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Abstract. We construct an isomorphism from McMullen’s polytope algebra, onto
the quotient of the algebra of continuous, piecewise polynomial functions with integral
value at 0, by its ideal generated by coordinate functions. This explains the non-trivial
grading of the polytope algebra, by the obvious grading of piecewise polynomial
functions. In the process of the proof, we make explicit many connections between
convex polytopes and piecewise polynomials.

Introduction. In the study of valuations (or finitely additive measures) on convex
polytopes in a finite-dimensional real vector space, a fundamental role is played by the
polytope algebra: the universal group for translation-invariant valuations. This group
is endowed with a multiplication, via Minkowski sum of polytopes, and with many
other structures, discovered by McMullen, Morelli, Khovanskii-Pukhlikov and others.
In particular, the polytope algebra is almost a graded algebra over R; its grading is
defined by diagonalizing the action of the group of dilatations (see [Mc1]). The proof
of existence of this grading uses the logarithm of a polytope P, defined by log(P)=

o (=1""Y(P—1)"/n (this makes sense in the polytope algebra, because P—1 is
nilpotent there).

In this paper, we recover some of the most important properties of the polytope
algebra, as corollaries of a structure theorem for this algebra. To state our main result,
we need some notation.

Let V be a vector space over R of finite dimension d>2, and let V* be its dual.
To any convex polytope P in V* is associated its support function Hp on V; then Hp
is continuous, and piecewise linear with respect to some subdivision of ¥ into polyhedral
cones having the origin as their common vertex. We denote by R the algebra of all
continuous functions on V that are piecewise polynomial (in the same sense). Then R
is a graded algebra over R for the operations of pointwise addition and multiplication;
it turns out that R is generated by support functions of polytopes. We denote by R the
quotient of R by its graded ideal generated by all (globally) linear functions on V.

THEOREM. (i) The graded algebra R=@._, R, vanishes in all degrees n>d.
Moreover, the vector space R, is one-dimensional, and multiplication in R induces
non-degenerate pairings R;x R;_j— R, for 1<j<d—1.
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(i) The map P—exp(Hp)=Y .~ , Hp/n! extends to an isomorphism of the polytope
algebra, onto the subalgebra R™=Z® R, ®R,® - -® R, of R.

This statement explains the grading of the polytope algebra, and the role of the
logarithm as well: namely, log(P) is identified with the support function of P.

In fact, our structure theorem is proved here when R is replaced by any subfield
(it can be proved for arbitrary ordered fields). In the case of the field of rational numbers,
a version of this theorem was obtained in [Br], motivated by previous work of Fulton
and Sturmfels [Fu-St]; there the algebra R was studied in relation to cohomology of
toric varieties, using (and adding to) the dictionary between convex polytopes over Q
and projective toric varieties with an ample Q-divisor class. The approach of the present
paper is direct and essentially self-contained; connections to toric geometry are indicated
at the end of each of the first three sections.

We now summarize the contents of this paper, and its relation to earlier work of
Billera, Khovanskii-Pukhlikov, McMullen, Morelli and Oda. We rely on the classical
correspondence between convex polytopes in V* with prescribed directions of faces,
and convex, piecewise linear functions on a fixed complete fan in V, that is, on a
subdivision of ¥ by polyhedral, convex cones having the origin as their common
vertex.

In Section 1, we introduce and study the Hodge spaces of a fan, an analog in
combinatorial geometry of Hodge spaces of an algebraic variety. Both notions are
compatible in the case of a rational fan associated with a smooth, complete toric varie-
ty; a related, but somewhat more complicated definition appears in [Od2], as a
combinatorial version of Ishida’s complexes in toric geometry. For any d-dimensional
fan X, we obtain finite-dimensional vector spaces H"/(X) indexed by pairs of integers
between 0 and 4. If X is the normal fan of a convex polytope P, then each diagonal
Hodge space H’J(X) is identified with the space of Minkowski j-weights on P (see 1.5
below). If moreover P is simple, then all non-diagonal Hodge spaces vanish, and the
dimension of HYJ(X) is the j-th component of the h-vector of P (1.2, 1.4). For an
arbitrary complete fan X, all upper diagonal Hodge spaces vanish, whereas the lower
diagonal spaces are rather mysterious combinatorial invariants of Z; an interpretation
of H*! is proposed in 1.3.

In Section 2, we study the space R; of continuous, piecewise polynomial functions
on a complete, simplicial fan Z; then R; is a subalgebra of R, and it contains the algebra
S of (globally) polynomial functions on V. As a special case of results of Billera [Bil],
[Bi2], the graded S-module R; is free of finite rank: the number of maximal cones in Z.
We prove that each diagonal Hodge space H”»/(Z) is identified with the space of gener-
ators of degree j of this module (2.1). We define a canonical homogeneous S-linear map
n:R— S of degree —d, and we prove that the S-bilinear map R; x R; — S': (f, g) > n(fg)
is a perfect pairing. This induces a duality between Hodge spaces H”/(X)and H?~#47i().
Remembering the connections between diagonal Hodge spaces and h-vectors, we may
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see this duality as an algebraic version of the Dehn-Sommerville equations (2.4).

In Section 3, we turn to the ring E; of continuous, piecewise exponential functions
on a complete, simplicial fan X. This ring appears under a different disguise in [Mol],
[Mo2] and [Kh-Pu], as the space of piecewise linear functions from ¥ to Z[R]. Our
approach to it is naive, but new; it leads in 3.3 to a short proof of a refinement of the
main result in [Kh-Pu]. Then, in Section 4, we prove that both algebras E; and R;
have the same completion: the algebra of compatible, formal power series on X.
Moreover, we obtain our key technical results in 4.3: the quotient of E by its ideal
generated by functions e*—1 (x a globally linear function) is isomorphic to R. Here
E is the ring of continuous, piecewise exponential functions (with respect to no specified
fan).

In Section 5, we prove that the polytope algebra is isomorphic to the quotient of
E defined above. This latter result was known in slightly different formulations; see
[Kh-Pu] and [Mo1]. Then our main theorem follows by putting everything together.
Moreover, our map n: R— S turns out to be related to volume by n(H%)=d!vol(P)
(more generally, = is related to Fourier transform, see 5.3) and this fact implies a
separation result for the polytope algebra, originally due to McMullen (see 5.4).

1. The Hodge spaces of fans.

1.1. Let K be a subfield of R, and let ¥V be a K-vector space of finite dimension
d. Let Vg:=V ®gR be the associated R-vector space.

A (polyhedral, convex) cone ¢ in V is an intersection of finitely many closed
half-spaces of V. We denote by gy the associated cone in Vg, and by L(o) the linear
span of ¢ in V. A fan in V is a finite set X of cones, such that: A

(i) IfoeZ and 7 is a face of o, then 7€ X.

(ii) Ifo,7€Z then ont is a face of o.

(iii) If €2 then ¢ contains no line.

For 0<i<d, the set of i-dimensional cones of Z is denoted by X(i). The support
| X'| of Z is the union of its cones; X is complete if | Z|=V.

A sheaf # on a fan X is a collection of abelian groups (%,),.; and of maps
Por: Fy— F. (0€X, T a face of o) such that:

(1) pge: F,— &, is the identity map for any g€ X.

(i)  Po,es=Pares° Paya, Whenever c3co,co, €2,

There are obvious notions of morphisms of sheaves on X, and of exact sequences.

Any abelian group F defines a sheaf on X with value F at all cones of X, each map
p,. being the identity. We denote this constant sheaf by F.

To any sheaf # on X we associate cohomology groups H'(#) (i>0) as follows.
Choose an orientation on each ggeZg. For 0eX and a face t<o of codimension
1, set ¢,.,=1 if the orientations of ¢ and 7 agree, and ¢,,= — 1 otherwise. Set

C(F)= & %

geX(d—1i)
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and let 6°: C{(F)— C'* (&) be the direct sum of the maps

Z sd'fpd't: ‘a}.d - @ '9-;1: .
ico te¥d—i—1),t<¢c
It is easily checked that 6'*10§'=0, i.e., (C¥(F), J) is a complex; let H{(%) be the i-th
cohomology group of this complex. If X is complete, then H°(F) consists of all elements
in @, .54 %, that agree on (d— 1)-dimensional cones.
In our study of the cohomology groups of certain sheaves, we will use the following
observations.

LemMMmA. (i) Any exact sequence of sheaves on X
0-F >F >F">0
induces a long exact sequence of cohomology groups
s> HTYF ") > H(F) > H(F)» H(F") > H(F)>-- .

