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Abstract. We prove a precompactness theorem concerning the spectral distance
on the set of isometry classes of compact Riemannian manifolds and study the comple-
tion of a precompact family.

Introduction. For a compact connected Riemannian manifold M=(M, g), we
denote by pyt, x, y) the heat kernel of the Laplace operator of M with respect ot the
normarized Riemannian measure pu,, (=dv,/Vol(M)). Given two compact connected
Riemannian manifolds M and N, a mapping f: M—N is called an e-spectral ap-
proximation if it satisfies

e UM p(t, x, y)—palt, f(x), F(V) | <e

for all t>0 and x, ye M. The spectral distance SD(M, N) between M and N is by
definition the lower bound of the positive numbers ¢ such that there exist e-spectral
approximations f: M—N and A: N— M. The distance SD gives a uniform structure
on the set ./, of isometry classes of compact connected Riemannian manifolds.

Riemannian manifolds are considered as metric spaces endowed with Riemannian
distances. From this point of view, the set ., has another uniform structure introduced
by Gromov [ 18], called the Hausdorff distance HD. In [18], the conditions for a family
of . to be HD-precompact are described and it is shown that the boundaries of such
a family consist of certain metric spaces, called length spaces. This decade has seen
intensive activities around the convergence theory of Riemannian manifolds with respect
to the Gromov-Hausdorff distance. These includes some works from the viewpoint of
spectral geometry, for instance, [14], [4], and [23]. In [25], motivated by these results,
we introduced the spectral distance SD mentioned above and discussed some basic
properties of the distance on a set of compact connected Riemannian manifolds of the
same dimension with diameters uniformly bounded from above and Ricci curvatures
uniformly bounded from below.

In the present paper, we are concerned with a certain precompact family of .4,
and its compactification with respect to the spectral distance. More precisely, the main
results are stated as follows.
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and Culture, Japan.
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(1) (Theorems 2.3 and 2.6) Let positive constants a, v, and 7 be given and let
F(a, v, 7) be a family in .4, such that the heat kernel p,,(t, x, y) of each M e F(a, v, 1)
satisfies

©.1) Pl X, )<
tv/Z

for all 0<t<7t and xe M. Then ¥(a, v, 1) is precompact with respect to the spectral
distance SD and also the Gromov-Hausdorff distance HD.

(2) (Theorem3.1) Let{M,:n=1,2,...}beanSD-Cauchysequencein ¥(a, v, 7).
Suppose that the diameter of M, is bounded away from zero uniformly by a positive
constant. Then there exist a compact metric space X =(X, 0), a (positive) Radon measure
4 on X, a nonnegative continuous function p on (0, 00) X X' x X, Borel measurable
mappings F,: M,— X, H,: X—M,, and a sequence of positive numbers {¢,} converging
to zero as n— oo, which satisfy the following properties:

(i) p(t, x, y) is the heat kernel of a strongly continuous semigroup {7,: >0} on
L*(X, p) associated with a regular Dirichlet form on L*(X, p);

(ii) the push-forward F.u,,, of the normalized Riemannian measure p,,, of M,
by the mapping F, converges, as n— o0, to the measure u with respect to the vague
topology;

(iii) the i-th eigenvalue 4, ; of M, for each i converges, as n— oo, to the i-th eigen-
value 4, of the infinitesimal generator & of {T,: t>0};

(iv) the mappings F,: M,—»X and H,: X— M, are ¢,-spectral approximations,
namely, they satisfy

e—(t+ I/I)lpMn(ta X, ,V)_P(t, Fn(x)> Fn(y)) | Ssn
e 0 py (8, H (X)), H(Y)—p(t, X', y') | <é,
for all t>0, x, ye M,, and x’, y'€ X, and also one has
O(F, Hx'), ') <¢,

for x' e X

(v) letting a positive integer i be given, for each eigenfunction u of (M, p,,,) with
eigenvalue 4,; and unit norm in L*(M,, u,, ), there is an eigenfunction v of & with
eigenvalue 4; and unit norm in L?(X, u), such that

Sup | u(x) — v(F,(x)) | <&, sup | u(H,(x))—v(x)[<e,; ,
xeM, xeX
where {¢,;} is a sequence of positive constants tending to zero as n— co.
We remark that the measure u is not necessarily supported on the whole of X and
the trivial eigenvalue 4,=0 may be of multiplicity greater than one (cf. Sections 5, 7
and 8 for such examples).
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Given a positive integer m and positive constants xk and D, we denote by .#*(m, k, D)
the subset in .. consisting of compact connected Riemannian manifolds of dimension
m whose diameters are not greater than D and whose Ricci curvatures are bounded
from below by —k. Then the main results of [25] are stated as follows.

(3) M*(m, k, D) is precompact with respect to the spectral distance SD, and the
above assertions (1) and (2) certainly hold for an SD Cauchy sequence in this class.
Moreover the semigroup {T,: 1>0} on the limit space X satisfies the Feller property,
namely, for each continuous function « on X,

lim sup | T,u(x) —u(x)| =0
t—>0 xeX

and in fact it possesses the Lindeberg type property, that is, for a compact subset K in
X and an open subset G including K,

lim sup 1 T(Fx-6)=0,
-0 xeK t
where #, stands for the characteristic function of a set 4.

(4) On #*(m, k, D), the uniform topology given by the spectral distance is finer
than that of the Gromov-Hausdorff distance. In fact, if a sequence {M,} in .#*(m, k, D)
converges to a boundary element (X, u, p) with respect to the spectral distance, then
there is a distance d on X such that the metric space (M,, d,; ) endowed with the
Riemannian distance d,;, converges to (X, d) with respect to the Gromov-Hausdorff
distance. Moreover one has

lirr; 4tlog p(t, x, y)= —d(x, y)?
o
for all x, ye X.

The assertion (3) will be valid for larger classes considered in [32]. In fact, let A>1
be given further and consider the set of equivalence classes of M =(M, g), denoted by
M*(m, k, D; A), which admit Riemannian metrics 4 such that (M, h)e .#*(m, x, D) and
A~ *h<g<Ah. Then we shall show

(5) (Theorem 4.3) the assertion (3) certainly holds for .#(m, k, D; A).

However the assertion (4) is not true in general for this class (cf. 4.3 Example).

These results will be verified in Sections 2 through 4. As the first step, in Section
1, we exhibit the method of embedding compact Riemannian manifolds into a certain
metric space of infinite dimension in connection with the spectral distance defined above.
It should be mentioned here that Bérard, Besson and Gallot [4] defined a family of
spectral distances on the set of compact Riemannian manifolds by embedding them
into the Hilbert space of real-valued, square integrable series. However their distances
are different from ours. We consider a point of a compact Riemannian manifold as
a curve in the Hilbert space, taking the Sturm-Liouville decomposition of the heat
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kernel into account.

In Sections 5 through 9, we shall exhibit some geometric classes which satisfy uniform
diagonal estimates (0.1) for the heat kernels. It is well known that (0.1) is equivalent
to inequalities involving the energy forms, Sobolev and Nash inequalities (cf. Theorem
2.1). In Section 5, we consider conformal classes of positive Yamabe invariants and
derive Sobolev inequality for a class of conformal metrics in terms of the Yamabe
invariant and a certain integral bound of scalar curvature. Section 6 concerns a family
of Riemannian submanifolds in a complete manifold and a heat kernel bound (0.1) is
shown with constants involving an upper bound of the volumes and a certain integral
bound of the mean curvatures. Section 7 is devoted to exhibiting SD-precompact families
of Riemannian manifolds with increasing topological type. In Section 8, we show a
sequence of Riemannian metrics on a compact surface which degenerates along simply
closed curves while keeping the heat kernels bounded uniformly. Riemannian sub-
mersions with totally geodesic fibers are taken up in Section 9 and a typical defor-
mation of such metrics on a total space is discussed. In addition, some observations are
made concerning Riemannian manifolds with certain integral bounds on curvatures.

Asin [25], from the nature of the problem discussed here, we shall in fact investigate
Riemannian manifolds endowed with weight functions and the associated operators
rather than Riemannian manifolds and the Laplace operators. When we fix a compact
connected differentiable manifold and consider a family of Riemannian metrics and weight
functions, the topology of the spectral distance are closely related to those studied by
many authors (see for instance, [27], [30], [20], [31] and references therein).

Most of the results in this paper were presented in the lecture notes for the
proceedings of the second GARC Symposium on Pure and Applied Mathematics,
February 1993, Seoul National University, and also Geometry and Global Analysis,
July 1993, Toéhoku University.

The first author is grateful to Professors Y. Ogura, M. Takeda and K. Akutagawa
for helpful conversations.

1. Spectral embedding and spectral distance. In this section, we review some
definitions introduced in [25].

1.1. Let M=(M, g) be a compact, connected Riemannian manifold of dimension
n and w be a positive smooth function on M. We consider an elliptic differential operator
%, of second order defined by

L= —& div(wV )= — Ay —dp(V log W),

where A,, stands for the Laplace operator of M acting on functions. This operator %,
is associated with the Dirichlet integral & on the space C®(M) of smooth functions
defined by



SPECTRAL CONVERGENCE OF RIEMANNIAN MANIFOLDS 75

&(o, ¢)=J Ve, V) dp,, ,

where we write u,, for the (Radon) measure wdv,, of density w with respect to the

Riemannian measure dv,,. The operator .%,, is essentially self-adjoint, and in this paper,

its closure in L%(M, u,) is also denoted by the same letter. Let p (t, x, y) be the heat

kernel of the operator .%,. Since M is assumed to be compact, we have the eigenfunction

expansion of the kernel:

pw(t9 X, y) = ‘ZO e_lilui(x)ui(y) .

Here 0=4,<4,;<4, - are the eigenvalues of %, and ®={y;} is a complete ortho-

normal system of L%(M, u,) consisting of eigenfunctions with u; having eigenvalue 4;.
Now let us recall a spectral embedding of M used in [25]. To begin with, we define

two Hilbert spaces /, and A, by

12:{(‘11‘):':0.1,2....: Z al< +00} ,

i=0

h1={(ai)i=0,1,2,...: Z (1+i%a?< +°O}'
i=0

We denote by C_ ([0, o), /,) the space of continuous curves y: [0, c0)—/, such that the
l,-norm | y(z)|,, of y(¢) tends to zero as t—oco. This space is endowed with the distance

.y, ) =Sp | (1) (1),

We note that given a positive constant C and a nonnegative continuous function #(z)
on [0, o0) tending to zero as t— oo, if we set

K(C,n):={ye Co([0, ), L): | )(0) Iy, <n(t) for all 120,
[y(t)—y(s)|,,<C|t—s]| for all t,s>0},
then K(C, ) becomes a compact metric subspace of C ([0, o), /,), and hence the set of
closed subsets of K(C, ) is also compact with respect to the Hausdorff distance .

Let a complete orthonormal basis @ = {u;} of L*(M, p,,) as above be given. For a
point x € M, we shall define an element Fy[x] of C_([0, =), I,) by

Folx](t)=(e™ 10222y (X));0.1.2,... -

Then the map Fg of M into C ([0, o0), I,) gives rise to a continuous embedding of M,
which will be called the spectral embedding of M with respect to the given basis @ = {u;}.
We observe that for all x, ye M and t>0,
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<F¢[X](l), Fd)[y](t)>lz = e—(t+ lmpw(t9 X, y) s

and
d(Fo[x], Fo[y])*= sup e~ U (2, X, X)+pult, ¥, ¥) = 2,1, X, Y)) .
t>

Putting

1/2
Oy (X, y)= < supe”“*(p (1, x, X)+pu(t, ¥, ¥)—2p,(t, x, y))>
t>0

for x, ye M, we have a distance @, ,, on M which induces the same topology of M.
The spectral embedding Fy: (M, @ ,,)—>(C ([0, ), [,), d,) is thus distance preserving;
the distance @, ,, will play an important role in this paper. The Riemannian distance
between two points x, y of M is denoted by d,(x, y); (M, u,,) will stand for a pair of a
compact connected Riemannian manifold M=(M, d,,) and a (Radon) measure u, =
wdv,, with density w.

1.2. We are given two pairs (M, u,=vdv,) and (N, v,=wdvy). A mapping
f: M—N is called an e-spectral approximation for a positive number ¢ if

sup{e " p.(t, x, y)—p(t, f(x), f(W)]: 1>0,x, ye M} <e,

where p, and p,, are respectively the heat kernels of (M, u,) and (N, v,,). The spectral
distance between (M, u,) and (N, v,), denoted by SD((M, u,), (N, v,,)), is by definition
the lower bound of the numbers ¢>0 such that they admit e-spectral approximations
f:M—-Nand h: N->M. We observe that

SD((M, :uv) ’ (Na vw)) =0

if and only if there is a homeomorphism f: M— N which preserves the heat kernels
and the measures, namely,

Pt %, Y)=p,(t, f(x), f(y)  forall >0, x,yeM; fopu,=v,.

