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Abstract. We construct an isomorphism from McMullen's polytope algebra, onto

the quotient of the algebra of continuous, piecewise polynomial functions with integral

value at 0, by its ideal generated by coordinate functions. This explains the non-trivial

grading of the polytope algebra, by the obvious grading of piecewise polynomial

functions. In the process of the proof, we make explicit many connections between

convex poly topes and piecewise polynomials.

Introduction. In the study of valuations (or finitely additive measures) on convex
polytopes in a finite-dimensional real vector space, a fundamental role is played by the
polytope algebra: the universal group for translation-invariant valuations. This group
is endowed with a multiplication, via Minkowski sum of polytopes, and with many
other structures, discovered by McMullen, Morelli, Khovanskii-Pukhlikov and others.
In particular, the polytope algebra is almost a graded algebra over R; its grading is
defined by diagonalizing the action of the group of dilatations (see [Mel]). The proof
of existence of this grading uses the logarithm of a polytope P, defined by log(P) =
Σ™=1(—iY~1(P—'ίY/n (this makes sense in the polytope algebra, because P — 1 is
nilpotent there).

In this paper, we recover some of the most important properties of the polytope
algebra, as corollaries of a structure theorem for this algebra. To state our main result,
we need some notation.

Let V be a vector space over R of finite dimension d>2, and let V* be its dual.
To any convex polytope P in V* is associated its support function HP on V; then HP

is continuous, and piecewise linear with respect to some subdivision of Finto polyhedral
cones having the origin as their common vertex. We denote by R the algebra of all
continuous functions on V that are piecewise polynomial (in the same sense). Then R
is a graded algebra over R for the operations of pointwise addition and multiplication;
it turns out that R is generated by support functions of polytopes. We denote by R the
quotient of R by its graded ideal generated by all (globally) linear functions on V.

THEOREM, (i) The graded algebra R=(B™=0Rn vanishes in all degrees n>d.

Moreover, the vector space Rd is one-dimensional, and multiplication in R induces

non-degenerate pairings Rj x Rd_j-> Rd for l<j<d—l.
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(ii) The map P -> exp(//P) = Σ̂ °= 0 Hp/n! extends to an isomorphism of the poly tope
algebra, onto the subalgebra Rint = Z®R1®R2®'"®RdofR.

This statement explains the grading of the polytope algebra, and the role of the
logarithm as well: namely, log(P) is identified with the support function of P.

In fact, our structure theorem is proved here when R is replaced by any subfield
(it can be proved for arbitrary ordered fields). In the case of the field of rational numbers,
a version of this theorem was obtained in [Br], motivated by previous work of Fulton
and Sturmfels [Fu-St]; there the algebra R was studied in relation to cohomology of
toric varieties, using (and adding to) the dictionary between convex polytopes over Q
and projective toric varieties with an ample β-divisor class. The approach of the present
paper is direct and essentially self-contained; connections to toric geometry are indicated
at the end of each of the first three sections.

We now summarize the contents of this paper, and its relation to earlier work of
Billera, Khovanskii-Pukhlikov, McMullen, Morelli and Oda. We rely on the classical
correspondence between convex polytopes in F* with prescribed directions of faces,
and convex, piecewise linear functions on a fixed complete fan in V, that is, on a
subdivision of V by polyhedral, convex cones having the origin as their common
vertex.

In Section 1, we introduce and study the Hodge spaces of a fan, an analog in
combinatorial geometry of Hodge spaces of an algebraic variety. Both notions are
compatible in the case of a rational fan associated with a smooth, complete toric varie-
ty; a related, but somewhat more complicated definition appears in [Od2], as a
combinatorial version of Ishida's complexes in toric geometry. For any d-dimensional
fan Σ, we obtain finite-dimensional vector spaces HiJ(Σ) indexed by pairs of integers
between 0 and d. If Σ is the normal fan of a convex polytope P, then each diagonal
Hodge space Hj'j(Σ) is identified with the space of Minkowski j-weights on P (see 1.5
below). If moreover P is simple, then all non-diagonal Hodge spaces vanish, and the
dimension of HjJ(Σ) is the y'-th component of the /z-vector of P (1.2, 1.4). For an
arbitrary complete fan Σ, all upper diagonal Hodge spaces vanish, whereas the lower
diagonal spaces are rather mysterious combinatorial invariants of Σ; an interpretation
of//2'1 is proposed in 1.3.

In Section 2, we study the space RΣ of continuous, piecewise polynomial functions
on a complete, simplicial fan Σ; then RΣ is a subalgebra of R, and it contains the algebra
S of (globally) polynomial functions on V. As a special case of results of Billera [Bil],
[Bi2], the graded S-module RΣ is free of finite rank: the number of maximal cones in Σ.
We prove that each diagonal Hodge space HjJ(Σ) is identified with the space of gener-
ators of degree7 of this module (2.1). We define a canonical homogeneous S-linear map
π:R -> S of degree — d, and we prove that the S-bilinear map RΣxRΣ-+S: (/,#)-> π(fg)
is a perfect pairing. This induces a duality between Hodge spaces HjJ(Σ) and Hd~jfd~j(Σ).
Remembering the connections between diagonal Hodge spaces and Λ-vectors, we may
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see this duality as an algebraic version of the Dehn-Sommerville equations (2.4).

In Section 3, we turn to the ring EΣ of continuous, piecewise exponential functions

on a complete, simplicial fan Σ. This ring appears under a different disguise in [Mol] ,

[Mo2] and [Kh-Pu], as the space of piecewise linear functions from V to Z[K]. Our

approach to it is naive, but new; it leads in 3.3 to a short proof of a refinement of the

main result in [Kh-Pu]. Then, in Section 4, we prove that both algebras EΣ and RΣ

have the same completion: the algebra of compatible, formal power series on Σ.

Moreover, we obtain our key technical results in 4.3: the quotient of E by its ideal

generated by functions ex— 1 (x a globally linear function) is isomorphic to R. Here

Eis the ring of continuous, piecewise exponential functions (with respect to no specified

fan).

In Section 5, we prove that the poly tope algebra is isomorphic to the quotient of

E defined above. This latter result was known in slightly different formulations; see

[Kh-Pu] and [Mol] . Then our main theorem follows by putting everything together.

Moreover, our map π: R^S turns out to be related to volume by π(Hd

P) = d\vo\(P)

(more generally, π is related to Fourier transform, see 5.3) and this fact implies a

separation result for the polytope algebra, originally due to McMullen (see 5.4).

1. The Hodge spaces of fans.

1.1. Let AT be a subfield of R, and let V be a K-vector space of finite dimension

d. Let VR\— V®KR be the associated R-vector space.

A (polyhedral, convex) cone σ in V is an intersection of finitely many closed

half-spaces of V. We denote by σR the associated cone in KΛ, and by L(σ) the linear

span of σ in V. A fan in V is a finite set Σ of cones, such that:

( i ) If σ G Σ and τ is a face of σ, then τeΣ.

(ii) If σ, τ e Σ then σnτ is a face of σ.

(iii) If σeΣ then σ contains no line.

For 0<i<d, the set of /-dimensional cones of Σ is denoted by Σ(i). The support

\Σ\ of I1 is the union of its cones; Σ is complete if | Σ \ = V.

A sheaf f o n a fan I1 is a collection of abelian groups (^σ)σeΣ and of maps

pστ: J*σ -• J^ (σ G Σ, τ a face of σ) such that:

(i) pσσ: 3Fa -^tf'a is the identity map for any σeΣ.

(ϋ) P σ i σ 3 = Pσ2σ3 ° Pa,a2 whenever σ3 c σ2 <= σx e Σ.

There are obvious notions of morphisms of sheaves on Σ, and of exact sequences.

Any abelian group F defines a sheaf on Σ with value F at all cones of Σ, each map

pστ being the identity. We denote this constant sheaf by F.

To any sheaf f on Σ we associate cohomology groups H\3F) (/>0) as follows.

Choose an orientation on each σReΣR. For σeΣ and a face t c σ of codimension

1, set εστ= 1 if the orientations of σ and τ agree, and εστ= — 1 otherwise. Set

σeΣ(d-i)
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and let δι: C\&) -• Ci + \&) be the direct sum of the maps

τ<=<r τeΣ(d-i- l),τ<=σ

It is easily checked that δi+1 0(^ = 0, i.e., (C*(#"), δ) is a complex; let H\&) be the z-th

cohomology group of this complex. If Σ is complete, then H°(^) consists of all elements

in ®σsΣ{d)^σ

 t n a t agree on (d— l)-dimensional cones.