(i) If F is a constant sheaf, then H F)=0. Moreover, for 0<i<d—1, the group
H(F) is identified with the (d—i— 1)-st homology group of | X |gn S®~* with coefficients
in F, where S®~ ' is a sphere centered at 0.

Proor. (i) The exact sequence
0-F >F >F" >0
induces an exact sequence of complexes
0> CHF)>» CHF)-> CHF'") -0

and hence a long exact sequence of cohomology groups.

(ii) The vanishing of HYF) is immediate. Intersecting each cone in Xp with
S?~1, we obtain a polyhedral decomposition of | Z|gn S?~!. Moreover, the complex
(C4 " YF))o<i<a—1 is identified with the usual chain complex associated to this
polyhedral decomposition.

Finally, observe that the tensor product over K of any two sheaves of K-vector
spaces is a sheaf. It follows that for any sheaf &# of K-vector spaces, and for any integer
n>0, we have symmetric powers S"# and exterior prowers A" .

1.2. Let X beafanin V, and let V* be the dual space of V over K. For any 62
we denote by o the set of all fe V* that vanish identically on 6. The assignment ¢ — o+
defines a sheaf # of K-vector spaces on X, the maps p,,: &, — %, being the inclusions
otcth

For any non-negative integer j, we have the j-th exterior power A’#. We set:

HY(Z): = HNF) .

The spaces (H"/(X)), ; will be called the Hodge spaces of 2. A related construction can
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be found in [Od2] for complete, simplicial fans.

PROPOSITION.  With the notation above, we have:

(i) H%(2)=0 for i<j.

(ii) If| Z| is not contained in any hyperplane, then H*¥(2)=0 for j<d, and H*4(X)
is isomorphic to K.

(iii) If X is complete, and if e is a positive integer such that X(e) consists of simplicial
cones, then H(2)=0 for i—j>d—e.

Proor. (i) Observe that the dimension of &, is the codimension of &, and hence
N'#Z,=0 for all geX(d—j). By the definition of cohomology groups, we have
H{(N\'#)=0 for i<j.

(i) The group H*/(Z) is the cokernel of the map

0: @dez(l)/\jal - Nr*
the direct sum of the inclusion maps A’oc* - A/V*. We check that 6 is surjective for
j<d. Because | 2| is not contained in any hyperplane, we can choose linearly independent
vectors ey, ..., e; in ¥ such that each e; generates an edge of o; call this edge ;. Then

a basis of A’o} consists of the wedge products of any j vectors among the e, (n#i). It
follows that the map

@i Not > Nv*
is surjective, and this proves our assertion.
(iii) The proof of this statement is somewhat technical, and hence we begin with

the simplest case, where X is simplicial (that is, e=d). Then, for any 6 € X, we have an
exact sequence of K-vector spaces

0-0t>V*— @IEG(I)L(T)* -0,

where L(7) denotes the line generated by the edge t of 4; the map on the right is the
direct sum of the restriction maps from V* to the duals of the L(z)’s. For any te 2(1)

and any g€ X, we set
K if 1co
0 otherwise .

K(1),= {

Then K(z) is a sheaf: the constant sheaf on the star of t. We set
G=@ .51, KO .
Then we have an exact sequence of sheaves
0-F >V*>5%-0
and hence a long exact sequence (the Koszul complex)

0> NF > NV*->N'QF > - > N TV*QS"G > - 559 0.
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We claim that each sheaf A/~"V*® S"9 is acyclic, that is, H(A’~"V*® §"%)=0 for
all i>1. Cutting the Koszul complex into short exact sequences and repeatedly using
Lemma 1.1 (i), we see that the claim implies the vanishing of H"(/\jgf’) for i>j, as
required.

To prove the claim, observe that H{(A/""V*® S"%) ~ A/ ""V*® H'(S"%). If n=0,
then the vanishing of H(A\/V*) follows from Lemma 1.1 (ii). If n>1, we have

S"G=D., ..oexyZ@is- T
where the sheaf ¥(z, ..., ,) is defined by

K if o contains t,,..., 1,

G(tyy .- r,,),={

0 otherwise .

Denote by St(, ..., t,) the union of cones in Xg that contain t,,...,7t, and by
St(ty, ..., T,) its closure. Then, as in the proof of Lemma 1.1 (ii), we obtain the vanish-
ing of H(%(z,, ..., t,)) and isomorphisms

H(%(,,...,t,)=H;_;_Stty, ..., 7,)nS* 1, St(ty, ..., T,)n S 1, K),
where the latter are homology groups of the pair consisting of St(z,, ..., 7,)n S ! and
of its boundary. But these groups vanish, because the space St(ty,...,7,)n S9! is

contractible. This ends the proof of the claim.
Now we turn to the general case, where e is arbitrary. Then the sequence

0-ot-aV*s P Lr)*->0

tea(l)

is left exact; this sequence is exact if and only if ¢ is simplicial. Defining K(t) (for
1€ (1)) and ¥ as before, we obtain a left exact sequence of sheaves

0-F ->V*¥*>5%9%-50.
We complete it to an exact sequence
0-F s V*5G>H# >0

for some sheaf # on X, such that #, =0 if and only if ¢ is simplicial. Now, using [Le]
or [Ni], we obtain a long exact sequence of sheaves

,n—y..._),

0> NF = Fg= T =

N

where #; , denotes the sheaf

D  AVOSERINH .

a+b+c=j,b+2c=n

In particular, & , contains /\j “"V*® S"9 as a direct factor, for n<j. Moreover, for a
simplicial cone o, we have
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F) ={/\f"‘V*®S"€€ if n<j
277 o if n>j.

Therefore, we have a long exact sequence of sheaves
0> ANF >NV NV*@F > - > (NT"V*RS5"9) D F,
- SO F] = F 1 0

with sheaves &%/, (2<n<j+1) that vanish on any simplicial cone, in particular on
any cone of dimension at most e. By the definition of cohomology groups, we have
then HY(%;,)=0 for i>d—e, and for arbitrary n. On the other hand, the sheaves
N/ ""V*® S"% are acyclic by the first part of the proof. It follows that H{(A\’#)=0 for
i—j>d—e.

As a special case, we obtain the following result, a version of which appears in

[0d2].

COROLLARY. For any complete, simplicial fan X, we have H"J(2)=0 if i#j, and
HOY(E)~ K.

1.3. For any cone o, we denote by rel(a) the kernel of the (surjective) summation
map

D eor) 1) > Lio)

(recall that L(o) denotes the linear span of ). Then rel(o) is the space of linear relations
among the edges of . If 7 is any face of g, then rel() is identified with a subspace of
rel(o).

Similarly, for any fan X, denote by rel(2) the kernel of the summation map

(—Btesz(r)a V.

Then the dimension of rel(2) is the number of edges of X, minus the dimension of the
linear span of [ X].
Finally, denote by Rel(Z) the cokernel of the map

[T relx) > ][] rel(o)
teXd—1) oeX(d)
defined in a way dual to 1.1. Then Rel(Y) is a “globalization” of the spaces of linear
relations among the edges of d-dimensional cones in X. The compatible injective maps
rel(¢) — rel(2) induce a linear map u: Rel(X) — rel(2). The following statement describes
the first non-trivial Hodge spaces H*'!(2) and H*!(Z) in terms of the map u. Another
interpretation of H':!(Z) will be given in 2.1 below.

PrROPOSITION.  With the notation above, the transpose map u*: rel(2)* — Rel(2)*
fits into an exact sequence
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0 —» HVY(Z) - rel(2)* - Rel(X)* - H>(£) > 0.
ProOF. We use the notation of the proof of Proposition 1.2: there is an exact
sequence

0->F >V*5% 5 # >0

withd=@@ 51, K(x). Moreover, each A, is the cokernel of the map V* — (—BIEO(I)L(r)*.
Therefore, J#, is identified with rel(c)*, and H(s#) is identified with Rel(2)*. On the
other hand, there is an exact sequence

0 V* > HY%) > rel(2)* - 0.
Denote by %, the cokernel of the map # — V*. Then, from the exact sequences
0-F >V*>%F -0, 0-oF, 5% >H#->0
and from the vanishing of H°(#), H(V'*), H%(V*)and H'(%), we obtain exact sequences
0-V*> HYF)-» H(F)>0,
0- HY#,) —» H°%) - H(#) > H\(F,) -0
and an isomorphism H(#,) ~ H%#). Therefore, we have an exact sequence
0> HY(F)—> HY9)|V* > Ho(H) > H(F) - 0.
Moreover, the map H%(%)/V* — H(o#) is identified with u*: rel(X)* — Rel(2)*.

