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NUMBER OF ZEROS OF SOLUTIONS TO SINGULAR
INITIAL VALUE PROBLEMS
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Abstract. The behavior of solutions of singular initial value problems is studied
for a second order ordinary differential equation. The main purpose of this paper is to
obtain sharp sufficient conditions so that any solution has a finite number of zeros or
infinitely many zeros. We treat them systematically and generalize previous results by
using the Pohozaev identity. As an application, we investigate the number of zeros of
radially symmetric solutions to generalized Laplace equations.

1. Introduction. The asymptotic behavior of solutions is one of the main topics
in the theory of ordinary differential equations. In particular, the finiteness of the
number of zeros of solutions is a fundamental question. In this paper we consider the
behavior of solutions to an equation of the form

(L.1) (o), + k() f(v)=0,
where
eE)=I&" 'sgné, m>1.

Here, we introduce the following assumptions on f(v):

f(w)e CR)n CYR\{0}),
vf(v)>0 for v#0,

lim sup m< 00
oo f(v)

L vf'(v)
Y 4 .—vlg(f) 0

(f2) q2:=Sup l);(il;) <0

(f.0)

’

>m—1,
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The conditions (f.1) and (f.2) imply the “super-linearity” and ‘“polynomial growth” of
f, respectively. A typical example satisfying (f.0), (f.1) and (f.2) is f(v)=|v|? v
with g>m—1.

Concerning k(2), we introduce the hypotheses

(£.0) k(t)>0 on (0,0), k(t)eCY((0, 0)),
(k.1) Jw¢“‘<ka(r)dr>ds<w,
1 s
(k.2) Jl k(7)| f(ct)|dr < 00 for any c¢#0,
0

where @~ 1({)=|{ |~ VUsgn {. Note that (k.1) implies k(t) e L*(1, o0) under the condition
(k.0).

Under the standing assumptions (f.0) and (k.0), we will consider the following
singular initial value problems

P) {((,)),+kt)f(v —0, te(0, ),
u(ty)=a, (t)=b,

(P, {(?(v +k()f(0)=0,  te(0, ),
lim o(t)=0>0,

Py

0
tio t

{( o), +k()f)=0,  1€(0, ),

where #, >0 and the initial data a, b, «, 8 are arbitrarily given. Our interest here is to
classify solutions of the above problems according to their asymptotic behavior and
their zeros.

We note that the above problems are closely related to radial solutions of m-Laplace
equations in R". Let us consider the m-Laplace equation of the form

(1.2) div(| Vu ™ 2Vu)+ K(| x|)|u|?” 'u=0.

Any radial solution to this equation satisfies

(1.3) — (" " u,), + K(r) | u [P u=0.
r

Changing the variables by

m—1\9a-—m+1)
u(t)= ur), k()=rmer-Vm=DE(), p=gmmmDimm
n—m

we can reduce the above equation to (1.1).
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When m =2, the structure of positive solutions to (P,) which correspond to radial
solutions to (1.2) is precisely investigated by many authors (see, e.g., Li-Ni [12],
Yanagida-Yotsutani [17] and the references therein). Concerning solutions with zeros,
there are a lot of existence and non-existence results such as Atkinson [1], Coffman-
Uhllich [2], Kiguradze [8], Ni [13], Ding-Ni [3], Kusano-Naito [10] and Yanagida
[16].

On the other hand, when m#2, a sharp structure theorem of positive solutions to
(P,) is obtained for (1.3) by Kawano-Yanagida-Yotsutani [7], which is a generalization
of Ni-Serrin [14], Kawano-Ni-Yotsutani [5] and Kawano-Yanagida-Yotsutani [6].
Concerning solutions with an infinite number of zeros, however, there are few results
for the existence and non-existence of solutions to (P,) except for Kusano-Ogata-Usami
[11]. It seems that there is no systematic treatments to (1~’ﬁ), which corresponds to the
problem of finding radial solutions with u~|x|~®~™/™=1 at x=00 to m-Laplace
equations (1.2) in R"\ {0}.

The main purpose of this paper is to give sharp sufficient conditions so that any
solution to (1.1) has a finite number of zeros or infinitely many zeros near t=0 or
t=o00. We systematically use the Pohozaev type identity by which we not only give
comprehensive proofs but also generalize the previous results.

