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NORMAL CONTACT STRUCTURES ON 3-MANIFOLDS
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Abstract. We give a classification of the closed 3-manifolds that admit normal
contact forms or normal almost contact structures.

1. Introduction. Let w be a contact form on a closed 3-manifold M, that is
o Adw is a volume form. The Reeb vector field ¢ of w is defined by dw(&, -)=0 and
w(€)=1. On the contact structure 9 =ker w (or, more generally, on a 2-plane distribu-
tion 2 =kery transverse to £) one can find an endomorphism J: 2 -9 compatible
with dw in the sense that dw(JX, JY)=dw(X, Y) for all vector fields X, Ye 2 and
dw(X, JX)>0 for X#0. This J is uniquely defined up to homotopy. The triple (J, &, 1),
in other words, a reduction of the structure group of M to U(1) x 1, is called an almost
contact structure compatible with .

On M x R one can now define an almost complex structure (still denoted by J)
which extends J: 2 — 2 and satisfies JE=0,, where ¢ denotes the R-coordinate. If J is
integrable, then the almost contact structure (J, £, ) and the contact form w are called
normal.

In [8] Sato proved that if M admits a normal almost contact structure, then
n,(M)=0 or M is homotopy equivalent to S* x S2. In the present paper we complete
the investigation begun by Sato. For the reader familiar with the geometries of
3-manifolds (in the sense of Thurston) we can now state our main results; all the notation
will be explained below.

THEOREM 1. A closed 3-manifold admits a normal contact form if and only if it is
diffeomorphic to one of the following manifolds:

(a) F\S~3 with I SO(4)=I§ng(S3),

(b) I'\SL, with I = Isomy(SL,),

(¢c) T\Nil® with T < Isom(Nil?).

REMARK. The manifolds in this theorem are precisely the Seifert fibred 3-manifolds
with non-zero Euler number over orientable base orbifolds (without reflectors).

THEOREM 2. A closed 3-manifold admits a normal almost contact structure if and
only if it is diffeomorphic to one of the manifolds listed in Theorem 1 or one of the following
manifolds:
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(a) I'\(H?x E") with T = Isomy(H? x E*),
(b) T?-bundles over S* with periodic monodromy,
(c) S%xS.

Our notation here is that of [9], to which we refer for all basic facts about geometric
3-manifolds. SL, denotes the universal cover of PSL,R, Nil® the Heisenberg group of
upper triangular (3 x 3)-matrices and H? the hyperbolic plane. Isomy(X) stand for the
identity component of the isometry group of a Riemannian manifold X. In each case
I denotes any discrete subgroup of Isomy(X) acting freely on X.

We note in passing that the manifolds in (b) of Theorem 2 can also be described
as left-quotients of the universal cover of the Euclidean group, that is, the group of
orientation preserving isometries of the Euclidean plane E2. This class comprises exactly
five manifolds.

As a consequence of Theorems 1 and 2 there are 3-manifolds that admit normal
almost contact structures not induced from a contact form.

2. Compact complex surfaces. If a closed 3-manifold M admits a normal contact
form, then M x R admits an R-invariant integrable almost complex structure, hence
M xS! is a compact complex surface with a smooth S!-action by holomorphic
automorphisms. Therefore the starting point for our proof of Theorem 1 is the following
theorem from [3]. Part of the argument employed there to prove this theorem is parallel
to that of Sato. We should like to point out to the reader that Section 4 of [3], which
contains Theorem 3 and its proof as well as other arguments relevant to the discussion
here, can be read independently of the preceding sections of that paper.

THEOREM 3. A compact complex surface W is diffeomorphic to a complex surface
of the form M xS' on which the obvious smooth S'-action is by holomorphic auto-
morphisms, if and only if W is one of the following.

(a) A Hopf surface that is (topologically) of the form (I'\S®) x S! with I = U(2).

(b) A properly elliptic surface of the form (I'\(H*x E'))xS! or (I' \ﬁz)x St
with I c Isomg(H>xE') or T < Isomo(ﬂz), respectively.

(c) One of the hyperelliptic surfaces (which are topologically T*-bundles over T?
with monodromy A, I, where Ae SL,Z is periodic and I the identity matrix, A#1I) with
Euler class (0, 0). Up to diffeomorphism, there are four such surfaces.