COROLLARY. Let X be a complete fan such that any two non-simplicial cones in X
intersect only at the origin. Then H*(X)=0.

ProOF. The assumption implies that any (¢d— 1)-dimensional cone in X is simplicial.
Then Rel(Z) is the direct sum of the rel(o) (¢ a non-simplicial, d-dimensional cone in
2). Any two such cones have no common edge, and hence the map Rel(X)— rel(2) is
injective.

1.4. Consider a d-dimensional convex polytope P in V*. To each face F of P, we
associate the dual cone g of the convex cone generated by the vectors f—p with feF
and pe P. Observe that the dimension of o is the codimension of F. The set (0f)pcp
is a complete fan: the outer normal fan of P. We deriote this fan by Xp. The assignment
F> o sets up a bijective, order-reversing correspondence between faces of P and cones
in Xp.

For 0<i<d, denote by f;(P) the number of i-dimensional faces of P. Recall that
the h-vector (hy(P), hy(P), ..., hy(P)) is defined by

. .
hy(P)= Y. (- 1)f-f( ]’ )f,-(P) .
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PROPOSITION.  For any convex d-polytope P, we have
BP)= E (~ 1 dim(d (2.
Proor. The Euler-Poincaré characteristic of the complex C*(A’#) is equal to
(=1 Y dim(Aleh)= Zd: (- 1)i< l:)f.-(P)
i oeZp(d—i) i=j J

on one hand, and to
d
Y (— ) dim(HNF) = Y (~ 1) dim(H(Z)

on the other hand.

COROLLARY. For any d-dimensional convex polytope P such that each edge of P
lies in exactly d—1 facets, we have

h;(P) < dim(H"/(Zp))
with equality if P is simple.

PrOOF. The assumption on P means that any (d— 1)-dimensional cone in X, is
simplicial. Then, by Proposition 1.2 (iii), we have H*{(Zp;)=0 for i>j+ 1. It follows that

h(P)=dim(H(Z ) — dim(H'* 1 I(Z,)) .

1.5. We maintain the notation of 1.4. In the case where K=R, we have the
notation of a Minkowski weight on P, defined as follows (see [Mcl, §5], [Mc2]). For
any faces F and G of P such that F'is a facet of G, denote by ny ¢ the outer unit normal
vector to F in G (for some fixed Euclidean norm on V*). Then a j-weight on P is the
assignment to each j-dimensional face F, of a real number a, such that ) . _ . agng =0
for each (j+ 1)-dimensional face G. The set Q;(P) of all j-weights on P is a real vector
space; it turns out to be independent of the Euclidean norm. In fact, Q;(P) only depends
on Xp, as shown by the following:

PROPOSITION.  For 0<j<d, the space Q;(P) is isomorphic to H"(X}).

PrOOF. The complex C*(A\’#) is zero in degree <j. Therefore, by definition,
H7"i(X}p) is the kernel of the differential

J: @ae,rp(ﬂl—j)/\jal - @rezp(d—j— 1)/\jtl :
We identify (d—j)-dimensional cones in X, and j-dimensional faces of P. For such a
face F, the space o is identified with lin(F) (the direction of the affine space generated
by F). The Euclidean structure on V defines a volume form on lin(¥) and hence an
identification of A’lin(F) to R. Therefore, the space @, 4-;/\’o" is identified with
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the space of real-valued functions on the set of j-dimensional faces of P. On the other
hand, for any (j+ 1)-dimensional face G, we have an isomorphism A’lin(G) - lin(G) that
sends the canonical generator of A’lin(F) (where F is any facet of G) to & gnp -
Therefore, ¢ is identified with the map

(ap)r —’< Z aG”F,G) .
G

F<G
But the kernel of this map is Q;(P).

This isomorphism, combined with Corollary 1.4, implies the following refinement
of Theorem 6.1 in [Mcl].

COROLLARY. For any d-dimensional convex polytope P, such that each edge of P
lies in exactly d—1 facets, we have

dim Q;(P)>h;(P) .
Moreover, equality holds if P is simple.

ReEMARK. To afan X in a vector space V over @, and to a lattice in V, is associated
a complex toric variety X= Xj, see [Od1]. Denoting by Q4 the sheaf of differential
J-forms on X (in the sense of Zariski-Steenbrink), we have isomorphisms

Hi(X, Q) ~ H"(2)®,C,

see [Da, 12.4.1]. In this setting, the statements (i) and (ii) in Proposition 1.2, and its
corollary as well, are due to Danilov, see [Da, §10].

If moreover X is complete, then the group H':!(Z) is identified with the rational
Picard group of X; the presentation

0 - H"(2) - rel(X)* — Rel(Z)*

is equivalent to Eikelberg’s determination of the rank of the Picard group, see [Eil]
and [Ei2].

Finally, the notion of a Minkowski weight can be adapted to a rational, complete
fan; for such a fan X, the space of all Minkowski j-weights is isomorphic to the j-th
Chow cohomology group of X; with rational coefficients, see [Fu-St, Theorem 1].

2. The algebra of continuous, piecewise polynomial functions.

2.1. We denote by S the algebra of K-valued polynomial functions on V. Given
a fan 2 and a cone o € 2, we denote by R, the space of K-valued polynomial functions
on the linear span of g; then R, is the quotient of S by its ideal generated by ¢*. For
T <o, we have the restriction map R, — R,, f +— f|,, and this defines a sheaf of S-algebras
R=(R,);cz On 2. Moreover, S, R, and £ carry a natural grading.

We set
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RZ‘::{(fa)ae).‘ | deRw fa|r=j;’ VICG} -

Then R; is a graded algebra over S: the algebra of continuous, piecewise polynomial
Sfunctions on 2. If | 2| is purely d-dimensional, then R; is the space of global sections of .

For any non-negative integer n, we denote by R;, the homogeneous component
of degree n in R;. In particular, R; ; consists of all continuous, piecewise linear functions
on X. If X is complete, then Ry, contains the space V* of globally linear functions,
and the quotient Ry ,/V* is identified with H'-!(Z). Namely, the exact sequence

0-F->V*>2,-0
induces a long exact sequence of cohomology groups, beginning with
0->V*>R;, > HY(F)-0.

The components of higher degree in R; are related to higher Hodge spaces in a more
complicated way, by the following statement.

THEOREM. Let X be a complete fan.

(i) The graded S-module Ry has a canonical increasing filtration such that

d
grR,cS® @ H“(2)

i=0

where gr Ry is the associated graded module, and where each space H"(X) occurs in degree i.
(ii) If moreover H'*V{(2)=0 for 1 <i<d—2, then equality holds in (i).
(iii) Finally, if H*(X)=0 for i#j, then H'(®)=0 for all i>1.

ProOF. We have an exact sequence
04, ->S>R, -0

where .#, denotes the ideal of S generated by o*. Therefore, we have an exact sequence
(the Koszul complex)

05 SOAG >SN '6t> - 5>S®c*>S—>R,-0

and this defines a resolution of the sheaf # by sheaves S® /\’#; the differentials are
homogeneous of degree — 1. We cut this resolution into short exact sequences

0-SONF >SOAN'F 6,0
0“"594—1—’5'@/\‘1—29'—_"52—2_’0

0-8,->SRF -6 -0
0-86->S->2-0.

Because (&), is a quotient of A’c*, we have (&)),=0 for dim(c) >d—j, whence H &)=0
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for i<j. The same holds for H(/\’#) by 1.2. Therefore, we have long exact sequences
0> S® H (A" 1F) > HH6,_,) » S® HAN'F) - S® HYA' ' #)
0> SQRH " HN"2F) > H X&) » H ' (6-) > S H N2 F)

0 S® H(A\*F) > HX&,) » H¥ &) » S® H3(N\*F)
0> S® HYF) > HY(6,) » HX&,) > S® HYF)
0—S—H%) - H'(&) > S®H'(K).

But H'(K) vanishes by Lemma 1.1 (ii). It follows that the quotient R{" = R,/S contains
an S-submodule isomorphic to S® H!'!(X). Moreover, the quotient

RP=R/(S®S®H"'(2))
is an S-submodule of H%(&,), with equality if H*(X)=0. Further, the exact sequence
0 - S® H>*(Z)— HY(&,) » HY&) - S® H¥X(2)

presents R{?) as an extension of a submodule of S® H??(Z), by a submodule of H3(&;).
Continuing this way, we construct the filtration of Ry, and this proves (i) and (ii).