In our study of the cohomology groups of certain sheaves, we will use the following

observations.

LEMMA, (i) Any exact sequence of sheaves on Σ:

induces a long exact sequence of cohomology groups

(ii) If F is a constant sheaf then Hd(F) = 0. Moreover, for 0<i<d—l, the group

H\F) is identified with the (d—i— \)-st homo logy group of | Σ \R n Sd~1 with coefficients

in F, where Sd~λ is a sphere centered at 0.

PROOF, (i) The exact sequence

0 - • &' - • & - • &" -> 0

induces an exact sequence of complexes

0 -> C*GF') -> C*(^) -> C*(^") ̂  0

and hence a long exact sequence of cohomology groups.

(ii) The vanishing of H\F) is immediate. Intersecting each cone in ΣR with

Sd~ί, we obtain a polyhedral decomposition of \Σ\RnSd~1. Moreover, the complex

(Cd~ί~1(/Γ))o<i£έf_i is identified with the usual chain complex associated to this

polyhedral decomposition.

Finally, observe that the tensor product over K of any two sheaves of ^Γ-vector

spaces is a sheaf. It follows that for any sheaf 2F of K-vector spaces, and for any integer

« > 0 , we have symmetric powers Sn^ and exterior prowers /\n^.

1.2. Let Σ be a fan in V, and let V* be the dual space of V over K. For any σ e Σ

we denote by σ1 the set of all fe V* that vanish identically on σ. The assignment σ -> σ1

defines a sheaf 3F of AT-vector spaces on Σ, the maps pστ: ^o^^x being the inclusions

For any non-negative integer j , we have the 7-th exterior power /\j^. We set:

Hij(Σ):=HX/\W).

The spaces (HiJ(Σ))itJ will be called the /fodge spaces of Σ. A related construction can
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be found in [Od2] for complete, simplicial fans.

PROPOSITION. With the notation above, we have:
( i ) HiJ(Σ) = 0fori<j.
(ii) If\Σ\ is not contained in any hyper plane, then HdJ(Σ) = 0 for j<d, and HdJ(Σ)

is isomorphic to K.
(iii) IfΣ is complete, and ife is a positive integer such that Σ(e) consists of simplicial

cones, then HiJ(Σ) = 0for i-j>d-e.

PROOF, (i) Observe that the dimension of 3Fσ is the codimension of σ, and hence
= 0 for all σeΣ(d—j). By the definition of cohomology groups, we have

= 0 for i<j.
(ii) The group HdJ(Σ) is the cokernel of the map

the direct sum of the inclusion maps /\jσλ^ /\jV*. We check that δ is surjective for
j < d. Because | Σ | is not contained in any hyperplane, we can choose linearly independent
vectors eί9...9edin V such that each et generates an edge of σ; call this edge σf. Then
a basis of /\jσt consists of the wedge products of any j vectors among the en {nΦi). It
follows that the map

is surjective, and this proves our assertion.
(iii) The proof of this statement is somewhat technical, and hence we begin with

the simplest case, where Σ is simplicial (that is, e = d). Then, for any σeΣ, we have an
exact sequence of K-vector spaces

where L(τ) denotes the line generated by the edge τ of σ; the map on the right is the
direct sum of the restriction maps from V* to the duals of the L(τ)'s. For any τeΣ(\)
and any σeΣ, we set

K if t e a

^ 0 otherwise.

Then K(τ) is a sheaf: the constant sheaf on the star of τ. We set

Then we have an exact sequence of sheaves

and hence a long exact sequence (the Koszul complex)
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We claim that each sheaf /\j~nV*® Sn$ is acyclic, that is, H\/\j'nV:¥®Sn^) = 0 for

all />1. Cutting the Koszul complex into short exact sequences and repeatedly using

Lemma 1.1 (i), we see that the claim implies the vanishing of H\/\jtF) for i>j, as

required.

To prove the claim, observe that H\/\j ~nV*® Sn<§) ~/\j-"V*® H\Sn^). If n = 0,

then the vanishing of H\/\jV*) follows from Lemma 1.1 (ii). If n> 1, we have

where the sheaf ^{τί9..., τn) is defined by

' K if σ contains τ 1 ? . . . , τn

. 0 otherwise .

Denote by S t ( τ 1 ? . . . , τn) the union of cones in ΣR that contain τ l 5 . . . , τ Λ , and by

S t ( τ l 5 . . . , τn) its closure. Then, as in the proof of Lemma 1.1 (ii), we obtain the vanish-

ing of Hd(g(τx,..., τn)) and isomorphisms

where the latter are homology groups of the pair consisting of S t (τ 1 ? . . . , τn) n Sd~ * and

of its boundary. But these groups vanish, because the space S t ( τ l 9 . . . , τ J n S " 1 " 1 is

contractible. This ends the proof of the claim.

Now we turn to the general case, where e is arbitrary. Then the sequence

is left exact; this sequence is exact if and only if σ is simplicial. Defining #(τ) (for

τeΣ(l)) and ^ as before, we obtain a left exact sequence of sheaves

We complete it to an exact sequence

for some sheaf J f on Σ, such that Jfσ = 0 if and only if σ is simplicial. Now, using [Le]

or [Ni], we obtain a long exact sequence of sheaves

0

where ^jn denotes the sheaf

Θ
a + b + c = j , b + 2c = n

In particular, <Fj%n contains /\j~nV* ® Sn($ as a direct factor, for n<j. Moreover, for a

simplicial cone σ, we have
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if

O if n>j .

Therefore, we have a long exact sequence of sheaves

with sheaves #,'„ (2<n<j+l) that vanish on any simplicial cone, in particular on

any cone of dimension at most e. By the definition of cohomology groups, we have

then Hί(£r

j'n) = 0 for i>d—e, and for arbitrary n. On the other hand, the sheaves

/\J-"V* ® Sn(3 are acyclic by the first part of the proof. It follows that Hi(/\j#r) = 0 for

As a special case, we obtain the following result, a version of which appears in

[Od2].

COROLLARY. For any complete, simplicial fan Σ, we have Hι'j(Σ) = 0 if iφj, and

Hd4{Σ)~K.

1.3. For any cone σ, we denote by rel(σ) the kernel of the (surjective) summation

map

(recall that L(σ) denotes the linear span of σ). Then rel(σ) is the space of linear relations

among the edges of σ. If τ is any face of σ, then rel(τ) is identified with a subspace of

rel(σ).

Similarly, for any fan Σ9 denote by rel(Γ) the kernel of the summation map

Then the dimension of rel(Σ) is the number of edges of Σ, minus the dimension of the

linear span of | Σ\.

Finally, denote by Rel(Γ) the cokernel of the map

Π rel(τ)-^ Π rel(σ)
τeΣ(d-l) σel(d)

defined in a way dual to 1.1. Then Rel(Σ) is a "globalization" of the spaces of linear

relations among the edges of d-dimensional cones in Σ. The compatible injective maps

rel(σ) -> rel(I") induce a linear map u: Rel(Σ) -» rel(Γ). The following statement describes

the first non-trivial Hodge spaces HXΛ(Σ) and H2Λ(Σ) in terms of the map u. Another

interpretation of HlΛ(Σ) will be given in 2.1 below.

PROPOSITION. With the notation above, the transpose map u*\ re\(Σ)* -> Rel(Σ)*

fits into an exact sequence
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0 - H1Λ{Σ) -> rel(Σ)* - Rel(Σ)* - H2\Σ) - 0 .

PROOF. We use the notation of the proof of Proposition 1.2: there is an exact

sequence

0->^->F*-^->Jf->0

with ^ = ®τeΣ(1)K(τ). Moreover, each 3tfσ is the cokernel of the map V* -• ®τeσ(1)L{τ)*-
Therefore, Jfσ is identified with rel(σ)*, and H°(J^) is identified with Rel(Σ)*. On the
other hand, there is an exact sequence

0 -• V* -* H°{&) -* rel(Σ)* -Vθ .

