
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Hence it suffices to show that

This follows from (iv) of Theorem 3.1. Indeed,

\ pwβ, Hn(x), a)φ(Fn(a))dμWn(a)- \ p(t, x, y)φ{y)dμ{y)
J Mn JX

(pjt, Hn(x), a)-p(t, FnoHn{x), Fn(a)))φ{Fn(a))dμWn{a)
Mn

L (p(t, FnoHJtx)9 Fn(a))-P(t, x, Fn{a)))φ{Fn{a))dμWn{a)

>(ί, x, y)φ(y)dFn*μWn(y)- p{t, x, y)φ(y)dμ(y)
Jx

The first two terms of the right side are bounded from above by

because of (iv) of Theorem 3.1, where {ε'n} is a sequense of positive constants tending
to zero as «->oo. Since Fn*μWn converges to μ with respect to the weak* topology, the
last term of the right side also tends to zero as n-+co. q.e.d.

3.3. Before concluding this section, we consider a Riemannian manifold M=(M, g)
which is not necessarily compact nor complete. Let μw = wdvg be a measure with smooth
density w>0. The energy form $ is defined on the space of smooth functions compactly
supported, Cξ{M\ by

u9υ)=\ {du,
JM

dυ}gdμw

This form $ is closable and the domain of its smallest closed extension, denoted by the
same letter $, is the Sobolev space //J(M, μw), i.e., the completion of CQ(M) with respect
to the norm δγiμ, u) = (u, u)μvv + £(u, ύ) (see, e.g., [15]). Let {Tt = e~tse\ />0} be the
strongly continuous Markovian semigroup on L2(M, μw) associated with S, which has
a kernel pw(t, x, y\ called the minimal heat kernel of (M, μ j , and whose generator S£
is the Friedrichs extension of the elliptic differential operator — w-1div(wgrad *) acting
on CQ(M). In what follows, we assume that

(3.10) μ v v(M)<+oo, i.e., l e L 2 ( M , μ J .

Then 0< Tt\ < 1 and Tt\eHl(M, μ j . It is not hard to see the following
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ASSERTION 3.3. Under the condition (3.10), the following two conditions are

equivalent:

(i) Tt\ = 1, i.e., \Mp{t, x, y)dμw(y)=l;

(ii) 1 EHQ(M, μw), i.e., there is a sequence of functions {pj in Cξ(M) such that

(/« this case, <£ is a unique self-adjoint extension of the operator — w~1div(wgmd*)

acting on

We observe that Theorem 2.1 is valid for (M, μw), if we replace the space C

with C%(M) in (2.2) and (2.3). Suppose, in addition to (3.10), that the minimal heat

kernel pw(t, x, y) satisfies (2.1). Then the spectrum of <£ is discrete and the eigenfunction

decomposition for the heat kernel pjt, x, y) holds (see e.g., [13, Chap. 2]). In particular,

in this case, Lemma 2.4 remains true for (M, μw) and we have a spectral embedding of

(M, μw) and hence we can find a compact metric space M which includes M as an open

dense subset in such a way that the heat kernel pw(t, x, y) continuously extends to

(0, o o j x M x M and so does any eigenfunction to M. In addition, the second assertion

(ii) of Lemma 2.5 certainly hold, if we replace τ 1 / 2 there with min{τ1/2, in.rad(x)}. Here

in.rad(x) stands for the inscribed radius of a point xeM, which is by definition the

least upper bound of positive numbers r such that the geodesic ball B(x, r) around x

with radius r is relatively compact in M. The assertions (iii) and (iv) of Lemma 2.5 also

hold if we use the inscribed radius of M, in.radM=sup x e M in.rad(x), instead of the

diameter of M. When 1 e HQ(M, μw), the first assertion (i) of the lemma is true. Thus

we are able to derive similar results to Theorems 2.3 and 3.1 for a family of pairs

(M, μw) as above.

Now we shall close this section with the following

THEOREM 3.4 (Li-Tian [28]). Let M be the regular points of an n-dimensional

algebraic subvarίety in a complex projective space CPn+ι. Then the restriction of the

standard Fubίnί-Study metric of CPn + ι to M gives a smooth metric g called the Bergman

metric of M and the heat kernel pM(t, x, y) enjoys the following properties'.

pM(t,x,y)dvg(y)=l;
JM

pM(t,x,y)<P(t,r(x,y)),

where we denote p(t, r(x, y)) = p(t, x, y) to be the rotationally symmetric heat kernel on the

standard CPn.

4. Uniform continuity of heat kernels and limit spaces. In the preceding section,

as the limit for a certain SD-Cauchy sequence, we have obtained a triad of a compact
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connected metric spaces X, a positive Radon measure μ on X, and a nonnegative
continuous function p on (0, oo) x Xx X such that p is the heat kernel of a symmetric
Markov semigroup {Tt: />0} on L2(X,μ). The purpose of this section is to study
further the boundary elements of an SD-precompact family under some conditions
discussed in Saloff-Coste [33] and show that the semigroups of the boundary elements
satisfy the Feller condition and in fact the Lindeberg type condition. The main result
of this section is given in Theorem 4.1.

4.1. Let (M, μw = wdvg) be a pair of « ĉ>w5 and let positve constants r0, ηγ and η2

be given. We shall assume that (M, μ j satisfies the following properties discussed in
[33]:

(4.1) μw(B(x,2r))<ηiμw(B(x,r))

for all xeM and 0<r<ro;

(4-2) ί \Φ-Φx,r\
2dμw<η2r

2[ \dφ\2

gdμw
J B(x,r) J B(x,2r)

for all xeM, 0<r<ro, and φe C°°(M), where φxr stands for the average of φ over the
geodesic ball B(x, r) around x with radius r.

Φx,r =
μJiB(x9r)) JBix

According to [33], (4.1) and (4.2) imply a family of Sobolev inequalities on geodesic
balls. To be precise, there exists constants v>2 and Cx>0 depending only on γ\γ and
η2 such that

(4.3) \W\2

2y/iv-2)<C^w(B(x, r))-2lvr2{S(φ, φ) + r2\\φ\\l), φeC£(B(x, r)),

for all xeM and 0 < r < r o . Moreover it is shown in [33] that a parabolic Harnack
inequality is equivalent to the properties (4.1) and (4.2), and as a corollary, the Holder
continuity of solutions of parabolic equation (d/dt-\-^w)u = 0 is shown. In fact, applying
Theorem 4.1 in [33] to the heat kernel pw of (M, μw) will yield the following estimate:

I pjt9 x9 x) -pjt9 x9 y) I < C 2

 M^2

y) sup{/7 w (ί/2, x,z):ze B(x, ^fi)}

for all xeM,yeB(x,JT) and 0</<ro, where αe(0, 1) and C 2 >0 are constants
depending only on ηx and η2. This implies that

e~it+llt)\PJίt9x9x)-pJt9x9y)\
(4.4)

<C3dM(x, y)asup{e {s+1/s)s x/2pw(s/2, z, z): 0<^<oo, zeM}

for all x,yeM, where C 3 >0 is a constant depending only on ηu η2 and r0.
Now suppose further that (M, μw) satisfies
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(4.5) μw(B(x,r0))>η3

for some η3>0 and all xeM. Then in view of (4.3) and Theorem 2.2, we can derive a

diagonal estimate for pw:

a
(4.6) pjt,x,x)<-

,v/2

for all xeM, 0<t<rQ, where a>0 is a constant depending only on ηk (&=1,2, 3).