If moreover H'(/\’#)=0 for i#j, then one obtains by descending induction over
Jj: HY(6)=0 for i#j. In particular, H'(&;)=0 for i>2, and this implies the vanishing of
Hi{(R) for i>1.

COROLLARY. Let X be a complete, simplicial fan. Then the graded S-module Rj is
[ree of finite rank, with generators in degrees 0, 1, . .., d. Moreover, the space of generators
of degree i is isomorphic with H"(X); in particular, the space of generators of degree d
is one-dimensional. Finally, the complex

0-R;— @aez(d)Ra - ®ae}.‘(d— yRs— -
is exact.

The last statement answers a question of Bernstein and Lunts; [Be-Lu, p. 128].
Observe that the results of the corollary hold for certain non-simplicial fans too, for
example for three-dimensional fans ¥ such that any two non-simplicial cones in X
intersect only at the origin. Then the spaces H?!(X) and H*2(X) vanish in this case,
by 1.3 and 1.2 (ii).

The methods of this section can be used to study the algebra of piecewise polynomial
functions which are continuously differentiable of a fixed order (such algebras are
considered in [Bil] and [Bi-Ro], as modules over the algebra of polynomial functions).
This will be developed elsewhere.

2.2. For each simplicial, d-dimensional cone o, we denote by @, the product of
the equations of the facets of . Then @, €S is uniquely defined up to scalar multi-
plication. We normalize @, as follows: we choose a non-zero element in A?V, and we
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impose that the equations of facets of ¢ are non-negative on o, and that the absolute
value of their wedge product is 1. We denote by ¢, the function on ¥ such that

?,(v) if veo

0 otherwise .

P4(0)= {

Then ¢, is a continuous, piecewise polynomial function that vanishes outside the inte-
rior of o.

THEOREM. Let X be a complete, simplicial fan. Then there exists a non-zero linear
map ny: Ry— S such that

(i) my is S-linear,

(ii) 7y is homogeneous of degree —d.
Moreover, (i) and (ii) define s uniquely up to scalar multiplication, and a choice of ny is
given by

mn= Y I

cesd) Py

for any f=(f,)€ R;. Then ng(e,)=1 for any o€ Z(d).

Proor. If n; exists, then it vanishes on any element of Ry of degree 0, 1, ...,d—1,
by assumption (ii). Now (i) and Corollary 2.1 imply that =y is unique up to scalar
multiplication.

By Corollary 2.1 again, the quotient of R; by its S-submodule generated by ele-
ments of degree at most d— 1, is isomorphic to S. The resulting map R;— S satisfies
the conditions (i) and (ii), and hence it can be taken as =;.

For f=(f,) in R;, set

o

ageX(d) ¢,

g=

Then g is a rational function on V, and the denominator for g is the product of the
equations of (d— 1)-dimensional cones of . We claim that g is a polynomial function
on V; for this, it is enough to check that no o€ X(d—1) is a pole set of g. Denote by
o' and ¢” the cones in X(d) having ¢ as their common face. We can find genera-
tors ey, ..., e4_1, €; (resp. e;) of edges of ¢’ (resp. ¢”’) such that e; A - Ae;_  Aej=1
and that e; A Ae;_yAej=—1. Then there exist a;,...,a,-, in K such that
Zf;ll a;e;=ey+ey. Let x;,...,x, in V* form the dual basis of e, ..., e;_;, ;. Then
we have

d-1
e =X1" X, Por=—Xg l_Il (x;i+aix,) -

iz

It follows that
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£ for d -1 d—1
—E;_—-FEL":X;I( l_[ Xi l(xi+aixd)—l><fa’ H (xi+aixg)—for H xi)
- o i=1 i=1 i=1

has no pole along x;=0, because f,.— f,. is divisible by x,. Therefore, g has no pole
along ¢, and this proves our claim.

Now the map py: f+>g sends R; to S, and pj satisfies the conditions (i) and (ii).
Moreover, we have pg(p,)=1 for all g€ X(d), and hence p; is non-zero. By the first
step of the proof, py is proportional to 7.

ExampLE. Choose affinely independent points xq, X4, ..., X; in V*. Let P be the
simplex with vertices x, x;, ..., x;: let £ be the normal fan to P. Then the function
f:V- K
v - max(<x09 l)>, e <xd, U>)

(the support function of P) is piecewise linear on X, and we can normalize 7y so that,
for any integer n>1:

d x?
nx(f")= ';0 ————n .(x._x.) .

Denote by A, the complete symmetric function of degree n, i.e. the sum of all monomials
of degree n. Then
Ry f(Xps X1y evey X if n>d
il f")={ (X0, X, 2)

0 otherwise .

Namely, this follows from the identity

e C | B
i=o 1—1x; i=o\ 1—1x; j=i 1—x;'x;

by expanding both sides into power series in .

2.3. We keep the notation of 2.1 and 2.2.

THEOREM. Let X be a complete, simplicial fan; let X' be a simplicial subdivision of
2. Then there exists a unique map my 5: Ry — Ry such that

(1) mps()=1,

(ii) my 5 is Ry-linear,

(iii) 7y 5 is homogeneous of degree zero.
Moreover, we have for any c€ X and f=(f,)€ Ry

Tc}.",z‘(f)o‘ = ¢a Z &

' <ag,0'€l'(d) (Dd'

PROOF. Let n: Ry — R; satisfy (i), (ii) and (iii). Then the map nzom: Ry — S is
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S-linear and homogeneous of degree —d. Moreover, by (i) and (ii), the restriction of
this map to R; is the (non-zero) map n;. Therefore, by 2.2, we have nzon=rm;..
Now choose o € 2(d), whence ¢, € R;. Then we have for all fe R;.:

3 (fp o) =nx(n(f9,)) = nx(@n(f)) = (f),

(the last equality follows from the formula for 7y given in 2.2, because ¢, n(f) vanishes
outside o). Using 2.2 again, we obtain

=, . fo

ocaoesd) Py

This proves the uniqueness of m=m;. ;. For the existence, we define n by the formula
above. Then (ii) and (iii) are obvious, whereas (i) and the fact that = has values in Ry
can be checked as the proof of 2.2.

COROLLARY. (i) For any fe Ry< Ry, we have ng(f)=nf).
(ii) For any simplicial subdivision 2" of X', we have Ty yo Ttgs 5 =T5n 5.

The first assertion follows from (i) and (ii), and the second one from the uniqueness
of my 5.

Denoting by R the algebra of all continuous, piecewise polynomial functions on
V (with respect to no specified fan), we conclude that there is a canonical map 7: R—> S
that is S-linear and homogeneous of degree —d. Moreover, for any complete, simplicial
fan X, there is a canonical, Ry-linear projection R — R; that is compatible with 7.

REMARK. Let V' be a K-vector space, and let u: V' — V' be a K-linear map. Then
composition by u induces an algebra homomorphism u*: R’ — R where R’ denotes the
algebra of continuous, piecewise polynomial functions on V’. We claim the n vanishes
on the image of u*, whenever u is not an isomorphism. To check this claim, we may
replace V' by the image of u, and hence assume that u is surjective. Now the composition
nou*: R'— S is a homogeneous, S'-linear map of degree —d. But the S’-module R’ is
generated in degree at most dim(?’)<d, and this implies our assertion.

In other words, © vanishes on functions that do not depend on all variables.

2.4. We keep the notation of 2.1 and 2.2.
THEOREM. Let X be a complete, simplicial fan. Then the S-bilinear symmetric map
Ry xRy > S
(f>9) - nl/f9)
is a perfect pairing, i.e., it induces an isomorphism Rz —»Homg(Rj, S).

ProOF. We first check that the map Ry —Homg(Ry, S) is injective. Let fe Ry such
that ny(fg)=0 for all ge R;. For any o€ 2(d), choose h,€S. Then the functions ¢,h,
glue together into a continuous piecewise polynomial function g on X, because these
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functions vanish on every (d— 1)-dimensional cone. Therefore, we have:

0=nfg)= ). foh,.

ceX(d)

This holds for an arbitrary family of 4,’s, whence f=0.

