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Abstract. We are concerned with bifurcation of Julia sets for the one-parameter

family of functions in the title with the real parameter μ. In particular, the distribution

of values of μ, for which the Julia sets of the functions coincide with the complex plane,

is discussed.

Introduction. Let fμ be an entire transcendental function z i—> z exp(z + μ), where

μ is a complex parameter. Put fn

μ = fμ°f
nμ~ι for a positive integer «, where f°μ means

the identity mapping of the complex plane C. The Julia set Jμ of fμ is defined as the

set of all points on C, in any neighbourhood of every point of which the sequence

{/μ}̂ °=o does not form a normal family.

Baker [1] proved the following theorem.

THEOREM. There exists a real value of the parameter μ such that the Julia set Jμ

°f fμ coincides with C.

Jang [3] proved the following result by studying Baker's argument in detail: There

are infinitely many positive real values of μ with the property Jμ = C.

In this article, we study the distribution of values of μ stated in the above result

of Jang. Noting another result Jμ φ C (— oo < μ < 2) of Jang [3], we restrict the parameter

μ to the real value not less than 1.

1. Values μn and μ(n) of the parameter μ. Obviously the set of singular values of

/ : zi—>zexp(z + μ) consists of two values z = 0 and z=/μ(—1). The point z = 0 is the

only one finite transcendental singularity of the inverse function / ~* of fμ and this is

fixed by fμ. The point z=fμ( — \) is the only one finite algebraic singularity o f/" 1 .

For a fixed value μ of the parameter, we put

) = ~ 1 a n d sn{μ) =fμ(sn _ t(μ)), n ̂  1 .

The sequence {sn(μ)}™=ί is the so-called orbit of the critical value z = fμ(—\) of fμ under

the iteration of fμ. The behaviour of this orbit plays a very important role in the study

of the bifurcation of Julia sets Jμ. So, first we state some properties of sn(μ).

Since the parameter μ is real, every sn(μ) is negative and we have

(1) sn(μ)
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where

k + l-1

(2) ψka(μ)= Σ (sj(μ) + μ), &

For an arbitrary real constant α, we see

(3) lim (^(μ) + αμ) = - oo .
μ-» oo

As Jang [3] showed, (3) implies

(4) limsn(μ)

μ-> oo

Evidently we see

(5) μg- j 1 (μ)

where the equality holds only for μ = l . In other words, the equation s1{μ) + μ = O in
the unknown μ has the only one root μx = 1. We see also that the equation ^i(μ)+ 1 =0
has the only one root μ(1) = 1. A simple calculation shows that s2(μ) + μ = O has the only
one root μ2 = l in the interval l^μ<oo and that s2(μ) + μ is positive for μ>μ 2 . It is
also easy to see that the equation φ0t2 (μ)= — 1 +s1(μ) + 2μ = 0 has two roots μ — 1 and
μ = μ{2) (>1) and ψOf2(μ) is positive in the interval l < μ < μ ( 2 ) and is negative in the
intervals 0 < μ < l and μ ( 2 )<μ<oo. Since we see

ιA0)2(l+log3)= - 4 + 2(1 +log3)>0,

the equation s2(μ)+l = — exp^0 2(μ)+ 1 =0 has the greatest root μ(2) greater than
l+log3.

For completeness of our discussion, we recall Jang's argument in [3] under a slight
improvement. Since s2(μ(2))+ 1 =0, (5) implies

Hence (4) gives us the existence of the greatest root μ = μ3 (>μ(2)) of the equation
3̂(μ) + μ = 0 Clearly J3(μ) + μ is positive for μ>μ 3 . Since ^3(μ3)=— μ3 <—μ ( 2 )<

— (l+log3), the equality (4) shows the existence of the greatest root μ(3) (>μ3) of
the equation s3(μ) + l =0. Obviously s3(μ)+ 1 is positive for μ>μ ( 3 ).