Hence by (4.4), we have

< 1 / t 9 x, x)-pjt, x, y) \ <~dM(x, y)Λ

for all x,yeM and t>0, where Λ^>0 is a constant depending only on r 0 and τ/k

(&= 1, 2, 3). In other words, it holds that

(4.7) 6W*,)0<* 1 / 2 ^M(*,}0 α / 2

for all x.yeM.

4.2. Let ^ = {(Mn, μWn = wndvMn): n = 1, 2, ...} be a sequence in ^ w such that for

some positive constants r0, ηk(k=\,2, 3), (4.1), (4.2) and (4.5) hold uniformly for £f,

and further the total measure μWn(Mn) is also bounded from above uniformly by a

constant b. Then as we have seen, Sf is precompact with respect to the spectral distance

SD. In this case, we note that the (Riemannian) diameter of Mn tends to zero as n-±cc

if and only if the first nonzero eigenvalue λnl of (MM, μWn) diverges to infinity as «->oo;

the limit element (X, μ, p) of £f is in this case trivial, X= {a point). In what follows, we

assume that the diameter of Mn is bounded away from zero uniformly, and the sequence

y itself is an SD-Cauchy sequense. Let (X, μ, p) be the limit triad of Sf described in

Theorem 3.1, and let Θ be a distance on X defined by (3.5). Then we first claim that

the limit measure μ is supported on the whole of X, namely, supp μ = X. Indeed, if we

denote by Dn(x, r) (resp., Bn(x, r)) the metric ball of the metric space (Mπ, ΘMnWn) (resp.,

the geodesic ball of Mn = (Mn, dMr)) around a point xeMn with radius r, we have by (4.7)

for 0 < r < r0 and for all x e Mn, where K and α are positive constants depending only

on the given constants r 0 and ηk (k= 1, 2, 3). This implies

μWn(Dn(x, r))>μWn(Bn{x, K^^r2"))

and hence from Lemma 2.5 (ii)

for all xeMn and 0 < r < r 0 , where C 4 is a positive constant depending only on the given
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constants r0 and ηk(k=l,2, 3). Since the metric space (Mn, ΘMnPw ) converges to (X, Θ)

with respect to the Gromov-Hausdorff distance (cf. (3.6)), the same inequality holds

for X, namely, the metric ball of (X, Θ) around a point x of radius r satisfies

for all re(0, r 0 ] . This shows that μ is supported on the whole of X and the claim is

verified.

Now for each ί>0, the bounded operator Tt on L2(X, μ) defined by

Ttφ(x) = p{U x, y)Φ(y)dμ(y), φ ε L\X, μ)
Jx

acts on the Banach space C(X) with the uniform convergence topology and {Tt: t>0}

is strongly continuous on C(X). Indeed, applying the off-diagonal estimate (2.6) to the

heat kernel pWn and using (4.7), we have

x C 5 / K~2/ΛΘM w (x,y) 4 / α

pWn(U x, y) < —~^ exp I ^ ^ ^ — — —

for all x, yeXand 0<t<rl, where C5 is a positive constant depending only on r0 and

ηk(k=l,2, 3). Hence taking (3.6) into account and passing through the limit as «—xx),

we obtain

C 5 / K-2/0CΘ(x,y)
e χ p(

4/«

for all x, yeX and 0< t<r%. Then it is easy to see that {Tt: />0} is strongly continuous

on C(X), and also it possesses the property that

li
ί^O xeX t

for any r > 0, where χB stands for the characteristic function of a subset B of X.

What we have observed is summarized in the following

THEOREM 4.1. Let 9> = {(Mn, μWn = wndvMn): n = 1, 2,...} be an SΌ-Cauchy se-

quence in Mc^ satisfying (4.1), (4.2) and (4.5) uniformly for some positive constants. Let

(X, μ, p) be the limit of 6^ as in Theorem 3.1. Then in addition to the properties (i) through

(v) in Theorem 3.1, the following holds:

(ii) 77ze semigroup {Tt: t>0} with kernel p on the Banach space C(X) with the

uniform norm is strongly continuous, namely, for any continuous function ueC°(X),

lim || Ttu — u || co = lim sup
ί^O f^O xeX

Moreover it possesses the property that

p(t, x, y)u(y)dμx{y)-u{x) = 0.
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lim sup — Tt(χx_D{x;r))(x) =
f-0 xeX t

for any r>0.

We notice that in the discussions above, the condition (4.4) is essential. In fact,

Theorem 4.1 remains true for an SD-Cauchy sequence as in Theorem 2.3 satisfying

further (4.4) uniformly.

4.3. Now we shall discuss geometric conditions for (4.1), (4.2) and (4.5), or (4.4)

and (4.6). Given a pair (M, μw = wdvg) and a positive integer k, a symmetric tensor Rwk

on M is defined by

Rwk = RicM d\og w (g> dlog w — Ddlog w ,
k

where RicM stands for the Ricci tensor of M. For k = 0, we set Rw 0 = RicM; in this case,

w is always assumed to be a constant.

Following [25], we consider first the case where (M, μw) satisfies

(4.8) R^k>-(m-\)κ2 (w = dimΛf);

(4.9) diam M<D

for some constants τc>0 and D>0, and further

(4.10)

Then (4.1), (4.2) and (4.5) certainly hold with constants ro = D, some ηί=η1(rn + k, K, D)

depending only on the quantities in the parenthesis, ?/2 = exp(l +Dκ) and also η3 = l

(see [ibid., Propositions 2.1 and 2.6]). Thus if we denote by Ji*(m, k, JC, D) the set of

equivalence classes of pairs (M, μ j satisfying (4.8), (4.9) and (4.10), then we have the

following

THEOREM 4.2 ([25]). (i) Ji*(m,k,κ, D) is precompact with respect to the spectral

distance SD, and the assertions of Theorem 4.1 hold for an SΌ-Cauchy sequence in this

class (see [ibid., Theorems 3.6, 4.4, 4.5 and 5.1]).

(ii) If a sequence Sf = {(M „, μWn)} in Jf*(m, /c, K, D) converges to a boundary element

(X, μ, p), then the metric space (Mn, dMn) also converges to X endowed with another distance

dx with respect to the Gromov-Hausdorjf distance HD, and moreover one has

lim At log p(t, x,y)=- dx(x, y)2

for all x, y eX (see [ibid., Theorems 3.5, 3.8]).

The first assertion (i) of this theorem will be valid for larger classes. Let A > 1 be

given further and consider the set of equivalence classes of pairs (M, g, μ j , denoted by
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Jί*{rn, fc, JC, D; A), which admit Riemannian metrics h and positive smooth functions v

such that (M,Kμv)eJί*(m,k,κ,D), A~xh<g<Ah and Λ~ίv<w<Λυ. Then (4.3) and
(4.5) obviously hold with appropriate constants. Moreover by virtue of a result of [32],

(4.4) is certainly satisfied. Thus we have the following

THEOREM 4.3. Jί*(m, k, K, D; A) is precompact with respect to the spectral distance

SD, and the assertions of Theorem 4.1 hold for an SΌ-Cauchy sequence in this class.