Indeed, suppose first that SD(M, u,), (N, v,))=0. Then there are ¢,-spectral approxi-
mations f,: M— N with ¢, tending to zero as n—oo. Then by the definition of the
distances @), on M and @y, on N, we see that

| Or,(X, ) = O W (flx), ful¥) | <4e,

for all x, ye M. Now we choose an increasing sequence of finite subsets 4, of M in
such a way that 4, is (1/k)-dense with respect to @, ,. For each k, we take a subsequence
{fuw} Of {f,} such that f,,,(x) converges for all x€ A4, as n(k)— 0. We may assume that
{fa+ 1)} € {faswy}- Then by the diagonal argument, we can find a subsequence { f,,} which
converges for every point x€ | 4, as m— o0; we set f(x)=1lim,,_,,, f,(x) (xe |J 4,). The
mapping f: |J A,— N preserves the distances, namely,
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Or (X, Y)=Op W (f(x), f(¥)

for all x, ye |J 4,. This shows that f can be extended uniquely to a distance preserving
mapping, denoted by the same letter f, of M onto N, because |J 4, is dense, and both
of M and N are compact and connected. Moreover since f, are e-spectral approxi-
mations with lim,_, ., &,=0, the mapping f actually preserves the heat kernels. It is easy
to see that f also preserves the given measures, because, for a continuous function
on N,

Ao

J‘ Y(f (x)dp(x)= !112 pult, f(x), b)p(b)dv,,(b)dpu,(x)

MJ

=lim pult, (), fFOW(f (y)du,(x)dv,(f(»)
=0 JmdM

ror

=lim Pty X, YW(f(y)du(x)dv,(f())

=0 )M JdM

=f Y ONAv(f(Y)) -

In our situation, the mapping f: M— N as above induces an isometry between M
and N which preserves the given measures, since it is well known that

lim 4¢log po(t, x, y) = — d(x, y)*
o
for all x, ye M (see [34], [11], and [25]).

Now identifying two pairs (M, u,) and (N, v,) when there is a mapping of M onto
N which preserves the heat kernels and the measures, we obtain a metric space
Me = {(M’ )~ SD}

1.3.  We shall consider a triad of a compact, connected Riemannian manifold M,
a measure y,, =wdv,, as before and a complete orthonormal system @ ={u;};_, ;... in
the Hilbert space L*(M, p,,) such that u; is an eigenfunction of the operator %, ,, having
the i-th eigenvalue 4;. Given such triads a=(M, u,, #={w;}) and f=(N, v,, ¥ ={v;}),
we set

SD*(OC, ﬂ) : =5H(F¢[M], F\P[N]) ’

where d stands for the Hausdorff distance on the set of closed subsets of the metric
space C([0, o), l,). Obviously SD*(«, f)=0, that is, Fg[M]=F4[N], if and only if
there exists a homeomorphism f of M onto N which preserves the heat kernels, the
measures and further the given orthonormal systems, f*¥ =¢. In what follows, we
shall identify these triads and denote by #.#, ,, the set of equivalence classes of elements
(M, u,, ®={u;}) endowed with the distance SD*.

Now let n: #M,,,—4,, be the canonical projection from %#.#,, onto 4,,
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sending (M, p,,, ®={u;}) to (M, u,,), and set
p(M, ,):=supl{e” "1 (t, x, y): t>0,x, ye M} .
Then for «, fe F.M, ,, we have

SD(n(x), 7(B)) < 2 max{p(n(a)), p(n(B))}SD*(x, ) -

Therefore a subset & of ./, ,, is SD-precompact, provided that p(M, u,) is uniformly
bounded from above on & and n~!(¥) is SD*-precompact. Thus we can deduce from
the observations in 1.1 that & is SD-precompact, if there exist a positive constant C
and a positive continuous function 5 on [0, o0), with 5(¢) tending to zero as t— o0, such
that

Fo[M]<=K(C, 1)
for any (M, p,,, ®)en” }(¥).

2. Upper bounds for heat kernels and precompactness. In this section, we shall
give sufficient conditions for a given subset & of .#,,, to be precompact, in terms of
uniform upper bounds for the heat kernels and also the measures.

2.1. We are given a pair (M, u,) of a compact connected Riemannian manifold
M=(M, g) and a Radon measure u,, with density w. In what follows, for a function
¢eLP(M, p,), we write ||¢]|, for the norm of ¢:

1/p
lol,: =<J | (x) I”duw(X)> .

We shall first recall some basic results on bounds of the heat kernels p,(t, x, y) and
inequalities involving the quadratic forms &.

THEOREM 2.1. Let (M, u,) and p,, be as above. Let ve(0, co) be given. If

2.1 P, x, X) <

tv/2

for some a>0 and 1> 0, and for all t € (0, t] and x € M, then there is a constant A depending
only on v and a such that
2.2) 11374 < A{(¢, d)+ "I Bl3} DN

Jor all ¢ € C*(M). Conversely (2.2) implies that (2.1) holds for some a>0 depending only
on v, A and t. Moreover in the case when v>2, (2.1) is also equivalent to a bound of the
Sform:

(2.3) 1B13v0-2<A{E(, $)+7~ D13}
Sfor all fe C*(M), where A’ (resp. a) is a constant depending only on v and a (resp. v, A’



SPECTRAL CONVERGENCE OF RIEMANNIAN MANIFOLDS 79

and 1) if (2.1) (resp. (2.3)) holds.

Moreover we use local Sobolev inequalities and off-diagonal estimates for the heat
kernels.

THEOREM 2.2. Let (M, u,) and p,, be as above. Let ve(0, ), a point xe M and
re(0, + oo] be given. Suppose that

1913w-2<A*{E(d, D)+ DI} (v>2);
Ipli<a*{&@, d)+17 Bl3}IAN:  (v=2)

for some A* and t, and for all ¢ € CF(B(x, r)). Then one has a diagonal estimate of the form:

25 Pults 1, NS COIAR (147 )21+~ 20)r ™2 +171)2

2.4)

forallt>0 and y € B(x, r/2), where C(v) is a positive constant depending only on v. Moreover
if (2.4) holds for another point x'€ M, then the following off-diagonal estimate holds:

dpglx, x)? >

(2.6) Pt x, x)SCOA* 21+ 1) 272 (1 4 17 dpylx, x)P)L T2 exp< o

SJor 0<t<rdy(x, x') (< o0).

We refer the reader to [29], [35], and [8] for the proof of Theorem 2.1. See also
[13]. So for as Theorem 2.2 is concerned, adapting the arguments in [29] (see also [9])
and [33] will yield the above estimates.

2.2.  We shall now prove the following:

THEOREM 2.3. Given a subset & of M, suppose that (2.1) holds for some positive
constants v, a, and t and for all elements (M, u,) € & and moreover suppose that the total
measure (M) of any (M, u,)€ is not greater than a positive constant b. Then & is
precompact with respect to the spectral distance SD.

Proor. This follows from the lemma below. Indeed it can be deduced from the
lemma that there exist a positive constant C and a positive continuous function #(¢) on
[0, o), tending to zero as t— oo and depending only on the given constants v, a, T and
b, such that

Fo[M]<=K(C,n)
for any (M, u,,, P)en™ }(&¥). q.e.d.

LEmMA 24. Let (M, p,, P={u;:i=0,1,2...}) be an element of FM,,,, such that
(2.1) holds for some positive constants v, a and 1. Then the following assertions hold.
(i) The i-th eigenvalue A; satisfies

1 . 2/v
i,z(L) if A=t ' 1+i<aep M)yc™? if i<t l.
aep, (M)
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(ii) The eigenfunction u; for each i has a bound of the form:
|u;|* <aemax{A)?, 172} .

(iii) Given 0=0, one has

1 1
a —li 2
lie 'ui(x) SC<—td’+_\’/2 + V2 >

M8

t°t

i

i=0

for all t>0 and xe M, where C is a positive constant depending only on v, a, and o.
(iv) Given 6 >0,
«© —
e—(:+1/z) Z l?e_'l‘ui(x)zsmlej‘ l‘”’vlze_z‘/’ldl
T<A; T

forall T>171, t>0 and xe M.
PROOF. We first observe that for each A>0, and for all xe M,
2.7) Y u(x)<aemax{i*? v} .
Ai<A
Indeed,

o0
Y o uix)<e Y, e Hul(x)<e Y, e Mtul(x)
Ai<A Ai<A i=0

=ep,(1/4, x, x) <aemax{A"?, 17"?} .
Integrating the both sides of (2.7) over M, we get
#{A;: A, <A} <aemax{A* t"*}u (M) .

Thus the first two assertions follow.
Now for each point x € M, we define a measure #, on the real line R by

0

M= Y, uf(x)d;, .

i=0
where &, stands for the Dirac delta measure at A. Since #.((— o0, ])=n,([0, A])<
aemax{A*?, 17"}, we have

2ge” () = f 10~y (3)
=0

— 0

=Jw(tll"—azl"_l)e_”nx((—oo, A])dA
0

<ae J 1A%~ max{1"?, t"*}d}

0
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1 1
<ae{l(c+v/2+1)+T(c+ 1)}<W+ P > :

This shows the assertion (iii).
It remains to verify the last assertion. Observing that

_ _ 2 _JsT4 "
te (t+1/1) uls e ~/5+4A<2e—2\/).

—14+/5+44

for all >0 and A>0, we have

e—(l+1/t) Z /{ge—tliui(x)z=e—(r+1/r)JwAaet}.dnx(l)

T<A T

<e"’+1/”f 1% {(— o0, A1)dA

T

e 9]
<aej te—(t+ l/t)—rlia+v/2di

T

<2ae f A0tV2e=2Va gy
T

g.e.d.

2.3. Now we shall derive some geometric estimates on (M, u,)e .4, , from the
Nash inequality (2.2).

LemMMmA 2.5. Let(M, u,) be an element of M, ,, such that (2.2) holds for some positive
constants v, A and t. Then the following assertions hold.

(i) The total measure p (M) is bounded from below by A~"?t"/2,

(ii) For all points xe M and any re (0, t*/?], the measure of the geodesic ball B(x, r)
of M=(M, d,) around x with radius r satisfies

o(B(x, 1)) > C(v)A ™"
(iii) The diameter of M =(M, d,,) satisfies
diam M < C(v)A2u, (M) if diamM<t'/?;
diam M < C(v)4¥?t =~ V2y (M) if diam M><1!/?,
(iv) The i-th eigenvalue A; has an upper bound of the form:
A< Cv)A*?p (M) diam M)~ 27vi2+Y

for i>(47?) "t diam M.
Here C(v) is a constant depending only on v.
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Proor. The inequality (2.2) applied to a constant function yields:
/‘w(M)l +2/VSAT_ I#W(M)l +4/v .

This proves (i).
Now for a point x € M and a positive number r, we write p for the geodesic distance
dy (%, x) to the point x and we choose a test function as follows:

1 if OSp(y)S%
(e y) = 2 o T
Pimlo—Zp0)  if —<ply)<r
r 2
0 if r<p(y).

Then {,, satisfies
2
|Visrl<—3 supp| Vi, |=B(x,r)—B(x,r/2).
r

Hence applying (2.2) to the function {,,, we see that
Ho Blx, 1/2))1 72 < A[4r ™2 {p (Blx, 1)) — (B, 7/2))} + 17 (B, 1) (B(x, )* .
This implies that for r2<rt,
HuBOx, 1/2)1 T2 <S5 Ar =2 p, (Blx, 1) T
Now we put V(t):=u,(B(x,t)), a:=v/(v+4), B:=(v+2)/(v+4), and r,:=r2m" !
(m=1,2,...). Then it follows that
V(rm)=(A) 2V (s ) (m=1,2,...)
and hence
o BOe, 1) = (SA) T r iV (ry)f = - -
> (54)*(1 =™ =By 2a(1 =B =) ﬁ 220GV P
j=1
Since V(r,,+,)*" tends to 1 as m— o0, we obtain
po(B(x, 1)) > C(v)A™?r”

for some constant C(v) depending only on v. This proves the second assertion (ii). In
particular, in the case when the diameter of M is not greater than t!/2, we see that

(M) > C(v)A™"?(diam M)" .

Now we shall consider the case when diam M >t!'/2. We put first r,:=1'/? and also
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no :=[diam M/2r,] + 1, where [x] stands for the greatest integer » satisfying n<x. Let
y: [0, diam(M)]— M be a distance minimizing curve joining two points x, ye M such
that dy(x, y)=diam M. Set x,:=y(2kry) (k=0,1,...,n,—1). Then we get a disjoint
family of geodesic balls {B(x,, ro): k=0, 1, ..., ny—1}. Therefore we see that

np—1

MW(M)Z kgo uw(B(xk9 ro))Zl’loC(v)A _"/Zrz’) .

Since diam M <2rqn,, we obtain
diam M <2C(v) 142t V12 (M) .

This shows (iii).

