
Tόhoku Math. J.
49 (1997), 517-525

AN INTEGRAL REPRESENTATION OF EIGENFUNCTIONS
FOR MACDONALD'S ^-DIFFERENCE OPERATORS

KATSUHISA MIMACHI AND MASATOSHI NOUMI

(Received March 25, 1996, revised September 2, 1996)

Abstract. We give the eigenfunctions for Macdonald's ^-difference operators in

terms of g-Selberg type integrals. Our result can be applied not only to the case of

Macdonald symmetric polynomials but also to the cases of rational and meromorphic

solutions.

1. Introduction. The purpose of this paper is to study the eigenvalue problem
for Macdonald's commuting family of ^-difference operators from the viewpoint of
integrals. We will show in particular that Macdonald's ^-difference equations arise
naturally from integrals associated with certain (many-valued) meromorphic functions.
It implies also that various solutions to Macdonald's ^-difference equations, other than
the Macdonald polynomials, can be obtained by taking different cycles.

The argument of this paper is carried out in the sense of #-de Rham cohomology
as in Aomoto [1], although we will not formulate it precisely below. If one knows that
a system of differential or difference equations arises from some de Rham cohomology,
one could provide the fundamental system of its solutions by determining the
corresponding homology cycles. In spite of its importance, such an application of de
Rham cohomology to ^-difference equations has not been thoroughly developed yet.
We intend this paper to be the first step of an approach in this direction to ^-difference
equations of Macdonald type.

Macdonald [2] introduced a commuting family of ^-difference operators defined by

( 1 1 ) vy-t 2u YY - — \iq,y icΣ Γ Π t^
h<<i±^::::;Uyi

for y = ( y ί 9 . . . , yn) and r = 1,...,«. Our aim is to study the simultaneous eigenfunctions
of these operators in terms of integrals. Here q is a real number satisfying 0 < # < l ,
and t is a nonzero real number. The shift operator Tqy. is defined by (Tqtyif)(yl9 ...,yn) =

We will make use of the generating function

(1.2)

Σ
σeSn
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of this commuting family, where Δ(y) denotes the Vandermonde determinant

= Π (yi-yJ)

We define the function Ψis)=Ψ(s\y; x) of the variables y = (yl9y2, . , J U and

x = (Xι9 x2, , xm) as

(1.3) Ψis)=Ψ^(y;x)=f\y] f Ί ( ^ r / X j ) ° ° Π ( / )

(y/X)l<r<n

for 5 G C , where (a)aD=(a;q)O0 = Y\i^0(\—aqi). More generally, we define the function

Ψ{S(hSι s / l ) of the set of variables

—yXi , x2 , ,

as

^ ^

for ^o, j l 5 . . . , 5 , - ^ C

In this paper we study integrals on a cycle C whose integration variables are

X —{Xι,X2,...,Xk(i)) \ι— x » A •••> ^ J

and whose measure dξ = dξ(x{1\ . . . , x( ί)) is invariant with respect to the shift operators

Tqχ{i) (1 <j<k(ι\ i= 1,...,/). Here Cis an arbitrary cycle, but is fixed in what follows.

Our main result is the following:

THEOREM 1. For the variables x{i) = (x[i}, x%\ . . . , x$>) (0 < i < /), if a function φ(x(l))

satisfies the q-dijference equation

where CX(D(U) is a generating function of the eigenvalues not depending on x^ι\ then the

function

ψ(xi0))= y<«o.'i.-*i-!>(*«>>; χa); . . . ; χ^)φ(χ^)dξ(x{l) \ x ( 2 ) . . .
C

satisfies

with
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cx(0)\U) — cχ{i){μq i )[ [ yuq t , t)k(i)_kiί + i),
i = 0

where (u; t)k = (u; t)J(utk ή^.

When φ(xil)) = (Πi<j<k«)Xjl)Y\ it follows from (1.2) that

cxυ>(u) = (uqSι;t)kW.