However in this case, the second assertion of Theorem 4.2 is not true in general,

as shown in the following simple

EXAMPLE. Let {gn: n = 1, 2,...} be a sequence of metrics on the product R/Z x R/Z

given by

gn = dt2 + an{t)2dθ2 , (ί, θ)eR/Zx R/Z,

with

2,

nt + 3-

for 0 < ί < ,
2 n

1
or —

2

1 1
for — — <ί<

I

- , for

for 0<ί<
2 n

or —-
2

- ^ , for

n t + 1 — - , for
1 1

— < ί < —
2 I

Then the sequence of Riemannian manifolds, {(R/Zx R/Z, gn)}, converges to the

Riemannian product R/Z x R/Z with respect to the spectral distance. However this does

not hold with respect to the Gromov-Hausdorff distance. Indeed, (R/ZxR/Z, dgj

converges to the product metric as n is even and tends to infinity; it converges to a

different metric as n is odd and tends to infinity. The length of a cycle yt: 0-»(ί, θ)

measured by the distance is equal to 2 for tΦ 1/2 and 1 for t= 1/2.

4.4. In this subsection, we shall investigate more closely the spectral distance on

certain restricted classes of pairs of metrics and measures on a fixed Riemannian

manifold.

Let M=(M, g0) be a compact connected Riemannian manifold. We write L2(M)
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for the Hubert space of square integrable functions and denote the inner product by

(u, v)0 (u, VE1}(M, dv0)). Let Hι(M) be the Sobolev space consisting of L2 functions with

derivatives in L2(M). The inner product of i/1(M) is as usual given by

(u, v)1 = £{u, v) + (u, υ)0 = (du, dv}godvgo + uvdvgo.
J M J M

We write H~1(M) for the dual space of H\M) and also < , > for the pairing on

H~\M)xH\M).

Now we are given two constants α > 1 and β > 1. We denote by E(oc, β) the set of

pairs (g, μw) which consist of metric tensors g with coefficients in L°°(M) and measures

μw = wdvg with density w in L™(M) such that

— go<g<*9o\ --
GC β

For each (g, μw), we have two operators Agμ^\ H1(M)^H~1(M) and Iμ^\

H~ 1(M) respectively defined by the identities:

gtμju, v> = (du, dv}gdμw ,
JM

u, v} = uvdμw , u,ve L2(M).
M

Given a sequence {(#„, μn = wndvgi): n = 1, 2, ...} in E(<x, /?), we say that the sequence

{Agnφn} is G-convergent as «—>>oo, if (ψ,(Agnμn + σIμt)~1φs) converges for some σ > 0

and all φ, φeH~1(M). We notice that in our previous notation,

for u E L2(M). The definition of G-convergence is actualy independent of the choice of

σ > 0 and moreover if {Agnμn} is G-convergent, then there exists a unique (g^, μ^) in

2s(α',/?') with some α r > l and β'>\, such that (Agnμn + σlμt)~1φ converges weakly to

(Agaoφoo + σIμJ~1φ for any φEH~ί(M). We also note that any sequence {(gn, μn)} in

E(oί, β), {Agnμn} contains a G-convergent subsequence. See [27] and the references

therein for these facts and related ones on the G-convergence of differential operators.

Thus so far as the restricted classes of pairs as above are concerned, we have the

following

PROPOSITION 4.4. Let M=(M9 g0) be a compact connected Riemannian manifold,

and let col, β>l be given. For a sequence {(#„, μn = wndvQn): n = 1, 2, ...} in E(cc, β), the

following are mutually equivalent:

( i ) the sequence of operators Agnfln: H1(M)^^H~1(M) is G-convergent as «—>oo;

(ii) as n^co, the measure μn converges with respect to the weak* topology, and
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also for some σ > 0 and all ueL2(M), (J£'Qnμn + σl)~ιu converges weakly in / ^

(iii) the heat kernel of the operator ^gn,μn multiplied by e~(t+1/t\ e~(t+1/t)pWn(t, x, y\

converges uniformly on [0, oo) x M x M.

Furthermore suppose one of these conditions {and hence all of them) hold and let

Agooφoo be the G-limit of {Agntfln}, where (g ao, μ^)e E{μ\ β') for some α ' > l and β'>\.

Then the heat kernel pWn and the resolvent kernel G{°}

n (σ>0) of(gn, μn) converges respec-

tively to those of J?gootfloo:

po0(t,x,y)=\impWn(t,x,y);

The convergence of the heat kernels (resp., the resolvent kernels) occurs in the C°-norm

on [<3, oo) x Mx M (resp., {(x, y)eMx M: dgo(x, y)>δ}) for each δ>0.

We remark that the condition (iii) of this proposition is equivalent to saying that

{(M, gn9 μn)} is a Cauchy sequence with respect to the spectral distance SD whose spectral

approximations are given by the identity mapping of M itself. In general, given an

SD-Cauchy sequence {(M, gn, μn)} in E(oc, β), if we take two subsequences, say, {(gn>, μn)}

and {(gn», μn>>)} in such a way that the sequences {Agn/fΛn,} and {Agn,tμn,) are

G-convergent, then SD((M, g'^, μ^), (M, g"^ μ^)) = 0, namely, there is a homeo-

morphism / : M^M which preserves the heat kernels and the measures.

5. Conformal changes of metrics. In this section, we shall discuss a family of

metrics in the conformal class of a metric with positive Yamabe invariant.

5.1. Let M be a compact connected smooth manifold of dimension n>3. Given

a conformal class <£ of M, the Yamabe invariant, denoted by Q(M, <£), is by definition

the largest lower bound for the Yamabe functional, namely,

where Sg stands for the scalar curvature of a Riemannian metric geΉ.If we fix a metric

, then the Yamabe invariant is also given by

In this section, we shall first prove the following

PROPOSITION 5.1. Given positive constants q, y and p>n/2 (>3/2), suppose a

Riemannian metric g of M satisfies
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Q(M,

and

ί (S/+dυβ<y",
JM

where [g] denotes the conformal class of M to which g belongs, and (Sg)+ : = max{Sg, 0}.

Then the Sobolev inequality (2.3) holds with constants v = n, A' = S(n— l)/q(n — 2), and τ

depending only on n, q, y and p.

PROOF. We first observe that

α \(«-2)/n n-l C Γ

\φ\2"«*-2>dvβ) < 4 \dφ\ldυ§+\ (Sg)+φ2dvg.

Now for />0, we set At: = {xeM: (Sg)+(x)>t}. Then applying Holder's inequality, we

get

(Sg)+φ2dvg=\ (Sβ)+φ2dvg+ί (Sβ)+φ2dvg
M JM-At J At

\2\n{ f \(n-2)/n
<t

)M

) 2/n/ Γ \(n-2)/n

1

\JM

<t\
JM

Hence we have

\(n-2)/n

(n-2)/2
φ\2n/(n-2)dv^

M

n-l f f _ /f _ γ»-2>/»
<4 |J0|;J^ + ί φ2dvg + t{" 2p)lny2plnl \ φ \2n/(n Dfo \

n — 2 JM JM \JM J

Thus choosing t in such a way that t(n~2p)/ny2p/n = q/2, we see that the Sobolev inequality

(2.3) holds with constants A = S(n-l)/q(n-2) and τ = 4(n-l)/(n-2)t. q.e.d.