It remains to prove (iv), for which we use the Rayleigh principle. Let x, ye M and
y: [0, diam M ]— M be as above. Given an integer i greater than diam M/4t'/2, we have
a disjoint family of (i+ 1) geodesic balls B(x;, r) and linearly independent test functions
{x,r defined as above, where we set x;: =(2rj) (j=0, 1, ..., i) and r : = diam M/2i. Taking
the variational characterization of the i-th eigenvalue A; into account, we see that for
some (aq, ..., a;)e R —{0},

&9, 9) :
SR <"’:=,§o”"c"f")'
Hence we can deduce the last assertion (iv). Indeed, we have
8¢ @) _ 4Xj-04i kulBx; 1)
lol3 = 221 0 2 1u(B(x; r/2))
el E———
r2C(v)A~"2(r/2)
= C'(v)A¥*(diam M)~ @Yy (M)i?*"

where C’(v) is a constant depending only on v. g.e.d.

It should be mentioned that the main estimate (ii) of Lemma 2.5 is essentially due
to Akutagawa [1] and we have adapted the method employed in [1, Theorem 2.1] for
proving our estimates (cf. Remarks (ii) below).

As an application of Lemma 2.5 (ii) and (iii), we have the following:

THEOREM 2.6. Given positive numbers v, a, T and b, the set of isometry classes of
compact Riemannian manifolds M =(M, g), which admit weight functions w such that (2.1)
with these constants v, a, T holds for (M, u,,) and the total measure u (M) is bounded
from above by b, is precompact with respect to the Gromov-Hausdorff distance HD.

ProOF. In view of Theorem 2.1 and Lemma 2.5 (iii), we see that the diameter of
M is bounded from above by a positive constant depending only on the given v, a, ©
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and b. Moreover let a positive number r be given and take a family of disjoint geodesic
balls B(x;, b) around points x; of radius r. Then the number k of such balls is not greater
than a constant depending only on the given ones v, a, t and b. Indeed, it follows from
Lemma 2.5 (ii) that

k
b2 (M)= 3. (Bl )

M=

>

Bu(B(x;, 1) (ry:=min{r, t}/2})

1
>kC(v)A™?r), .

Hence a result due to Gromov [18] shows that the set of isometry classes as above is
HD-precompact. g.e.d.

REMARKS. (1) Let v, 4, and t be given and (2.2) hold for a pair (M, u,). In the
case when v=dim M, it follows from Lemma 2.5 (ii) that the density w must be uniformly
bounded away from zero.

w(x)>C'(nA™"*>0 (n=dim M)

for all xe M, where C'(n) is a positive constant depending only on n.

(i) Let N=(N, h) be a (not necessarily complete) Riemannian manifold and p a
Radon measure on N. Let A", R, 7, v and p be given positive constants such that
RP <t and v>p. Suppose that the closure of the geodesic ball B(x, R) around a point
xe N of radius R is compact, and moreover

(v=p)/v
<J |¢I”’"”"”’d#> SA”(I |d¢|fidu+f"1f I¢|”#>
B(x,R) B(x,R) B(x,R)

for a“ ¢E C?)O(B(x, R)) Then we have
WBy. P> A==+ gy

for all geodesic balls B(y, r) included in B(x, R) such that

1 B
lim sup M < 400
£=0 loge
This can be verified by the same argument as in the proof of [1, Theorem 2.1] or
Lemma 2.5 (ii). See 9.3 for a related result.

3. Convergence of eigenvalues and eigenfunctions. In this section, we shall study
a certain SD-Cauchy sequence and the limit element. In addition, we shall discuss the
resolvent convergence in some sense.

3.1. The main result is stated as follows:
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THEOREM 3.1. Let & ={(M,, p,, =w,dvy):n=1,2,...) be a sequence of M,,
such that for some positive constants a, v, T and b, the heat kernel p,, (t, x, y) of (M, )
satisfies (2.1) and the total measure u,, (M,) of M, is bounded from above by b. Suppose
that & is an SD-Cauchy sequence and further the diameter of M,=(M,, dy ) is bounded
away from zero uniformly by a positive constant. Then there exist a compact connected
metric space X=(X, ©), a (positive) Radon measure u on X, and a nonnegative continuous
Sfunction p on (0, ©0) x X x X, Borel measurable mappings F,: M,—»X and H,: X—>M,,
and a sequense of positive numbers {¢,} converging to zero as n— oo, which satisfy the
following properties:

(i) p(t, x,y) is the heat kernel of a strongly continuous semigroup {T,: t>0} on
L*(X, p) associated with a regular Dirichlet form on L¥(X, p).

(ii) The push-forward Fp,, of the measure u,, by the mapping F, converges, as
n— o0, to the measure p with respect to the vague topology.

(iii) The total measure p,, (M,) of p,, and the i-th eigenvalue 4, ; of (M, pu,, ) for
each i converge respectively, as n— oo, to u(X) and the i-th eigenvalue A; of the infinitesimal
generator & of {T,: t>0}.

(iv) The mappings F,: M,—»X and H,: X—> M, are g,-spectral approximations,
namely, they satisfy

e” T p,, (1, x, Y)=pt, F(x), F(Y) <&,
e T p, (6, Hy(xX'), H(y")—plt, X', y') | <e,
for all t>0, x,yeM,, and x', y' € X, and also one has
O(F,° H,(x'), x')<g,

for all x'e X.

(v) Letting an positive integer i be given, for each eigenfunction u of (M, u,, ) with
eigenvalue 1, ; and unit norm in L*(M,, p,, ), there is an eigenfunction v of ¥ with eigen-
value 1; and unit norm in L*(X, ), such that

n,i

sup |u(x)—v(F(x))|<&,;; sup|u(H,(x)—v(x)|<e

xeMy,
where {¢,;} is a sequence of positive constants tending to zero as n— .

Proor. The proof of the theorem will be divided into three steps.
Step 1. We set *:=n""'(&), which is an SD*-precompact subset of .4, ,,, and
choose a sequence a,=(M,, u,,, ,={u,}) of £*. In addition, we put
v:=lim sup u, (M,); 4;:=lim sup 4,; (i=1,2,...).
Since the diameter of M, is assumed to be bounded away from zero uniformly by a
positive constant, we see by Lemma 2.5 (iv) that 4, is finite for each i.
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Now we shall assume in this step that o, is an SD*-Cauchy sequence, and further
that as n— o0, u,, (M,) and 4, ; converge to v and 4;, respectively. We denote by X, the
image of the embedding Fy_: M,—C ([0, ), /). Then by the definition of the distance
SD*, X, converges, as n—c0, to a compact subspace X of C ([0, ), [,) with respect
to the Hausdorff distance J,; there. Hence we we can define (not necessarily continuous)
mappings f,: X,—X and A,: X— X, in such a way that

d.(y, £,(n) <6,

for all ye X,;
3.1 do(y', (") <0,

for all y’e X, where ¢, is a sequence of positive constants tending to zero as n—oo.
Moreover these mappings have the following properties:

| deo(v, 0) = doo(fu(7), Su(0)) | <20,
ldo(y’s 6") = doo(hy(y"), hi(0") [ <20,
Ao (Vs Moo (1) 20,5 do(y', fro ) <26,

for all y,6€ X,,, 7', 0’ € X. In particular, the 24,-neighborhood of the image f,(X,) covers
X and also the 26,-neighborhood of the image 4,(X) covers X,,.

Now for an element y of X, we denote by y() the i-th component of y(¢) in /,, and
set h,(y):=Fg!(h,(y)). Then inequality (3.1) reads as follows:

Mg

X (e) e e A (R ) <5

for all >0 and ye X. In particular, it follows that
| po(t) —e™ T 102y, (M,)™12] <5,
lyi(t) —e T2 Initi2y, (B, (7)) | <,

for any i and for all >0 and ye X. Now we define 7,(z) and 7,(¢) respectively by the
identities

Polt)=eT 12012y (1) 5
Filt)=e T2 M2y ()
Then the last two inequalities are written as
e U2y 125 (1) — p,, (M) V| <8, ;
e ¢ hiI2g ) — e ntl2y, ()| <3,

Therefore in view of Lemma 2.4 (ii), by letting » tend to infinity, we see that ,=1 and



SPECTRAL CONVERGENCE OF RIEMANNIAN MANIFOLDS 87

u, {(h,(y)) converges to 7,(¢). This implies in particular that §; does not depend on the
parameter ¢, and hence we may write uy;(y) for 7;(¢). These uy; (i=1,2,...) are
continuous functions on X, which separate the points of X, namely, for any pair (y, o)
of distinct points of X, uy ;(y)#ux ;(c) for some i.

Now if we define a function py(t, 7, ) on (0, 00) x X X X by

px(t, v, ) =€ 10(t), o(t)),, ,

then this can be decomposed as follows:

(32) pX(t7 Vs 0)= ‘_Zo e-lituX,i(y)uX,i(o.) s

where the convergence holds uniformly on [s, 00) x X x X for each s>0. Moreover the
mappings f,: M,— X and h,: X— M, defined respectively by f, =/, Fy, and h,=Fg!oh,
provide formally spectral approximations between (M,, u,,,, p,,) and (X, py). Namely
we have

(3.3) e T p, (8, x, )= px(t, fu(x), [(Y)I<Cid,
for all t>0 and x, ye M,;
(34) e_(t+ v | pw"(t, En(y)’ /_1,,(0')) _pX(t, Vs O') l < Clan

for all >0 and y, 0 € X, where C, is a positive constant depending only on v, a and .
We recall also that the distance of X, denoted by @ for consistency, is given by

1/2
(3.5) Oy, 0)= < fgge‘“* U px(t, 7, y)+ px(t, 0, 6)—2px(t, ¥, a))>

and the metric space (M,, @y, ,, ) converges, as n— o0, to X=(X, @) with respect to
the Gromov-Hausdorff distance via the mappings f,: M,— X and h,: X— M,, namely,

| O ry X, V)= Ox([x), [P <6,

| © rty (7). Bi(0)) = Ox(7, 0) | <3,

for all x, ye M, and y, 0 € X. These mappings f, and %, may be assumed to be Borel
measurable.

Step 2. Let X, px, v, {A;}, {ux.i}, fu: M,»X and h,: X— M, be as in Step 1. Then
we have a family of Radon measures {f,.pu,,} on X with uniformly bounded total
measure, f.u,, (X)=u, (M,)<b. This sequence contains a subsequence which converges
to a Radon measure y on X with respect to the vague topology. For simplicity, we
suppose that this is the case for the sequence {f.u,, } itself. Then the family of
continuous functions {uy ;} is orthonormal in L*(X, p):

(3.6)

(uX,is ux,j),‘ = 5ij >
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where (, ), stands for the inner product of L*(X, p).
Now we have a contraction semigroup of symmetric operators {T":¢>0} on

L*(X, p) with continuous kernel py(t, x, y) defined by

T ¢(x) =f Px(t, x, Y)d(y)dp( )

X

= § s D), SELAX. ).

The semigroup {7 : :>0} is Markovian and conservative:
0<TWp<1 if 0<¢p<l; TWIi=1.
Each uy ; is an eigenfunction of T™ with eigenvalue e~ *":
TWuy ;=e *uy ;.
Associated with the semigroup {T*}, we have a symmetric closed form &% with domain
D[&™] in L*(X, p) which are given by

D[EW] = {d) e L¥(X, p): lim % (p—TH¢, ¢p), <+ OO}
t—0

5%, y)=lim % (G—TP, ¥), ¢, ¥eDEW].

We observe that for two bounded elements ¢, € D[] n L*(X),
EW(PY, PpY)'?

1/2
= ( lim % Jj((b(y)!//(y) — PLW(x)pxlt, x, y)du(y)dﬂ(X)>
1/2
s( lim —21? J f (18 1o W) =Y |+ 1| $(3) — G() *Px(t, , y)du(x)dp y))
1 12
<|¢ls ( fim ffl V() =) I°pxlt, x, y)dp(x)dp( y))

1 1/2
+ ¥l ( 3'33 > j fl d(y)—P(x) I*px(t, x, y)du(X)du(y)>

=160, )2+ |, (4, ¢)'?

(see e.g., [15, Theorem 1.4.2 (ii)]). It follows that the subalgebra #({uy ;}) generated
by the family {uy;} in C(X) is contained in D[£®] and also dense there with respect
to the norm &%(,)+(,),. Moreover since %({uy;}) separates points of X, we can
deduce from the Stone-Weierstrass theorem that €({uy ;}) is also dense in C(X) with
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respect to the C° norm. In particular, €({uy}) is dense in L*(X, u). Thus €({uy;}) is
a core of the form &™ and hence & is a regular Dirichlet form on L(X, ) (see [15,
Chap. 1]). This implies that the corresponding semigroup {T": >0} on L*(X, p) is
strongly continuous. As a result, {uy;:i=0,1,...} is a complete orthonormal system
of L*(X, p), and a limit measure y is in fact unique. Thus the push-forward f,.u,, of
U, converges to pu as n— oo in the vague topology.

Step 3. In Steps 1 and 2, we have assumed that the given sequence {«,} in F4, ,,
is SD*-Cauchy, and also that the total measure yu,, (M,) and the i-th eigenvalue 4, ; of
(M,, u,,) converge as n—co. But as seen from the above discussions, the latter assump-
tion is a consequence of the former.