We use μ(3) instead of μ(2) in the above observation and see the existence of the
greatest root μ4 (>μ(3)) of the equation sAr{μ) + μ = 0 and the existence of the greatest
root μ(4) (>μ4) of the equation s^)+1 =0. It is easy to check that s4(μ) + μ is positive
for μ>μ 4 and £4(μ)+1 is also positive for μ>μ ( 4 ).

Repeating the above procedure, we have a sequence of infinitely many values μn

and μ(M) of the parameter μ such that



sn(μ)+l>0 for μ>μ ('
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(6) l = μ 1 = μ ( 1 ) =

where

( 7 ) " f o r μ>μn,

and

(8)

REMARK. Jang [3] states only that, for « ^ 3 , the equation ^(μ) + μ = 0 has a root

μn ( > μ ( f I " υ ) (not necessarily the greatest) and that the equation sn(μ) +1 = 0 has a root

μ(n) (>μn) (not necessarily the greatest).

2. Distribution of the sequence {μn}™= i First we prove the following proposition.

PROPOSITION 1. For values μin) (n ̂  2) of the parameter μ, the n points sk(μ{n))9

0^k^n—l, are mutually distinct and are super-attractive n-th periodic points of fμ{n).

Therefore, the Julia set of fμ{n) does not coincide with C.

PROOF. Suppose that there are integers k and / (0 ̂  k < / ^ n — 1) with the property

Sk(βin)) = sίβin))- Clearly sk(μ{n)) = sk+q{l_k)(μ{n)) for any non-negative integer q. There

is a positive integer p satisfying k+p(l-k)^n<k + (p+l)(l—k). The sequence
{Sj{μ{n))})ik

p+Pψlk)

k) containing sn(μ(n)) coincides with the sequence {sj(μ{n))}ι

j=k and this

shows the existence of such ay (k^j<l) that Sj(μin)) = sn(μ{n)). This contradicts (8). Thus

n points sk(μ{n)) (O^k^n — 1) are mutually distinct. Since f'μ(n)(—1) = 0, it is easy to see

that these n points are super-attractive «-th periodic points of fμin).

On the value μn (n ̂  3) of the parameter μ, we can see that the point sn(μn) is a

repulsive fixed point of f—fμn. To see this, we note (7) and (6) and have

and

Γ(sn(μn)) = f(-μn)= -μn+l< -log 3 .

Thus sn(μn) is a repulsive fixed point of/. Hence, as Jang stated in [3], Baker's argu-

ment in [1], which was used to prove the theorem stated in the introduction of this

article, leads us to the following result of Jang stated also in the introduction: The Julia

set of fμn (n^.3) coincides with C. This is also proved in the following way. By

Eremenko-Lyubich's theorem [2], the function fβn has no wandering domain and no

Baker domain. Hence Sullivan's argument [4] implies Jβn = C.

Now we prove the following theorem.
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THEOREM 2.

lim μ{n) = lim μn = oo .
π-+oo n-* oo

PROOF. By (6), it suffices to show lim^^^ μ{n)= oo. Since the sequence {μ(n)}^=i is

increasing, we see the existence of /i(oo) = l im^ o o i u
( w ) ^ oo. Assume μ ( o o )<oo. Clearly we

have 1 + log3<μ ( o o ) by (6) and - 1 <sn(μ{CX)))<0 (n^2) by (8). Hence we have

sn + i(μ(oo))A,(μ(oo)) = exp(sn(μ^) + μ(oo)) > exp( - 1 + μ(oo)) > 3

for every n (^ 2), which implies

The right hand side of this tends to — oo, as n tends to infinity. This is a contradiction.

Hence μ(oo) must be infinity.

The above theorem can also be deduced from the following proposition.

PROPOSITION 3. μ(M)> 1 + \og(n +\)forn^2.