5.2. In what follows, we assume M admits a Riemannian metric g0 such that

qo = Q(M, [go]) is positive, and consider a sequence of metrics gk = Φk/(n~2)Go which

belong to the conformal class [g0], such that for some positive constants p > n/2, y and b
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Then the sequence {(M, gk, dvgt)} is precompact with respect to the spectral distance SD.

Now we shall suppose, in addition, that as £->oo, φk converges to a continuous

function φ^ uniformly on M. Set

which is a proper compact subset of M, since the volume of (M, gk) is bounded away

from zero uniformly (cf. Theorem 2.1 and Lemma 2.5 (i)). We shall discuss the case

where the limit metric g^ = φtlin~2) go *s degenerate somewhere, namely, Σ is not empty.

Note that M—Σ may be disconnected.

We denote by pj^t, x,y)(t>0, x,yeM— Σ) the minimal heat kernel of the Laplace

operator of the metric g^ acting on CQ(M-Σ) (cf. Subsection 3.3). Then/?^ satisfies

tn/2

on (0, τ] x(M — Σ) for some positive constant a (resp. τ) depending only on n and q0

(resp. n9 p, q0 and y). Indeed, for some positive constants A' and τ, A' depending only

on n and q0, and τ depending only on n, qθ9 p and y, the Sobolev inequality (2.3) holds

on M—Σ uniformly for the metrics gk, namely,

1 \
JM-

φ2dvβk
Σ

for all ΦECQ(M — Σ). Since φk converges to φ^ uniformly, we see that the inequality

holds on M—Σ for the metric g^ with the same constants. Thus we have an upper

bound for the heat kernel p^(t, x, y) as above. Since the volume of (M — Σ, g^) is finite,

the upper bound for p^ as above implies, as mentioned in 3.3, that the Laplacian of

g^ defined on CQ(M — Σ) has a discrete spectrum, say {λ^y. i=0, 1,2,...} and the

kernel p^ has the eigenfunction expansion. Thus making use of spectral embeddings

of (M — Σ, g^, dVn) as in the compact case, we obtain the following

ASSERTION 5.2. There exists a compact metric space (M—Σ)~ which includes M—Σ

as an open dense subset and to which the minimal heat kernel p^ and also eigenfunctions

of (M—Σ, g^, dvgoo) extend continuously. This metric space coincides with the completion

of M—Σ with respect to the distance Θ ̂  on M—Σ defined by

0oo(*> y)2 = supe~(ί+1/ί)(/?oo(£> x, χ)+p*>(t, y, y)-ipaλu x, y))
ί > 0

Now we shall assume further that

Σ is a compact submanifold of codimension > 2 , or
(5.1)

ΦJx)<O(pΣ(x)1/2)
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in a neighborhood of Σ, where pΣ stands for the distance to Σ with respect to the fixed
metric g0. Then we choose a function fεeCQ{M — Σ) in such a way that 0 < / ε < l ,
fε(x)=\ if pΣ(χ)>ε and \dfε\go<cε~1 for some positive constant c. Then for any
0</ 1 <t2, we have

J M-Σ

* Γ f f >•
Jf, 5 z

 JM-Σ

ί <<*/«
JM-I

t l9 X, j O ^ J y ) - fε(y)Pao(t2, *, ^ ^ o o ί ) 7 )
) M-Σ

t, x, y)dvβjy)

•I

dt

dt

I M-Σ

By the assumption (5.1),

\dpjt,x,y)\2

gjvgjy)) dt.
iPΣ<ε)

1/2

limsup
M-Σ

sup— ί
ε ^ 0 ε2 J{pΣ<-

Φldvgo<+cc

and moreover, since p^t, x, *)SHQ(M — Σ, g^) (the Sobolev space with respect to

lim f \dpJt,x,y)\2

gJvgJy) = 0.

Thus we see that

pJtl9x,y)dΌβJy) =
JM-Σ JM-Σ

2, x, y)dvgjy).

Namely, we have

ASSERTION 5.3. Under the above assumptions\ p^t, x, y) is conservative,

pao(t,x,y)dvgjy)=l .
M-Σ

Hence p^{t, x, y) is the unique heat kernel of(M—Σ, g^, dvgj.

In view of the uniqueness of the heat kernel of the limit metric, we see that for a
compact set K of M—Σ,

(5.2) lim sup{e (t+1/t)\pk{t, x, y)-pjf, x, y)\' t>0, x,

where pk denotes the heat kernel of gk. Hence if we set



104 A. KASUE AND H. KUMURA

/ \l/2

Θk(x, y) = l svφe-i'+V'Xpώ, x, x)+Pk(t, y, y)-2Pk(t, x, y)) ,
\t>o )

then as &—>oo,

(5.3) Θk converges to Θ^ uniformly on a compact subset of (M—Σ) x (M—Σ).

Now we shall take a subsequence [k'} in such a way that {(M, gk,, dvgk,)} is an

SD-Cauchy sequence. Let (X, Θ\ p, {AJ, Fw\ M^>X, Hk,\ X-+M and {εk.} be as in

Theorem 3.1. Taking a subsequence if necessarily, we may assume that Fk> converges

pointwise to a mapping F^ defined on some dense subset A of M. Then it follows from

(3.3), (3.6), (5.2) and (5.3) that

(5.4) θjx, y) = θ{FJx\ FJy)) PaD(t, x, y) = p(t, FJx\ FJy))

for all />0 and x, ye A n(M— Σ). Hence F^ uniquely extends to a mapping of M—Σ

into X, which is denoted by the same letter F^, in such a way that (5.4) holds on M—Σ

and as &'—xx), Fk> converges pointwise to F^ on M—Σ. As a consequence, for any

φeC(X)

Flφdvgoo= Km Fpφdvgk,= \ φdμ,
M-Σ k'-+cc JM Jχ

which shows that FO0*dv9oo = μ. Hence the support X{μ) of μ coincides with the closure of

the image F^M—Σ). Thus (Xiμ\ μ, p) is independent of the choice of subsequences as

above. In particular, {λt} are the eigenvalues of the Laplacian of g^ and the z-th

eigenvalue λki of gk converges to λt. Namely we have the following

ASSERTION 5.4. Under the assumptions above, the i-th eigenvalue λk;i of(M, gk, dvgk)

converges to the i-th eigenvalue λt of {M—Σ, g^, dvQoo) as A;—> oo.