Now suppose that we have two SD*-Cauchy subsequence, say, {«,} and {«,.},
of {a,}. Then for the sequence {a,}, we have a compact connected metric space
X'=(X', ©y), a (positive) Radon measure u’, a nonnegative continuous function
pxAt, x', ') on (0, o) x X’ x X', a divergent sequence of nonnegative numbers {1}}, a
sequence of continuous functions {uy. ;} on X, a sequence of positive numbers {4, } with
lim, _, . 8, =0, and Borel measurable mappings f,.: M, — X’ and h, : X'—M,., which
satisfy the assertions (i) through (iv) in the theorem. For the other {a,.}, we have
correspondingly X", u”, px., {A'}, {ux-i}s {Op}s for: Mp—>X" and R0 X' >M,,...
Since the given sequence {«,} is SD-Cauchy, we have §,.,-spectral approximations
Epmr s (M, oy, ) > (M, iy, ) With J,.,.. tending to zero as n',n”—oco. Using these

mappings, we get a family of mappings between X’ and X"’ as follows:
Fn‘n” : =f—n”°én’n”ozn' : X/_’X” ’
Hypo: =fpolpmpohy : X"5X' .

n'n’’

Then these mappings give spectral approximations between (X', p', px-) and (X", u”, px-).
To be precise, these mappings satisfy

e—(t+ lmlpx:(t, X/, y,)—pxn(t, Fn‘n“(xl)9 Fn‘n”(y,)) I < Clén’ + Clén" + 5"'””
for all t>0 and x', y'e X’;
e_(t+ l/t)lpxn(t, X”, y”)—px'(t, Hn‘n”(x”)’ Hn'n"(y”)) I < Clén’ + Clén” + 6"""'

for all 1>0 and x"”, y" e X".

Now taking subsequences of {F,,.} and {H,,} respectively if necessarily, we may
assume that they converge to mappings F: X'—> X" and H: X" — X', respectively, which
preserve the functions py. and py..:

(3.7) PxAt, x', y)=pxAt, F(x'), F(y'))
for all t>0 and x', y'e X’;
PxAt, x", y")=pxAt, H(x"), H(y"))

for all £>0 and x”, y” e X". In particular, these mappings preserve the distances and
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hence they give isometries between X’ and X”.

Now we arrange the nondecreasing sequence {4;} so that we have a strictly increasing
sequence, say {A}'}, together with a sequence {m;} of multiplicities. We note that mj
may be greater than one, though it is bounded from above by a constant depending only
on the given constants a, v, b and 7 (cf. Lemma 2.4 (i)). Similarly we obtain such
sequences, say {A¥"} and {m”} Then (3.7) reads

(3.8) Z e Mt Z ul (x)u,(y)= Z e M 'Z F*ull(x)F*uj(y)

for all t>0 and x, ye X'.

Now we claim that A} =A%’ and m:=m! for all i=0,1,2,..., and further the
functions wu;, (j=1,...,m}) span the same vector space as the functions F*uj,
(k=1,...,m}). To see this, let us put v;= F*uy..; and v=(F~"'),u" for simplicity. Then
{uy ;} (resp. {v;}) is a complete orthonormal system of L*(X’, u') (resp. L*(X’, v)). Now
for any j, multiplying uy. ;(y) by the both sides of (3.8), and integrating them on X’
with respect to the measure du'(y), we obtain

e~ Htuy, (x)= Z A ‘Z vlk(X)f v (Vuy (D)dp'(y) -
.

Since this holds for all >0, we see that
(G #4)
uy, j(x), (AF'=2)).

This shows that if A}”"#4; for all i, then uy ; must vanish identically. This is a
contradiction, because uy. ; has unit norm in L*(X’, u'). Thus we see that {1}"'} = {A¥}.
By the same way, we can deduce that {A¥'} ={A}’}, and hence these sets coincide.
Moreover the argument above proves that m;=m; for all i and the functions u;
(k=1, ..., m}) span the same vector space as the functions v; (k=1, ..., m;). Thus our
claim is verified. In addition, examining the case j=0, we easily see that uy, o=uyx o,
namely, p'(X")=v(X")=u"(X").

Finally multiplying the both sides of (3.9) by v;(x) and integrating them with respect
to the measure v, we obtain

(3.9) 1v.k(x) f ou (Pt (R ()= {O

J lvi(x)ux’,j(x)dﬂl(x)=\[ ’Ui(x)ux:j(x)d"(x) .

This shows that {v;} is also a complete orthonormal system of L*(X’, u) and hence these
measures u’ and v are actually identical. Thus the mapping F: X'— X" preserves the
measures u’ and p” on X’ and X" respectively and also the heat kernels py. and py.. of
the symmetric Markov semigroups {7%"} and {T*"} respectively. Moreover we can
interpret the mapping F as the spectral embedding of (X', u’, py)) with respect to a
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complete orthonormal basis {v; } of L*(X”, u’) with v, being eigenfunction of the generator
of the semigroup {T"’: >0}, and also (X', 4/, px, {v;}) as the boundary element of
FM,,, to which o =(M,.., u,, .., {u,}) converges as n”’—oco. We note that the basis
{v;} itself may depend on the choice of a limit mapping F: X’—>X" of {F,.,.}, but as a
boundary element of #.4,,,, (X', u', px, {v;}) is uniquely determined, because of the
definition of #.A, ,,,.

Thus we have found the limit elements, say (X, u, p), of the given SD Cauchy
sequence & and mappings F,: M,—X, H,: X— M, having the properties (i) through
(iv) described in the theorem. It is easy to verify the last assertion (v). q.e.d.

REMARKS. (i) As seen from the proof of Theorem 3.1, the theorem certainly
holds without the assumption that the diameter of M, is bounded away from zero
uniformly by a positive constant. But if we drop this assumption, it may occur the case
that as n— oo, the i-th eigenvalue 4, ; of (M, u,,) diverges for some i (and hence for
all j>i); as a consequence of Lemma 2.4 (iv), the Hilbert space L*(X, p) is of finite
dimension. For example, this is the case when the limit space X itself consists of a single
point.

(ii)) In Theorem 3.1, the limit measure u is not necessarily supported on the whole
of X and the trivial eigenvalue A,=0 may be of multiplicity greater than one. See
Sections 5, 7 and 8 for such examples.

3.2. Let us observe that in Theorem 3.1, the resolvent of %, converges to that
of the generator .# of the semigroup 7, as n—oc0 in some sense. To be precise, given
>0, we define a bounded linear mapping %}, of the space of continuous functions
C(X) into that of bounded measurable function L®(X) by

Ry =Hyo(Z, +ol) 1o FX(¢), $eCX),
where H, and F, are (Borel) measurable mappings as in Theorem 3.1. Then we have
the following

COROLLARY 3.2. Let #f,: C(X)—L*(X) be a bounded linear operator defined as
above. Then for each ¢ € C(X) and xe X,

(Fx+0l) 1p(x)=lim ¥ P(x) .

ProOF. Let {T{": >0} be the semigroup of (M,, p,,) in L*(M,, p,, ) with kernel
P, The resolvent (¥, +aI)~" is given by

(,‘?Wn—ral)“:j e Tdr .
0

Since T defines a contraction semigroup on L*(X), we have

e""Hyo TP F(¢)<e ||, .
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Hence it suffices to show that

lim H}oTWo F¥¢(x)=T,P(x) .

This follows from (iv) of Theorem 3.1. Indeed,
| Hifo T o F(x)— T,$(x) |

pt, x, y)(y)du( y)‘

f Pu,(t; Hy(x), a)p(F (@))dp,, (a) — f

n X

<

J (Pw,(t, Hy(x), @)= p(t, F, > H,(x), F(a)(F(a)dp,,(a)

n

+

f (p(t’ F‘nO Hn(x)’ Fn(a))_p(t7 X, Fn(a)))¢(Fn(a))duw,.(a)

n

+ f P, x, Y)P(y)AF,u,, (¥)— J plt, x, y)¢(y)du(y)‘-

The first two terms of the right side are bounded from above by

e |y, (M)

because of (iv) of Theorem 3.1, where {¢,} is a sequense of positive constants tending
to zero as n—oo. Since F,.u, converges to u with respect to the weak* topology, the
last term of the right side also tends to zero as n—oo. q.e.d.

3.3. Before concluding this section, we consider a Riemannian manifold M =(M, g)
which is not necessarily compact nor complete. Let u,, = wdv, be a measure with smooth
density w>0. The energy form & is defined on the space of smooth functions compactly
supported, CJ(M), by

E(u, v)=f {du, dv),du,, , u,veCF(M).
M

This form & is closable and the domain of its smallest closed extension, denoted by the
same letter &, is the Sobolev space Hy(M, u,,), i.€., the completion of Cg(M) with respect
to the norm & (u, u)=(u, u), +&u, u) (see, e.g., [15]). Let {T,=e™**:1>0} be the
strongly continuous Markovian semigroup on L*(M, p,,) associated with &, which has
a kernel p,(t, x, ), called the minimal heat kernel of (M, u,), and whose generator &
is the Friedrichs extension of the elliptic differential operator —w ™~ 'div(w grad *) acting
on CZ(M). In what follows, we assume that

(3.10) uM)< +o0, ie., 1eL*M,p,).
Then 0< T,1<1 and T,1 € Hy(M, u,). It is not hard to see the following
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ASSERTION 3.3. Under the condition (3.10), the following two conditions are
equivalent:

(1) Tl1=1,ie., [, pt x, y)duy)=1;

(i) 1eHYM, p,), i.e., there is a sequence of functions {p;} in CF(M) such that

lim &(p;— 1, p;—1)=0.
(In this case, & is a unique self-adjoint extension of the operator —w™'div(w grad )
acting on CP(M).)

We observe that Theorem 2.1 is valid for (M, u,,), if we replace the space C*(M)
with CF(M) in (2.2) and (2.3). Suppose, in addition to (3.10), that the minimal heat
kernel p,(t, x, y) satisfies (2.1). Then the spectrum of .# is discrete and the eigenfunction
decomposition for the heat kernel p,(t, x, y) holds (see e.g., [13, Chap. 2]). In particular,
in this case, Lemma 2.4 remains true for (M, u,) and we have a spectral embedding of
(M, p,,) and hence we can find a compact metric space M which includes M as an open
dense subset in such a way that the heat kernel p,(t, x, y) continuously extends to
(0, 00) x M x M and so does any eigenfunction to M. In addition, the second assertion
(ii) of Lemma 2.5 certainly hold, if we replace t'/? there with min{t'/?, in.rad(x)}. Here
in.rad(x) stands for the inscribed radius of a point xe M, which is by definition the
least upper bound of positive numbers r such that the geodesic ball B(x,r) around x
with radius r is relatively compact in M. The assertions (iii) and (iv) of Lemma 2.5 also
hold if we use the inscribed radius of M, in.rad M =sup,,,in.rad(x), instead of the
diameter of M. When 1€ H}(M, u,,), the first assertion (i) of the lemma is true. Thus
we are able to derive similar results to Theorems 2.3 and 3.1 for a family of pairs
(M, u,,) as above.

Now we shall close this section with the following

THEOREM 3.4 (Li-Tian [28]). Let M be the regular points of an n-dimensional
algebraic subvariety in a complex projective space CP"*'. Then the restriction of the
standard Fubini-Study metric of CP"*' to M gives a smooth metric g called the Bergman
metric of M and the heat kernel py(t, x, y) enjoys the following properties:

J pM(t’ X, y)dvg(y)= l;
M

pM(t’ X, y)Sp—(ta r(x9 Y)) s

where we denote p(t, r(X, y))=p(t, X, y) to be the rotationally symmetric heat kernel on the
standard CP".

4. Uniform continuity of heat kernels and limit spaces. In the preceding section,
as the limit for a certain SD-Cauchy sequence, we have obtained a triad of a compact
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connected metric spaces X, a positive Radon measure u on X, and a nonnegative
continuous function p on (0, 0c0) x X' x X such that p is the heat kernel of a symmetric
Markov semigroup {7,: t>0} on L*(X, u). The purpose of this section is to study
further the boundary elements of an SD-precompact family under some conditions
discussed in Saloff-Coste [33] and show that the semigroups of the boundary elements
satisfy the Feller condition and in fact the Lindeberg type condition. The main result
of this section is given in Theorem 4.1.