(d) A complex torus, diffeomorphic to T*.

(e) A primary or secondary Kodaira surface of the form (I'\Nil®)xS' with
I' = Isomg(Nil3).

(f) A ruled surface of genus 1 diffeomorphic to S* x T?.

In the following sections we deal with each of the geometries in turn.
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3. Spherical geometry. Suppose (M, w) is a 3-manifold with normal contact form
 such that W=M x S! with the induced complex structure is a Hopf surface.

If ©,(W) is non-abelian, then W is elliptic. Furthermore, the elliptic structure is
unique and has no singular fibres by (the proof of) Lemma 7.2 of [13]. By [7, Theorem
27], cf. [11], the base orbifold B of the elliptic fibration W — B is a sphere with three
cone points and positive orbifold characteristic. We now have the following argument
from [3]: Since the general fibre of the elliptic fibration represents a homology class
with self-intersection zero, positivity of intersections implies that the holomorphic
S'-action generated by 9, sends general fibres to general fibres and fixes the exceptional
(i.e. multiple) fibres. So the action descends to an S'-action on B with fixed points in
the three cone points, which must be the trivial action. Hence 4, is tangent to the fibres.

Thus £ is also tangent to the elliptic fibres, and the flow of £ induces a Seifert
fibration on the quotient M= W/{8,>. (In W=M x S* an orbit of ¢ is tangent to the
M-factor and cuts an orbit of d, at most once. Since both the orbits of & and of 9, are
along the fibres of W — B, it follows that the orbits of ¢ are closed. By a fundamental
result of Epstein [1], this implies that M is Seifert fibred.) Hence M is a geometric
manifold (cf. [9]), and the geometric type can only be S* since the geometric type (if
any) of a Hopf surface can only be $*x E! [13, Theorem 10.1].

If n, (W) is abelian, then n,(M)=Z @ Z,, (including the case m=1 of primary Hopf
surfaces, that is, n,(W)=Z) by [6], and n,(W), considered as the deck transformation
group on C?>\ {(0, 0)}, is generated by a contraction T and, if m> 1, a torsion generator
U. There are two possible cases:

Case (1):

T(z,, 25)=(azy, Bz;), O0<|a|<|Bl<],
U(zy, z,) =(8121, €22,), €7=¢5=1.
Case (2):
T(zy, 2)=(B"21 +723, Bz2) , 0<[B|<1, 7#0,
U(zy, 25) =(€524, €,25), &5=1, (m,n)=1.

Now let @, denote the flow of 8, on W=M x S'. Lift ¢, to a one-parameter group of
holomorphic automorphisms of C>\ {(0, 0)} (still denoted by ¢,). Since ¢, commutes
with T, the arguments on pp. 230-231 of [6] show that ¢, has to be of the form

02y, 25)=(@(t)zy, E(t)zz)
in case (1) and
@21, 22) = (B"(0)z, + &1)23, B(1)z,)
in case (2). The condition ¢, ,,=®,°¢,, implies

0z, 2,) =(e"z,, €"z,)
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or

@21, 22) =(e"'z, +cte™'2}, €'z;)

respectively, where the real parts of a and b are non-zero and have the same sign (since
there is a time ¢, such that ¢, is equal to T up to sign and up to a power of U, so ¢,,
is contracting or expanding).

Now consider the set

S={(z1,2)€ C*: |z, >+ K|z, |*=1}

with K a positive real constant. This set is U-invariant and diffeomorphic to 3, and it
is easy to check that the flow of ¢, is transverse to S for K sufficiently large. This implies
that M is diffeomorphic to a lens space S/{U)=L(m, n).

Conversely, suppose M is of the form I'\S® with I' a discrete subgroup of U(2) (or
SO(4), which amounts to the same thing; see the remark below) acting freely on S3.
Identifying S* with the unit sphere in C?, we have a natural multiplication of S* on
itself given by

(21, 22)(W1, o) =(Z Wy —2,W5, Z,W1 +2,W)) .

(This formula is simply quaternionic multiplication when identifying (z,, z,) with g=
z,+2z,j.) There is a natural epimorphism

@:S*xS*>5004)
given by

D(q,, 4,)(x)=q,xq; ",

where ¢q,, g,, X are unit quaternions, see [9]. Moreover, it is shown there that any finite
subgroup of SO(4) acting freely on S3 is conjugate in O(4) to a subgroup of &(S> x §?),
where S! is identified with {(z,,0)e C?: |z,|=1}. Hence, up to diffeomorphism, we
may assume that M =TI\S> with I' = &(S3 x S1).