Denote by 3Fγ the cokernel of the map 3F -> V*. Then, from the exact sequences

0 ^ e ^ ^ F * - > # 1 - > 0 , 0-»^i-*#-».Jf->0

and from the vanishing of H°(JP), H\ V*), H2( V*) and H \<g)9 we obtain exact sequences

0 -> K* -^ H°(^) -*#e\&) -• 0 ,

0 -> i f 0 ^ ) -+ Ho($) -• //°(Jf) ^ Z / 1 ^ ) -> 0

and an isomorphism Hι{^γ) ^ H2(!F). Therefore, we have an exact sequence

0 -> i / 1 ^ ) ^ H°(%)IV* -> 7f °(̂ T) ^ i/ 2(^) -> 0 .

Moreover, the map H°(&)/V* -+ H°(JίT) is identified with u* : rel(2:)* -> Rel(20*.

COROLLARY. Lβί Σ be a complete fan such that any two non-simplicial cones in Σ
intersect only at the origin. Then H2Λ(Σ) = 0.

PROOF. The assumption implies that any (d— l)-dimensional cone in Σ is simplicial.
Then Rel(Σ) is the direct sum of the rel(σ) (σ a non-simplicial, J-dimensional cone in
Σ). Any two such cones have no common edge, and hence the map Rel(Z) -• rel(Σ) is
injective.

1.4. Consider a ̂ -dimensional convex poly tope P in V*. To each face F of P, we
associate the dual cone σF of the convex cone generated by the vectors f—p with feF
and peP. Observe that the dimension of σF is the codimension of F. The set (σF)F c P

is a complete fan: the outer normal fan of P. We denote this fan by ΣP. The assignment
Fi—• σF sets up a bijective, order-reversing correspondence between faces of P and cones
in ΣP.

For 0<i<d, denote by f{P) the number of z'-dimensional faces of P. Recall that
the Λ-vector (ho(P), h^P),..., hd(P)) is defined by
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PROPOSITION. For any convex d-polytope P, we have

d

hj(P)= Σ (— l)*~Jdim(HίJ(ΣP)).

PROOF. The Euler-Poincare characteristic of the complex C*(/\j^) is equal to

Σ(-1)£ Σ dim(AV)= Σ (-!){!W)

on one hand, and to

Σ ( - ly dim(H\/\J&)) = Σ (-1) ' dim{HίJ(ΣP))

on the other hand.

COROLLARY. For any d-dimensional convex polytope P such that each edge of P

lies in exactly d—\ facets, we have

hj(P)<dim(H^(ΣP))

with equality if P is simple.

PROOF. The assumption on P means that any (d— l)-dimensional cone in ΣP is

simplicial. Then, by Proposition 1.2 (iii), we have HiJ(ΣP) = 0for i>j+1. It follows that

hj(P) = dim(HjJ(ΣP)) - dim(Hj+ Uj(ΣP)).

1.5. We maintain the notation of 1.4. In the case where K=R, we have the

notation of a Minkowski weight on P, defined as follows (see [Mel, §5], [Mc2]). For

any faces F and G of P such that F is a facet of G, denote by nF G the outer unit normal

vector to F in G (for some fixed Euclidean norm on V*). Then ay'-weight on P is the

assignment to each/-dimensional face F, of a real number aF such that ΣF^GaFnF>G = 0

for each (j+ l)-dimensional face G. The set Ωj(P) of all /-weights on P is a real vector

space; it turns out to be independent of the Euclidean norm. In fact, Ωj(P) only depends

on ΣP, as shown by the following:

PROPOSITION. For 0<j<d, the space Ωj(P) is isomorphic to HjJ(ΣP).

PROOF. The complex C*(/\j^) is zero in degree <j. Therefore, by definition,

HjJ{ΣP) is the kernel of the differential

We identify (d —^-dimensional cones in ΣP and /-dimensional faces of P. For such a

face F, the space σF is identified with l in^) (the direction of the affine space generated

by F). The Euclidean structure on V defines a volume form on lin(F) and hence an

identification of /\j\in(F) to R. Therefore, the space 0 < τ e I p ( d - i / )A<'σ"L *s identified with
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the space of real-valued functions on the set of y-dimensional faces of P. On the other

hand, for any (j+ l)-dimensional face G, we have an isomorphism /\Jlin(G) -»lin(G) that

sends the canonical generator of /\j\in(F) (where F is any facet of G) to

Therefore, δ is identified with the map

(<*F)F ~+ ( Σ aG"F,G I

But the kernel of this map is Ωj(P).

This isomorphism, combined with Corollary 1.4, implies the following refinement

of Theorem 6.1 in [Mel] .

COROLLARY. For any d-dimensίonal convex poly tope P, such that each edge of P

lies in exactly d— 1 facets, we have

dimΩj(P)>hj(P).

Moreover, equality holds if P is simple.

REMARK. TO a fan Σ in a vector space V over Q, and to a lattice in V, is associated

a complex toric variety X=XΣ9 see [Odl] . Denoting by ΩJ

X the sheaf of differential

y-forms on X (in the sense of Zariski-Steenbrink), we have isomorphisms

see [Da, 12.4.1]. In this setting, the statements (i) and (ii) in Proposition 1.2, and its

corollary as well, are due to Danilov, see [Da, §10].

If moreover Σ is complete, then the group H1Λ(Σ) is identified with the rational

Picard group of X; the presentation

0 -»H1 Λ{Σ) -• rel(Σ)* -* Rel(Σ)*

is equivalent to Eikelberg's determination of the rank of the Picard group, see [Eil]

and [Ei2].

Finally, the notion of a Minkowski weight can be adapted to a rational, complete

fan; for such a fan Σ, the space of all Minkowski y-weights is isomorphic to the 7-th

Chow cohomology group of XΣ with rational coefficients, see [Fu-St, Theorem 1].

2. The algebra of continuous, piecewise polynomial functions.

2.1. We denote by S the algebra of K-valued polynomial functions on V. Given

a fan Σ and a cone σ e Σ, we denote by Rσ the space of X-valued polynomial functions

on the linear span of σ; then Rσ is the quotient of S by its ideal generated by σ1. For

τ c= σ, we have the restriction map Rσ-+Rτ9f\-^f\τ, and this defines a sheaf of S-algebras

& = (Rσ)σeΣ on Σ. Moreover, S, Rσ and 01 carry a natural grading.

We set
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Then RΣ is a graded algebra over S: the algebra of continuous, pίecewίse polynomial

functions onΣΛf\Σ\ is purely ^/-dimensional, then RΣ is the space of global sections of 01.

For any non-negative integer n, we denote by RΣn the homogeneous component

of degree n in RΣ. In particular, RΣΛ consists of all continuous, piecewise linear functions

on Σ. If Σ is complete, then RΣΛ contains the space V* of globally linear functions,

and the quotient RΣΛ/V* is identified with H1Λ(Σ). Namely, the exact sequence

induces a long exact sequence of cohomology groups, beginning with

0-+ V* -+ RΣΛ-+ H^^-tO .

The components of higher degree in RΣ are related to higher Hodge spaces in a more

complicated way, by the following statement.

THEOREM. Let Σ be a complete fan.

( i ) The graded S-module RΣ has a canonical increasing filtration such that

i = 0

where grRΣ is the associated graded module, and where each space Hιι(Σ) occurs in degree i.

(ii) If moreover W + x Λ (Σ) = 0 for \<i<d-2, then equality holds in (i).

(iii) Finally, if Hij{Σ) = 0 for iΦj, then Hι(β) = 0 for all i>\.

PROOF. We have an exact sequence

where Jσ denotes the ideal of S generated by σ1. Therefore, we have an exact sequence

(the Koszul complex)

and this defines a resolution of the sheaf ^ by sheaves S® /\j^; the differentials are

homogeneous of degree — 1. We cut this resolution into short exact sequences

0 -• S® /\d& -+ S® Λ d ~ 1 & -• δd-1 -> 0

0 -» ̂ d _ x -* S® /\d~2^ -• (Td_2 -> 0

Because (δj)σ is a quotient of f\jσλ, we have (δj)σ = 0 for dim(σ) > d-j, whence H\S^ = 0
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for i</. The same holds for H\/\j^) by 1.2. Therefore, we have long exact sequences

0 ^ 1 ^ 1 d \ \ d \ / d ι

0

0

But //̂ (Λ:) vanishes by Lemma 1.1 (ii). It follows that the quotient R(P = RΣIS contains

an iS-submodule isomorphic to S®H1Λ(Σ). Moreover, the quotient

0 -> 5 - ^°(Λ) - i / 1 ^ ) ^ S®H\K).

is an S-submodule of H2^), with equality if H2Λ(Σ) — 0. Further, the exact sequence

0 - S® H2'2(Z) - H\S2) -+ H\^) ->S® H32(Σ)

presents Rψ as an extension of a submodule of S® H2'2(Σ), by a submodule of H3($3).