EXAMPLE. Let M and g0 be as above and let D be a proper open set of M whose

complement has interior points. We take an interior point x0 of M—D and a smooth

positive function ψ on M in such a way that on Z), ψ coincides with the Green function

of the positive operator — 4(n — l)/(n — 2)Δgo + Sgo with pole x0. Then the scalar curvature

of the metric g'0 = Ψ 4 / ί" ~ 2)g o vanishes on D. Let φ ̂  be a nonnegative continuous function

on M such that φ^ is subharmonic on a neighborhood of D with respect to the metric

9o a n d

Then for each positive integer k, we take a smooth approximation φk of the function

max{φO0, 1/fc} in such a way that φfc is positive on M and subharmonic on D (see e.g.,

[17]). Then the scalar curvature of the metric gk = φk

/(n~2)gΌ is kept nonpositive on D

as /c—»oo. Thus Assertion 5.2 certainly holds for the limit metric g'O0 = Φt!?ι~2)θΌ
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Moreover Assertions 5.3 and 5.4 are also true in case Σ is a submanifold of codimension

> 2 or </>oo<6>(pl/2) near Σ.

6. Submanifolds of bounded mean curvatures. In this section, making use of some

geometric inequalities due to Croke [12] and Hoffman-Spruck [19], we shall show

upper bounds for the heat kernels of compact Riemannian (sub)manifolds.

6.1. To begin with, we shall prove the following

PROPOSITION 6.1. Let Mbea compact Riemannian manifold of dimension n. Suppose

that the injectivity radius of M is bounded from below by a positive constant i. Then the

heat kernel of *(Λ/, dvM) has a bound of the form (2.1) with constants v = n, a depending

only on n, and τ — ι2.

PROOF. According to a result in [12], we see that

(n-ί)/n

)) <C(n)\ \dφ\gdvM

M J JM

for any φeCco{M) supported in a geodesic ball of radius i/2, where C(n) is a constant

depending only on n. Therefore replacing φ with φZfr-D/i*-2) i n the case n>3 and also

with φ 2 in the case n = 2, and then using Holder inequality, we can deduce that

α \(π-2)/n Γ

\φ\2n^-2)dvM) <A(n)\ \dφ\2dvM (#i>3);
M / J M

I φ*dvM<A(n)\ \dφ\2

gdvM\ φ2dvM (» = 2)
JM JM JM

for all φeCcc(M) as above. Hence the proposition follows from Theorem 2.2. q.e.d.

6.2. Let us now consider compact submanifolds in certain Riemannian manifolds.

PROPOSITION 6.2. Let M=(M, g) be a compact Riemannian manifold of dimension

n isometrically immersed into a complete Riemannian manifold M. Suppose that the

sectional curvature of M is bounded from above by a constant κ > 0 and the injectivity

radius of M is bounded from below by a constant ι>0. Moreover suppose that for some

b>0, γ>0 andp>n, the volume of M is not greater than b and the mean curvature HM

of the immersion satisfies

J M

\HM\*dυM<y* .

Then the heat kernel pM of(M, dvM) satisfies (2.1) with constants v = n, a and τ depending

only on the given n, K, I, b, γ and p.

PROOF. We first recall a result in [19] (see also [7]) stated as follows: for an open
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subset Ω in

(6.1)

one has

(

M satisfying

/ 2 ^
κl VoKΩΪ
ιv i v \ji.yύύj

^J M

A.

r
• ) "

KASUE AND

2
< 1 — sin

K

" 1 ) / B <c(«)(

H.

-1

J M

KUMURA

^ \ω(n)

1 dφ \gdvM

Vol(Ω)
/ y

+ f \HM\
J M

\< ι

1-2

\Φ\d
ί

for all φ e C^iM) supported on Ω, where ω(n) stands for the volume of the Euclidean
unit ^-sphere and C(ή) is a constant depending only on n. Therefore replacing φ with
φ2{n-i)/{n-2) j n t^Q case «>3 and also with φ2 in the case n = 2, and then using Holder's
inequality, we can deduce that

φ\2n/i"-2)dvMJ 2)ln<Λ{ή)(\ \dφ\2

gdvM + C(n,p)y2^-n^ φ2dvM^J (n>3)

ί φ*dvM<A{ή)(\ \dφ\2

gdυM + C{p)y2^-2)\ φ2dvM)\ φ2dvM (n = 2)
\J M / J Ai

for all φeC^iM) supported on Ω (cf. the proof of Proposition 5.1).
Now in view of Theorem 2.2, it suffices to prove that the intersection of M with

a geodesic ball of M of radius r satisfies (6.1) if r is sufficiently small. Let φ: M-+M
be the isometric immersion and set

M(r) = φ ~ \Bu{x, r)) V(r) = Vol(M(r)),

where B^(x, r) stands for the geodesic ball of M around a point xeM with radius r.
Then we have

— [ - (sin Kr) ~n K(r)] < (sin κr)~n\ \HM \dvM

dr JAf(r)

for almost all re(0, Λ) (#: = min{z, π/2τc}) (cf. e.g., [7, Chap. 6 Lemma 36.5.7]). It
follows from the assumption and Holder inequality that

1lM(r)

These show that

d y
— l-(smκr)-n/pV{r)1/p]<—(sinκryn/p .
dr p

Hence integrating the both sides from r to R, we have
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(* R

(ύnκr)-nlpV{rγlp<{ύnκRynlpV{RγlPΛ-— (sinκt)-n/pdt.
P Jo

This implies that

V(r)<C(n, i, κ)(b + yp)rn

for all re(0, K], Thus if we take a sufficiently small r depending only on the given
constants, we see that M(r), namely, φ~1(B]^(x, r)) satisfies the condition (6.1). q.e.d.

REMARK. In a very recent paper [36], Yoshikawa shows the continuity of the
spectrum of a certain degenerating family of algebraic manifolds in a complex projective
space (cf. Theorem 3.4).

7. Families of Riemannian manifolds of increasing topological type. In this section,

we shall construct SD-precompact families of Riemannian manifolds with increasing
topological type.

Let U be a compact connected ̂ -dimensional Riemannian manifold with boundary
dU such that dU has v connected components {δ, t/: /= 1,..., v} and each of the
components has a neighborhood which is isometric to that of the boundary of the unit
«-cube /w = [0, 1] x x [0, 1] in Euclidian «-space Rn. We first take v copies of /?",
say J?ϊ, . . . , /?", and for each element y = (yl5 . . . , yn)eZn and αe {1, 2,..., v}, we denote
the unit «-cube [yl5 yx + 1] x x [yn9 yn+ 1] in /?" by Ia(γ). Secondly for each element
yeZ", we replace the disjoint union of {IJy): α= 1, 2, . . . , v} with U in such a way that
daU is just glued on the boundary of IJy). Repeating this process for every γeZn, we
obtain a complete noncompact Riemannian manifold M={M, g). It is easy to see that
M is rough isometric to Rn. In fact, there exist positive constants, a, b and mappings
φ: M-+R\ φ : Rn^M such that

— da(x9 y)-b<\ φ(x)-φ(y)\<adΰ(x, y) + b
a

for all x,yeM;

x'-y'\-b<dM{x\φ{y'))<a\x'-y'\Λ-b
a

for all x\yfeRn, and

for all xeM. Then by virtue of a result of Kanai [22], we have a Sobolev inequality
on M of the form:
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("-!)/«
<C\ \dφ\ξdυ^,

M

for some C > 0 . Moreover Zn acts on M in a natural manner as isometries of M. For

each positive integer /, we denote by iZn the subgroup of Z " consisting of elements

(zyl5 . . . , /yw) (y l5 . . . , y Λ e Z ) , and then we obtain the quotient space M/iZn endowed

with the induced metric gt.