REMARK. Alternatively, one may conjugate I" in O(4) to a subgroup of &(S* x $3).
It is easy to seen that &(S! x §3)= U(2), with U(2) acting on C? by matrix multiplication
from the left. This implies the statement above about the equivalence of considering
subgroups I' = U(2) or I = SO(4).

We leave the proof of the following lemma to the reader (cf. Lemma 6 below).

LEMMA 4. The Lie algebra (of left-invariant vector fields) su(2) of S* = SU(2) admits
a basis ey, e,, e3 with [e;, e;]=e¢, for any cyclic permutation (i, j, k) of (1, 2, 3) such that
the right action of S* is given by the flow of e,. Hence, this action preserves e, and rotates
the (e,, e;)-plane uniformly.

It follows from Lemma 4 that the dual 1-form w=e¥ is a contact form on §3
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invariant under the action of &(S>x S!). The fact that w is a contact form follows
directly from the non-integrability condition [e,, e;] ¢ 2 of the 2-plane field 2 =ker w,
indeed

o Adwley, e,, e3)=dw(e,, e;)= —w([e,, e31) #0 .

It remains to show that w is a normal contact form. Here (and in the following
sections) we use the following result of Frohlicher [2], cf. [12].

LEMMA 5. Let J be a left-invariant almost complex structure on the real Lie group
G. Then J is integrable if and only if the (+i)-eigenspace (T,G® C)*'® of J on the
complexified Lie algebra T,G® C is a Lie subalgebra.

In other words, the integrability condition is that the bracket of two left-invariant
vector fields of type (1, 0) is again of type (1, 0); by writing two arbitrary vector fields
of type (1,0) as linear combinations (with coefficients in C (G, R)) of left-invariant
vector fields of that type it is easy to see that their bracket is also of type (1, 0).

The almost complex structure J on M x S* induced by w is given by Je, =4, and
Jes=e, on 3 x E'. Observe that J is invariant under the action of S x S* on S3. Hence
a basis of (T,G® C)'? (where G=S>x E!) is given by

0,—iJ0,=0,+ie; and e,—iJe,=e,+lie;.
We compute
[0,+iey, e, +ies]=e,+ies,
which proves that J is integrable.

4. SL ,-geometry. Now let (M, w) be a 3-manifold with normal contact form w
such that W= M x S1 with the induced complex structure is a properly elliptic surface
of the form W= (I"\SLZ) x S! with I' = IsomO(SLz) By arguments completely analo-
gous to those used in Section 3 (cf. [3]) we deduce that M = F\SL

For the converse we have the following analogue of Lemma 4, which is proved
in [4].

LEMMA 6. The Lie algebra s, of 5"12 has a basis e,, e,, e with
e, ex]=e5, [eyes]l=—ey, [es,e1]=e;,
such that the R-factor of Isomo(ﬁ2)=ﬁ2 x z R is given by the flow of e,.

As before we define w=e¥. This is invariant under the action of Isomy(SL,), and
the induced almost complex structure is given by Je, =9,, Je, =e;. The same computa-
tion as in Section 3 shows that J is integrable.
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5. The Heisenberg group. The Heisenberg group Nil® is the group of upper

triangular (3 x 3)-matrices
1 x z
01 y]).
001

Isomy(Nil®) is generated by left multiplication,
(X0 Yo Z0)(X, ¥, 2) =(Xo+ X, Yo+, Zo+ 2+ Xoy) ,
and the action of the isotropy group S! (cf. [9]),
(x, y, z)>(xcosf+ ysin®, —xsin@+ycosf, z+ (sinf(y* cos @ — x? cos0 —2xy sin6)/2)) .

Set w=dz—xdy. A straightforward computation shows that w is a contact form on
Nil® invariant under the action of Isomy(Nil®). The induced invariant almost complex
structure on Nil®> x E! is given by

"Jo,=—(0,+x0,), J3,=0,,
and J is integrable since
[0,+i(0,+x0,), 0,—i0,]=0.