4.1. Let (M, u,=wdv,) be a pair of .4, ,,, and let positve constants ry, 1, and 7,
be given. We shall assume that (M, p,,) satisfies the following properties discussed in

[33]:
4.1 H(B(x, 2r)) <11 p(B(x, 1))

for all xe M and O0<r<ry;

4.2) f o~y Izduwsnzrzj |de|3dp,

B(x,r) B(x,2r)
for all xe M, 0<r<r,, and ¢ € C*(M), where ¢, , stands for the average of ¢ over the
geodesic ball B(x, r) around x with radius r:

1
¢x,r=4— ¢duw .
#w(B(xa r)) B(x,r)
According to [33], (4.1) and (4.2) imply a family of Sobolev inequalities on geodesic
balls. To be precise, there exists constants v>2 and C, >0 depending only on #, and
1, such that

(4.3)  119l3y-2 < Cipu(Blx, 1) "2 'r*(8(d, 9)+r2I$l3),  ¢eCF(B(x, 1),

for all xe M and 0<r<r,. Moreover it is shown in [33] that a parabolic Harnack
inequality is equivalent to the properties (4.1) and (4.2), and as a corollary, the Holder
continuity of solutions of parabolic equation (0/0t + £, )u=0 is shown. In fact, applying
Theorem 4.1 in [33] to the heat kernel p,, of (M, u,) will yield the following estimate:

dM( Y)

|Pult, X, X)—pot, %, ) | < C, =L sup{p,(t/2, x, 2): z€ B(x, /1 )}

for all xeM,yeB(x,\/T) and 0<t<rZ, where ae(0,1) and C,>0 are constants

depending only on #, and #,. This implies that
e—(H- 1/t)|pw(t9 X, x)_pw(t’ X, )’)[
4.9
< Cydy(x, y)*sup{e 19572 p (s/2,2,2): 0<s< o0, ze M}

for all x, ye M, where C;>0 is a constant depending only on #,, #, and r,.
Now suppose further that (M, u,,) satisfies
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4.5) Bl B(x, 1)) =13

for some 73>0 and all xe M. Then in view of (4.3) and Theorem 2.2, we can derive a
diagonal estimate for p,:

a

(46) pw(t, X, X) <
tv/2

for all xe M, 0<t<r3, where a>0 is a constant depending only on 7, (k=1, 2, 3).
Hence by (4.4), we have

- K
e e 1/1)|pw(t’ X, x)_pw(t’ X, y) | S"z—dM(x’ y)a

for all x,yeM and ¢>0, where K>0 is a constant depending only on r, and #,
(k=1, 2, 3). In other words, it holds that

4.7) O plx, V) S K2y (x, y)'?

for all x, ye M.

42. LetS={(M,, p,,=w,dvy):n=1,2,...} be a sequence in .4, ,, such that for
some positive constants rg, 1, (k=1, 2, 3), (4.1), (4.2) and (4.5) hold uniformly for &,
and further the total measure p,, (M,) is also bounded from above uniformly by a
constant b. Then as we have seen, & is precompact with respect to the spectral distance
SD. In this case, we note that the (Riemannian) diameter of M, tends to zero as n— 0
if and only if the first nonzero eigenvalue 4, ; of (M, u,, ) diverges to infinity as n—oo;
the limit element (X, u, p) of & is in this case trivial, X ={a point}. In what follows, we
assume that the diameter of M, is bounded away from zero uniformly, and the sequence
& itself is an SD-Cauchy sequense. Let (X, u, p) be the limit triad of & described in
Theorem 3.1, and let @ be a distance on X defined by (3.5). Then we first claim that
the limit measure u is supported on the whole of X, namely, supp 4= X. Indeed, if we
denote by D,(x, r) (resp., B,(x, r)) the metric ball of the metric space (M, @, .. ) (resp.,
the geodesic ball of M, =(M,, dy,,)) around a point x € M, with radius r, we have by (4.7)

D,(x, )2 B,(x, K~ HIer2%)

for 0<r<ry and for all xe M,, where K and « are positive constants depending only
on the given constants r, and #, (k=1, 2, 3). This implies

H (DX, 1) > i, (B,(x, K~ 1r2/%)
and hence from Lemma 2.5 (ii)
:uw,.(Dn(xa 7‘))2 C4rZV/a

for all xe M, and 0 <r<r,, where C, is a positive constant depending only on the given
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constants ro and 1, (k=1, 2, 3). Since the metric space (M,,, @, , ) converges to (X, ©)
with respect to the Gromov-Hausdorff distance (cf. (3.6)), the same inequality holds
for X, namely, the metric ball of (X, ®) around a point x of radius r satisfies

WD(x, 1)) = Cor™

for all re(0, ry]. This shows that u is supported on the whole of X and the claim is
verified.
Now for each 7>0, the bounded operator T, on L?(X, u) defined by

T,p(x)= f Pt x, e(du(y),  ¢peL*(X, p)
X

acts on the Banach space C(X) with the uniform convergence topology and {7,: >0}
is strongly continuous on C(X). Indeed, applying the off-diagonal estimate (2.6) to the
heat kernel p,, and using (4.7), we have

K720y, (%, ) >

Cs
w il X, V)< ——expl —
Pt X, Y) eSS p( 4

for all x, ye X and 0<7<r3, where Cs is a positive constant depending only on r, and
ne (k=1, 2, 3). Hence taking (3.6) into account and passing through the limit as n— o0,
we obtain

() K~ 2@(x, y)**
pt, x, y)< 1-fv exp<—wm_(_y)g>

t 4t

forall x, ye X and 0<¢<rj. Then it is easy to see that {T,: 1> 0} is strongly continuous
on C(X), and also it possesses the property that

. 1

lim sup — 7'(x - pxin)(x) =0

t—-0 xeX

for any r>0, where yp stands for the characteristic function of a subset B of X.
What we have observed is summarized in the following

THEOREM 4.1. Let & ={(M,, p,, =w,dvy ):n=1,2,...} be an SD-Cauchy se-
quence in M, ,, satisfying (4.1), (4.2) and (4.5) uniformly for some positive constants. Let
(X, u, p) be the limit of & as in Theorem 3.1. Then in addition to the properties (i) through
(v) in Theorem 3.1, the following holds:

(i) The semigroup {T,: t>0} with kernel p on the Banach space C(X) with the
uniform norm is strongly continuous, namely, for any continuous function ue C°(X),

J p(t, x, y)u(y)dpux(y)—u(x)|=0 .
X

lim || T,u — u|| co=1im sup
t—0 t—0 xeX

Moreover it possesses the property that
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. 1
lim sup — Tt(XX —D(x;r))(x) = O

t—0 xeX
for any r>0.

We notice that in the discussions above, the condition (4.4) is essential. In fact,
Theorem 4.1 remains true for an SD-Cauchy sequence as in Theorem 2.3 satisfying
further (4.4) uniformly.

4.3. Now we shall discuss geometric conditions for (4.1), (4.2) and (4.5), or (4.4)
and (4.6). Given a pair (M, u,,=wdv,) and a positive integer k, a symmetric tensor R,, ;
on M is defined by

) 1
Rw,k=Rch_7 dlogw ® dlogw— Ddlogw

where Ric,, stands for the Ricci tensor of M. For k=0, we set R,, ,=Ric,,; in this case,
w is always assumed to be a constant.
Following [25], we consider first the case where (M, u,,) satisfies

4.8) R,=>—(m—1)k? (m=dim M);
(4.9) diam M <D

for some constants k>0 and D>0, and further

(4.10) u(M)=1.

Then (4.1), (4.2) and (4.5) certainly hold with constants r,= D, some 1, =#,(m+k, k, D)
depending only on the quantities in the parenthesis, #, =exp(l + Dk) and also n;=1
(see [ibid., Propositions 2.1 and 2.6]). Thus if we denote by .#}(m, k, k, D) the set of
equivalence classes of pairs (M, p,,) satisfying (4.8), (4.9) and (4.10), then we have the
following

THEOREM 4.2 ([25]). (1) MA}¥(m, k, k, D) is precompact with respect to the spectral
distance SD, and the assertions of Theorem 4.1 hold for an SD-Cauchy sequence in this
class (see [ibid., Theorems 3.6, 4.4, 4.5 and 5.1]).

(i) Ifasequence & ={(M,, u,,)} in M}(m, k, k, D) converges to a boundary element
(X, u, p), then the metric space (M, dy, ) also converges to X endowed with another distance
dy with respect to the Gromov-Hausdorff distance HD, and moreover one has

lim 4t log p(t, x, y) = —dx(x, y)*
t—0

for all x, ye X (see [ibid., Theorems 3.5, 3.8]).

The first assertion (i) of this theorem will be valid for larger classes. Let A>1 be
given further and consider the set of equivalence classes of pairs (M, g, u,,), denoted by
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ME(m, k, k, D; A), which admit Riemannian metrics /# and positive smooth functions v
such that (M, h, p,) e MXm, k, k, D), A~ h<g<Ah and A~ 'v<w<Av. Then (4.3) and
(4.5) obviously hold with appropriate constants. Moreover by virtue of a result of [32],
(4.4) is certainly satisfied. Thus we have the following

THEOREM 4.3. M}X(m, k, k, D; A) is precompact with respect to the spectral distance
SD, and the assertions of Theorem 4.1 hold for an SD-Cauchy sequence in this class.

However in this case, the second assertion of Theorem 4.2 is not true in general,
as shown in the following simple

ExampPLE. Let{g,:n=1,2,...} beasequence of metrics on the product R/Zx R/Z
given by

gn=dt*+a,(t)’d0*, (t,0)eR/ZxR/Z,

with
( 1 1 1
2, for 0<t<———, or l+—stsl
2 n 2 n
1 1 1
a,,(t)= nt+3—1, for ———<t<—
2 2 n 2
1 1
Cn3+l, for Lereigl
L 2 2 2 n
[ 1 1 1
2, for OStS——i, or —+—<t<1
2 n 2 n
1 1 1
azn-1(t)= —nt+14+ o, for ———<t<
2 2 n 2
n 1 1 1
nt+1——, for —<t<—+—.
| 2 2 2 n

Then the sequence of Riemannian manifolds, {(R/Z x R/Z, g,)}, converges to the
Riemannian product R/Z x R/Z with respect to the spectral distance. However this does
not hold with respect to the Gromov-Hausdorff' distance. Indeed, (R/Zx R/Z, d,)
converges to the product metric as » is even and tends to infinity; it converges to a
different metric as »n is odd and tends to infinity. The length of a cycle y,: 8—(t, 0)
measured by the distance is equal to 2 for t1#1/2 and 1 for t=1/2.

4.4. In this subsection, we shall investigate more closely the spectral distance on
certain restricted classes of pairs of metrics and measures on a fixed Riemannian
manifold.

Let M=(M, g,) be a compact connected Riemannian manifold. We write L*(M)
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for the Hilbert space of square integrable functions and denote the inner product by
(u, v)o (4, ve I2(M, dvy)). Let H(M) be the Sobolev space consisting of L? functions with
derivatives in L?(M). The inner product of H'(M) is as usual given by

(u, v), =&, v)+(u, v)o =f {du, dv>godvgﬂ+J uvdv,, .
M M
We write H (M) for the dual space of H'(M) and also ¢, ) for the pairing on
H™ (M) x H'(M).
Now we are given two constants «>1 and f>1. We denote by E(«, f) the set of
pairs (g, u,,) which consist of metric tensors g with coefficients in L®(M) and measures
U, =wdv, with density w in L*(M) such that

1 1
—go<g=<agy; —<w<f.
a B

For each (g, p,), we have two operators A,, : H'(M)>H '(M) and I, : L*(M)—
H™'(M) respectively defined by the identities:

(Ag s V) =J {du, dv),dp,, , u,ve H'(M);
M

{1, u, 0 =J uvdy,, , u,ve L3(M).
M

Given a sequence {(g,, u,=w,dv,):n=1,2,...} in E(a, f), we say that the sequence
{4, ..} is G-convergent as n— oo, if (Y, (4,,, +0l,) '¢> converges for some a>0
and all ¢, Y e H™}(M). We notice that in our previous notation,

(g, +0ol, ) U, w=(ZL,,,+0l) 'u

for ue L*(M). The definition of G-convergence is actualy independent of the choice of
0>0 and moreover if {4, ,} is G-convergent, then there exists a unique (g,, i) in
E(a’, p') with some a’>1 and f'>1, such that (4, , +0l,) "¢ converges weakly to
(Ay, . +0l, ) '¢ for any ¢ H '(M). We also note that any sequence {(g,, i,)} in
E(a, p), {4,,,,} contains a G-convergent subsequence. See [27] and the references
therein for these facts and related ones on the G-convergence of differential operators.

Thus so far as the restricted classes of pairs as above are concerned, we have the
following

PROPOSITION 4.4. Let M=(M, g,) be a compact connected Riemannian manifold,
and let «>1, p>1 be given. For a sequence {(g,, pt,=w,dv, ): n=1,2, ...} in E(, p), the
Sfollowing are mutually equivalent:

(i) the sequence of operators A, , : H'(M)—H™ (M) is G-convergent as n—oo;

(ii) as n—o0, the measure p, converges with respect to the weak* topology, and



100 A. KASUE AND H. KUMURA

also for some 6>0 and all ue L*(M), (%, .
(iii) the heat kernel of the operator ¥
converges uniformly on [0, 0)x M x M.
Furthermore suppose one of these conditions (and hence all of them) hold and let
A, .. be the G-limit of {A,,, }, where (g, n,,)€E(’, B) for some o'>1 and B’'>1.
Then the heat kernel p,, and the resolvent kernel G') (6>0) of (g, u,) converges respec-
tively to those of ¥

+01)” 'u converges weakly in H (M),

multiplied by e+ e~ 10p (¢, X, y),

Inslin

JoosHhoo®

Po(t, x, y)=lim p_ (t, x, ) ;

GYAx, y)=lim G¥)(x, y) .
The convergence of the heat kernels (resp., the resolvent kernels) occurs in the C°-norm
on [6, 00) x M x M (resp., {(x, y)e M x M : d, (x, y)>8}) for each 6>0.