The Pohozaev type identity was first introduced in Pohozaev [15], in which the
non-existence of positive solutions to some class of nonlinear elliptic equations was
shown. This identity is a fundamental and sharp energy equality, and has been used
to investigate properties of solutions after suitable rearrangement of the equality. We
show that the identity is also very effective to give answers to our problem by introducing
its various rearrangements.

In order to classify solutions, we define the type of a solution according to its
behavior at =0 and t= 0.

At t=0 we say that

(i) wo(t) is of type R if v(t) has at most a finite number of zeros in (0, 1) and
lim, | o v(t)/t exists and is finite,

(i) o(t) is of type S if v(t) has at most a finite number of zeros in (0, 1) and
lim, , o] v(t)]/1 =0,

(ii1) o(t) is of type O if v(t) has infinitely many zeros in (0, 1).

Similarly, at t= o0, we say that

(i) ot) is of type R if v(t) has at most a finite number of zeros in (1, co) and
lim,_, , v(t) exists and is finite,

(ii) o(t) is of type S if v(t) has at most finite number of zeros in (1, o) and
lim,., ,, |u(t)|= o0,

(iii) o(¢) is of type O if v(t) has infinitely many zeros in (1, o).

As we will see in Proposition 2.1 in the next section, there is no other type of solutions.

First of all, we consider the existence and uniqueness of solutions to (P), and
investigate their possible behavior at =0 and ¢ = co. The first theorem is a modification
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of the results by Coffman-Uhllich [2], Kawano-Ni-Yotsutani [5], Kawano-Yanagida-
Yotsutani [7], Kitano-Kusano [9] and Ni-Serrin [14].

THEOREM 1. Suppose that (f.0) and (k.0) hold. Then for any t, >0, a and b, there
exists a unique solution v=u(t) to (P) satisfying

(1.4) v(t)e{ CHHmTR(O, Oci)) yom>2,
C*((0, 0)) if 1<m<2,

and

(1.5) o(v,)e C'((0, 0)) .

In general, it is not easy to determine the type of solutions to (P). However, if the
singularity of k(¢) is sufficiently “‘strong” at t=0 (resp. = 00), then any solution must
be of type O (resp. type O). The following result is a generalization of Atkinson [1]
and Ni [13], who treated the case m=2.

THEOREM 2. Suppose that (f.0), (f.1) and (k.0) hold.
i) If “)k(‘l:ﬂ f(ct)|dt= 0 for all c#0, then any solution v to (P) is of type O.
() If [T o N[ k(x)dr)ds = oo, then any solution © to (P) is of type O.

In view of (i) (resp. (ii)) of Theorem 2, any solution to (P) is type O (resp. type
0), if (k.2) (resp. (k.1)) does not hold in the case where f(v)~|v|?~ ‘v at v=0 for some q.
As an immediate consequence of Theorem 2, we obtain the following result.

COROLLARY 1. Suppose that f(v)=|v|?* v with q>m—1 and that k(t) satisfies
(k.0). Let v be a solution to (P) with (a, b)#(0, 0). '

(1) Ifk(t)~t® at t=0 with some 6 < —(q+1), then v is of type O.

(i) If k(t)~t* at r=co with some p> —m, then v is of type O.

By virtue of the above corollary, the type of solutions is determined only by the
asymptotic behavior of k(t) if 6 < —(q+ 1) and p > —m. The numbers —(g+1) and —m
are optimal in the sense that if 6> —(g¢+1) and p< —m, the types of solutions
delicately depend on the property of k(¢) and initial values (see Corollary 3 and [4, 6,
7, 16, 17, 18]).

On the contrary to Theorem 2, if the singularity of k(¢) is sufficiently “weak” at
t=0 (resp. t=o0), then any solution must be of type S or of type R (resp. of type S
or of it type R). Let us define

_(m—1)g+(2m—1)
= — .

(1.6) Ha):

We note that m<u(q)<qg+1 if g>m—1 with m>1. The following theorem is a
generalization of Kiguradze [8].
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THEOREM 3. Suppose that (f.0), (f.1), (f.2) and (k.0) hold. Let v be a solution to
(P) with (a, b)#(0, 0).