Hence we have

i

i = 0

where k{l + 1) is defined to be zero. Thus, also setting l=n — l, k{i) = n — i (0<i<n — l),

so = λn, si = λn_i-λn_i+1 (\<i<n-l), and χ{0)=y = (yuy2,..., yn\ we obtain the

following corollary, which gives an affirmative answer to Conjecture 6.2 in [3].

COROLLARY 2. Set

φ= ψ(λn,λn-ι-λn,...,λ2-λ3)/χ(0) . χ(ί) . . χ(n-l)\ . /χ(n-lhΛi-A2

Then we have

Jc Jc
D;\ Φdξ = cr

λ\ Φdξ
Jc J

for an arbitrary cycle C, where

dξ

and

c\= Σ Π ?A './ (-ω.
ii < < ir 1 <s<r

W h e n t h e λ } a r e i n t e g e r s s u c h t h a t λι>λ2>'' >λn>Q, t h e f u n c t i o n

γn(n- l )/2

expresses the Macdonald symmetric polynomial Pλ{y\ q, t) up to a constant factor, as

is noted in Theorem 7.1 of [3]. Here Tr denotes the r-dimensional torus. This is a

motivation for the present work (also see [4]).

Here is a remark concerning the measure dξ and the cycle C. According to the

situation, we could take either the usual invariant measure
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for x = (xu x2,..., xk), or the discrete measure given by Jackson integral. In this paper,

however, we do not discuss such an explicit form of the measure and the cycle.

In Section 2, we give a proof of Theorem 1. In Section 3, we give a variant of

Theorem 1 for the eigenfunctions of the single ^-difference operator D*9 which would

also be useful in applications.

2. Proof of Theorem 1. For the sake of brevity, we frequently express the equality

φi(x)dξ(x)=\ φ2(x)dξ(x)
c Jc

simply by

In this section, we set

(2.1) f{u\x;y)= Σ {-ufψm-u^-^i [j
l X / X/c{l m} iel l—Xi/Xj iel \~ty^Xi

jφl 1 <j<n

for x = (x1 ? x2, . . . , xm) and j> = 0 Ί , y2,..., >>„). Then the action of the operators Z>y(w)

and i)*(w) on the function Ψis\y;x), defined in (1.3), are given by

Dy(u)Ψ{s)(y x) = Ψ{s)(y x)F(uqs \y x~ι),

Z)*(H)!P(S)(J> x) = Ψ{s\y χ)^(w | χ~x 7 ) ,

where x~x represents (x^ 1, x^ 1, . . . , x~ x), and

wo= Σ (-

is a formal adjoint operator of

βχ(«)= Σ (
J<={l , . . . ,m}

with

L - ^ / ^

and

-* q,x -* q,X( j * * ί ' χ i r

for 7={/ l 5 . . . , ι r } .

To proceed, we use the equality
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(2.2) F(u\y;x) = (u;t)n-mF(ut"-m\x;y),

which will be proved later in Lemma 3. By (2.2), we have

Dy{ύ)Ψ{s\y x)φ(x) = Ψ<s)(y x)F(uqs \y x'^φix)

= Ψ^\y x)F{uqsf-m\ x~ι y){uq° t)n-mφ(x)

^ ; t)n.mφ(x)

More generally, repeating such a process, we have

£>x<o,(M)"f'(so Sl - S l - l ) (x ( O ) ; x ( 1 ) ; . . . xm)φ(x(l))

/ - I
. (IK Π

i = 0

To complete the proof of Theorem 1, it is enough to show the following:

LEMMA 3. We have

(2.3) F(u\y;x) = (u;t)n

for x = (xu x2, . . . , xm) andy = (yu y2,..., yn)

PROOF. We rewrite (2.1) as

(2.4, /frlx y,- Σ ( - t f - ^

Similarly,

Π Vι F(U\Λ> YΛ— V ( fΛ|gM&l(|g|-i)/2 FT 1 ~ ^ i / > / . ; ]~Γ

ieK 1 - J f M ieX 1 —
j^K l<j<m
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x{\-uTuyι) \

Recall the formula

(2.6) γi(\-yiXjyi= £ sμ(x)sμ(y)

l(μ)<min{m,n}

in terms of the Schur function

1

for the partition μ = (μ1? μ2,...). Here /(μ) denotes the length of μ.