Continuing this way, we construct the filtration of RΣ, and this proves (i) and (ii).

If moreover Hi(/\i#r) = 0 for iΦj, then one obtains by descending induction over

j: H\$^ = Q for iΦj. In particular, Hi(S'1) = 0 for z>2, and this implies the vanishing of

J7'(«) for/>1.

COROLLARY. Let Σ be a complete, simplicίal fan. Then the graded S-module RΣ is

free of finite rank, with generators in degrees 0, 1, . . . , d. Moreover, the space of generators

of degree ί is isomorphic with Hifi(Σ); in particular, the space of generators of degree d

is one-dimensional. Finally, the complex

is exact.

The last statement answers a question of Bernstein and Lunts; [Be-Lu, p. 128].

Observe that the results of the corollary hold for certain non-simplicial fans too, for

example for three-dimensional fans Σ such that any two non-simplicial cones in Σ

intersect only at the origin. Then the spaces H2Λ(Σ) and H3'2(Σ) vanish in this case,

by 1.3 and 1.2 (ii).

The methods of this section can be used to study the algebra of piecewise polynomial

functions which are continuously differentiable of a fixed order (such algebras are

considered in [Bil] and [Bi-Ro], as modules over the algebra of polynomial functions).

This will be developed elsewhere.

2.2. For each simplicial, ^-dimensional cone σ, we denote by Φσ the product of

the equations of the facets of σ. Then Φσ e S is uniquely defined up to scalar multi-

plication. We normalize Φσ as follows: we choose a non-zero element in /\dV, and we
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impose that the equations of facets of σ are non-negative on σ, and that the absolute

value of their wedge product is 1. We denote by φσ the function on V such that

'Φσ(v) if veσ

[ 0 otherwise.

Then φσ is a continuous, piecewise polynomial function that vanishes outside the inte-

rior of σ.

THEOREM. Let Σ be a complete, simplicial fan. Then there exists a non-zero linear

map πΣ: RΣ-+S such that

(i) πΣ is S-linear,

(ii) πΣ is homogeneous of degree — d.

Moreover, (i) and (ii) define πΣ uniquely up to scalar multiplication, and a choice of πΣ is

given by

*Af)= Σ 4~
σeΣ(d) Φσ

for any f=(fσ)eRΣ. Then πΣ(φσ)=\ for any σeΣ(d).

PROOF. If πΣ exists, then it vanishes on any element of RΣ of degree 0, 1,..., d— 1,
by assumption (ii). Now (i) and Corollary 2.1 imply that πΣ is unique up to scalar
multiplication.

By Corollary 2.1 again, the quotient of RΣ by its S-submodule generated by ele-
ments of degree at most d— 1, is isomorphic to S. The resulting map RΣ^S satisfies
the conditions (i) and (ii), and hence it can be taken as πΣ.

For f=(fσ) in RΣ, set

σeΣ(d) Φσ

Then g is a rational function on V, and the denominator for g is the product of the

equations of (d— l)-dimensional cones of Σ. We claim that g is a polynomial function

on V; for this, it is enough to check that no σeΣ(d— 1) is a pole set of g. Denote by

σf and σ" the cones in Σ(d) having σ as their common face. We can find genera-

tors el9..., ed-1? e'd (resp. e'd') of edges of σ' (resp. σ") such that e1A -Aed_ιAe'd=\

and that ex A Aed-1 f\e"ά = — 1. Then there exist aγ, ...,ad_1 in K such that

Σ f = i aiei = ed + e'd Let xu ...,xd in V* form the dual basis of eu . . . , ed-u ed. Then

we have

d-l

Φσ>=-xd

It follows that
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=*71( Π

has no pole along xd = 0, because fσ> — fσ» is divisible by xd. Therefore, g has no pole

along σ, and this proves our claim.

Now the map pΣ: fv->g sends RΣ to S, and pΣ satisfies the conditions (i) and (ii).

Moreover, we have pj[φσ)=l for all σeΣ(d), and hence pΣ is non-zero. By the first

step of the proof, pΣ is proportional to πΣ.

EXAMPLE. Choose affinely independent points x0, x 1 ? . . . , xd in V*. Let P be the

simplex with vertices x0, xl9..., xd: let Σ be the normal fan to P. Then the function

/ : V-> K

v -> max«x0, !>>,..., <xd, v})

(the support function of P) is piecewise linear on Σ, and we can normalize πΣ so that,

for any integer n > 1:

«^)=Σπ-T Γ

Denote by hn the complete symmetric function of degree n, i.e. the sum of all monomials

of degree n. Then

t-Jίxo9χi9'->χd) if n^d

[ 0 otherwise .

Namely, this follows from the identity

1 A 1 ^ \ 1 /v x . 1 v - l γ
1 = 0 1 ίΛj i = 0 \ i tΛj j ψ i 1 Λj Λ ••

by expanding both sides into power series in /.

2.3. We keep the notation of 2.1 and 2.2.

THEOREM. Let Σ be a complete, simplicial fan; let Σ' be a simplίcial subdivision of

Σ. Then there exists a unique map nΣ>Σ: RΣ> —> RΣ such that

( i ) πΓtΣ(l)=l,

(ii) πΓΣ is RΣ-linear,

(iii) πΓtΣ is homogeneous of degree zero.

Moreover, we have for any σeΣ and f=(fσ)eRΣ>\

PROOF. Let π: RΣ>-> RΣ satisfy (i), (ii) and (iii). Then the map πΣ o π: RΓ -> S is
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S-linear and homogeneous of degree — d. Moreover, by (i) and (ii), the restriction of

this map to RΣ is the (non-zero) map πΣ. Therefore, by 2.2, we have πΣoπ = πΓ.

Now choose σ e Σ(d)9 whence φσ e RΣ. Then we have for all fe RΓ:

) = π(f)σ

(the last equality follows from the formula for πΣ given in 2.2, because φσπ(f) vanishes

outside σ). Using 2.2 again, we obtain

~ -

This proves the uniqueness of π = πΣ> Σ. For the existence, we define π by the formula

above. Then (ii) and (iii) are obvious, whereas (i) and the fact that π has values in RΣ

can be checked as the proof of 2.2.

COROLLARY, (i) For any feRΣaRΓ, we have nΣ{f) = πΣ(f).

(ii) For any simplicial subdivision Σ" of Σr, we have πΓtΣ°πΣ»tΓ = πΣ»tΣ.

The first assertion follows from (i) and (ii), and the second one from the uniqueness

of πΣ'tΣ.

Denoting by R the algebra of all continuous, piecewise polynomial functions on

V(with respect to no specified fan), we conclude that there is a canonical map π: R-^S

that is S-linear and homogeneous of degree — d. Moreover, for any complete, simplicial

fan Σ, there is a canonical, /? rlinear projection R^>RΣ that is compatible with π.

REMARK. Let V be a ^-vector space, and let u: K ^ F' be a ^-linear map. Then

composition by u induces an algebra homomorphism w*: R' -+R where Rf denotes the

algebra of continuous, piecewise polynomial functions on V, We claim the π vanishes

on the image of w*, whenever u is not an isomorphism. To check this claim, we may

replace V by the image of w, and hence assume that u is surjective. Now the composition

πou*: ^ ' - • S i s a homogeneous, S'-linear map of degree — d. But the S'-module Rr is

generated in degree at most dim(V')<d, and this implies our assertion.

In other words, π vanishes on functions that do not depend on all variables.

2.4. We keep the notation of 2.1 and 2.2.

THEOREM. Let Σ be a complete, simplicial fan. Then the S-bilinear symmetric map

RΣxRΣ-+ S

(f,g) -πit/0)

is a perfect pairing, i.e., it induces an isomorphism RΣ-+}ϊoms(RΣ, S).

PROOF. We first check that the map RΣ -» Hom^RΣ9 S) is injective. Let fe RΣ such

that πΣ(fg) = 0 for all geRΣ. For any σeΣ(d), choose hσeS. Then the functions φσhσ

glue together into a continuous piecewise polynomial function g on Σ, because these
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functions vanish on every (d— l)-dimensional cone. Therefore, we have:

σeΣ(d)

This holds for an arbitrary family of λσ's, whence / = 0 .