(1) If sup,wo{| @)/ 01"} < o0 and liminf,.o {tk¢)/k(t)} > —u(g,), then v is of
type S or type R.

(i) I Sup,po {| f(0)/]01%} < o0 and lim sup,..., {1k (t)/k(t)} < —uqs), then v is of
type Sor type R.

As a consequence of Theorem 3, we obtain the following result.

COROLLARY 2. Suppose that f(v)=|v|" ‘v with g>m—1 and that k(t) satisfies
(k.0). Let v be a solution to (P) with (a, b)#(0, 0).

(1) If (t”°k(t)), =0 near t=0 with some o> — u(q), then v is of type S or type R.

(i) If (tPk(t)), <0 near t= oo with some p < — u(q), then v is of type S or type R.

The number — p(g) is ““critical” in the sense that the structure of solutions changes
sensitively at k(t)=ct*@ with a constant ¢>0 when f(v)=|v|?" 'v (see, Corollaries 3
and 4).

Now we focus on the initial value problems (P,) and (135). In view of a remark after
Theorem 2, the assumptions (k.1) and (k.2) are necessary for the solvability of the initial
value problems (P,) and (f’ﬂ), respectively, when f(v)~|v|?” v at v=0 for some q. We
will show that (k.1) and (k.2) are sufficient for the existence of solutions to the problems
(P,) and (13,,), respectively. The next result is a generalization of [5], [7] and [14].

THEOREM 4. Suppose that (f.0) and (k.0) hold.

(1) If (k.1) holds, then for any a>0, there exists a unique solution v(t; &) to (P,)
satisfying (1.4) and (1.5).

(i) If (k.2) holds, then for any B>0, there exists a unique solution #(t; ) to (13,,)
satisfying (1.4) and (1.5).

Let us consider the behavior of solutions to (P,) and (f’,,). A solution to (P,) is of
type O if the assumption of (i) of Theorem 2 holds, and a solution to (P,) is of type
O if the assumption of (ii) of Theorem 2 holds. However, if the assumptions of Theorem
2 do not hold, the structure of solutions becomes more complicated.

In fact, when f(v)=|v|?"'v with g>m—1, the structure of solutions crucially
depends on m, g and k(t). We can give sharp sufficient conditions so that any solution
is of type O, type S or type R. To state the sufficient conditions, we introduce some
auxiliary functions

(1.7) G(t):z—l— tk(t)— m=1 ka(s)ds
qg+1 m t
and

(1.8) H(t):

t
t"“k(t)—i j s k(s)ds .
qg+1 m Jo
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We note that G(t) (resp. H(t)) is well-defined under the conditions (k.0) and (k.1) (resp.
(k.2)). We also note that

_ 1 k()
(1.9) G(t)= a1 {k(t) +M}k(t)
and
1 tk,(t) a+1p ey _ ga+1
(1.10) H,(If)————q+1 {_k(t) +,u}t k(t)y=t17'Gt),

where u=pu(q) is defined by (1.6).
If G(t) (resp. H(t)) is identically equal to zero in (0, o), then

k(t)=ct™*@

for some positive constant ¢ and u(t; a) (resp. i(t; p)) is of type R (resp. R) for any o
(resp. B). In fact, all solutions to (P,) and (Py) are explicitly obtained as

(1.11) vt ) =at{t’+ 1)} 7, ot B)=Bt{t"+1(B)} ",
where y=(q—m+ 1)/m and

(@) =ala=m* 1)/(..,—1){ me 4}1“”‘_1).
(m—1)g+1)

The following result is a generalization of [3], [5], [7] and [10].

THEOREM 5. Suppose that f(v)=|v|? v with g>m—1, (k.0), (k.1) (resp. (k.2)), and
that G(t) (resp. H(t)) is not identically equal to zero in (0, ). Let v(t; o) (resp. o(t; B)) be
the unique solution to (P,).

(i) IfG(t)=0 on (0, ©), then v(t; o) has at least one zero in (0, 00). Moreover, if
G(t)<0 on (0, o), then v(t; a) is of type O.