Moreover, we obtain

(2.7) Δ{xy\\ -uTUXi). -(I -uTuxJ{Δ(x)sμ{x)}

= Δ{x)-\\-uTUXχ)..

Similarly,

(2.8) Δ(yY\\-uTUyy .(l-uTUyn){A(y)sμ(y)}=(l-ut^+n-1). -(l-ut^y).

Combining (2.4)-(2.8) and noting that μt = 0 for min{m, n) + 1 < /<max{m, rc}, we obtain

the desired result.

This completes the proof of Theorem 1.

3. A variant for the eigenfunctions of Dy

ι. So far we have discussed simultaneous

eigenfunctions of the commuting family of ^-difference operators Dy,...,D" of

Macdonald. In applications, however, it is sometimes more convenient and even

necessary to deal with the eigenfunctions of the single operator D}. In this section we

reformulate our main theorem in this form, confining ourselves to the case of /= 1, and

give a direct proof based on the method of partial fractions.

P R O P O S I T I O N 4 . For x = (xu ..., xm) and y = (yuy2,..., yn), if

then we have

( \—tn

n-m+ My),
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with

Ψ(y)=[ Ψis\y;χ)φ(χ)dξ(x).

Jc

P R O O F . F i r s t , w e se t , f o r x = (xί9..., xm) a n d y = (yί9y2,'",yn)>

(3.0 «r.Λ-t Π ψψ Π
Ϊ X X

ί<k<m Ϊ—Xi/Xk l<r<n L—
kΦi

This corresponds to the coefficient of u in F(μ\x\y) defined in (2.1). Then we have

and

m

= Σ (TqyXkr
1{Ψ^(y;x)Ak(x)Tq,Xkφ(x)}

k=l

= Σ(Tq.Xkr
ι{Ψis\y;χ)Ak(χ)}φ(χ)

k=l

where x~ι represents (x^.x^1, ..^x'1). Thus our task is reduced to showing the
equality

(3.2) F{y χ) = tn-mF(x;y)+1~^m .

Regarding

) = λ 11 -: 7— 11 ^ ^
i=i i<kϊn \—yilyk i<r<m l — tχryi

as a function of one variable yu we expand F(y x) into partial fractions

(3.3) F(y;x)= £ - ^ - + £ ^ i z ^ L + c .

The residue at y1 = (txj)~1 for eachy = 1,..., m gives

j" Π ι~tXj/Xr

b.=r Π Π
3 2<k<n \—tykXj \<r<m 1 — Xj/xr
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For each y = 2,. . . ,«, the residue at yί=yj gives a} = Q. Hence the equality (3.3) is

reduced to

(3.4)

To obtain (3.2), it is enough to show

for neN.

In the case n=l, considering the case yί = 0, we have

F(0;x)=\

and

£ Π ^
i=ί l<k<m 1—Xi/

kΦi

by definition. Therefore, the equality (3.4) implies

Next, substituting the equalities

F(yu ...,yn-19 0 x) = 1 + r ^ i , . . . , y n - x x)

and

JF(x;j;1,...,y / l_1,0) = F(x; y l 5 . . . , yM-i)

into (3.4), we obtain

(3.5) \ + tF(yl9...9yn-1\x)

The case n — 1 of (3.4) with (3.5) gives

This completes the derivation of (3.2).

By repeating the argument of this proof, it is not difficult to generalize Proposition

4 to the case where /> 1 as in Theorem 1.
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