Now we check that the map RΣ -> Homs(RΣ, S) is surjective. Let u: RΣ ->S be an

S-linear map. Define a function gσ on each σeΣ(d) by gσ = u(φσ). We check that these

function glue together into g in RΣ. Namely, let σeΣ(d-1) separate two maximal cones

σ' and σ". Then φσ>-φσ» = fσhσ>,σ,. where fσ is an equation of σ, and where hσ,^.eRΣ.

Therefore, gσ>-gσ» = fσu(hσ',σ"l i e. gσ> and gσ,, agree on σ.

Denote by ΦΣ the product of the equations of all (d- l)-dimensional cones of Σ.

Then for any feRΣ, we claim that

fΦΣ= Σ ψJ.Φi/Φ*.
σeΣ(d)

Indeed, both sides agree on any given σeΣ(d\ because φσ\σ = Φσ and φτ\σ = 0 for τΦσ.

Moreover, because fσΦΣ/Φσ e S, we have

u(fΦΣ)= Σ u(φσ)fσΦJΦΣ= Σ
σeΣ(d) σeΣ(d)

and hence

u(f)= Σ
σeΣ(d)

This concludes the proof.

Let RΣ be the quotient of the algebra RΣ by its ideal generated by homogeneous,

globally linear functions (i.e. by V*); for feRΣ, le t/be its image in RΣ. By Corollary

2.1, we have an isomorphism of graded vector spaces

d

RΣ ^ θ HjJ(Σ).
j = o

Using Nakayama's lemma, we derive easily the following:

COROLLARY. For any complete, simplicial fan Σ, the K-bilinear, symmetric map

JL\Σ X J\Σ —• J\.

a 9) - ^ ( M O )

is well-defined, and it induces non-degenerate pairings

Hjj(Σ) x Hd-j>d~j(Σ) -> K.

In particular, the spaces HJJ(Σ) and Hd~j'd~j(Σ) have the same dimension. This
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statement implies the Dehn-Sommerville equations, by Corollary 1.4: for any simple

^/-dimensional polytope P, we have hj(P) = hd_j{P).

REMARK. Let I1 be a complete, simplicial fan in a vector space V over Q; choose

a lattice in V. These data define a toric variety XΣ\ the algebraic objects of this section

have the following interpretations in terms of the geometry of XΣ, see [Br] for details.

The algebra RΣ is isomorphic to the equivariant cohomology ring of XΣ with rational

coefficients. Moreover, for any simplicial subdivision Σ' of Σ, the map πry. RΣ.-*RΣ

is identified with the push-forward map defined by the morphism XΣ. -> XΣ. Finally, the

map πΣ: RΣ -» S is the push-forward defined by the constant morphism XΣ -> point. It

follows that the (ordinary) cohomology ring of XΣ with rational coefficients, is isomorphic

to RΣ; recall that this ring coincides with the Chow ring with rational coefficients, see

[Da, §10]. In this identification, the bilinear symmetric map in the corollary above,

becomes the intersection product.

So the algebra R is the direct limit of rational Chow rings of smooth, complete

toric varieties. In turn, by work of Fulton and Sturmfels, this direct limit is isomorphic

with the rational polytope algebra, see [Fu-St, Theorem 4.2]. The latter result was one

of the motivations for [Mc4], [Br] and the present paper.

3. The ring of continuous, piecewise exponential functions.

3.1. We denote by Z[K*] the group ring over Z of the abelian group V*. Then

Z[K*] is a free abelian group over the symbols ex, xeV*. The multiplication in Z [ F * ]

is defined by exey = ex+y. The subgroup of Z [ F * ] generated by the ex— 1 (xe V*) is an

ideal; we denote it by /.

We will need the following description of the quotients F/In+ί, where Γ denotes

the n-th power of the ideal /.

PROPOSITION. The map V*^>I/I2, x\-+ex — 1 (mod/ 2) is a group isomorphism.

Furthermore, this map induces a ring isomorphism

where S'Z(V*) denotes the symmetric algebra over Z of the abelian group V*.

Observe that, since the additive group V* is divisible, the canonical map

SUV*) -> SQ(V*)

is an isomorphism.

PROOF. Denote by (x) the image of ex— 1 in I/I2. Then (x—y) = (x) — (y) by the

following relation:
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Therefore, the map K*->///2, I H ( X ) is a group homomorphism. Observe that any
we///2 can be represented in / by some YJi = 1aAeXi — 1) with a{eZ and x, 6F*. So
u = Yj

r

i = 1ai(xi) = (YJi = 1aixi) and our map is surjective. On the other hand, if {x) = 0 then
ex — 1 is in /2, and hence the Taylor expansion at the origin of exp(x)— 1 has order at
least two: then x = 0. So our map is injective, and the first assertion is proved.

For the second assertion, observe that the map x\-^(x) extends uniquely to a
homomorphism of graded rings

F/In

n = 0

by the universal property of the symmetric algebra. This homomorphism is surjective,
by the first assertion. To check the injectivity, we may replace V* by a finitely generated
subgroup G. Then G is a free abelian group, and hence its group ring Z[G~\ is identified
with the ring of Laurent polynomials in r variables xί9..., xr with integral coefficients;
here r is the rank of G. Moreover, the ideal / is generated by eXί — 1,..., eXr — 1, and
these elements form a regular sequence in Z\G\ But our statement is well-known in
this case.

3.2. Let Σ be a fan. For any cone σ, let Eσ, be the group ring over Z of the
abelian group L(σ)* (the dual of the linear span of σ). For any σeΣ, and for any face
τ of σ, the inclusion L(τ)aL(σ) induces a surjective map L(σ)*-»L(τ)* and hence a
surjective homomorphism Eσ-+Eτ, /ι-»/| t. We set

Then EΣ is the ring of continuous, piecewise exponential functions on Σ; there is an obvious

structure of Z[F*]-module on EΣ.
In contrast to the algebra of continuous, piecewise polynomial functions as a

module over the algebra of polynomial functions, the Z[F*]-module EΣ is not finitely
generated in general. Indeed, consider the case where V= K is one-dimensional, and
where Σ consists of the two half-lines K+ and K~, together with the origin. Then
elements of EΣ are pairs (/+,/") in Z\_K] such that /+(0) =/~(0). Therefore, the map

Es-+ZlK]xI, f^(f\(r-f-)\K+)

is a ring isomorphism. Using 3.1, it follows that

EΣ/IEΣ~ZxK.

In particular, the abelian group EΣ/IEΣ is not finitely generated, and hence the
Z|X]-module EΣ is not finitely generated. Observe that this module is not free either.

So it would be difficult to study EΣ by using the homological methods of the
previous sections. We will use a different approach, by induction on the number of
cones in Γ. This approach was used in [Br] for the algebra of continuous, piecewise
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polynomial functions.

For any maximal cone σeΣ, we denote by Eσo the set of all feEΣ such that /

vanishes identically outside σ°. Then Eσo is an ideal of EΣ. In the case where Σ is simplicial,

we construct elements of Eσo as follows. Let τ be an edge of σ. Then there exists a

non-zero continuous, piecewise linear function φτ that vanishes at all edges of Σ, except

for τ. Moreover, φτ is uniquely defined up to scalar multiplication; it is called a Courant

function in [Bi2]. Observe that eψτ—\ is in EΣ and vanishes outside the star of τ.

Therefore, Γ L e σ m ^ ^ " 1) *s *n ^ ° w n e n e v e r σ is a maximal cone in Σ.

PROPOSITION. Let Σ be a simplicial fan; let σ be a maximal cone in Σ.

(i) The sequence

0-+Eσo-+EΣ-+ £ Λ M -• 0

is exact.

(ii) The Z[V*~\-module Eσo is generated by all Y\τeσ(1)(eφτ—l) where φτ is a

Courant function associated with τ.

PROOF, (i) Clearly, the sequence is left exact. To prove the surjectivity of the

restriction EΣ -• EΣ\{σ}, it is enough to check that any continuous, piecewise exponential

function on the boundary of σ extends to an exponential function on σ. Choose

coordinates xl9..., xd on V such that

i=l / \j=r+l

For any subset / of {1, . . . , r}, set

JΦJ

This sets up a bijection between subsets J of {1, . . . , r} and faces σ7 of σ. By assumption,

for any proper subset Ja {1, . . . , r}, we have an exponential function fj(Xj)jeJ on σ j 5

and these functions are compatible on the boundary of σ. Now set

J^{l,-,r}

(sum over all proper subsets of {1, . . . , r}). Then / is the desired extension.