(ii)) If G(t)<0 on (0, ), then v(t; o) is positive and of type S.

(iii) If H(t)=0 on (0, o), then i(t; B) has at least one zero in (0, 0c0). Moreover, if
H{t)=0 on (0, o) and H(t) is not identically equal to zero, then it; p) is of type O.

(iv) If H(t)<0 on (0, ), then i(t; ) is positive and of type S.

The above theorems will play important roles in generalizing the results in [17]
and [18] for the existence and the structure of radial solutions to the m-Laplace
equations. We discuss these problems in [4].

As an easy application of Theorem 5, we consider the case where f(v)=|v]? v
and k(t)=1°. In this case, G(t) and H(t) are explicitly expressed as

G(t) {o+u(g)}e°*? for o<—m,

1
@+ D@+1)

! ) {o+u(g)jtorat? for o>—(q+1).

Hi)=—
g+ )(o+q+2
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Hence, by applying Theorems 1, 2, 3, 4 and 5, we can completely classify the behavior
of solutions.

COROLLARY 3. Suppose that f(v)=|v|* ‘v with g>m—1. Let k(t)=1°.
(Y) The structure of solution to (P,) is as follows.
(i) If o= —m, then (P,) has no solutions for any o.>0.
(i) If —u(g)<o< —m, then v(t; o) is positive and of type S for any o> 0.
(iii) If o= —ulq), then v(t; a) is positive and of type R for any a>0.
(iv) If o< —ulg), then v(t; a) is of type O for any a>0.
(IT)  The structure of solutions to (f’,,) is as follows.
(1) Ifo<—(q+1), then (f’l,) has no solutions for any f§>0.
(ii) If —(g+1)<o< —u(q), then ilt; B) is positive and of type S for any §>0.
(ii) If o= —u(q), then i(t; P) is positive and of type R for any p>0.
(iv) If o> —pu(q), then it; B) is of type O for any B> 0.

We see from this corollary that the case k(t) : = ¢t ~*@ with a constant ¢ >0 is critical.
Let us consider the perturbation around k(t):=ct™*9, Let n(¢) be a smooth bounded
positive function, and k(t):=#(t)t "*9. In this situation, G(¢) and H(t) are well-defined
by virtue of 1 <m<pu(q)<q+1, and expressed as

-1 (=
G(t)=—1— ! —u(q),](t)_m_ J s_“(‘”n(s)ds
qg+1 m .

1 1 {
H(t)z_q+1 t‘”z—“(‘“n(t)—;'f S"“_“(‘“n(s)ds.
0

We see that G(t)—>0 as t - o0, H(t)—0 as t — 0, and that

1
Gt)=—— 11"y (t)=1""1H(t) .
q+1
By Theorem 5, we obtain the following result, which implies that the type of solutions
drastically changes according to the sign of #, (see also [3] and [14]).

COROLLARY 4. Suppose that f(v)=|v|?" 'v with gq>m—1. Let k(t)=n(t)t "2,
where y(t) is a positive non-constant function such that n(t)e C*(0, o) and n(t) converges
to some positive number as t >0 and t — 0.

(1) The structure to solutions of (P,) is as follows.

(1) Ifnft)<O0, then u(t; o) is of type O for any a>0.
(ii) If n(t)=0, then v(t; o) is positive and of type S for any a>0.

(II) The structure to solutions of (13B) is as follows.

(i) If n{t)=0, then it; B) is of type O for any >0.
(ii) If nft)<O0, then i(t; B) is positive and of type S for any p>0.

This paper consists of six sections: Section 2 contains basic properties of solutions
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to the initial value problems (P,) and (f)ﬂ). Section 3 is devoted to the proof of Theorem
2. In Section 4 we prove Theorem 3. Proofs of (i) and (ii) of Theorem 5 are given in
Section 5. A proof of (iii) and (iv) of Theorem 5 is given in Section 6. Characterizations
of solutions in terms of the Pohozaev identity play an essential role in the proofs in
Sections 5 and 6. The outline of proofs of the existence of solutions to the initial value
problems (i.e., Theorems 1 and 4) is given in the Appendix.