Now we check that the map R;— Homg(R;, S) is surjective. Let u: R;— S be an
S-linear map. Define a function g, on each ¢ € Z(d) by g,=u(p,). We check that these
function glue together into g in R;. Namely, let g € X(d— 1) separate two maximal cones
¢’ and ¢”. Then ¢, — ¢, = f,h, .~ where f, is an equation of o, and where A, ,. € R;.
Therefore, g, —g,-= f,u(h, ,), i.e. g, and g,. agree on o.

Denote by @, the product of the equations of all (d— 1)-dimensional cones of Z.
Then for any feR;, we claim that

fPy= Z 0ofsPs/ P, .

ceZ(d)

Indeed, both sides agree on any given ¢ € X(d), because ¢,|c=®, and ¢,|o =0 for t#a.
Moreover, because f,&@5/®P, e S, we have

ufd)= Y, we,)f,P,/Ps= Y. 4,1, P5/®,

ae2(d) ceX(d)

and hence

UN= Y 9ofol®s=719).

ageX(d)
This concludes the proof.

Let R; be the quotient of the algebra R; by its ideal generated by homogeneous,

globally linear functions (i.e. by V*); for feR;, let f be its image in R;. By Corollary
2.1, we have an isomorphism of graded vector spaces

a
R, ~ & H(X).
j=0

Using Nakayama’s lemma, we derive easily the following:
COROLLARY. For any complete, simplicial fan X, the K-bilinear, symmetric map
R;xR;» K
(£.9) - ns(f9)0)
is well-defined, and it induces non-degenerate pairings
HM(Z)x HY 7 i(Z) - K.

In particular, the spaces H/#(X) and H? /47i(X) have the same dimension. This
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statement implies the Dehn-Sommerville equations, by Corollary 1.4: for any simple
d-dimensional polytope P, we have h;(P)=h,_;(P).

REMARK. Let X2 be a complete, simplicial fan in a vector space V over @Q; choose
a lattice in V. These data define a toric variety Xj; the algebraic objects of this section
have the following interpretations in terms of the geometry of Xy, see [Br] for details.

The algebra R; is isomorphic to the equivariant cohomology ring of X with rational
coefficients. Moreover, for any simplicial subdivision X’ of X, the map 7y ;: Ry — R;
is identified with the push-forward map defined by the morphism Xj. — X;. Finally, the
map wy: Ry— S is the push-forward defined by the constant morphism X; — point. It
follows that the (ordinary) cohomology ring of X; with rational coefficients, is isomorphic
to Rj; recall that this ring coincides with the Chow ring with rational coefficients, see
[Da, §10]. In this identification, the bilinear symmetric map in the corollary above,
becomes the intersection product.

So the algebra R is the direct limit of rational Chow rings of smooth, complete
toric varieties. In turn, by work of Fulton and Sturmfels, this direct limit is isomorphic
with the rational polytope algebra, see [Fu-St, Theorem 4.2]. The latter result was one
of the motivations for [Mc4], [Br] and the present paper.

3. The ring of continuous, piecewise exponential functions.

3.1. We denote by Z[V*] the group ring over Z of the abelian group V*. Then
Z[V*] s a free abelian group over the symbols e*, x € ¥*. The multiplication in Z[ V'*]
is defined by e*e* =e**?. The subgroup of Z[V'*] generated by the e*—1 (xe V*) is an
ideal; we denote it by I.

We will need the following description of the quotients I"/I"**, where I" denotes
the n-th power of the ideal I.

PROPOSITION. The map V* > I/I?, x+>e*—1 (modI?) is a group isomorphism.
Furthermore, this map induces a ring isomorphism

SV~ @ I
n=0

where SZ(V*) denotes the symmetric algebra over Z of the abelian group V*.
Observe that, since the additive group V* is divisible, the canonical map
SHV*) ~ S(V*)
is an isomorphism.

ProOF. Denote by (x) the image of e*—1 in I/I?. Then (x—y)=(x)—(y) by the
following relation:

e V—1=(*—1)+(7V =1+ —1)e"-1).
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Therefore, the map V*— I/I?, x+(x) is a group homomorphism. Observe that any
uel/I* can be represented in I by some Y ;_, a;(e™—1) with ¢;e Z and x;e V'*. So
u=Y'_, ai(x;)=(} -, a:x;) and our map is surjective. On the other hand, if (x)=0 then
e*—1is in I?, and hence the Taylor expansion at the origin of exp(x)—1 has order at
least two: then x=0. So our map is injective, and the first assertion is proved.

For the second assertion, observe that the map x+(x) extends uniquely to a
homomorphism of graded rings

SyV* > @ I
n=0

by the universal property of the symmetric algebra. This homomorphism is surjective,
by the first assertion. To check the injectivity, we may replace V'* by a finitely generated
subgroup G. Then G is a free abelian group, and hence its group ring Z[G] is identified
with the ring of Laurent polynomials in r variables x,, ..., x, with integral coefficients;
here r is the rank of G. Moreover, the ideal I is generated by e**—1,...,e*—1, and
these elements form a regular sequence in Z[G]. But our statement is well-known in
this case.

3.2. Let X be a fan. For any cone o, let E,, be the group ring over Z of the
abelian group L(o)* (the dual of the linear span of ¢). For any 6 € X, and for any face
7 of o, the inclusion L(t)< L(¢) induces a surjective map L(o)* —» L(7)* and hence a
surjective homomorphism E, - E,, [+ f|,. We set

E}.‘:={(fa')ae£ | fcrEEa’ fa\r=frv‘tca} *

Then Ej is the ring of continuous, piecewise exponential functions on Z; there is an obvious
structure of Z[V*]-module on Ej.

In contrast to the algebra of continuous, piecewise polynomial functions as a
module over the algebra of polynomial functions, the Z[ V*]-module Ej; is not finitely
generated in general. Indeed, consider the case where ¥'=K is one-dimensional, and
where ¥ consists of the two half-lines K* and K™, together with the origin. Then
elements of Eyare pairs (f *, f ~)in Z[K] such that £ *(0)=/~(0). Therefore, the map

Es—>Z[K]IxI, f—(f"(f"=f)|K")
is a ring isomorphism. Using 3.1, it follows that
E;/IE;~ZxK.

In particular, the abelian group E;/IE; is not finitely generated, and hence the
Z[K]-module Ej; is not finitely generated. Observe that this module is not free either.

So it would be difficult to study E; by using the homological methods of the
previous sections. We will use a different approach, by induction on the number of
cones in X. This approach was used in [Br] for the algebra of continuous, piecewise
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polynomial functions.

For any maximal cone o€ X, we denote by E, the set of all fe E; such that f
vanishes identically outside ¢ °. Then E,o is an ideal of Ej. In the case where X is simplicial,
we construct elements of E . as follows. Let T be an edge of . Then there exists a
non-zero continuous, piecewise linear function ¢, that vanishes at all edges of X, except
for 7. Moreover, ¢. is uniquely defined up to scalar multiplication; it is called a Courant
Sfunction in [Bi2]. Observe that e®*—1 is in E; and vanishes outside the star of t.
Therefore, Hted(l)(e“”— 1) is in E o whenever ¢ is a maximal cone in Z.

PROPOSITION.  Let X be a simplicial fan; let ¢ be a maximal cone in .
(i) The sequence

0> E,o— Ey— Eg\ (50

is exact.
(i) The Z[V*])-module E, is generated by all ]—L“(l)(e‘”‘—l) where @, is a
Courant function associated with .

Proor. (i) Clearly, the sequence is left exact. To prove the surjectivity of the
restriction Ey — Ey- (4, it is enough to check that any continuous, piecewise exponential
function on the boundary of ¢ extends to an exponential function on ¢. Choose
coordinates x,, ..., x; on ¥ such that '

a=<h (xi20)>n<. fd] (xj=0)).

For any subset J of {1, ..., r}, set

a,:=an< N (xj=0)> .

jtJ

This sets up a bijection between subsets J of {1, ..., r} and faces o, of 6. By assumption,
for any proper subset J<{1, ..., r}, we have an exponential function fy(x;);.; on gy,
and these functions are compatible on the boundary of ¢. Now set

Sxg, oo, x9)= Z (_l)r—l_card(J)f:l(xi)jeJ
Je{1,,r}
(sum over all proper subsets of {1, ..., r}). Then f is the desired extension.
(i) ForJc{l,...,r}, denote by x; the r-tuple whose j-th coordinate is x; if j¢ J,
and 0 otherwise. Define a map p,: E,— E, by

pf)x)= , Y (=TT f(x))

{1,,r}

(sum over all subsets of {1, ..., r}). Then p, is a projection of E, onto E,.. Moreover,
we have
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Po-(ealx' +-~-+adxd)=ea,+1x,+1+---+a¢xd lL[ (eanj__ 1) .
j=1

This implies our statement, because we have

[T 1= T "=

tea(l)

for a suitable normalization of the ¢,’s.