Now scaling the metric g{ by Γ2, we have a sequence of compact Riemannian

manifolds {Mi = (MjiZn, i~2g^: /= 1, 2, . . . } . We first observe that the volume of Mt is

equal to that of U for any /. Secondly we notice that for some positive constants r and

C independent of /, a Sobolev inequality of the following form holds uniformly for all

geodesic ball B(x, r) in Mt with radius r:

\(n-l)/n Γ

I φ\nlin-l)dυMi I <C\ \dφ\dυMi, φeC?(£(x, r)).
B(x,r) / J B(x,r)

Therefore in view of Theorems 2.2, 2.3, and 2.6, we get the following

ASSERTION 7.1. The family {M~(Mh dvM)} obtained as above is precompact with

respect to the spectral distance SD and also the Gromov-Hausdorjf distance H D .

We remark that the mappings φ: M^Rn and ψ: Rn-*M respectively induce

mappings φt: Mi-*Rn\Zn of M{ into the flat torus Rn/Zn and φt: Rn/Zn-+Mi of Rn/Zn

into Mv These mappings satisfy

1 ft ft

a ί ~ ~ ί i

for all x, y ε M , ;

1

a

for all c', yΈRn/Zn, and

α

i

for all xeMh where d0 stands for the distance of Rn/Zn. Suppose that a subsequence,

{Mj}9 of { M j converges, asy'->oo, to a compact connected length space X=(X, dx)

with respect to the Gromov-Hausdorff distance H D . Then there exist ε(y')-Hausdorff

approximations /): Mj^Xa,nά h}\ X^Mj such that dx(x, fj°hj(x))<2ε(j) for all xeX,
where ε(j) tends to zero asy'-• oo. If we set Φj = φ^ o hj and ^ = /7 o ψp then these mappings

satisfy
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(7.1) — dx(x, y)-—βU)—7<d0(Φj(x), Φj(y))<adx(x, y) + aε(j) + ~
a a j j

for all x, yeX;

-do(x',y')-~ε(j)-~<dx(Ψj(x'),ΨJ(y'))<ado(x',y') + aε(j) + ^r
a a j j

for all x',y'eRn/Zn; further

(7.2) dx{x,ΨjoΦj{x))<iε{j) + ^7

for all xeX. Now taking a subsequence of {Mj} if necessarily, we may assume that Φj

converges pointwise to a mapping Φ^ defined on a dense subset Xo of X. Then letting

j go to infinity in (7.1), we see that Φm is a Lipschitz mapping of Xo into Rn/Zn such that

(7.3) — dx(x, y)<do(ΦJxl ΦJy))<adx{x, y)
a

for all x9yeX. Since Xo is a dense subset of X, Φ^ extends uniquely to a Lipschitz

mapping, denoted by the same letter Φ^, of X into Rn/Zn with the property (7.3), to

which Φj converges pointwise asy —• oo. In a similar fashion, we have a Lipschitz mapping

Ψ^: Rn/Zn-*X, to which Ψj converges pointwise. Taking (7.2) into account, we see

that Ψaooφoo=idx. Thus Φ^: X->Rn/Zn induces a bi-Lipschitz homeomorphism

satisfying (7.3). As a summary, we have the following

ASSERTION 7.2. For a limit X=(X,dx) of the metric spaces { M j with respect to

the Gromov-Hausdorff distance, there exists a bi-Lipschitz homeomorphism Φ of X onto

the flat torus Rn/Zn such that

— dx(x, y)<do(Φ(x\ Φ(y)) <adx(x, y)
a

for all x, yeX, where a is a positive constant depending only on U.

In the construction of the family {M,} above, we have placed infinitely many copies

of U for the disjoint unions (J « = i A(?) w i t n 7 running over all elements of Zn. We shall

now show another kind of example. We fix first an integer k, l<k<n—l, and then

replace the disjoint union UI=i4()0 w r t n the copies of U for all y = (γu ...,yn)eZn

such that 7i = * =y* = 0. Then by the same way as in the preceding construction, we

obtain a sequence of compact Riemannian manifolds {Mf }}. In this case, a limit metric

space X(k) of {M\k)} is unique and obtained from the disjoint union of v copies of Rn/Zn

by identifying the subspaces Rn~k/zn~k. Moreover Assertion 5.2 certainly holds and

if in addition, k>2, then Assertions 5.3 and 5.4 are also true.
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8. Isoperimetric inequality for some metrics on surfaces. In this section, we exhibit

a certain family of Riemannian metrics on a compact surface which degenerates along

simple closed curves while keeping the heat kernels bounded uniformly.

8.1. Let us begin with the following:

PROPOSITION 8.1. Let g be a Riemannian metric on Ω = [— 1, 1] x R/Z of the form:

g = E{tfdt2 + G(t)2dθ 2 , (ί, θ) e Ω ,

where E(t)>0 and G(t)>0 are smooth functions on [—1,1]. Suppose that

(8.1) G'>0 on 10, 1] and G'<0 on [ -1 , 0]

for some α>0,

(8.2) inf „ G ^ 2 >a.

\ 1 / 2 / 2

/or all fe C?(Ω).

PROOF. AS is well known, the above Sobolev inequality is equivalent to the

following isoperimetric inequality: for any compact domain D of Ω with piecewise C 1

boundary dD which does not intersect that of Ω,

A(D)<2[ 1 + — )L(<3D)2,

where A(D) and L(dD) respectively denote the area of D and the length of the boundary

dD. In what follows, we shall show this isoperimetric inequality. We first set

Jo
p(/)= E(s)ds

Jo

and write the metric g of the above form as follows:

2 θ2 , (p, 0)6[p(-1),

where F(p) = G(t(p)). Let α be a given number in [— 1, 1] and define a smooth function

5α(p) on Ω by

Then the Laplacian of Sa(p) is identically equal to 1. Therefore applying Stokes theorem

to a domain D with piecewise C 1 boundary, we obtain
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(8-3) A(D)= f AgSa(p)dvg = t ί S'a(pKVp, vdD} ,
JD i=1Jyi

where {yt} denotes the connected components of dD and vdD stands for the outer unit
normal of dD. We notice here that if p = α on yt for some /, then

f s'x(P)<yP,vdDy=o,

since S'a(p) = 0 on yt.

To prove the assertion of the proposition, it suffices to consider either of the case
k = 1, namely, D is homeomorphic to a disk, or the case k = 2, namely, D is homeomorphic
to an annulus. In the sequel, we put Ω+ =(0, 1] x R/Z and Ω~ = [— 1, 0) x R/Z.