ACKNOWLEDGMENT. The authors express their sincere gratitude to the referee for
giving them valuable comments and suggestions.

2. Preliminaries. In this section we show basic properties of (P), (P,) and (f’,,).
First, we collect basic properties of a solution to (1.1).

Lemma 2.1. Suppose that (f.0), (k.0) hold and let v be a solution to (1.1) satisfying
(1.4) and (1.5). Then the following hold:

(@) Ifv(t)>0 (resp. v(t)<0) near t=0, then v(t) is decreasing (resp. increasing) and
v(t)#0 near t=0.

(d) If v(t)>0 (resp. v(t)<O0) near t= oo, then v(t) is positive and decreasing (resp.
negative and increasing) near t= 0.

(©) Ifu(t)-> o as t— o for some a, then v(t)—0 as t > .

(d) u(t) satisfies the Pohozaev identity

d C ) k() m—1 f(op
@2.1) - P v)—{ 0 +<1+—m o) )}k(t)F(v),
where
.__1 v
2.2) P v>=’"—m— o(v){tv,— v} + tk()F(v), F(v)= f F(&)dE .
0

REMARK 2.1. In particular, if f(v)=|v|?”'v with g>m—1, then
d
(2.3) 711’(!; V)=G(t)|v|* =t VH, ) v]TT,

where G(t), H(t) are defined by (1.9), (1.10) and

m—1

2.9 P(t; v)= [, ™ 20, {tv,— v} +L th(t)|v]?*?t.
q+1
Proor oF LEMMA 2.1. First, we may assume that v(¢)>0 near t=0. From (1.1),
we have (p(v,),= —k(t) f(v)<0. Thus v, is decreasing. Hence v,<0 near t=0 or v,>0
near =0, which implies (a).
As for (b), similarly to the proof of (a), v, is decreasing. Hence v,>0 near 1= o0
in view of v>0 near t=o0. Thus we get (b).
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We obtain (c) by the positivity and the monotonicity of v,.
Finally we show (d). We obtain (2.1) for ¢ with v,(t)#0 by differentiating (2.2) and
using (1.1). On the other hand, P(t; v) is written as

m—1

Pt ) =Lt gy e L ot tk(0)F ()
m

We see that P(t; v)e C* by virtue of ¢(v,)e C*. Thus (2.1) holds for all ¢. [ |
Now we show several properties of solutions to (P), (P,) and (13,3).

ProOPOSITION 2.1.  Suppose that (f.0) and (k.0) hold. Let v(t) be a solution to (P)
satisfying (1.4) and (1.5). Then v(t) is classified into one of type R, type S and type O at
t=0, and v(t) is classified into one of type R, type S and type O at t=o0o. Moreover, the
following hold.

(@) If v(t)>0 (resp. v(t)<0) near t=0, then (v(t)t 1), <0 (resp. (v(t)t™'),>0) near
t=0. In particular, if v(t)>0 on (0, ), then (v(t)t~*),<0 on (0, o).

(b) Iflim, | ov(t)=0 and v(t)#0 near t=0, then tv(t)—0 as t | 0, and

tim %Y _tim )= 1
= Timuft)=¢ )+ | k(s)f (v(s)ds | .

tlo t 0

(c) Suppose that [, ¢~ '([} k(t)dt)ds = co. If v#0 near t=0, then vv,>0 near t=0.
(d) Suppose that |7 k(z)| f(ct)ldt=o0 for any c¢#0. If v(t)#0 near t= o0, then
u(t)(v(t)t 1), <0 near t=co.

ReMark 2.2. If v(t)#0, then v,(t) exists and
KOS@) _ KOfE)
@'(v,) (m—1)|v, lm_z .

ReMArk 2.3. If o(t)=0, then v,(t)#0. This comes from Lemma A.2 in the
Appendix.