COROLLARY. For any simplicial fan X, the abelian group E; is generated by
exponentials of piecewise linear functions on X.

ProOF. Choose a maximal cone o € Z, and let fe€Ej;. By induction on the number
of cones in X, we may assume that

r
flsne= Zl a;e’s
S

with a;e Z and f; continuous and piecewise linear on 2\ {¢}. Then by the argument
of the proof of 3.2, each f; extends to a continuous, piecewise linear function on ZX.
Therefore, we may assume that f |x\(o}=0’ i.e. that fe E,.. Now we conclude the
argument by statement (ii) above.

3.3. Let X be a fan, let E; be the ring of piecewise exponential functions on Z,
and let J; < E; be the kernel of the evaluation at 0. Clearly, we have IE; < J; and hence
I"Eyc J§ for all integers n> 1.

THEOREM. For any simplicial d-dimensional fan X, and for any integer n>1, we
have J2t4c I"E;.

ProoF. We prove this theorem by induction over the number of cones in X. The
first step of the induction is trivial. Choose a maximal cone g€ X, and let feJ2*?. Then
f |z\(,)eJ§{‘(’,,,. Using the induction hypothesis and the surjectivity of the restriction
E; - Eg\ (), We may assume that f|s\ ,,=0. Then feE,onJ3*, ie. f,eE,onI"*E,.
It is enough to prove that f,elI"E,. For this, we use the notation of the proof of
Proposition 3.2. Then f,=p,(f,)ep,(I"*°E,). Therefore, it is enough to check that

P " E) = I'p (E,) .

We observe that p,=p, - -p, where p,(f)=f—/|.-o. Moreover, the p’s commute
pairwise. For any f, g in E,, we have

(*) pi(f9)=p:(f)g +f|x,- -oPi(9) -

It follows that p,(I2E,)c Ip,(E,) (observe that feI implies f |x,-=0€1) and, by induction
on n, that
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(%*) (" 'E) < I'p(E,) .
To end the proof, it suffices to check by induction on i that

pi 'Px(I"HEa)CI" i DB -

This statement holds for i=1; if it holds for i— 1, then we have (using (*) for the second
inclusion, and (*#) for the third one)

pi - pi(I"E) e p(I" 'pi_y - - py(EL)
cp(I" Npioy pUE)+T" pie - - py(E,)
cI'p(Epi-1 " " P1(E)+1"p; - py(E,)
<I'p; - py(Ey) -

ReMARK. Corollary 3.2 can also be deduced from [Mol, §5], whereas Theorem
3.3 is a sharpening of the main result of [Kh-Pu]; see 5.1 below. In the case where
K=Q, there are close connections between the algebra of piecewise exponential func-
tions on a fan, and the equivariant K-theory of the corresponding toric variety, see
[Mo2].

4. Piecewise polynomials and piecewise exponentials.

4.1. Recallthat Ry denotes the graded algebra of continuous, piecewise polynomial
functions on the fan X, and that S denotes the graded algebra of polynomial functions
on V. We denote by R; ., (resp. S,,) the sum of the homogeneous components of
degree at least n in Ry (resp. S). For any maximal cone o€ 2, let R o be the ideal of
R; consisting of functions that vanish identically outside the relative interior of a.

PROPOSITION. Let X be a simplicial fan, and let ¢ be a maximal cone in X.
(i) The sequence

0— Ryo—> Ry = Ry (40

is exact.
(ii) The S-module R, is generated by the function | |
Sfunction associated with 1 (see 3.2).
(iii) For any n=0, we have Ry 5 ,+4<S5,Rs<R; 5,.
(iv) For any n>0, we have R,on S, Ry=S, ,Ro.

cea(1) 9= Where @ is a Courant

ProoF. The statements (i) and (ii) (resp. (iii)) are checked as in 3.2 (resp. 3.3).
For (iv), it is enough to prove that R,on S, ,R is contained in S ,R 0. For this, we may
replace ¢ by its linear span, and hence we may assume that o is d-dimensional. Then
the S-module R, is generated by

o.= [l o.

tea(l)
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with the notation of 2.2 and 2.3. Moreover, there is an S-linear map n: R—.S such
that n(¢,)=1 (see 2.2). Therefore, the S-module R, is a direct factor of R, and this
implies our statement.

As in 3.2, we deduce the following:

COROLLARY. The K-algebra Ry is generated by the continuous, piecewise linear
functions on X.

4.2. Let X be a simplicial fan. The algebra R; is endowed with two filtrations,
by powers of the ideals Ry ,; and S.;R;. It follows from Corollary 4.1 that
(Rs,»1)"=R;, 5,, and from Proposition 4.1 (iii) that both filtrations define the same
topology on R;. We denote by R; the completion of R, with respect to this topology.
Then R; is an algebra over the ring S of formal power series on V.

We will need the following variant of R;: Define RiM as the subset of Ry consisting
of all functions f such that f(0) is an integer. Then RiMis a graded subring of Rj, with
RY,=Z and RY,=R;, for all n>1.

PROPOSITION. (i) The algebra Ry consists of all compatible piecewise formal power
series on X; in other words,

ﬁrz{(fo)aef | fG'ERO" fa]r=f; V’[CG'} .

(ii) The map Ey— R; that sends any continuous, piecewise exponential function (f,)
to the collection of the Taylor expansions of each f,, is injective. Moreover, the closure
of its image consists of Ri™.

ProoOF. (i) is checked by induction on the number of cones in X, the case of one
cone being trivial. Choose a maximal cone ¢ in X. Observe that the S-module R; is
finitely generated (this follows, e.g., from 4.1 (i) and (ii)). Therefore, the sequence

0 - Rdo“) R}:_* Rz\(a) —)0

is exact. Moreover, brecause R,o=¢,S, we can identify R, with ¢,S.

On the other hand, denote by Cjy the algebra of compatible piecewise power series
on X. Then Cy is complete, as a closed subalgebra of the product of all R,’s. Therefore,
R; maps to Cj, and this map induces a morphism from the exact sequence above, to
the analogous exact sequence satisfied by C;. By the induction hypothesis, this morphism
is an isomorphism.

(i) Observe that the map Z[V*]— S, e‘r—»Z:’:ox"/n! is well-defined and in-
jective. Therefore, the map E; — R; is injective, too; clearly, its image is contained in
Ri™. We identify E; with its image, and we check that Ej is dense in R™. In more
concrete terms, given f=(f,)eR¥™ and N>0, we must find g=(g,)e E; such that
g,— f,eR™M,  for all 6eX. We may assume that f is homogeneous. If the degree of
f is zero, then f= f(0)e Z and we simply take g= f(0). Otherwise, we may assume
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that f=c/" for some c € K, some continuous, piecewise linear function / on X, and some
integer n>1; namely, the abelian group RI".=R;, is generated by such functions
(see Corollary 4.1). Now there exists a formal power series u(f)=¢+) .., u;¢ such that
u(exp(t)—1)=t as formal power series. Then

i>2

Ty(l):=(e'— 1)+ i ue'—1)
i=2

is in Ey, and Ty(/) is an approximation of / at the order N. Now the function
g:=Tx(cl)Ty(I)"~ ! is continuous and piecewise exponential, and g approximates f=c/"
at the order N.

4.3. Denote by E by ring of continuous, piecewise exponential functions on V
(with respect to no specified fan). Then E injects into R as a dense subring of R'™; we
will identify E with its image.

THEOREM. We have [E=En S, R.

Proor. Clearly, IE is contained in En S, , R. Therefore, it is enough to prove that
E;nS, R is contained in /E for any complete, simplicial fan X. But this statement
makes sense for any (non-complete) fan X, if we replace /E by its restriction to | Z|.
Now we can use induction on the number of cones in X, because of Proposition 3.2;
then we reduce to checking the E,on S, , R is contained in IE for any simplicial cone o.
We may assume further that o is d-dimensional.

First we consider the case where d=1. Choose the coordinate x on ¥ such that
o=(x>0). By Proposition 3.2, the Z[ V*]-module E,. is generated by functions f, such
that
e*—1 if x>0

Jux)= {

0 otherwise ,
where ae K. The identity
=) +(e>*=1)=(e@*P*—1)—(e™—1)e>*—1)
implies that f,+f, =/, +,—(e**—1)f;, and hence that
(*) fotfo—forp€IE.