We remark that the condition (iii) of this proposition is equivalent to saying that
{(M, g,, 1ts)} is a Cauchy sequence with respect to the spectral distance SD whose spectral
approximations are given by the identity mapping of M itself. In general, given an
SD-Cauchy sequence {(M, g,, u,)} in E(a, p), if we take two subsequences, say, {(g,., 4,)}
and {(g,~ u,~)} in such a way that the sequences {4, ,.} and {4, .} are
G-convergent, then SD(M,g',, u’), (M, g, u'2))=0, namely, there is a homeo-
morphism f: M— M which preserves the heat kernels and the measures.

5. Conformal changes of metrics. In this section, we shall discuss a family of
metrics in the conformal class of a metric with positive Yamabe invariant.

5.1. Let M be a compact connected smooth manifold of dimension »>3. Given
a conformal class € of M, the Yamabe invariant, denoted by Q(M, %), is by definition
the largest lower bound for the Yamabe functional, namely,

) [ ) }
M,€)=inf{—M 99 ___-gec@;,
ot %) {Vol(M, gy

where S, stands for the scalar curvature of a Riemannian metric ge %. If we fix a metric
g€ ¥, then the Yamabe invariant is also given by

n—1
4n—_2jM|d¢ 12dv, +,, Sgd)zdvg

(jM | ¢ |2n/(n - Z)dug)(n— 2)/n

In this section, we shall first prove the following

OM, €)=inf e C*(M), p£0

PROPOSITION 5.1.  Given positive constants q, y and p>n/2 (=3/2), suppose a
Riemannian metric g of M satisfies
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OM, [9D)=q

and
j (8,)%dv, <y?,
M

where [g] denotes the conformal class of M to which g belongs, and (S,) , :=max{S,, 0}.
Then the Sobolev inequality (2.3) holds with constants v=n, A'=8(n—1)/q(n—2), and 1
depending only on n, q, y and p.

PrROOF. We first observe that

(n—2)/n n—l
q( f l¢|2"/"“2’dvg> <4 J | dep | 2dv, + f (S,) . p2dv, .
M n—2 Jy M

Now for >0, we set 4,:={xeM:(S,),(x)>t}. Then applying Holder’s inequality, we
get

J (Sg)+¢2dvg=f (Sg)+¢2dvg+J (Sg)+¢2dvg
M M-A, Ae

r 2/n (n—2)/n
<t ¢2dvg+<J‘ (Sg)'izdvg> <J ) |2"’("“2’dvg>
JM A M

r 2/n (n—=2)/n
<t wangrieo [ spran) (| g,
v M A M

r

(n—2)/2
<t ¢2dvg+t(n—2p)/n,y2p/n<J |¢ l2"/("_2)dl)g> .
M

JM

Hence we have

(n—2)/n
o[ 1o
M

—1 (n=2)/n
- 2J |d¢l3dvg+tj ¢2dvy+t‘"_2"’/"y2"/"( j |¢|2"/"'"2)dvg>
n—z Jm M M

Thus choosing ¢ in such a way that :®~ 2P/ 2PIn — g/2 we see that the Sobolev inequality
(2.3) holds with constants 4=38(n—1)/q(n—2) and t=4(n—1)/(n—2)t. q.e.d.

<4

5.2. In what follows, we assume M admits a Riemannian metric g, such that

do=0(M, [g,]) is positive, and consider a sequence of metrics g,= ¢~ g, which
belong to the conformal class [g,], such that for some positive constants p>n/2, y and b

J' (Sgk)‘-’fdvgksyp 5 V01(M) gk)sb .
M
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Then the sequence {(M, g,, dv,,)} is precompact with respect to the spectral distance SD.
Now we shall suppose, in addition, that as k— o0, ¢, converges to a continuous
function ¢, uniformly on M. Set

Z={xeM: ¢,(x)=0},

which is a proper compact subset of M, since the volume of (M, g,) is bounded away
from zero uniformly (cf. Theorem 2.1 and Lemma 2.5 (i)). We shall discuss the case
where the limit metric g, = ¢*®~2 g, is degenerate somewhere, namely, X is not empty.
Note that M — 2 may be disconnected.

We denote by p,(t, x, y) (t>0, x, ye M — X) the minimal heat kernel of the Laplace
operator of the metric g, acting on CJ(M — Z) (cf. Subsection 3.3). Then p, satisfies

a
poo(t9 X, x) < t"ﬁ
on (0, 7] x (M — %) for some positive constant a (resp. 7) depending only on n and ¢,
(resp. n, p, q, and 7). Indeed, for some positive constants 4’ and 7, 4’ depending only
on n and ¢,, and t depending only on n, q,, p and y, the Sobolev inequality (2.3) holds
on M — X uniformly for the metrics g,, namely,

(n—2)/n
( J I¢|2"""‘”dvgk) SA'( f | 2 dv,, +77! ¢2dvgk)
M- M-3 M-z

for all ¢ € CF(M —2). Since ¢, converges to ¢, uniformly, we see that the inequality
holds on M —Z for the metric g, with the same constants. Thus we have an upper
bound for the heat kernel p (¢, x, y) as above. Since the volume of (M —Z, g) is finite,
the upper bound for p_ as above implies, as mentioned in 3.3, that the Laplacian of
g. defined on C$(M —ZX) has a discrete spectrum, say {1, ;:i=0,1,2,...} and the
kernel p . has the eigenfunction expansion. Thus making use of spectral embeddings
of M—2Z,g,,dv,) as in the compact case, we obtain the following

ASSERTION 5.2. There exists a compact metric space (M — X)~ which includes M — X
as an open dense subset and to which the minimal heat kernel p ., and also eigenfunctions
of (M—Z, g, dv,_ ) extend continuously. This metric space coincides with the completion
of M — X with respect to the distance © ., on M — X defined by

O, (x, ) := sup e TP (t, X, X)+Po(t, ¥, )= 2P (1, X, V)

Now we shall assume further that

2 is a compact submanifold of codimension>2, or

(5.1)
¢ (x)<O(px(x)'?)
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in a neighborhood of X, where p; stands for the distance to X with respect to the fixed
metric g,. Then we choose a function f,e C3(M —2) in such a way that 0<f, <1,

fux)=1 if py(x)>¢ and |df,|,,<ce”' for some positive constant c. Then for any
0<t,<t,, we have

S VPo(ty, x, y)dv, (y)— S Ptz x, y)dv, (¥) ’
M-z M-z
[ty
< o SP L, x, y)dv, (y)|dt
Jiy t M-
"12
= f <dfe’ dPoo(t’ X, y)>goodvg°0 dt
Jiy M-z

(12 1/2 1/2
< (J |df, ijdvgm> ( j ldpo(t, x, y) Ijmdvgw(y)> dr.
Jiy M-z {pr<e}

By the assumption (5.1),

2
. . c
lim supf |df,|2_dv, =lim sup—ZJ $2dv,, < + o0
M-z {pc<¢}

e—=0 e=0 €

and moreover, since p(t, x, *)e H}(M —Z, g,.) (the Sobolev space with respect to g.),
e—0

lim f ldp.(t, x, y) |7, dv, ()=0.
{pr<e}

Thus we see that

J‘ poo(tl’ X, Y)dvgm()’)= pao(tz’ X, Y)dvgw()’) .
M-z

M-z

Namely, we have

ASSERTION 5.3. Under the above assumptions, p (t, X, y) is conservative,

J Polt, X, Yv, (y)=1.
M-

Hence p(t, x, y) is the unique heat kernel of (M —Z, g, dv,_).

In view of the uniqueness of the heat kernel of the limit metric, we see that for a
compact set K of M —2X,

(5.2) klim sup{e” 10| p(t, x, Y)—po(t, X, y)|: t>0,x, ye K} =0,

where p, denotes the heat kernel of g,. Hence if we set
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1/2
Ox, y)= < supe” U p(t, X, X)+pilt, ¥, ¥) —2pilt, x, y))> ,
>

then as k— o0,
(5.3) O, converges to O, uniformly on a compact subset of (M —2X)x (M —2).

Now we shall take a subsequence {k'} in such a way that {(M, g, dv,, )} is an
SD-Cauchy sequence. Let (X, @), p, {4}, F,.: M—>X, H,.: X—>M and {g.} be as in
Theorem 3.1. Taking a subsequence if necessarily, we may assume that F,. converges
pointwise to a mapping F,, defined on some dense subset 4 of M. Then it follows from
(3.3), (3.6), (5.2) and (5.3) that

(54) O (X%, V)= O(F 5(x), F(3)) 5 Poolts X, y)=pl(t, F (x), F (1))

for all >0 and x, ye 4An(M —2). Hence F,, uniquely extends to a mapping of M —X
into X, which is denoted by the same letter F_, in such a way that (5.4) holds on M — %
and as k'— o0, F,. converges pointwise to F,, on M—X. As a consequence, for any
$ped(X)

J F%¢dv, = lim j F,’(",ci)dugk,:J odu ,
M-z k= )y b's

which shows that F.dv, = pu. Hence the support X of u coincides with the closure of
the image F, (M —ZX). Thus (X, u, p) is independent of the choice of subsequences as
above. In particular, {4;} are the eigenvalues of the Laplacian of g, and the i-th
eigenvalue /4, ; of g, converges to 4;. Namely we have the following

ASSERTION 5.4.  Under the assumptions above, the i-th eigenvalue ,.; of (M, g,, dv,,)
converges to the i-th eigenvalue A; of (M —ZX, g, dv, ) as k—o0.

ExampLE. Let M and g, be as above and let D be a proper open set of M whose
complement has interior points. We take an interior point x, of M — D and a smooth
positive function y on M in such a way that on D,  coincides with the Green function
of the positive operator —4(n—1)/(n—2)A, +S,, with pole x,. Then the scalar curvature
of the metric g, =y *"~?)g, vanishes on D. Let ¢, be a nonnegative continuous function
on M such that ¢, is subharmonic on a neighborhood of D with respect to the metric
go and

Yi={xeM: ¢, (x)=0}c=D.
Then for each positive integer k, we take a smooth approximation ¢, of the function
max{¢, 1/k} in such a way that ¢, is positive on M and subharmonic on D (see e.g.,

[17]). Then the scalar curvature of the metric g, = ¢4/~ ?gj is kept nonpositive on D
as k—oo. Thus Assertion 5.2 certainly holds for the limit metric g/, =¢ 4"~ ?gy.
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Moreover Assertions 5.3 and 5.4 are also true in case 2 is a submanifold of codimension
>2 or ¢, <O(p+?) near X.

6. Submanifolds of bounded mean curvatures. In this section, making use of some
geometric inequalities due to Croke [12] and Hoffman-Spruck [19], we shall show
upper bounds for the heat kernels of compact Riemannian (sub)manifolds.

6.1. To begin with, we shall prove the following

PROPOSITION 6.1. Let M be a compact Riemannian manifold of dimension n. Suppose
that the injectivity radius of M is bounded from below by a positive constant 1. Then the
heat kernel of (M, dv,) has a bound of the form (2.1) with constants v=n, a depending
only on n, and t=12.

PROOF. According to a result in [12], we see that

(n=1)/n
(f |¢|""”‘“de> SC(")J |dp |, dvy
M M

for any ¢ € C*°(M) supported in a geodesic ball of radius 1/2, where C(n) is a constant
depending only on n. Therefore replacing ¢ with ¢~ 1/"=2) i the case n>3 and also
with ¢2 in the case n=2, and then using Hélder inequality, we can deduce that

([ 1o, ) < | 1asan 023
M M

[ ¢4dUMSA(n)J |d¢|jdef ¢2dvy, (n=2)
M M M

for all ¢ € C*(M) as above. Hence the proposition follows from Theorem 2.2. q.e.d.
6.2. Let us now consider compact submanifolds in certain Riemannian manifolds.

PROPOSITION 6.2. Let M =(M, g) be a compact Riemannian manifold of dimension
n isometrically immersed into a complete Riemannian manifold M. Suppose that the
sectional curvature of M is bounded from above by a constant k>0 and the injectivity
radius of M is bounded from below by a constant 1>0. Moreover suppose that for some
b>0, y>0 and p>n, the volume of M is not greater than b and the mean curvature H,,
of the immersion satisfies

j | Hpp [Pdop <y? .
M

Then the heat kernel py; of (M, dvy,) satisfies (2.1) with constants v=n, a and t depending
only on the given n, Kk, 1, b, y and p.

Proor. We first recall a result in [19] (see also [7]) stated as follows: for an open
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subset Q in M satisfying

2 Vol(Q))llnsl ; 3sin‘l<rc< 2 Vol(Q))l/n><-—
(n) K w(n) 2

6.1) K<
[0)]
( f |¢>|‘"/"-1’de>("_”mscw( f |dp vy + f |HM||¢|de>
M M M

for all ¢ € C*(M) supported on @2, where w(rn) stands for the volume of the Euclidean
unit n-sphere and C(n) is a constant depending only on n. Therefore replacing ¢ with
¢ 2~ VI=2) i the case n>3 and also with ¢? in the case n=2, and then using Holder’s
inequality, we can deduce that

(n=2)/n
(J |¢>IZ"“’"2’de> sAM)(J Id¢|§de+C(n,p)v““"‘”’f ¢2de> (n=3);
M M M

J ¢4dUMSA(")<j |d¢|§dUM+C(P)V2"/”’_2)J ¢2dUM>J ¢%dvy  (n=2)
M M M M

for all ¢ € C*°(M) supported on Q (cf. the proof of Proposition 5.1).