PROOF. In the case n = 2, we have seen 1 + log 3 < μ(2) in (6). Hereafter, we consider

the case « ^ 3 .

see easily that the equation yγ =y3 has two roots μ = 1 and μ = μJ|{ (> 1) and that yx <y3

if and only if μ is in the open interval 1 <μ<μ 5 | c .

In the case μ^μ{n~x\ (6) implies μJ | ί<μ (" ).

Consider the contrary case μ ("~1 )<μ ί | c. In this case, (6) and (8) give us sk(μ)+ 1 > 0

in μ > μ ( π ~ υ for l^k^n— 1. Hence we have

n-l

y2-y3= Σ (Sj(μ) + μ)-sί(μ) + (π-l)-nμ>0
j = o

for μ > μ("~ υ . As was seen already, we have ^ ! < j 3 in the interval μ("" υ < μ <μ*. Hence

we see j i < ^ 2 in this interval. On the other hand, (3) and (4) imply

lim (y2-yί)= lim ψo,n{μ)=-co .
μ-* oo μ-> oo

Since J 2(μ*)— >;i(μ5is)
=>;2(μϊ!c)~>;3(μ*) ^s positive, the equation yί— y2 = 0 has a root

greater than μ^. As μ(w) is the greatest root of sn(μ)+1 = 0 and of ϊAo,«(μ)==>;2~3;i = 0 ,
we see μ ί | c<μ (/ l ).

Thus we have always μ^ < μ(π). On the other hand, we have

which implies 1 +log(«+ l)<μ ϊ k . Therefore, we have
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for «Ξ>3. This is the required.

REMARK. By more careful observation, we can see

Γ l+log(2n + l)

and so on. The proofs of these may be omitted here.

We have also the following proposition.

PROPOSITION 4. μ ( 3 ) > 3 .

PROOF. A direct calculation gives us

-74/10<* 1 (3)=-exp2<-7.

Hence we see

j2(3)= -exp(5+j1(3))> -exp(-2)> -1/7

and

53(3)=~exp(8+51(3)+52(3))

< - exp(8- 74/10 —1/7)< — 1.

Since the value μ(3) is the greatest root of s3(μ) +1 =0, we have μ ( 3 )>3 by (4).

REMARK. According to Sagawa, μ(3) lies between 31/10 and 32/10.

3. Repulsive periodic points of fμ for some values of μ. In the preceding section,

we were concerned with the values μn of the parameter μ, each of which is the greatest

root of the equation φn ί(μ)=sn(μ) + μ = 0. In this section, we are concerned with the

greatest root of the equation φn,k(μ) = 0 for «^3 and k^2. We see easily by (1) that,

for this greatest root μ of φn,k(μ) = 0, sn+k(μ) is equal to sn(μ) so that sn(μ) is a periodic

point of fμ.

Under the conditions n^3 and k^2, we see μ ( M + / c"2 )^μ ( 3 ) by (6). If μ is not less

than μ{n+k~2\ we see sn+k_2{μ)+\ ^0 and -l<Sj(μ)<0 for 2^j^n+k-3. Those are

conclusions from (8). Hence we have

sn+k-3(μ)=sn+k_2(μ)Qxp{-sn+k-3(μ)-μ)

>sn+k-i(μ)exp(l ~μ)>-exp(l -μ)

for μ^μin+k~2\ Similarly, for 2<Lj^n+k-4, we have
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for μ^μin+k-2\ Therefore, for 2£p<>n +k-3 and for μ^μin+k~2\ we have

j=p . j=p

Proposition 4 and (6) imply

for 2^p^n + k — 3 and μ^μin+k~2\ Hence we see

Ψo,n + k-2(μ(n+k-2))- Σ (sM"

= Σ Sj(μin+k

J-2

Here we recall μ<w+fc~2) is a root of 1sπ + k_ 2(μ)+ 1 =0, that is, a root of ι/̂ 0 π + / c_2(μ) = 0.

Hence the above inequality shows

(9) Σ ^ > ( π + k "

Now we can prove the following proposition.