Given f€E,o, we can write f=Y ;_, u;f, where ;e Z[V*] and g;€ K. Moreover, there
exist integers #; such that u;—n;e I for 1 <i<r,and hence f=)_, n;f, +g where ge IE.
Using (*), we can even write f=f.+h where ce K and he IE. If moreover feS, R,
then f,e S, ,R. But the Taylor expansion of f; at the origin begins with cx, hence ¢=0
and felFE as required.

Now we consider the more involved case where d=2. Choose coordinates x;, x,
on ¥V such that 6=(x,; >0, x, >0). Then, as before, the Z[ V"*]-module E,, is generated
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by functions f, ,, such that
(et —1)e*2—1) if (x4, x;)€0
./;lx,az(xlﬂ x2)3={ 1. :
otherwise ,
where a,, a, are in K. For any a€ K, define a function g, on V by
1 if x;>0 and x,>0
gdxy, X)=1 e if x;<0 and x,;+x,<0
e if x,<0 and x;+x,>0.

Then g, is continuous and piecewise exponential. Moreover, it is easy to check that

aixy+azxy

fal,az(xla X;)=e 9a, +a2(x19 xz)_e“mgal(xla x2)_ea2x2ga2(xl9 x)+1.

It follows that f, ,,— f,, ., € IE. Replacing (x,, x,) by (b,x,, b,x,) for arbitrary b, and
b,, we deduce that f ;, 4,6, = fusb,.a.6, € [E. In particular, we have for arbitrary a, b in X:

(**) Jap—f1,a€IE .

It follows that any fe€ E . can be written as
f= Z uifl,ag+g s
i=1

where u;€ Z[V'*], a;e K and ge IE. We can further assume that »;€ Z. Now we have as
in the first step of the proof:

Srat fip—Sraep€IE.

It follows that f=f, .+h for some ce K and helE. In particular, heSzlﬁ.

Now assume further that f is in S,,;R. Then f, . is in S, R, too. We have to
check that ¢=0. Otherwise, expanding f; . into a power series, we obtain ¢,€S,.R
and hence ¢,€ S, R, + S, by homogeneity. But n(¢,)=1 with the notation of 2.2 and
2.3, while #n(S, R, + S,)=0, a contradiction.

In the general case of a d-dimensional cone o, we can write ¢ as ﬂ:‘z , (x;=0). Then
the Z[V*]-module E,o is generated by functions f,, ,, ... ., such that

{H:Ll(e"m—l) if (1, Xa, .05 X)EO
0

f;ll,az ..... ad(xb -”’xd): .
otherwise .
We observe that

fal,az ..... ad(xl’ X235 e0es xd)=fal,az(xla x2)f;13 ..... ad(x3> ey xd)

with the obvious notation. Now repeatedly use equation (#*) to obtain

f;zl,az ..... ad—fl,l,...,l,al-"adelE

and conclude as before.
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COROLLARY. The maps R™ — R"™ « E induce isomorphisms
Rint/S2 1Rinl N Rint/SZIﬁim - E/IE .

PrROOF. The map R™/S,,R™ — R™/S,  R'™ is an isomorphism, because R™ is
graded. On the other hand, the map E/IE — R'™/S, | R'™ is injective by 4.3, and surjective
by 4.2.

4.4. We keep the notation and conventions of 4.3.

PROPOSITION. (i) If K+#Q, then I"E is strictly contained in En S, ,R for any integer
n>2.

(ii)) If K=Q, then I"E;=Esn Sznﬁ, for any integer n>1, and for any simplicial
fan X.

ProOF. (i) We argue by contradiction, and we first handle the case where n> 3.
IfI"E=FEn SZ,,R, then, considering globally exponential functions, we deduce that I"=
Z[V*]nS >n- Therefore, the map

In_l/In-')Szn-l/gzn

(induced by the inclusions "< S, ,) is injective. But this map is identified with the
canonical map between (n— 1)-st symmetric powers

S7 (V¥ - Sg (V™)
by using 3.1 and the isomorphisms
San-1/S2n= San-1/Ssn= SETH(V¥).

Now choose te K\ @, and choose two linearly independent vectors x, y in V.* Then
x(ty)—(tx)y is non-zero in SZ(V'*) and therefore, x"~%(ty)—x""3(tx)y is non-zero in
S2~1(V*). But the image of this element in S~ }(V'*) vanishes, a contradiction.

Now we consider the case where n=2. Choose te€ K\ Q as before, and set u=1/t.
Choose coordinates x=x,, X,, ..., X, on V. We claim that the function f such that

(e™=1)(e™—1)—(e*—1)? if x>0

Xy Xy ooy Xg)=
Joxz g {0 if x<0

isin EnS,,R but not in I2E.

Clearly, f is in E and moreover x~2f(x, X,, . .., x;) vanishes along x=0, whence
feEnx?R. Assume that fe I?E; then we can find a complete fan X such that feI2E;
and that the hyperplane (x=0) is a common wall to at least two cones ¢*, ¢~ in X(d).
Writing explicitly that feI?E; and making x,= - -x,=0, we obtain the existence of
two families of functions f,, and f,, in Z[Kx] (indexed by a,b in K) such that
SE(0)=f:4(0) and
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(etx_ lxeux_ 1)_(ex__ 1)2 =Z (eax_ 1)(ebx_ l)f;:b ,
ab

0=Zb(e”— e —1)f;,-
Subtracting, we have
(e —1)e" =) —(e*—1)*=) (e — 1) = 1)f,,
a,b _

with f, , in Z[Kx] such that f,,(0)=0. Then each f,, is in I, (the augmentation ideal
of Z[Kx]) and hence

€ —1)e" —1)—(e*—1)2el?.

But this contradicts Proposition 3.1 applied to Kx, because tu— 1 is non-zero in S%(K).

(i) Using 3.2, we are reduced to checking that E,on S ,R; is contained in I"Ej,
where ¢ is a maximal cone in Z. We may assume that o is d-dimensional; we use the
notation of the proof of 4.3. Let f bein E,on Sy, Ry. Write f=Y . . fo  abar. ...
where g,, . ., are in Z[V*]. Let g be a denominator common to all rational num-
bers a,,...,a, such that g, ., #0. Replacing the coordinates x;, x,,...,x; by
q x4, ...,q9 'x,; we may assume that a, ..., a, are integers. Then each f, i
the product of f; ; .. | by some element of Z[ V'*], and hence we can write f=f, . g
for some ge Z[V*]. Because fe R,On S, .R, we have ge S, (this follows from 4.1 (iv)
and from the fact that f;  is the product of ¢, by a power series with constant term
1). So gisin Z[V*]n S’Z,,, but this space coincides with I" by reversing the argument
of the proof of (i). Therefore, ge I" as required.

5. The polytope algebra.
5.1. Let 2 be the set of all convex polytopes in V*. Let IT be the abelian group
generated by 2, subject to the relations

[Pu@]l+[PnQ]-[P]-[Q],

whenever P, Q and PuQ are in 2. The group IT is endowed with a ring structure, the
multiplication being defined by [P][Q]1=[P+ Q] (see [Mcl, p. 86]). Moreover, the
group V* of translations acts on IT by ring automorphisms. In other words, I is an
algebra over Z[ V'*]. Furthermore, IT is equipped with a ring homomorphism deg: IT—» Z
which sends the class of any convex polytope to 1.

To any convex polytope P in V*, we associate its support function Hp: V- K
defined by

Hp(v)=max,p<{x, v) .

Then H, is a continuous, piecewise linear function on the outer normal fan of P;
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moreover, Hp is strictly convex with respect to this fan.

For any complete fan 2 in V, we denote by Z; the set of all Pe 2 whose support
function H, is linear on each cone of X. Then £; is closed under Minkowski sum; if
moreover X is the outer normal fan to some convex polytope P, then %5 consists of all
Minkowski summands of a multiple of P. We denote by IT, the subgroup of IT generated
by the classes of polytopes in #; then IT, is a Z[V*]-subalgebra of IT.

PROPOSITION.  For any complete fan X, the map
y: Py Ey, Prelr

induces an injective homomorphism of Z[V*1-algebras y: 15— Es. If moreover X is the
normal fan of a simple convex polytope, then this homomorphism is surjective.

