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Abstract. We give the eigenfunctions for Macdonald’s g-difference operators in
terms of g-Selberg type integrals. Our result can be applied not only to the case of
Macdonald symmetric polynomials but also to the cases of rational and meromorphic
solutions.

1. Introduction. The purpose of this paper is to study the eigenvalue problem
for Macdonald’s commuting family of g-difference operators from the viewpoint of
integrals. We will show in particular that Macdonald’s g-difference equations arise
naturally from integrals associated with certain (many-valued) meromorphic functions.
It implies also that various solutions to Macdonald’s g-difference equations, other than
the Macdonald polynomials, can be obtained by taking different cycles.

The argument of this paper is carried out in the sense of g-de Rham cohomology
as in Aomoto [1], although we will not formulate it precisely below. If one knows that
a system of differential or difference equations arises from some de Rham cohomology,
one could provide the fundamental system of its solutions by determining the
corresponding homology cycles. In spite of its importance, such an application of de
Rham cohomology to g-difference equations has not been thoroughly developed yet.
We intend this paper to be the first step of an approach in this direction to g-difference
equations of Macdonald type.

Macdonald [2] introduced a commuting family of g-difference operators defined by

r— i, —Yj
(1.1) D=¢-v2 Yy [T =0T, Tuy,
iy <o<iy jizl....,r Yis—Yj

ain}

fory=(y,...,ypand r=1, ..., n. Our aim is to study the simultaneous eigenfunctions
of these operators in terms of integrals. Here ¢ is a real number satisfying 0 <g<1,
and ¢ is a nonzero real number. The shift operator T, ,, is defined by (T, , /) (Vs - .. Vu) =

fC..,qvi,...).

We will make use of the generating function

(1.2) Dy(u)= 20 (—w)'Dy

=—— Y sgn() [[ ()"0 —ur"~ 70T, )
A(Y) oes., j=1 !
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of this commuting family, where 4(y) denotes the Vandermonde determinant

A= Tl i—y)=det(y! Hicijen-

1<i<j<n

We define the function Y®=¥®)(y;x) of the variables y=(y,,y,,...,», and
x=(X{, Xz ..., X,,) S

(13) T‘S)=‘I’(S)(y;x)= 1_[ yjs l_[ (tyr/xj)oo (xi/xj)oo
=17 asrsn (/X))o Lgijsm (1xi/% )

for se C, where (a),=(a; 9), =[],. o (1 —ag’). More generally, we define the function
P Gosumsi-1) of the set of variables

xO=(xP, xP . xB, (i=0,1,2,...,D
as

(1.9 W (50:515 081~ 1) — (50,5150 81 - 1)(x(0); x(l); o x(”)

1
- l_[ lp(s;-x)(x(i—l); x(i))

i=1
for 59, 84, ..., 8_,€C.
In this paper we study integrals on a cycle C whose integration variables are
xO=(x®, xP, ..., xih) i=12,...,D,

and whose measure dé =d&é(x'?), ..., x"") is invariant with respect to the shift operators
T, (1<j<k® i=1,...,1). Here Cis an arbitrary cycle, but is fixed in what follows.
"Our main result is the following:

THEOREM 1. For the variables x = (x{", x, ..., x{)) (0<i <), if a function p(x")
satisfies the q-difference equation

D, a(u)p(xP) = me(u)q)(x‘”) s

where c,w(u) is a generating function of the eigenvalues not depending on x, then the
Sfunction

W(X(O))—:J g/(SO,sh.--S:—l)(x(O);x(l); ol x(l))¢(x(l))dé(x(l);x(2); . x(l))
C

satisfies

D o ()p(x (0)) = Cuo(u(x (0))
with
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-1
Cx(o>(ll) =cx“)(uqso+~-+sx— 1tk(°>—k<“) l_[ (uqso+---+s.-tk(°)—k“>; t)k(")—k“*' b,
i=0

where (u; t) = (u; 1), /(ut*; 1),,.
When o(x®)=(]T, ;.0 x")", it follows from (1.2) that
cao(@)=uq*; Hiw .
Hence we have
l .
Cx(o)(u)= l_[ (uqsO+... +Sl.tk(0)—k(t) ; t)k(i)_k(i+ b,
i=0

where k**1 is defined to be zero. Thus, also setting /=n—1, k?=n—i (0<i<n—1),
S0=Ans $;=IAp_i—An_ir1 (1<i<n—1), and xP=y=(y,,y,,...,¥,), we obtain the
following corollary, which gives an affirmative answer to Conjecture 6.2 in [3].