(2.5) ve(t)=—

PRrOOF OF ProposITION 2.1. To prove (a), (b) and (c), we may assume that v>0
near t=0 since vf(v)>0 for v#0. Then

(2.6) w'(v,)% {t 2 4 <£>}=t<0’(vt)vu= — tk(t) f (1) <0

dr \'t

by (1.1), t%(v/t), is monotone decreasing and #*(v/t),>0 or t*(v/t), <0 near t=0.
Now we prove (a). Suppose that v(t)>0 and #%(v/t),>0 near ¢=0. Then there exist
¢>0 and t*>0 such that t%(v/t),>c for te(0, t*]. Hence we have

am>Wﬂ_wgc"ﬁ:%iquw

t* t* t ), s? tt*

as t —0. This is a contradiction. Thus the first part of (a) is proved. The second part
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is proved in a similar way.

As for (b), it follows from the assumption lim, | o v(t)=0 that v/(t)>0 near ¢=0.
Combining this with (a), there exists ¢, >0 such that 0<tv(t)<uv(t) on (0, £,]. Since
v—0ast]0,tv,—0ast]0. The last part of (b) comes from L’Hospital’s rule and (1.1).

Next we prove (c). It follows from (2.6) that v, never vanishes near t=0. If v,<0
in an interval (0, ¢,] with some ¢, >0, then there exist constants ¢>0 and ¢, >0 such
that v(t)>c on (0, ¢, ]. Hence we see from (f.1) and the assumption on (t) that

’ o 1(v,(t*) + ft* k(x)f (v)dr)ds

N

0<u(t)=0(t,)— f

<o(t,)— f* o 1(v,(t*) +f(c) Jh k(r)d‘r)ds - —

as ¢} 0. This is a contradiction. Thus v,>0 near ¢=0.

As for (d), we may assume that v> 0 near = co. It follows from (2.6) that (v/t),>0
or (v/t),<0 near t=oo. If the former holds, then there exist >0 and T, >0 such that
v/t=6>0 on [T, o). Integrating (1.1) over [T, t], we have

t t

k(s)f (v)ds> j k(s)f (ds)ds — oo

Ty

@(T))=o(v(1) + J
Ty
as t — oo by assumption. This is a contradiction. Thus the latter holds.

Finally we prove the classification of solutions. Let v be not of type O. We may
assume that v(t) >0 near =0. Then we have (v/t), <0 near t=0 by (a). Hence lim, 5 v/t
exists or lim,, ov/t=oc0. Thus u(t) is of type R or type S. We can also obtain the
classification of solutions near = oo in view of (b) of Lemma 2.1. [ |

As for (P,) and (f’,,), we have the following propositions in view of Lemma 2.1.

PROPOSITION 2.2.  Suppose that (f.0), (k.0) and (k.1) hold. Let v(t) be a solution to
(P,) satisfying (1.4) and (1.5). Then the following properties hold.

(a) lim,, ,v,(t)=0.

®) v(O)=0 (] Ks)f @()ds).

(c) u(t) is increasing near t= oo and jf |v(t)|dt < 0.

(d) ot) is a solution to (P,) satisfying (1.4) and (1.5) if and only if uv(t)e
C((0, 0))n L*(1, o0) satisfies

v(t)=0— J‘w Q- 1< Jm k(‘r)f(v(r))dr)ds .

PrOPOSITION 2.3.  Suppose that (f.0), (k.0) and (k.2) hold. Let (t) be a solution to
(13,,) satisfying (1.4) and (1.5). Then the following properties hold:

(a) 7(0)=8.

(b) If ot)#0 on (0, t,) for some t,>0, then for te(0, t,)
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<£> _ 1 Jw sk(s) f(9) ds
t/: * Jo o) .

(c) (t) is increasing near t=0 and j(l) | 7, |dt < c0.
(d) () is a solution to (f’p) satisfying (1.4) and (1.5), if and only if v C((0, c0))
satisfies

ﬁ(t)=f <p—1<<p(ﬂ)- f sk(r)f(ﬁ(r»dr)ds.