Now in view of Theorem 2.2, it suffices to prove that the intersection of M with
a geodesic ball of M of radius r satisfies (6.1) if r is sufficiently small. Let  : M—>M
be the isometric immersion and set

M(r)=y~'(Bu(x,r); WV(r)=Vol(M(r)),

one has

where Bj;(x, r) stands for the geodesic ball of M around a point xe M with radius r.
Then we have

di [—(sinxr)""V(r)] <(sin rcr)‘"f | H g ldvpy
r

M(r)

for almost all re(0, R) (R:=min{s, n/2x}) (cf. e.g., [7, Chap. 6 Lemma 36.5.7]). It
follows from the assumption and Holder inequality that

f | Hy ldvy <yV(r)! =17
M@)

These show that

d
— [—(sinkr)~"?V(r)!/7] <’ (sinxr)~""
dr p

Hence integrating the both sides from r to R, we have
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R
(sin kr) ~"PV(r)'/P < (sin kR) ~"P V(R)””+l f (sinkt)~™7dr .
P Jo

This implies that
Vin<Cn, 1, k)b+y*)r"

for all re(0, R]. Thus if we take a sufficiently small » depending only on the given
constants, we see that M(r), namely,  ~}(Bg(x, r)) satisfies the condition (6.1). gq.e.d.

REMARK. In a very recent paper [36], Yoshikawa shows the continuity of the
spectrum of a certain degenerating family of algebraic manifolds in a complex projective
space (cf. Theorem 3.4).

7. Families of Riemannian manifolds of increasing topological type. In this section,
we shall construct SD-precompact families of Riemannian manifolds with increasing
topological type.

Let U be a compact connected n-dimensional Riemannian manifold with boundary
0U such that dU has v connected components {0;U:i=1,...,v} and each of the
components has a neighborhood which is isometric to that of the boundary of the unit
n-cube I"=[0, 1]x - -+ x[0, 1] in Euclidian n-space R". We first take v copies of R",
say R, ..., R}, and for each element y=(y,, ..., 7,)e Z"and a€ {1, 2, ..., v}, we denote
the unit n-cube [y, y,+ 11X * - X [y, ¥+ 1] in R} by I(y). Secondly for each element
ye Z", we replace the disjoint union of {,(y): «a=1, 2, ..., v} with U in such a way that
0,U is just glued on the boundary of I (y). Repeating this process for every ye Z", we
obtain a complete noncompact Riemannian manifold M = (M, §). It is easy to see that
M is rough isometric to R". In fact, there exist positive constants, a, b and mappings
¢: M—R", y: R"— M such that

1
” diz(x, y)—=b<| Pp(x)— P(y) | <adgz(x, y)+b
for all x, ye M;
1
" [ X' =y |=b<dzg(W(x), y(y)<alx'—y'|+b

for all x’, y’e R", and

dya(x, Yo Pp(x)<a

for all xe M. Then by virtue of a result of Kanai [22], we have a Sobolev inequality
on M of the form:
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(n—1)/n
<f | |"/‘"—“dvg> <C f |dolydv;, e CE(M)
M M

for some C>0. Moreover Z" acts on M in a natural manner as isometries of M. For
each positive integer i, we denote by iZ" the subgroup of Z" consisting of elements
(71 -+ 1) (1»---»>74€Z), and then we obtain the quotient space M/iZ" endowed
with the induced metric g;.

Now scaling the metric g; by i~ %, we have a sequence of compact Riemannian
manifolds {M;=(M/iZ",i"%g;,):i=1,2,...}. We first observe that the volume of M, is
equal to that of U for any i. Secondly we notice that for some positive constants r and
C independent of i, a Sobolev inequality of the following form holds uniformly for all
geodesic ball B(x, r) in M; with radius r:

2

(n—1)/n
<J ||~ ”de,.> <C J ldoldvy,,  $eCT(B(x,1).
B(x,r) B(x,r)

Therefore in view of Theorems 2.2, 2.3, and 2.6, we get the following

ASSERTION 7.1.  The family {M;=(M;, dvy, )} obtained as above is precompact with
respect to the spectral distance SD and also the Gromov-Hausdorff distance HD.

We remark that the mappings ¢: M—R" and y: R"— M respectively induce

mappings ¢;: M;—R"/Z" of M, into the flat torus R"/Z" and y;: R"/Z"—> M, of R"|Z"
into M;. These mappings satisfy

1 b b
" dy (%, y)_TSdO(¢i(x)9 di(y) <ady,(x, Y)+T

for all x, ye M;;
1 ! ! b A ’ !’ ’ b
" do(x', y )_TSdM.-(l//i(x ) Wiy <ady(x',y )‘*‘T
for all x’, y’e R"/Z", and
a
dp, (%, '//i"d’i(x))ST

for all xe M,, where d, stands for the distance of R"/Z". Suppose that a subsequence,
{M;}, of {M;} converges, as j— o0, to a compact connected length space X=(X, dy)
with respect to the Gromov-Hausdorff distance HD. Then there exist &(j)-Hausdorff
approximations f;: M;— X and h;: X— M such that dy(x, fjoh;(x))<2e(j) for all xe X,
where &( ) tends to zero as j— 0. If we set @;=¢;oh;and ¥ ;= f;oy;, then these mappings
satisfy
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1 1 . b L b
(7.1) " dx(x, y)—-a- 6(1)—7Sdo(45,-(X), D;(y) <ady(x, y)+ a8(1)+7
for all x, ye X;
1 ’ r 1 . b 7 ! ’ ! * b
a7 do(x’, y )“‘”a* 5(])—7-<—dx('1”j(x ), V(v <ady(x', y )+08(])+‘“j*
for all x’, y’e R"/Z"; further
. a
(7.2) dy(x, ?’j°¢j(X))S38(j)+—j—

for all xe X. Now taking a subsequence of { M} if necessarily, we may assume that ®;
converges pointwise to a mapping @, defined on a dense subset X, of X. Then letting
j go to infinity in (7.1), we see that @ is a Lipschitz mapping of X, into R"/Z" such that

1
(73) Z dX(x’ Y)Sdo((pao(x)’ djao(y))sadx(x» y)

for all x, ye X. Since X, is a dense subset of X, @, extends uniquely to a Lipschitz
mapping, denoted by the same letter ¢, of X into R"/Z" with the property (7.3), to
which @; converges pointwise as j— co. In a similar fashion, we have a Lipschitz mapping
Y.: R"/Z">X, to which ¥; converges pointwise. Taking (7.2) into account, we see
that ¥ _o®_ =idy. Thus ®,: X—R"/Z" induces a bi-Lipschitz homeomorphism
satisfying (7.3). As a summary, we have the following

ASSERTION 7.2, For a limit X=(X, dx) of the metric spaces {M;} with respect to
the Gromov-Hausdorff distance, there exists a bi-Lipschitz homeomorphism ® of X onto
the flat torus R"|Z" such that

1
—dy(x, ) S do( (), P(y) <ady(x, y)

for all x, ye X, where a is a positive constant depending only on U.

In the construction of the family {M,} above, we have placed infinitely many copies
of U for the disjoint unions | J_, I,(y) with y running over all elements of Z”. We shall
now show another kind of example. We fix first an integer k, 1 <k<n—1, and then
replace the disjoint union |J_, Z(y) with the copies of U for all y=(y,,...,7,)€Z"
such that y; = - - =y,=0. Then by the same way as in the preceding construction, we
obtain a sequence of compact Riemannian manifolds {M{¥}. In this case, a limit metric
space X® of {M®¥} is unique and obtained from the disjoint union of v copies of R"/Z"
by identifying the subspaces R"“*/Z"~* Moreover Assertion 5.2 certainly holds and
if in addition, k>2, then Assertions 5.3 and 5.4 are also true.
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8. Isoperimetric inequality for some metrics on surfaces. In this section, we exhibit
a certain family of Riemannian metrics on a compact surface which degenerates along
simple closed curves while keeping the heat kernels bounded uniformly.

8.1. Let us begin with the following:

PROPOSITION 8.1. Let g be a Riemannian metric on Q=[—1, 11x R/ Z of the form:
g=E(t)*dt* + G(1)*do? , (t,)eQ,

where E(t)>0 and G(t)>0 are smooth functions on [ —1, 1]. Suppose that

8.1 G'>00n[0,1] and G'<0on[—1,0];
for some a>0,
2
8.2) inf t—G-g—)Mza
-1<1<1 |j0E(S)G(S)dS|
Then

1/2 2 1/2
<f fzdvg> S(“”J) f | df |,dv,

PrROOF. As is well known, the above Sobolev inequality is equivalent to the
following isoperimetric inequality: for any compact domain D of Q with piecewise C*
boundary dD which does not intersect that of Q,

for all fe CZ(Q).

A(D)sz<1 +—1—> L(6D)?,
a

where A(D) and L(0D) respectively denote the area of D and the length of the boundary
0D. In what follows, we shall show this isoperimetric inequality. We first set

and write the metric g of the above form as follows:

g=dp>+F(py’d0*, (p,0)elp(—1), p()]1xR/Z,

where F(p)=G(t(p)). Let « be a given number in [ —1, 1] and define a smooth function
Sq(p) on Q by

4 _[“ F(s)ds
S - 2o du.
AP) J o F@) “

Then the Laplacian of S,(p) is identically equal to 1. Therefore applying Stokes theorem
to a domain D with piecewise C! boundary, we obtain
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k
83) AD)- f ASp)dv= Y. j SLOKY, vap
D t= Yi

where {7} denotes the connected components of dD and v, stands for the outer unit
normal of dD. We notice here that if p=a on y; for some i, then

j Sup)XVp, vop» =0,

since S;(p)=0 on y,.

To prove the assertion of the proposition, it suffices to consider either of the case
k=1, namely, D is homeomorphic to a disk, or the case k =2, namely, D is homeomorphic
to an annulus. In the sequel, we put Q" =(0,1]xR/Z and Q" =[—1,0)x R/Z.

Now we assume that y; intersects Q*. Set B,=inf{p(x): xey,;nQ2*} and
B*=max{p(x): xey,}. We observe that

B*—B.<L(y1) -
Let Q, be the connected component of 2% —y, whose boundary contains the circle
{1} x R/Z, and set Q, =Q* —Q,. Then in view of (8.1) and (8.3) with «=0, if §,=0,
we see that
{# Fls)ds

ADNQY)<ARQ,)=
(Pa ) 2, J‘(anl)nm F(p)

<Vp5 v0{21>

sf p<B*L(02,) nint(@*) <L(y,)? .
@R21) nint(2+)

Similarly, in case f,, >0 and y, is null homotopic, it follows from (8.3) with « =g, that

? F(s)d
ADNQT)<ARQ,) f J F((s) s(Vp, Vaa,)

<(B*—BIL(r1) <L) .

Moreover in case f,>0 and y, is homotopic to the circle {1} x R/Z, it follows from
(8.3) with a=0 that

Bx p
ADNQ*)<A@,)= J WK VP, Vo, > < f (‘0 Fods | J5.F WS)

F(p) F(p)
[or F(s)ds )L < [ F(s)ds 1)
<< FB.) +(B*—B,) |L(y,) < TFB) +1 |L(y,)

Since assumption (8.2) implies that
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[ F(s)ds

FB

’

1
a
we have
1
ADn Q*)s(l +—>L(y1)2 .
a

The arguments just above are available for Q instead of Q*, or 7, instead of y,
(if D is an annular domain). Therefore it is not hard to see that

A(D)< 2(1 + i>L(aD)2
a

for any compact domain D with piecewise C! boundary which does not interesect the
boundary of Q. q.e.d.

Let M be a compact 2-dimensional manifold and Q a domain of M which is
diffeomorphic to [ —1, 1] x R/Z. Let g be a Riemannian metric on M which has the
same expression on @ as in Proposition 8.1 and further satisfies

flE(t)dIZr; JO E(t)dt>r

0
for a constant r>0. Then in view of Theorem 2.2, the heat kernel p,(t, x, y) of (M, g, dv,)
has an upper bound of the form:
c(l1+a)
at

Pyt, x, x) <

for all 0<t<r? and xeQ with | p(x)| <r/2, where ¢ is some numerical constant.
8.2. Let us now exibit some families of metrics with the properties described in
Proposition 8.1.

ExampPLE. Let a>0, 5>0,0<a<1 and 0<f <1 be given, and set
g.=dt*+G(t)*d0*, (t,0)e[—1,11xR/Z,
where G, is given by
t* <t<l
Ge(t)___{a +e 0<t<
b(—tyf+e —1<1<0.