PROPOSITION 5. For n^3 and &^2, the equation φn,k(μ) = Q n a s t n e greatest root

μ = μπ k, andψnk(μ) is positive for μ>μnk. In addition, the inequalities μ(n+k~2) <μnk<

PROOF. The inequality (9) shows

by virtue of Sj(μ)<0 and of sn+k_2(μin+k-2))= -1 =so(μin+k-2>). On the other hand, for

μ^μ(n+k'l), we see

(10) ψnΛ(μ)="+Σ1
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by (8) and (6). Hence there is the greatest root μnk of the equation ψnk(μ) = 0 such that

μ{n+k~2)<μriik<μ(n+k~1). Thus we have our proposition.

Using this proposition, we prove the following proposition.

PROPOSITION 6. Forn^3andk^.2, the points Sj(μnk)(n^j^n + k — 1) are mutually

distinct k-th periodic points of fμn k.

PROOF. For simplicity, put μ = μn,k and f=fμ. As was stated at the beginning of

this section, sn(μ) is equal to sn+k(μ). So, it suffices to prove sn+j(μ)^=sn+ι(μ) for

Assume sn+j(μ) = sn + ι(μ) for 0^j<l^k— 1. Then we see

which shows \l/n+jl_j(μ) = 0. Proposition 5 shows that the greatest root of the equation

ιl/n+ιι-j(μ) = 0 lies between μ^ι~2) and μ ( n + ί " 1 ) . So we have μ<μ{n + ι-l)^μ{n+k-2\

Since μ = μn,k is greater than μ<"+fc-2> by Proposition 5, we have a contradiction.

Therefore, we see sn+j(μ)φsn+ι(μ) for O^j<l^k— 1 and we have our proposition.

PROPOSITION 7. For n^.3 and k^.2, the values μnk in Proposition 5 satisfy the

following:

k-4.< < Vn + k- 2,2 < Vn + k- 1 < I1

PROOF. First, as was stated in Proposition 5, we have

n + k-ί

j

Hence we see

n + k - l

n+i,k-i(μn,k)= Σ (sMn,
j +ίj = n + ί

By Proposition 5 and (6), we see μin)^μ(n+k~2)<μnJc9 which shows sn(μnk)+\ >0. Hence

(6) leads us to

Therefore, we see by Proposition 5 that the greatest root μπ + 1 k _ x of the equation

Ψn+i,k-i(μ) = ® is greater than μnk. From this observation, we have

Furthermore, since μn+k-1 is the greatest root of the equation φn+k- 1Λ(μ) = sn+k_ i



584 T. KURODA AND C. M. JANG

μ = 0, we may put μπ+fc_ x = μ n + k _ M in the notation used in Proposition 5. So, similarly

to the above, we see easily μn+fc_2,2 </<*„+*-1 <μ(n+k~1)- Thus we have our proposition.

Now we prove the following theorem.

THEOREM 8. Assume n^3 and k^2. Then, for the values μnk of the parameter μ

obtained in Proposition 5, the Julia set of fβn k coincides with C.

PROOF. Proposition 6 shows that k-ih periodic points Sj(μnk) (n^j^n + k— 1) of
f=fμn k are mutually distinct. Suppose that there is ay (n ^ j'^n + k — 1) with the property
sMn,k)= —1 This means that the point - 1 is a k-th periodic point of / and we have
sk(μnk) = f\—\)= — \. This and (8) imply μnk^μ(k\ Proposition 5 leads us to a
contradiction. Hence every point Sj(μnk) (n^j^n + k—l) is different from —1. The
equation z exp(z + μ) = s x(μ) = — exp( — 1 + μ) has the only one real root z = — 1 and hence
the sequence {^(μn,fc)}"ίί ~

1 does not contain s^nk). Therefore, the critical point s^nk)
of / is a preperiodic point of /. In the same way as was stated after Proposition 1,
Eremenko-Lyubich's theorem [2] and Sullivan's argument [4] give us the desired.
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