Now we assume that y1 intersects Ω +. Set jβJ|£ = inf{p(x): xeyj nΩ+} and
β* =max{p(x): JCG}^}. We observe that

Let Ωo be the connected component of Ω+ — y1 whose boundary contains the circle
{1}XR/Z, and set Ωι = Ω+-Ω0. Then in view of (8.1) and (8.3) with α = 0, if ^ = 0,
we see that

AφnΩ+)<A(Ω1)= ίlS\dS < V P » W
J(dΩί)nΩ + tyP)

Ί) nint(β + )

Similarly, in case β%>0 and yx is null homotopic, it follows from (8.3) with oc = β^ that

Moreover in case β*>0 and 7i is homotopic to the circle {1} xR/Z, it follows from
(8.3) with α = 0 that

Since assumption (8.2) implies that
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we have

The arguments just above are available for Ω~ instead of Ω + , or y2 instead of yt

(if D is an annular domain). Therefore it is not hard to see that

A(£>)<2(1+— )L{dD)2

\ a)

for any compact domain D with piecewise C1 boundary which does not interesect the
boundary of Ω. q.e.d.

Let M be a compact 2-dimensional manifold and Ω a domain of M which is
diffeomorphic to [—1, 1] xR/Z. Let g be a Riemannian metric on M which has the
same expression on Ω as in Proposition 8.1 and further satisfies

E(t)dt>r; E(ί)dt>i
Jo J- i

for a constant r>0. Then in view of Theorem 2.2, the heat kernel pg(t, x, y) of (M, g, dυg)
has an upper bound of the form:

pg(t,x,x)<-
at

for all 0<t<r2 and xeΩ with \p(x)\<r/2, where c is some numerical constant.
8.2. Let us now exibit some families of metrics with the properties described in

Proposition 8.1.

EXAMPLE. Let a > 0, b > 0, 0 < α < 1 and 0 < β < 1 be given, and set

where Gε is given by

0 < ί < l

- l < α < 0 .

Then direct computation shows that

\^0Gε(s)ds\
inf .. εV >c
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for some c>0 depending only on α, b, α, β.

EXAMPLE. Let a > 0 and b > 0 be given, and set

gε = dt2 + Gε(t)2dθ2, ( ί ,0)e[- l , l]xJf/Z,

where Gε is given by

ί min
e

min< t + ε, a) —1</<0 .

t J
Then we have

inf — -
|ί|<i I Jo <

for some c>0 depending only on α, b.

EXAMPLE. Let a>0, b>0, 0<α<3/2 and 0<β<3/2 be given, and set

gε = Gε(t)2(dt2 + dθ2), ( ί ,0)e[- l , l]x/?/Z

where Gε is given by

fα + ε 0<ί<l

Then direct computation shows that

for some c>0 depending only on α, β.

EXAMPLE. Let us consider a family of rotationally symmetric surfaces around the
z-axis in Euclidean 3-space R3 = {(x, y, z): x, };, z e /?}. We start with a simply closed
curve ^ in jz-plane parametrized by teR/Z-+(0, r{t\ z(ί)) We assume that r(t)> 1 for
t φ 0, z(t) = t for I /1 < 1 /2, and further

(f <ί<0

for some constants a>0, b>0, 0 < α < l and 0 < β < 1. Now rotating the curves given by

#Π = *Ί +(0> — 1 + 1/Λ> 0) around the z-axis, we obtain a family of surfaces Mn in /?3,
namely,



114 A. KASUE AND H. KUMURA

Mn = {((r(t)-\ + 1/Λ)COS0, ( r ( 0 - 1 + l/n)sin0, z(t)): t, θeR/Z} .

Then the local Sobolev inequality (2.4) holds uniformly for all Mn, and moreover the

same results as in Assertions 5.2, 5.3, and 5.4 can be derived. In this case, the completion

of M^ — {o] as in Assertion 5.2 can be described as the sphere S2 equipped with a

Riemannian metric g^ which is only continuous at the north and/or south poles if α = 1

and/or β = 1.

See [9], [10] and [21] for related results.

9. Further discussions. In this section, we shall first consider a Riemannian

submersion with totally geodesic fibers and recall a result due to Besson [6] on a

domination of the heat kernel of the total space by those of the base space and the

fiber. An example of an SD-convergent family of such metrics on a total space is

exhibited. Secondly, we shall review a result of Gallot [16] and discuss a question on

Albanese tori in relation to the spectral distance.

9.1. Let M be a compact connected Riemannian manifold. We are given a

Riemannian submersion π: M—•/? of M onto another manifold B with totally geodesic

fibers {Fb: beB}. Then the horizontal lift of a piecewise smooth curve γ: [α, /?]—•# in

the base manifold B gives rise to an isometry 0>γ between the fibers Fy{a) and Fγiβ) over

the end points y(α) and y(β). Hence the holonomy group of the fibration is included in

the isometry group of the corresponding fiber. See, e.g., [5, Chap. 9] for some basic

results on Riemannian submersions with totally geodesic fibers.

Now we fix a point b0 of B and denote by F the fiber over b0. Let pM{t, x, x'),

pB(t, b, bf), and pF(t, u, u') be respectively the heat kernels of M, B and F with respect

to the normarized Riemannian measures. Then we have

pM(t, x, x')<pB{t, b, b')pF{t, 0>Ί(x\ 0>Ί{xψ2pF(t, &Ί{x'\ 0>y{xψ2

where Z> = π(x), b' = π(xr) and γ: [0, 1]->Z? (resp. γ': [0, l]->i?) is a piecewise smooth

curve joining b (resp. b') to b0. This inequality is due to Besson [6] and it enables us

to construct SD precompact families of such metrics on the total space in conjunction

with (principal) connections.

Let us here exhibit a degenerating family of metrics on the total space M of the

fibration π: M^B as above. We denote by gM, gB and gF, respectively, the metrics of

M, B and F. For a tangent vector X of M at a point x, Xv and XH stand respectively

for the vertical component of X which is tangent to the fiber through x and the horizontal

one which is orthogonal to the fiber. A one-parameter family of metrics {gε: ε > 0} on

M is defined by

gJtX, Y) = gM(X\ Yv) + ε2gM{XH, YH).

Then π : (M, gε)^>εB = (B, ε2gB) remains to be a Riemannian submersion with the totally
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geodesic fibers {Fb: beB). The normalized Riemannian measure of gε is independent

of ε and we write μM for it. Then the heat kernel pε of (M, gε, μM) is estimated by

A(ί, x, x')</>*(ε-2ί, 6, 6> F ( ί , 0>Ί{x\ 0>γ(x))1/2pF(t, &y{x\ 0>y{xψ2 .

We shall now describe the SD-limit of (M, gε, μM) as ε->0. For this, we denote by G

the closure of the holonomy group of the fibration at a fixed point b0 e B in the isometry

group of the fiber F. A canonical mapping Π of M onto the quotient space F/G is given

by

where p: F^F/G is the natural projection and γ is a piecewise smooth path joining n{x)

with a fixed point b0 e B. The quotient space FIG is endowed with the image measure

μ = p*μF of the normarized Riemannian measure μF on F. Then the Hubert space

L2(F/G, μ) on F/G is identified with the closure of the space C°°{F; G) of G-invariant

smooth functions on Fin the Hubert space L2(F, μF). We have now a strongly continuous

symmetric Markovian semigroup {τf]: />0} on L2(F; G) which is associated with the

closure of the energy form defined on C°°(F; G). The kernel of τf] is the pull-back of

a positive continuous function p(t, u, v) on (0, oo) x F/G x F/G. Then {F/G, μ, p) is the

SD-limit of (M, #ε, μM) as ε->0. In fact, Π: M-+F/G and any mapping Γ: F/G-+M with

IJoΓ = id. provide spectral approximations between (M, gε, μM) and (F/G, μ, /?), namely,

for all ί > 0, x, y e M and w, i; G F/G,

ε{u x, y)-p{U Π(x), Π(y))\<δ{ε)

/7ε(ί, Γ(ιι), Γ{υ))-p(t, ιι, ι;)|<(5(ε),

where lim^o (5(ε) = 0. We observe finally that the metric space (M, dε) endowed with the

Riemannian distance of gε converges to the metric space {F/G, d^) with respect to the

Gromov-Hausdorff distance, where the distance dς on F/G is defined by

and further the following property holds:

lim At log/?(ί, u,v)=— dό{u, v)2 u,ve F/G .