Then direct computation shows that
2
in _tGL 2 C
i<t | [ Gs)ds|
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for some ¢>0 depending only on a, b, a, f.
ExaMPLE. Let a>0 and >0 be given, and set
g.=dt’+G(1)*d0?, (t,0)e[—1,1]xR/Z,

where G, is given by

mm{ = t+s,a} 0<t<l
e
G()=
mm{— _ t+8,a} —1<1<0
e
Then we have
G (1)

inf ———~——>c¢
<1 | [ G(s)ds|
for some ¢>0 depending only on a, b.
ExampLE. Let a>0, b>0, 0<a<3/2 and 0<f<3/2 be given, and set
g.=G()*(dt* +d0?%), (t,0)e[—1,11xR/Z
where G, is given by

at*+¢ 0<t<l1

Gs(’)={b(_t)ﬂ+s —1<t<0.

Then direct computation shows that
2
inf %ZC
i<t | [ G(s)*ds|
for some ¢>0 depending only on «, f.

ExaMPLE. Let us consider a family of rotationally symmetric surfaces around the
z-axis in Euclidean 3-space R*={(x, y,2): x, y, ze R}. We start with a simply closed
curve %, in yz-plane parametrized by te R/Z—(0, r(t), z(t)). We assume that r(z)>1 for
t#0, z(t)=t for | | <1/2, and further

1
at*+1 0<t<—

2
rt)=

b(—t)f+1 —%srso

for some constants a>0, 5>0,0<a<1 and 0 < <1. Now rotating the curves given by
%,=%,+(0, —1+1/n,0) around the z-axis, we obtain a family of surfaces M, in R3,
namely,
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M, ={((r(t)—1+1/n)cos b, (r(t)— 1+ 1/n)sin b, z(¢)): 1, 0e R/ Z} .

Then the local Sobolev inequality (2.4) holds uniformly for all M,, and moreover the
same results as in Assertions 5.2, 5.3, and 5.4 can be derived. In this case, the completion
of M —{o} as in Assertion 5.2 can be described as the sphere S? equipped with a
Riemannian metric g, which is only continuous at the north and/or south poles if a=1
and/or f=1.

See [9], [10] and [21] for related results.

9. Further discussions. In this section, we shall first consider a Riemannian
submersion with totally geodesic fibers and recall a result due to Besson [6] on a
domination of the heat kernel of the total space by those of the base space and the
fiber. An example of an SD-convergent family of such metrics on a total space is
exhibited. Secondly, we shall review a result of Gallot [16] and discuss a question on
Albanese tori in relation to the spectral distance.

9.1. Let M be a compact connected Riemannian manifold. We are given a
Riemannian submersion n: M— B of M onto another manifold B with totally geodesic
fibers {F,: be B}. Then the horizontal lift of a piecewise smooth curve y: [o, f]—B in
the base manifold B gives rise to an isometry %, between the fibers F,, and F,, over
the end points y(«) and y(f5). Hence the holonomy group of the fibration is included in
the isometry group of the corresponding fiber. See, e.g., [5, Chap. 9] for some basic
results on Riemannian submersions with totally geodesic fibers.

Now we fix a point b, of B and denote by F the fiber over b,. Let p,,lt, x, x'),
pg(t, b, b), and pg(t, u, u’) be respectively the heat kernels of M, B and F with respect
to the normarized Riemannian measures. Then we have

pM(t’ X, x’)SpB(t, b9 b,)pF(ta ‘q)y(x)’ %(x))l/zpl"(t’ %’(xl), '%’(xl))l/z

where b=n(x), b'=n(x') and y: [0, 1]-B (resp. y': [0, 1] B) is a piecewise smooth
curve joining b (resp. b’) to b,. This inequality is due to Besson [6] and it enables us
to construct SD precompact families of such metrics on the total space in conjunction
with (principal) connections.

Let us here exhibit a degenerating family of metrics on the total space M of the
fibration n: M— B as above. We denote by g, gg and g, respectively, the metrics of
M, B and F. For a tangent vector X of M at a point x, X” and X¥ stand respectively
for the vertical component of X which is tangent to the fiber through x and the horizontal
one which is orthogonal to the fiber. A one-parameter family of metrics {g,: ¢>0} on
M is defined by

gx(X’ Y)=gM(XV9 YV)+£2gM(XHa YH) .

Then n: (M, g,)—&B=(B, ¢2g) remains to be a Riemannian submersion with the totally
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geodesic fibers {F,: be B}. The normalized Riemannian measure of g, is independent
of ¢ and we write p,, for it. Then the heat kernel p, of (M, g,, f15) is estimated by

Pt X, x')<pale~2t, b, b)pp(t, Z(x), ZxX)*pi(t, P(x'), Px N2 .

We shall now describe the SD-limit of (M, g,, uy,) as e—0. For this, we denote by G
the closure of the holonomy group of the fibration at a fixed point b, € B in the isometry
group of the fiber F. A canonical mapping IT of M onto the quotient space F/G is given
by

1I(x)=p(Z(x)) ,

where p: F— F/G is the natural projection and v is a piecewise smooth path joining 7(x)
with a fixed point b,€ B. The quotient space F/G is endowed with the image measure
u=p,pp of the normarized Riemannian measure u, on F. Then the Hilbert space
L*(F/G, w) on F/G is identified with the closure of the space C*(F; G) of G-invariant
smooth functions on Fin the Hilbert space L(F, ;). We have now a strongly continuous
symmetric Markovian semigroup {Tﬁé’: t>0} on L*(F; G) which is associated with the
closure of the energy form defined on C®(F; G). The kernel of 7' is the pull-back of
a positive continuous function p(t, u, v) on (0, o) x F/G x F/G. Then (F/G, p, p) is the
SD-limit of (M, g,, 1) as 0. In fact, IT: M— F/G and any mapping I" : F/G— M with
IT-I'=id. provide spectral approximations between (M, g,, u,,) and (F/G, u, p), namely,
for all 1>0, x, ye M and u, ve F/G,

e” T pyt, x, y)—plt, I(x), T(y)) | <(e) ;
e™ T pt, I(w), T(v)—p(t, u, v)| < O(e) ,

where lim, ., () =0. We observe finally that the metric space (M, d,) endowed with the
Riemannian distance of g, converges to the metric space (F/G, dg) with respect to the
Gromov-Hausdorff distance, where the distance dg on F/G is defined by

d@(u7 U) = dF(p - l(u)’ p - l(v)) s
and further the following property holds:

lim 4t log p(t, u, v) = — dg(u, v)? u,veF/G .
t—0

We have just discussed an SD-convergent example of metrics on a fixed compact
manifold endowed with a measure, which features the geometric structure of a Rie-
mannian submersion with totally geodesic fibers. Relevantly to the subjects of [20],
[31], and [30], we shall study in [26] the convergence of heat kernels of metrics on a
compact manifold endowed with a measure, including the above example as a special
case.

9.2.  We shall now recall some results by Gallot [16], which are stated as follows.
Let M =(M, g) be a compact connected Riemannian manifold of dimension » and pu,,
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denote the normalized Riemannian measure of M as before. For a point xe M, we set

1 Ricy(X, X): Xe T M, g(X,X)=1}; r_(x)=sup{0, —r(x)} .
n—

rx)= inf{

Let « and D be any positive constants and p be any element of (n, + c0). Suppose that
the diameter of M is bounded by D,

9.1 diam M <D
and the Ricci curvature satisfies
r_ p/2 1
(9.2) f <—2-1> dHMS_(eB(p)aD—])_l B
M\ X + 2
where

<I:_—— l> =sup{r_‘_1’ 0} ; B(P)=<M>1/2(n—1)1—1/p< p—2 )1’2_”"‘
«? N o2 ) p—

Then the i-th eigenvalue 4;, the heat kernel p,(t, x, y), and the first Betti number b,(M)
of M are respectively estimated by

j’iZ A(P, a, D)iZ/p 5
pM(ta X, )’)SB(P, o, D)t_p/z + 1 5

(9'3) b1(M)SnZ(P, o, D),
where A(p,a, D), B(p,a, D) and Z(p,a, D) are respectively computable constants
depending only on the given constants. See [16] for details.

We claim here that under the assumptions (9.1) and (9.2), the Albanese torus /(M)
of M satisfies

diam /(M )< C(n, p, o, D)diam M

for some constant C(n, p, a, D) depending only on the given constants.

The Albanese torus /(M) of a compact connected Riemannian manifold M =(M, g)

is defined as follows. Let us first denote by # (M, R) the space of harmonic one forms

on M equipped with an inner product ( , ),,,,

(@, M)ype = J K, m)gdity -

Let #1(M, Z) be a lattice of #'(M, R) which consists of harmonic one forms with
integral periods. Dividing the dual space #!(M, R)* by the dual lattice # (M, Z)*, we
obtain a flat torus, called the Albanese torus of M:

A(M)=H#YM, RY*|# M, Z)* .
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The result claimed as above was proved in [24] under (9.1) and the condition that
the Ricci curvature of M is bounded from below by —(#»—1)a2, and in fact the same
argument there is valid under the assumptions (9.1) and (9.2). The estimate above
implies particularly that the Albanese tori of compact connected Riemannian
n-manifolds M satisfying (9.1) and (9.2) form a precompact family of flat tori with
dimension less than or equal to nZ( p, a, D), where the topologies of the spectral distance
and the Gromov-Hausdorff distance coincide. For an SD-Cauchy sequence
{M;:i=1,2,...} of compact connected Riemannian n-manifolds satisfying (9.1) and a
stronger condition that the sectional curvature of M, is uniformly bounded in its absolute
values, it was also proved in [24] that the corresponding sequence of the Albanese tori
o/ (M;) converges to a point or a flat torus of positive dimension as i—oo. It might be
asked whether this would be true under (9.1) and a much weaker condition (9.2).
Relevantly, a question could be raised concerning the continuity of the energy spectrum
of harmonic mappings into nonpositively curved manifolds with respect to the spectral
distance. See [23, Section 4] for related results.

As seen in Section 7, a bound for the Betti numbers as in (9.3) can not be expected
in general for an SD-precompact family. We remark also that an estimate for the
diameters of Albanese tori as in the claim above does not hold in general. Indeed, we
can see such examples in Section 5 as follows. Let M be a compact, connected and
oriented manifold of dimension #> 3 such that the first Betti number r=b,(M) is greater
than or equal to one. Let {¢;:i=1,..., r} be a basis of the first d¢ Rham cohomology
group Hjg(M). Then we choose (n—1)-cycles {s;: i=1, ..., r} in such a way that s; is
the Poincaré dual to the class ¢; for each i and fix an open subset U of M which includes
the union of the cycles s;, We may assume by the localization principle that each ¢; is
represented by a closed 1-form #;, the support of which is contained in U. Now we
suppose that M admits a Riemannian metric g, such that the scalar curvature of g, is
positive. Then as in 5.2, we can find an SD-Cauchy sequence of conformal metrics
g, =@+ ?g, such that ¢, converges uniformly to a continuous function ¢, which is
positive outside U and vanishes on the union of the supports of the forms #;. Then the
norm (#;, 1;),, of n; with respect to the metric g, decays to zero as k— co. Indeed,

(3 Ui)uk :J <M '7i>gkdllk (= dvgk/VOl(M5 g1)
M

1
"~ Vol(M, g,)

J {Mis N goPidv,, >0 as k— oo .
U

In particular, the norm of the harmonic part &;, of #n;, (&4, &4, tends to zero as
k—oo. Therefore the dual torus of /(M, g,) collapses to a point as k—oco. In other
words, the Albanese torus ./(M, g,) itself diverges (or converges to r-dimensional
Euclidean space R™ with respect to the pointed Hausdorff distance) and in fact
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diam «/(M, g,)—» + 0 as k—o0.

We note that the pointwise norm <&;4, &; >, converges to zero outside U, but its
maximun value goes to infinity as k— oo, because ¢;, belongs to #(M, g,, Z).

9.3. Let us close with an observation suggested by Akutagawa [2]. Let .#,(n) be
the set of isometry classes of compact connected Riemannian manifolds with dimension
n and unit volume. Given positive constants, a, t, A and integer p>n/2, we consider a
subset & of .#,(n) such that for a manifold M =(M, g)e &, the heat kernel p,l(t, x, )
of M satisfies

a
PM(t,X,X)S7, 0<[ST.', XEM,
t"
and further the curvature tensor R,, of M has a bound of the form
f | Ry |Pdv, <A .
M

To this class & of manifolds, we can apply some results by Anderson [3, Section 3]
together with Lemma 2.5, and we obtain a proposition stated as follows: the set &
above is precompact in C*n L*® topology, o= 2 — n/2; to be precise, for a sequence {(M,, g;)}
in &, there exist a subsequence {M;}, a compact smooth n-manifold X equipped with
C*n L*P-metric gx, and a diffeomorphism h;: X— M for large j such that h¥ g; converges
to gy in the C* topology for o' <a and weakly in the L*” topology on X. Thus on this
set &, the topologies of the spectral distance and the Gromov-Hausdorff distance
coincide and in fact they are expressed in a finer manner as above. We refer the reader
to [3], [2] and the references therein for details and releted topics.
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