COROLLARY 2. Set
d= lp(imln—x—/lm-.-‘/lz—ls)(x(o); x(l); o xn- 1)) . (x(n—l))lx—lz .

Then we have

D;J d5d6=c,’lj ddé (r=1,...,n)
C C

for an arbitrary cycle C, where
D. 2. .1
dé=d(xV; x5 .. x"7Y),
and
c;= z l—l qlist('l_is) .
1< <i, 1<s<r

When the 4; are integers such that 4, >4,>--->4,>0, the function

J Ddt
Tn(n-— 1)/2

expresses the Macdonald symmetric polynomial P,(y; g, t) up to a constant factor, as
is noted in Theorem 7.1 of [3]. Here T" denotes the r-dimensional torus. This is a
motivation for the present work (also see [4]).

Here is a remark concerning the measure d¢ and the cycle C. According to the
situation, we could take either the usual invariant measure
dx,  dx;

dé(x)=

X X
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for x=(x;, x5, ..., X)), or the discrete measure given by Jackson integral. In this paper,
however, we do not discuss such an explicit form of the measure and the cycle.

In Section 2, we give a proof of Theorem 1. In Section 3, we give a variant of
Theorem 1 for the eigenfunctions of the single g-difference operator D', which would
also be useful in applications.

2. Proof of Theorem 1. For the sake of brevity, we frequently express the equality
J @ (x)dE(x) = J P2(x)dE(x)
C C

simply by
P1(X)=py(x) .

In this section, we set

2.1 Fu|x;»)= Y (—wlnan-v2]] I —txi/x; 1—yjxi
11, ...,m ier 1—x;/x; ier 1—ty;x;
j¢l T 1<jzn J

for x=(x,, x5, ..., x,) and y=(yy, ¥2, ..., ¥,). Then the action of the operators D(u)
and DX(u) on the function ¥ (y; x), defined in (1.3), are given by

D,w)¥(y; x)=¥Ny; x)Fug*|y; x71),
DXuw¥y; x)=PNy; )Fulx"";y),

where x ! represents (x; ', x5!, ..., x, '), and

D¥w= ). )(—u)'”(T.f.x)" '4,(x)

I={1,....m

is a formal adjoint operator of

Dw= Y (—wA4,xT!,
Ic }

{1,....m
with
Ay()=pnan-vrz [ L=/

iel l_x,'/xj

¢l
and

I _
TIN‘_ T'I-Xx', e Tqyx-'

r

for I={iy, ..., i}.
To proceed, we use the equality
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2.2) Fu|y; x)=(u; t)y-nFut""|x;),
which will be proved later in Lemma 3. By (2.2), we have
D) ¥ (y; x)p(x)=P(y; x)Fug*|y; x~")o(x)
=Yy )Fugt" " | x5 y)ug®; 1), mp(x)
=(DXugt" " Py ; X)Ug*; 1)y mP(X)
=YO(y; X)ug*; 1), - m(Du(ug*t"” ™) p(x)) .
More generally, repeating such a process, we have
Do) B 60515100 (D ) (D)
= PP xD)(ug®; o -

x Dx“)(uqSotk“”—k“’)q/(n.Sz,-..,Sz- 1)(x(l); o x(l))(p(x(l))

= o 0O x0) T (g e
X Dya(ug®* ottt 'tkw::im)(P(x“)) .
To complete the proof of Theorem 1, it is enough to show the following:
LemMMmA 3. We have
(2.3) Fuly; x)=(u; O nFut" ™| x; )
Jor x=(x1, X5, ..., Xp) And y=(Y1, V2 - -+ » V)

ProOOF. We rewrite (2.1) as

TLd AT, (1 =yx) )
2.4 Fu|x;y)= _int e i :
(2.4) wxin= ¥ (- A0 [T, (1=pix;)

={A(x)n(1 ) }

x(1=uT,y,)---(1 —uT,,xm){A(X)H(l —y,-xj)_l}.