(ii) For / c { l , . . . , r } , denote by Xj the r- tuple whose j - th coordinate is Xj if jφJ,

and 0 otherwise. Define a map pσ: Eσ-> Eσ by

Λt/x*)= Σ (-ir1-*^/^)
J = {l,-,r}

(sum over all subsets of {1, . . . , r}). Then /?σ is a projection of i?ff onto Eσo. Moreover,

we have
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Pσ{ea^+ +adxd) = ear^xr+x + .. +adxd ή ^ajxj _ {)

This implies our statement, because we have

r

J = l τeσ(l)

for a suitable normalization of the φτ's.
COROLLARY. For any simplicial fan Σ, the abelian group EΣ is generated by

exponentials of piecewise linear functions on Σ.

PROOF. Choose a maximal cone σ e Σ, and let feEΣ. By induction on the number
of cones in Γ, we may assume that

r

/ | i \ » = Σ aJefj

with ajβZ and fj continuous and piecewise linear on Γ\{σ}. Then by the argument
of the proof of 3.2, each fj extends to a continuous, piecewise linear function on Σ.
Therefore, we may assume that /|i\{σ} = 0, i.e. that feEσo. Now we conclude the
argument by statement (ii) above.

3.3. Let Σ be a fan, let EΣ be the ring of piecewise exponential functions on Σ,
and let JΣ^EΣ be the kernel of the evaluation at 0. Clearly, we have IEΣaJΣ and hence
FEΣczJΣ for all integers n>\.

THEOREM. For any simplicial d-dίmensional fan Σ, and for any integer n>\, we
haveJΣ

ι+dc:FEΣ.

PROOF. We prove this theorem by induction over the number of cones in Σ. The
first step of the induction is trivial. Choose a maximal cone σ e l , and let feJΣ

+d. Then
/|i\{σ}e^i\{σ} Using the induction hypothesis and the surjectivity of the restriction
EΣ^>EΣ\{σ}, we may assume that /|χ\{σ} = 0. Then feEσOnJΣ

+d, i.e. fσeEσOr\F+dEσ.
It is enough to prove that fσeFEσo. For this, we use the notation of the proof of
Proposition 3.2. Then fσ=pσ(fσ)epσ(F+dEσ). Therefore, it is enough to check that

pσ(F+dEσ)^FPσ(Eσ).

We observe that pσ—P\'''Pr where Pi(f)=f—f\Xi=o. Moreover, the p/s commute
pairwise. For any / , g in Eσ, we have

It follows that p^PE^czIp^EJ) (observe that /e/implies / | X i =o G ^) a n d, by induction
on «, that
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(**)

To end the proof, it suffices to check by induction on / that

This statement holds for /= 1; if it holds for / — I , then we have (using (*) for the second

inclusion, and (**) for the third one)

Pi •Pl(F+%)Cpi(I"+1pi_l- Pl(Eβ))

W
ι • Pι(Eβ)

czFPi---Pl(Eσ).

REMARK. Corollary 3.2 can also be deduced from [Mol, §5], whereas Theorem

3.3 is a sharpening of the main result of [Kh-Pu]; see 5.1 below. In the case where

K= Q, there are close connections between the algebra of piecewise exponential func-

tions on a fan, and the equivariant ^-theory of the corresponding toric variety, see

[Mo2].

4. Piecewise polynomials and piecewise exponentials.

4.1. Recall that RΣ denotes the graded algebra of continuous, piecewise polynomial

functions on the fan Σ, and that S denotes the graded algebra of polynomial functions

on V. We denote by RΣ >π (resp. S>n) the sum of the homogeneous components of

degree at least n in RΣ (resp. S). For any maximal cone σ e l , let i^o be the ideal of

RΣ consisting of functions that vanish identically outside the relative interior of σ.

PROPOSITION. Let Σ be a simplicial fan, and let σ be a maximal cone in Σ.

( i ) The sequence

is exact.

(ii) The S-module Rσo is generated by the function Πτe<r(i) ̂ τ where φτ is a Courant

function associated with τ (see 3.2).

(Hi) For any n>0, we have RΣ >n+dczS>nRΣczRΣ >π.

(iv) For any n > 0, we have Rσo n S>nRΣ = S>nRσo.

PROOF. The statements (i) and (ii) (resp. (iii)) are checked as in 3.2 (resp. 3.3).

For (iv), it is enough to prove that Rσo n S>nR is contained in S>nRσo. For this, we may

replace σ by its linear span, and hence we may assume that σ is ^/-dimensional. Then

the S-module Rσo is generated by

Ψσ= Π Ψτ
τeσ(l)
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with the notation of 2.2 and 2.3. Moreover, there is an S-linear map π : R^>S such

that π(φσ)=l (see 2.2). Therefore, the S-module Rσo is a direct factor of R, and this

implies our statement.

As in 3.2, we deduce the following:

COROLLARY. The K-algebra RΣ is generated by the continuous, piecewise linear

functions on Σ.

4.2. Let Σ be a simplicial fan. The algebra RΣ is endowed with two nitrations,

by powers of the ideals RΣ >x and S>1RΣ. It follows from Corollary 4.1 that

(RΣ,>ι)n = RΣ, >„, and from Proposition 4.1 (iii) that both nitrations define the same

topology on RΣ. We denote by RΣ the completion of RΣ with respect to this topology.

Then RΣ is an algebra over the ring S of formal power series on V.

We will need the following variant of RΣ: Define Rψ1 as the subset of RΣ consisting

of all functions / such that /(0) is an integer. Then Rψ1 is a graded subring of RΣ, with

Rψ}> = Z and Rψ^ = RΣn for all n > 1.

PROPOSITION, (i) The algebra RΣ consists of all compatible piecewise formal power

series on Σ; in other words,

(ii) The map EΣ -• RΣ that sends any continuous, piecewise exponential function (fσ)

to the collection of the Taylor expansions of each fσ, is injective. Moreover, the closure

of its image consists of Rψ1.

PROOF, (i) is checked by induction on the number of cones in Σ, the case of one

cone being trivial. Choose a maximal cone σ in Σ. Observe that the S-module RΣ is

finitely generated (this follows, e.g., from 4.1 (i) and (ii)). Therefore, the sequence

0 -+ R^^ AΣ-+ RΣ\W-+0

is exact. Moreover, brecause Rσo = φσS, we can identify Rσo with φσ§.

On the other hand, denote by CΣ the algebra of compatible piecewise power series

on Σ. Then CΣ is complete, as a closed subalgebra of the product of all R^s. Therefore,

RΣ maps to CΣ, and this map induces a morphism from the exact sequence above, to

the analogous exact sequence satisfied by CΣ. By the induction hypothesis, this morphism

is an isomorphism.

(ii) Observe that the map Z [ F * ] - > £ , e'^Σ^x'/nl is well-defined and in-

jective. Therefore, the map EΣ-+RΣ is injective, too; clearly, its image is contained in

RΣ

nt. We identify EΣ with its image, and we check that EΣ is dense in /^nt. In more

concrete terms, given f=(fσ)GRΣ

nt and 7V>0, we must find g = (gσ)eEΣ such that

Gσ~fσe^lσ!>N f°Γ an* c 6 Σ . We may assume that / is homogeneous. If the degree of

/ is zero, then / = / ( 0 ) e Z and we simply take g = f(0). Otherwise, we may assume
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that / = cln for some ceK, some continuous, piecewise linear function / on Σ, and some

integer n>\; namely, the abelian group R^^RΣ^ is generated by such functions

(see Corollary 4.1). Now there exists a formal power series u(t) = t + Σi>2uit
ί such that

w(exρ(/)— 1) = / as formal power series. Then

i = 2

is in EΣ, and TN(l) is an approximation of / at the order N. Now the function

g = Γ/v(c/)7τ

iV(/)'I~ * is continuous and piecewise exponential, and g approximates / = cΓ

at the order N.

4.3. Denote by E by ring of continuous, piecewise exponential functions on V

(with respect to no specified fan). Then E injects into R as a dense subring of ^ ι n t ; we

will identify E with its image.

THEOREM. We have IE=En S> XR.

PROOF. Clearly, IE is contained in En S> tR. Therefore, it is enough to prove that

EΣnS>1A is contained in IE for any complete, simplicial fan Σ. But this statement

makes sense for any (non-complete) fan Σ, if we replace IE by its restriction to |Σ"|.