Proor. For P and Q in &, we have Hp o, =max(Hp, Hy). If moreover PuQ is in
#, then (PuQ)+(PnQ)=P+Q and hence Hp o+ Hp,o=Hp+ Hy. If follows that
Hp ,o=min(Hp, Hy), and therefore that

eflrvoyeflrno=ellry pHo je y(PuQ)+y(PnQ)=9(P)+7(Q).

Therefore, y extends uniquely to a group homomorphism y: IT— E. Clearly, y maps
I, to E;. Moreover, we have

WP+ Q)=eflrre=efirtlie=elireflo=y(Py(Q),

i.e., y is a ring homomorphism. Finally, we have y(x)=e* for any point-polytope x, and
hence y(uv)=uy(v) for any ue Z[V*] and vel.
We check that y is injective. Let ue IT be such that y(u)=0. We can write

m

u= Z a;[P;]— gl b;[Q;]

i=1

with P; and Q; in 2 and with positive integral coefficients a;, b;. Then

m n
(*) Y aefri= Y bjeMes,

i=1 ji=1
an equality in the ring E of piecewise exponential functions on V. Now E can be
considered as the ring of piecewise linear functions on ¥ with values in Z[ K] (the group
algebra of K over Z). Following [M1, 5.1], let PSF(V) be the group of functions on V
with values in Z[K], generated by functions
e<x if veo

e*l,: v— )
0 otherwise .

Then, by [M1, pp. 42 and 43], the map

exlaH 1x+aV
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(where ¢V is the dual cone of ¢) defines an isomorphism from PSF(V) to PSF(V¥).
Therefore, (*) implies

2 ailp= _Zl bjly,
=

i=1

and this in turn implies

in IT, see, e.g., [Mol, p. 11].

To check the surjectivity of y: IT; — Ej in the case where X is the normal fan of a
simple polytope 4, recall that the abelian group Ej is generated by the e/ where f is
a piecewise linear function on Z. For such a function f and for large € K, the function
f+tH,=f+H,, is strictly convex on X, and hence f+ H,,= Hp for some Pe%,. Now
e/ =e"Pe~Hea is in the image of y; indeed, [14] is invertible in IT; (see, e.g., [Mol, §57)
and moreover p([t4] " })=e Hea,

It follows that y induces an isomorphism of Z[V*]-algebras, from IT onto E.
Through this isomorphism, the degree on IT is identified with the evaluation at the
origin on E. Proposition 3.2 implies the following statement, which is the main result
of [Kh-Pu].

COROLLARY. Let J be the kernel of deg: IT — Z. Then J"** is contained in I"IT for
any integer n>1.

5.2. Recall that I denotes the ideal of Z[V'*] generated by all e*—1 (xe V'*). The
polytope algebra IT is the quotient of IT by its ideal /IT. More concretely, IT is generated
by classes of convex polytopes [P], with relations [PuQ]+[PnQ]—[P]—[Q]
whenever P, Q and Pu Q are convex polytopes, and [x + P]—[P] whenever xe V'* and
P is a convex polytope. '

THEOREM. The polytope algebra is isomorphic to the quotient of the algebra of
continuous, piecewise polynomial functions with integral value at 0, by its ideal generated
by (globally) linear functions. The isomorphism sends the class of any polytope [ P] to the
image in the quotient of 2:20 H%/n!, where Hp is the support function of P.

Proor. By 5.1, the map y: P e®* induces an isomorphism IT — E/IE. Then we
conclude the argument by Corollary 4.3 and Corollary 2.1, the latter implying that any
element in R™™/S, , R™™ has a representative in R'™ of degree at most d.

Using Corollary 2.1 and 2.4, we derive the following statement, one of the main
results in [Mcl].
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COROLLARY. There exists a unique abelian group decomposition
H=H0@H1@ e @Ha,

where Iy~ Z via deg, and 11, ..., I1, are K-vector spaces, such that [tP] =Zj=0 H[P];
for any [P] =Z?=0 [P]; with [P];eIl;, and for any te K ,. Moreover, we have

(i) ILI;cI,; for alli and j.

(ii) The K-vector space I1; is one-dimensional, and multiplication induces non-
degenerate pairings I1;x I1,_;— I1, for 1 <j<d—1.

REMARK. The polytope algebra is the universal group for translation-invariant

valuations on convex polytopes. More generally, the universal group for valuations
which are polynomial of degree at most n (with respect to translations) is the quotient
I/I"* 1. 1t follows from 4.2 that IT/I"** maps onto R/S.,,,R. But this map is not
injective for n>1, except when K= Q); see 4.4.

In other words, our structure theorem for IT has a natural extension to its higher
versions IT/I"** in the only case of rational polytopes. This explains the complications
of the theory of polynomial valuations, and the role played there by continuity
assumptions.

5.3. In this section, we assume that K is the field of real numbers. Recall the
S-linear map n: R— S introduced in 2.2; because 7 is homogeneous (of degree —d), it
extends uniquely to 7: R— $ with the notation of 4.2. In particular, n(exp(Hp)) makes
sense for any convex polytope P. In fact,  is defined up to a multiplicative constant,
and a normalization of = depends on the choice of a non-zero element in A?V. Such a
choice normalizes the volume element on V'*.

PROPOSITION.  For any convex polytope P in V*, and for any ve V, the formal power
series mi(exp(Hp)) represents an entire function, and we have for all ve V-

7r(eXp(Hp))(v)=f exp<x, v)dx .

Proor. Recall that
exp(Hp o) +exp(Hp 1 o) =exp(Hp) +exp(Hy) ,
whenever P, Q and PuQ are in 2. It follows that the map
P - S, P> n(exp(Hp)
extends to a map IT — S. The same holds for the map

P28, PH(UHZJ <x,1')> dx>.
n=0Jp .

n

But the abelian group IT is generated by the classes of simplices (see [Mcl, p. 85]) and
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therefore, it is enough to check our statement when P is a simplex. Further, we may
assume that the volume of P is 1/d!.

Observe that the support function of P factors through the quotient map u: V- V’
where V' is the vector space dual to the direction of the affine span of P. Using the
remark at the end of 2.3, it follows that n(exp(Hp))=0 whenever P is not d-dimensional.
On the other hand, for a d-dimensional simplex P with vertices x,, Xy, ..., X;, we have
by the example at the end of 2.2:

hn—d(<x07 U>) L] <xd’ U>) lf nZd
0 otherwise ,

(Hp)v)= {

where h, denotes the complete symmetric function of degree n. But it is easily checked
that

hn(<x0’ U>, BN} <xd5 U>)
n+1)n+2) --(n+d)

J‘ {x, v)"dx=

and this implies our formula.
COROLLARY. For any d convex polytopes P, P,, ..., P, in V*, we have
n(Hp Hp, - -Hp)=dV(Py, P,, ..., P,
where V denotes the mixed volume.

ProOOF. The statement makes sense, because the left-hand side is a constant, n
being homogeneous of degree —d. To prove it, we consider the constant term in the

identity of the proposition above:
Hd
n( P ) =vol(P)
d!

for any convex polytope P. Then we take P=¢, P, +t,P,+ - - - +t;,P;where t, t,, ..., 1,
are arbitrary positive numbers, and we consider the coefficient of #,¢, - - #; in the result-
ing polynomial expansion of the left-hand side.

ReEMARK. In fact, the existence of mixed volumes for convex polytopes follows
from the proof above (of course, it can be checked in a more straightforward way!).

5.4. We still assume that K is the field of real numbers. Using 5.3, we obtain the
following separation theorem, first proved in [Mc3].

THEOREM. For any convex polytopes P, P,,..., P, and for any integers a,,
a,, ..., a,, the following conditions are equivalent:

(i) a[PJ+a,[P,]+ - -+a[P,] is zero in II.

(i) a,vol(P,+Q)+a,vol(P,+ Q)+ --- +a,vol(P,+Q)=0 for any convex poly-
tope Q.
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ProoF. The map (P, Q)— vol(P+ Q) extends to a bilinear map p: II x IT - R.
Moreover, the identity

Vol(P + Q) = n(exp(H p) exp(H))(0)

(a consequence of 5.3) means that p is identified with the bilinear form (£, §) — n(fg)0)
through the identification of IT with R™/S, ; R'™™. Now our statement follows from 2.4.

ReMArRk. For P, P,,..., P, as above, let X be a complete, simplicial fan such
that Hp , Hp,, ..., Hp_ are piecewise linear on X, and that X is the normal fan to some
convex polytope 4. Then in the statement of the theorem above, it is enough to consider
polytopes Q that are Minkowski summands of 4.
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