We have just discussed an SD-convergent example of metrics on a fixed compact

manifold endowed with a measure, which features the geometric structure of a Rie-

mannian submersion with totally geodesic fibers. Relevantly to the subjects of [20],

[31], and [30], we shall study in [26] the convergence of heat kernels of metrics on a

compact manifold endowed with a measure, including the above example as a special

case.

9.2. We shall now recall some results by Gallot [16], which are stated as follows.

Let M={M, g) be a compact connected Riemannian manifold of dimension n and μM
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denote the normalized Riemannian measure of M as before. For a point x e M, we set

(9X):XeTxM9g(X9X)=l\; r_(x) = sup{0, -r(x)} .

Let α and D be any positive constants and p be any element of (n, + oo). Suppose that

the diameter of M is bounded by Z),

(9.1) diamM<Z)

and the Ricci curvature satisfies

(9.2)

where

1/2

r (r \p/

\p-n

Then the /-th eigenvalue λh the heat kernel pM(t, x, y), and the first Betti number

of M are respectively estimated by

λi>A(p9a9D)i2/p;

(9.3)

where A(p,oc,D\ B(p,(x,D) and Z(p,oc,D) are respectively computable constants

depending only on the given constants. See [16] for details.

We claim here that under the assumptions (9.1) and (9.2), the Albanese torus s/(M)

of M satisfies

diam s/(M) < C(n, p, α, D) diam M

for some constant C(n, p, α, D) depending only on the given constants.

The Albanese torus J / ( M ) of a compact connected Riemannian manifold M=(M, g)

is defined as follows. Let us first denote by J f X(M, R) the space of harmonic one forms

on M equipped with an inner product ( , ) μ M ,

=\
J M) M

Let J f X(M, Z) be a lattice of J f 1(M, /?) which consists of harmonic one forms with

integral periods. Dividing the dual space J^>1(M, /?)* by the dual lattice J f X(M, Z)*, we

obtain a flat torus, called the Albanese torus of M:

W\M9 Z)* .
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The result claimed as above was proved in [24] under (9.1) and the condition that
the Ricci curvature of M is bounded from below by — (n— l)α2, and in fact the same
argument there is valid under the assumptions (9.1) and (9.2). The estimate above
implies particularly that the Albanese tori of compact connected Riemannian
^-manifolds M satisfying (9.1) and (9.2) form a precompact family of flat tori with
dimension less than or equal to nZ(p, α, D), where the topologies of the spectral distance
and the Gromov-Hausdorff distance coincide. For an SD-Cauchy sequence
{Mt : /= 1, 2,...} of compact connected Riemannian ^-manifolds satisfying (9.1) and a
stronger condition that the sectional curvature of M{ is uniformly bounded in its absolute
values, it was also proved in [24] that the corresponding sequence of the Albanese tori
srf(M?) converges to a point or a flat torus of positive dimension as /-•oo. It might be
asked whether this would be true under (9.1) and a much weaker condition (9.2).
Relevantly, a question could be raised concerning the continuity of the energy spectrum
of harmonic mappings into nonpositively curved manifolds with respect to the spectral
distance. See [23, Section 4] for related results.

As seen in Section 7, a bound for the Betti numbers as in (9.3) can not be expected
in general for an SD-precompact family. We remark also that an estimate for the
diameters of Albanese tori as in the claim above does not hold in general. Indeed, we
can see such examples in Section 5 as follows. Let M be a compact, connected and
oriented manifold of dimension n > 3 such that the first Betti number r = bx(M) is greater
than or equal to one. Let {c,: i= 1,..., r) be a basis of the first de Rham cohomology
group H\QK(M). Then we choose (n— l)-cycles {st: /= 1, . . . , r} in such a way that st is
the Poincare dual to the class ct for each ί and fix an open subset U of M which includes
the union of the cycles st. We may assume by the localization principle that each c{ is
represented by a closed 1-form ηi9 the support of which is contained in U. Now we
suppose that M admits a Riemannian metric g0 such that the scalar curvature of g0 is
positive. Then as in 5.2, we can find an SD-Cauchy sequence of conformal metrics
gk = φk

/in~2)g0 such that φk converges uniformly to a continuous function φ^ which is
positive outside U and vanishes on the union of the supports of the forms ηt. Then the
norm (ηi9 η^^ of r\i with respect to the metric gk decays to zero as fc-»oo. Indeed,

faί, 1i)μk = <Jli, rji >gkdμk (μk = dvJYol(M, gk))
JM

1
as k -» oo .

In particular, the norm of the harmonic part ξiyk of ηt, (ξitk9 ξijk)μk, tends to zero as
k->oo. Therefore the dual torus of srf(M,gk) collapses to a point as k-*cc. In other
words, the Albanese torus s/(M9 gk) itself diverges (or converges to r-dimensional
Euclidean space Rr with respect to the pointed Hausdorff distance) and in fact
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diam s/(M, gk)^> + oo as fe~>oo .

We note that the pointwise norm <£/jfc, ξitk}gk converges to zero outside U, but its

maximun value goes to infinity as A;-»oo, because ξik belongs to Jtf?1(M, gk, Z).

9.3. Let us close with an observation suggested by Akutagawa [2]. Let Jix(γί) be

the set of isometry classes of compact connected Riemannian manifolds with dimension

n and unit volume. Given positive constants, a, τ, A and integer p > n/2, we consider a

subset £f of Jίx(n) such that for a manifold M=(M9 g)e£f, the heat kernel pM(t, x, y)

of M satisfies

^ 0 < α < τ , xeM,

and further the curvature tensor RM of M has a bound of the form

ί RM\pdυg<Λ.

To this class £f of manifolds, we can apply some results by Anderson [3, Section 3]

together with Lemma 2.5, and we obtain a proposition stated as follows: the set 9*

above ίsprecompact in Ca n L2'p topology, α = 2 — n/2; to be precise, for a sequence {(Mt , g{)}

in y , there exist a subsequence {Mj}, a compact smooth n-manifold X equipped with

QCL n L2'P-metric gχ^ and a dίffeomorphism hj: X^Mjfor large j such that hfgj converges

to gx in the Cω topology for a'<a and weakly in the L2p topology on X. Thus on this

set Sf, the topologies of the spectral distance and the Gromov-Hausdorff distance

coincide and in fact they are expressed in a finer manner as above. We refer the reader

to [3], [2] and the references therein for details and releted topics.
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