Now we can use induction on the number of cones in Γ, because of Proposition 3.2;

then we reduce to checking the Eσo n S> XR is contained in IE for any simplicial cone σ.

We may assume further that σ is ^/-dimensional.

First we consider the case where d=l. Choose the coordinate x on V such that

σ = (x>0). By Proposition 3.2, the Z[F*]-module Eσo is generated by functions fa such

that

eax-\ if x > 0

0 otherwise,

where aeK. The identity

(eax-\) + (ebx-l) = {eia+b)x-\)-(eax-\)(ebx-l)

implies that fa+fb=fa+b-{eax-\)fb, and hence that

(*) fa+fb-fa+beIE.

Given feEσo, we can write f=YJi=luJai where UieZ[V*] and a^K. Moreover, there

exist integers «f such that u{ — «f e / for 1 < i < r, and hence / = £^ = 1 njai + g where g e IE.

Using (*), we can even write f=fc + h where ceK and he IE. If moreover feS^^,

then fcGS^iR. But the Taylor expansion of fc at the origin begins with ex, hence c = 0

and / e IE as required.

Now we consider the more involved case where d=2. Choose coordinates xί9 x2

on V such that σ = (x1 >0, x2 >0). Then, as before, the Z[F*]-module Eσo is generated
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by functions faua2 such that

^ - l ) ( ^ - l ) if (xl9x2)eσ

0 otherwise,

where al9 a2 are in K. For any α e ^ , define a function #fl on V by

Γ1 if xx>0 and x 2 > 0

^β(xl9 x 2)= j e~αxi if x x < 0 and Xi + x 2 < 0

L~β X 2 if x 2 < 0 and xί+x2>0.

Then #α is continuous and piecewise exponential. Moreover, it is easy to check that

fauafru χ

2) = ea^+a2X2gaι+a2(xu x2)-eaίXίgaί(xu x2)-ea*2ga2(xl9 x2)+l .

It follows that /α i, f l 2 —/ f l2,αi e/£. Replacing (xl9 x2) by {bγxu b2x2) for arbitrary b1 and

b2, we deduce that faιbua2h2 — fa2bί,aib2

e^E. ^ n particular, we have for arbitrary α, b in K:

(**) fa,t-fi,abeIE.

It follows that any feEσo can be written as

r

/ = Σ uJuaι + 9,
i=l

where M, e Z[ K*], αf e K and # e /£•. We can further assume that ut e Z. Now we have as

in the first step of the proof:

It follows that f = fitC + h for some ceK and helE. In particular,

Now assume further that / is in S>XR. Then fUc is in S>XR, too. We have to

check that c = 0. Otherwise, expanding flc into a power series, we obtain φσeS>1R

and hence ^< TG5 f

1^ 1 + 5i

2 by homogeneity. But π(φσ)=\ with the notation of 2.2 and

2.3, while π(S1Rί + S2) = 0, a contradiction.

In the general case of a d-dimensional cone σ, we can write σ as p)^= 1 (xt > 0). Then

the Z[F*]-module Eσo is generated by functions faua2, ,ad

 s u c ^

f (x v \ = <
Jaua2,...,ad\

ΛΊ, , ^d) ,

(. 0 otherwise .
We observe that

Jaι,a2,...,ad\
Xl> X2 > > Xd) = = J a χ,a2\

X\» X2)J a?,,... ,ad\
X3i > Xd)

with the obvious notation. Now repeatedly use equation (**) to obtain

Ja\,a2,.. . , a d 7 1 , 1 , . . . , l,a\ ad '

and conclude as before.
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COROLLARY. The maps Rint -+Rint<^E induce isomorphisms

Rint/S> ^ i n t -• Rint/S> ^ i n t <- E/IE.

PROOF. The map i?int/5> 1R
int -> Rint/S> ! ^ i n t is an isomorphism, because Rint is

graded. On the other hand, the map E/IE-+Rmt/S> 1R
int is injective by 4.3, and surjective

by 4.2.

4.4. We keep the notation and conventions of 4.3.

PROPOSITION, (i) IfKφ Q, then ΓE is strictly contained in E n S>nRfor any integer
n>2.

(ii) If K=Q, then InEΣ = EΣn S>nRΣ for any integer n>l9 and for any simplicial
fan Σ.

PROOF, (i) We argue by contradiction, and we first handle the case where n>3.
If FE=E n S>nR, then, considering globally exponential functions, we deduce that /" =
Z[K*] n S>n. Therefore, the map

(induced by the inclusions ImaS>m) is injective. But this map is identified with the
canonical map between (n— l)-st symmetric powers

sn

z-\v*)-+sn

κ-\v*)

by using 3.1 and the isomorphisms

Now choose teK\Q, and choose two linearly independent vectors x9y in V* Then
x(ty) — (tx)y is non-zero in S|(K*) and therefore, xn~2(ty) — xn~3(tx)y is non-zero in
Sz~\V*). But the image of this element in S'i""1(K*) vanishes, a contradiction.

Now we consider the case where n = 2. Choose teK\Q as before, and set u=l/t.
Choose coordinates x = xl9 x2,..., xd on V. We claim that the function / such that

\{etx-\){eux-\)-{ex-\)2 if x>0

.0 if x<0

is in Er\S>2R but not in I2E.
Clearly, / is in E and moreover x~2f{x, x2,..., xd) vanishes along x = 0, whence

feEnx2R. Assume that feI2E; then we can find a complete fan Σ such that feI2EΣ

and that the hyperplane (x = 0) is a common wall to at least two cones σ+, σ~ in Σ(d).
Writing explicitly that fsI2EΣ and making x2= xd = 0, we obtain trie existence of
two families of functions f^b and f~b in Z{Kx\ (indexed by α, b in K) such that
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a,b

a,b

Subtracting, we have

a,b

with fah in Z\Kx\ such that /α,b(0) = 0. Then each fab is in /x (the augmentation ideal
of Z\_Kx]) and hence

{etx-\){eux-\)-{ex~\)2ell .

But this contradicts Proposition 3.1 applied to Kx, because tu— 1 is non-zero in S\(K).
(ii) Using 3.2, we are reduced to checking that Eσo n S>nRΣ is contained in FEΣ,

where σ is a maximal cone in Σ. We may assume that σ is ^/-dimensional; we use the
notation of the proof of 4.3. Let / be in £> n S>nRΣ. Write /=Σβl,...f«d/αi,....αd0αlf...,αd

where gfβl,...,αd are in Z[F*]. Let ̂  be a denominator common to all rational num-
bers al9 ...,ad such that 0αi,...,αd^O. Replacing the coordinates xu x2,..., xd by
^r~1x1,..., q~1xd, we may assume that aί9..., ad are integers. Then each fau,mm,ad is
the product of/ l j l ieee>1 by some element of Z[F*], and hence we can write /=/i , . . . t i#
for some ^ e Z [ F * ] . Because feRσonS>nR, we have geS>n (this follows from 4.1 (iv)
and from the fact that fx x is the product of φσ by a power series with constant term
1). So g is in Z[K*] n»S>M, but this space coincides with Γ by reversing the argument
of the proof of (i). Therefore, g eΓ as required.

5. The polytope algebra.

5.1. Let 9 be the set of all convex poly topes in V*. Let 77 be the abelian group
generated by ̂ , subject to the relations

n β ] - [ P ] - [ β ] ,

whenever P, Q and P u Q are in &. The group 77 is endowed with a ring structure, the
multiplication being defined by [P][β] = [P + β] (see [Mel, p. 86]). Moreover, the
group V* of translations acts on 77 by ring automorphisms. In other words, 77 is an
algebra over Z[ K*]. Furthermore, 77 is equipped with a ring homomorphism deg: 77 -> Z
which sends the class of any convex polytope to 1.

To any convex polytope P in V*, we associate its support function HP: V-*K
defined by

Then HP is a continuous, piecewise linear function on the outer normal fan of P;
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moreover, HP is strictly convex with respect to this fan.

For any complete fan Σ in V, we denote by dPΣ the set of all Peg? whose support

function HP is linear on each cone of Σ. Then &Σ is closed under Minkowski sum; if

moreover Σ is the outer normal fan to some convex polytope P, then 3PΣ consists of all

Minkowski summands of a multiple of P. We denote by UΣ the subgroup of 77 generated

by the classes of polytopes in &Σ\ then UΣ is a Z[F*]-subalgebra of 77.