It remains to show that if W=M xS! is a Kodaira surface with complex structure
induced from a normal contact form on M, then M is modelled on Nil3. The fact that
M x S' is diffeomorphic to (I'\Nil®) x S* implies that M is homotopy equivalent to
I'\Nil®. By a result of Scott [10], M and I'\Nil®> are homeomorphic and hence dif-
feomorphic by the uniqueness of differentiable structures on topological 3-manifolds,
cf. [5].

Alternatively, one can again observe that the holomorphic S!-action on W sends
fibres to fibres and that the flow of 9, actually has to be along the fibres of the (unique)
elliptic fibration, so the quotient M under this S*-action is a Seifert fibred manifold by
the argument used in Section 3. Hence M is a geometric manifold, and the geometric
type can only be Nil® because of the uniqueness of the geometric type of W.

6. The remaining geometries. Let W be a complex surface diffeomorphic to
(F'\(H* x E')) x §* with holomorphic S*-action. Such a surface has an elliptic fibration
with Euler number zero, and the S*-action has to go along the fibres, because the base
orbifold is of negative orbifold characteristic and does not admit any non-trivial S*-
actions. If the complex structure on W=M x S! were induced from a normal contact
form on M, this argument would show that M is a Seifert manifold of the form
M=T\(H? x E') with Seifert fibration given by the flow of the Reeb vector field ¢&.
Since the Euler number of this Seifert fibration is zero, w would lift to a contact form
on X, x S', where X, denotes a surface of genus g> 1, with Reeb vector field ¢ tangent
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to the S'-factor. But then dw would induce an exact area form on the transversal X,
which is absurd.

The argument in the remaining cases of Theorem 3 is analogous. If W were a
complex torus, then d, —iJd, would lift to a holomorphic vector field on C? with fourfold
periodic coefficient functions and thus would have to be constant; hence so would
&= —Jo,. Then M would have to be a 3-torus and ¢ a constant slope vector field on
T3, which would admit a transverse 2-torus.

If W were a ruled surface of genus 1 of the form W=S? x T?, the flow of 4, would
have to be transverse to the S2-factor by the hairy ball theorem (cf. [3, Section 5.1]).
Hence we would have M=S5%x S! with ¢ transverse to the S2-factor (see Section 7
below), which leads to a contradiction as before.

This concludes the proof of Theorem 1.

7. Normal almost contact structures. By Theorem 3 and the arguments used in
the preceding sections, the only manifolds other than those from Theorem 1 that might
admit a normal almost contact structure are manifolds that are homotopy equivalent
to one of those listed in Theorem 2. In case (a) the arguments from Section 3 are
actually strong enough to prove that M is diffeomorphic to a manifold of the form
I'\(H?*x EY). In cases (a) and (b) homotopy equivalence implies diffeomorphism by the
result of Scott [10] mentioned above.

In case (c) we argue as follows. Suppose M is a 3-manifold with normal almost
contact structure such that W= M x S! is a ruled surface diffeomorphic to S? x T?. Let
n : W— T? denote the ruling. By the same arguments as in the elliptic case the S !-action
has to send fibres to fibres and induces an S!-action on the base T2 of the ruling (which
can be seen to be given by a constant slope vector field because of the holomorphicity
of 7,(8,—iJd,)). We claim that the period of this S'-action equals the period of the
S'-action on W. Assuming this claim, we see that a fibre of W descends to an embedded
sphere in M =W/{0,), and from [5, Lemma 3.13] or by a direct geometric argument
it follows that M is diffeomorphic to S? x S' (with ¢ transverse to the S2-factor, thus
proving the assertion at the end of Section 6). To prove the claim we argue by con-
tradiction. If the period of the S*-action on W were k times the period of the S!-action
on T?(k>1), we would get an induced holomorphic Z,-action on a fixed fibre S2.
However, such an action would necessarily have a fixed point, contradicting the fact
that the S'-action on W is principal.

Thus, to complete the proof of Theorem 2 it only remains to exhibit a normal
almost contact structure on each of the manifolds listed there. In each case there is an
obvious complex structure on M x S! compatible with the geometry, see [13]. Denote
the S'-coordinate by ¢ and set {= —Jd,. Furthermore, one finds an S'-invariant
complex line complementary to {d,, J0,} and tangent to the M-factor. Let n be the
1-form on M defining this complex line; then (/| kern, &, n) defines a normal almost
contact structure on M.
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