Similarly,

@5  FRulys= Y (-wmo-ve [P0 12
Ke(L,...n liﬁ l—yi/yjlis.x 1 —1x;y;
j <j<m

-1
= {A(}’) H(l —iX;)” 1}
i\j
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x(1—uT,,) --(1— ,yn){A(J’)n(l—ym) 1}
Recall the formula

(2.6) CJIA=px)7'= Y s (0s(p)

l(u) <min{m,n}

in terms of the Schur function

det(x* "™ )y Lii<m

su(x)=

1
A(x)
for the partition u=(u,, u,, ...). Here I(u) denotes the length of p.

Moreover, we obtain

(2.7) Ax) M1 =uT, ) - (1=uT,, ){A(X)s,(x)}
=A(x)"'(1—uT,, ) -(1—uT,, ) et} ") i jom
=A(x)" ' det((1 —urttmxptm=iy
=407 A=t (L=t det(xef ) e
= (L —ut" =Y (1 —utim)s,(x)
Similarly,
(28) AW ' —uT,,,) (1 =uT, HAW)s ()} =1 —ut 7o (1 —ut*)s,(y) -

Combining (2.4)—(2.8) and noting that u;=0 for min{m, n} + 1 <i<max{m, n}, we obtain
the desired result.

This completes the proof of Theorem 1.

3. A variant for the eigenfunctions of D;. So far we have discussed simultaneous
eigenfunctions of the commuting family of g-difference operators D/, ..., D} of
Macdonald. In applications, however, it is sometimes more convenient and even
necessary to deal with the eigenfunctions of the single operator D;. In this section we

reformulate our main theorem in this form, confining ourselves to the case of /=1, and
give a direct proof based on the method of partial fractions.

PROPOSITION 4. For x=(Xy, ..., Xp) and y=(V1, V2> - - «» Yn)» if
Dip(x)=ciop(x),

then we have

1 n—m
DN(y)=¢q° <c T It )lﬂ(y)
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with
()= J PO (y; x)p(x)dé(x) .
C

Proor. First, we set, for x=(x, ..., x,) and y=(¥1, Y2, - - -» ¥n)>

m

(€R)) Fx; =3 11

i=1iskem 1—x;/x; 12r<n 1 =1y,
1

1 —1x;/%, 1—y,x;

This corresponds to the coefficient of u in F(u|x; y) defined in (2.1). Then we have

D} P(y; x)o(x)=q*F(y; x)p(x)F(y; x~ 1),

and
Y9(y; x)D;ip(x)= kZ PO(y; ) A(0) T 1, P(X)
=1
= kZI (Tq,xk)k ! { T(S)(y 5 x)Ak(x) Tq.xk(p(x)}
=k; (Ty) Py ) 41(x) (%)
=P (y; )F(x" 15 y)e(x),
where x~! represents (x; !, x;!,...,x,"). Thus our task is reduced to showing the
equality
_ 1 — zn*m
(3.2) F(y;x)=t" '"F(X;Y)+ﬁ
Regarding
c 1—tyi/y 1—x,;
Fy;o=Y [l :

i=1 1<k<n 1 =YV 1<r<m 1 —1X,Y;
K#i

as a function of one variable y,, we expand F(y; x) into partial fractions

n ) m 1_ )
(3.3) Fy;x=Y — 4 4300 40
i=2yi—ypo= =gy,
The residue at y, =(txj)‘1 for each j=1, ..., m gives
b=t ] 1 —yix; 1 —1x;/x,

2<k<n l—tykxj 15;5_m I—XJ/X,.
r#j
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For each j=2,...,n, the residue at y, =y, gives a;=0. Hence the equality (3.3) is
reduced to
3.4) Fly;x)=t"""F(x;y)+c,.

To obtain (3.2), it is enough to show

_ l_tn—m
S
for ne N.
In the case n=1, considering the case y, =0, we have
FO;x)=1
and
m Y. 1—m
F(x;0)= Z 1—1x;/x, _
i=1 lil;g.m l—xi/xk l_t

by definition. Therefore, the equality (3.4) implies
1—1¢
Next, substituting the equalities
Fyy oo isVn-10;)=14+tF(yy, ..., Yuo1:X)
and
F(X5y1ees Yum1, 0 =F(X; Y15 -5 Yn1)

into (3.4), we obtain
(3.5 L4 tF(Yyy ooy Yy 13 X)=1"""F(X; Y1 oo s Vn1) +Cu -
The case n—1 of (3.4) with (3.5) gives

l+tc,_,=c,.
This completes the derivation of (3.2).

By repeating the argument of this proof, it is not difficult to generalize Proposition
4 to the case where />1 as in Theorem 1.
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