PROPOSITION. For any complete fan Σ, the map

y : &Σ -> EΣ , H

induces an injective homomorphism of Z[V*~\-algebras y: ΠΣ-*EΣ. If moreover Σ is the

normal fan of a simple convex polytope, then this homomorphism is surjective.

PROOF. For P and Q in ^ , we have HP[jQ = max(HP, HQ). If moreover PΌ Q is in

^ , then (PuQ) + (PnQ) = P+Q and hence HP[jQ + HPnQ = HP + HQ. If follows that

= mm(HP9 HQ), and therefore that

Therefore, γ extends uniquely to a group homomorphism y: Π-*E. Clearly, y maps

77̂  to EΣ. Moreover, we have

i.e., y is a ring homomorphism. Finally, we have y(x) = ex for any point-polytope x, and

hence y(uv) = uy(v) for any ueZ[_V*~\ and ve77.

We check that y is injective. Let we77 be such that y{u) = 0. We can write

with Pt and g,- in 9 and with positive integral coefficients ai9 by Then

an equality in the ring is of piecewise exponential functions on V. Now E can be

considered as the ring of piecewise linear functions on V with values in Z [ K ] (the group

algebra of K over Z). Following [Ml, 5.1], let PSF(K) be the group of functions on V

with values in Z [ X ] , generated by functions

(e<x-Ό> if veσ
exlσ: v<

[0 otherwise.

Then, by [Ml, pp. 42 and 43], the map
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(where σ v is the dual cone of σ) defines an isomorphism from PSF(K) to PSF(F*).

Therefore, (*) implies

ai*Pi= 1^ bjΪQj

and this in turn implies

in 17, see, e.g., [Mol, p. 11].

To check the surjectivity ofy:ffΣ-+EΣ in the case where Σ is the normal fan of a

simple polytope Δ, recall that the abelian group EΣ is generated by the ef where / is

a piecewise linear function on Σ. For such a function / and for large t e K, the function

f+tHΔ = f+HtΔ is strictly convex on Σ, and hence f+HtA = HP for some PG^A. NOW

ef = eHpe~HtΔ is in the image of y; indeed, [ί^l] is invertible in ΠΣ (see, e.g., [Mol, §5])

and moreover y([tΔ~]~1) = e~HtΔ.

It follows that y induces an isomorphism of Z[F*]-algebras, from 77 onto E.

Through this isomorphism, the degree on 77 is identified with the evaluation at the

origin on E. Proposition 3.2 implies the following statement, which is the main result

of [Kh-Pu].

COROLLARY. Let J be the kernel o/deg: Π-+Z. Then Jn+d is contained in ΓΠ for

any integer n>\.

5.2. Recall that / denotes the ideal of Z [ K*] generated by all ex - 1 ( c e V*). The

polytope algebra Π is the quotient of Π by its ideal 777. More concretely, 77 is generated

by classes of convex poly topes [P], with relations [P u β ] + [P n β ] — [P] — [β]

whenever P, β and P u β are convex polytopes, and [x + P] — [P] whenever xeV* and

P is a convex polytope.

THEOREM. The polytope algebra is isomorphic to the quotient of the algebra of

continuous, piecewise polynomial functions with integral value at 0, by its ideal generated

by {globally) linear functions. The isomorphism sends the class of any polytope [P] to the

image in the quotient of Σ«=o^^/W ' w^ere Hp ^ the support function of P.

PROOF. By 5.1, the map y: P\-^eHp induces an isomorphism Π-+E/IE. Then we

conclude the argument by Corollary 4.3 and Corollary 2.1, the latter implying that any

element in R^/S^iR1111 has a representative in Rιnt of degree at most d.

Using Corollary 2.1 and 2.4, we derive the following statement, one of the main

results in [Mel].
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COROLLARY. There exists a unique abelian group decomposition

where Π0~Z via deg, andΠx, ..., Πd are K-vector spaces, such that [tP]=Yd*=ot*\_P\j

for any DP]=Σj=o ί^j w ^ ί^je^p and for any teK>0. Moreover, we have
(i) 77,77, <=Πi+j for all i andj.

(ii) The K-vector space Πd is one-dimensional, and multiplication induces non-

degenerate pairings 77,x 77d_, -• 77d for 1 <j<d— 1.

REMARK. The polytope algebra is the universal group for translation-invariant

valuations on convex polytopes. More generally, the universal group for valuations

which are polynomial of degree at most n (with respect to translations) is the quotient

77//π+1. It follows from 4.2 that 77/771+1 maps onto R/S>n+ίR. But this map is not

injective for n> 1, except when K= Q; see 4.4.

In other words, our structure theorem for 77 has a natural extension to its higher

versions ff/In + 1 in the only case of rational polytopes. This explains the complications

of the theory of polynomial valuations, and the role played there by continuity

assumptions.

5.3. In this section, we assume that K is the field of real numbers. Recall the

S-linear map π: R^S introduced in 2.2; because π is homogeneous (of degree — d), it

extends uniquely to π : R -> S with the notation of 4.2. In particular, π(exp(//P)) makes

sense for any convex polytope P. In fact, π is defined up to a multiplicative constant,

and a normalization of π depends on the choice of a non-zero element in /\dV. Such a

choice normalizes the volume element on V*.

PROPOSITION. For any convex polytope P in V*, and for anyve V, the formal power

series π(exp(//P)) represents an entire function, and we have for all veV:

Jp
π(exp(Hp))(v)= exp(x,v)dx.

Sp

PROOF. Recall that

Qxp(HP υ Q) + exp(#p n Q) = exp(//P) + exp(i/Q),

whenever P, Q and PuQ are in 9. It follows that the map

extends to a map 77 -• S. The same holds for the map

( oo Γ /γ -,\n

But the abelian group Π is generated by the classes of simplices (see [Mel, p. 85]) and
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therefore, it is enough to check our statement when P is a simplex. Further, we may

assume that the volume of P is \\d\.

Observe that the support function of P factors through the quotient map u: V->V

where V is the vector space dual to the direction of the affine span of P. Using the

remark at the end of 2.3, it follows that π(exp(7/P)) = 0 whenever P is not J-dimensional.

On the other hand, for a d-dimensional simplex P with vertices x0, xl9..., xd, we have

by the example at the end of 2.2:

tτjnv \ f V d ( < * 0 > l > X •••><***>>) i f

π{Hn

P)(v) = <
(. 0 otherwise,

where hn denotes the complete symmetric function of degree n. But it is easily checked

that

ί.J ,
and this implies our formula.

COROLLARY. For any d convex poly topes Px, P2,..., Pd in V*, we have

π(HPιHP2- HpJ^dWiP,, P2,..., Pd),

where V denotes the mixed volume.

PROOF. The statement makes sense, because the left-hand side is a constant, π

being homogeneous of degree — d. To prove it, we consider the constant term in the

identity of the proposition above:

for any convex polytope P. Then we take P— t1Pί + t2P2 H h tdPd w h e r e tl9 t2,...,td

are arbitrary positive numbers, and we consider the coefficient of t1t2' * td in the result-

ing polynomial expansion of the left-hand side.

REMARK. In fact, the existence of mixed volumes for convex polytopes follows

from the proof above (of course, it can be checked in a more straightforward way!).

5.4. We still assume that K is the field of real numbers. Using 5.3, we obtain the

following separation theorem, first proved in [Mc3].

THEOREM. For any convex polytopes Pί,P2,...,Pr and for any integers aί9

a2,..., ar, the following conditions are equivalent:

( i ) aγ[PJ + a2{_P2~\ + + ar{Pr~\ is zero in 77.

(ii) a1 wo\{P1 + Q) + a2vol(7>2 + Q) + + ar\o\(Pr + Q) = 0 for any convex poly-

tope Q.
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PROOF. The map (P, β)-»vol(P+0 extends to a bilinear map p: ΠxΠ->R.

Moreover, the identity

) = π(exp(#P) exp(//Q))(0)

(a consequence of 5.3) means that p is identified with the bilinear form (/, g)-+π(fg){0)

through the identification of 77 with /? i n t/S>i^ i n t. Now our statement follows from 2.4.

REMARK. For Pί9 P2,..., Pr as above, let I" be a complete, simplicial fan such

that HPί, Hp2,..., HPr are piecewise linear on Σ9 and that Σ is the normal fan to some

convex polytope Δ. Then in the statement of the theorem above, it is enough to consider

poly topes Q that are Minkowski summands of A.
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