3. Proof of Theorem 2. In this section we give a proof of Theorem 2.

(i) Employing the idea of the proof of Theorem 2.2 of [11], we will prove (i) by
contradiction. We may suppose that v>0 near #=0. Since (v/t),<0 near t=0 by (a) of
Proposition 2.1, we have tv(t)<u(t) on (0, t,) and v>ct on (0, t,) for some #,>0 and
¢>0. We note that f(v) and f(v)/v? are increasing in v>0 for some ¢>m—1 by virtue
of the assumption (f.1). Integrating (1.1) over [t, t,], we have

to t

o(vt))= @(vl1o) + J ’ k(s)f (cs)ds

t

k(s)f (v)ds = p(v{to)) + J

t

which implies that ¢(v(t))>0 near =0 by assumption. Hence we have
3.1 O<t,<v in (0,1,
for some ¢, >0. Thus we get

m—1 —gfm—1)+1 =(_U_>q f()
mil (o(v) )e . k(t) ”

(3.2)
> okt) 7Y = L ke
(ct)? c?

by (1.1), (3.1) and the monotonicity of f(v)/v?. Integrating (3.2) over [, t] and letting
¢— 0, we obtain

t

(p(v(2))~9/m=D*+1 > J k(s)f (cs)ds = oo

0

(m—1)ct
q—m+1
by assumption. This is a contradiction. ]
(i) We prove (ii) by contradiction. Suppose that >0 on [T, c0). We note that
7(t)>0 on [T, )
by (b) of Lemma 2.1. Integrating (1.1) over [¢, T] (= [Ty, o)), we have

T[T ()
3.3) th(t)d‘c— '[ 0 dr .
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The right-hand side of (3.3) yields
[T (o, _ _[cp(ﬁ,)}f_ J P05 ®)
A @) . (@)

_o@(T) | o) _ e@lr)  HTof @)
J@WT)  f@@)  f@@) @ (To) Bt)

for some g>m—1 in view of the assumption (f.1). Using the above inequality in (3.3)
and letting 7'— oo, we have

-1 ® 5[
(3.9 O<o (J; k(T)dT><CW ,
where ¢= ¢~ (#(T,)?/ f(8(T,))). Integrating (3.4) over [T,, o), we have

oo:f ¢—1<J‘ k(r)dr>ds<u(5(T0))—(q—m+1)/(m—1)<oo'
s q—m+l

To

t

This is a contradiction. [ ]

4. Proof of Theorem 3. (i) For simplicity, we put u=u(q,). We note that p>1
since g, >1 from (f.1).

By assumption, there exist sufficiently small numbers ¢€(0, u—1) and £*>0 such
that

4.1 t]]:" +u>e on (0,*).

By (d) of Lemma 2.1 and the definition of ¢, we have

d L) k(1) m—1 f(ow
Z P(t; v)= {—k(t) + <1 +——m o) >}k(t)F(v)

4.2)

z{ hilt) ,u}k(t)F(v)Zsk(t)F(v) .
k(t)

Now we suppose that v has infinitely many zeros on (0, #*) and let {¢;} be a sequence
of zeros of v with 0< - - - <t;< - - <t,<t; <t*. Integrating (4.2) over [¢}, t,], we have

€ ‘ro k(T)F(v)dr < P(to; vlto)) — P(tj; v(t;)) < Pto; v(to))
since P(t}; v(t;))=((m—1)/m)t;|v(t;)|">0. Letting ¢; | 0, we have

J ° k(z)F(v)dr <% P(t,, v(2y)) ,

0
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which implies that

(4.3) J.to k(z)f (v)vdt < 00

0

in view of (f.2). Now let £ <, be a point such that v(¢)=y>0 and v,(¢)=0, and let
z< ¢ be a zero of v such that v>0 on (z, £] and v(z)=0. Integrating (1.1), we have

9 4
4.4.) o(t)=y —J Q- ’( J k(r)f(v(r))dr)ds )

N

We see from Holder’s inequality, the boundedness of f(v)/v? and (4.3) that

¢ m/(q+
J‘ o) o) = J‘é< Z{Sp}) ) /(a “vm— (o)™ @+ D {k(yof (v)} !~/ Vg

4 mi(q+1)
SClym_1<j k(r)dt) ,

C - { sup Z{;EUI) }m/(q + 1){ Jto k(‘[)l)f(v)d‘[}(q_m+ Dig+1) '

O<v<y 0

4.5)

where

Moreover, we have
{t*~%k(t)},=0 on (0,1,)
by (4.1). Thus we get

to C
f k(tdr<——2 g~ w=e"D
s #__8—_1

by noting e —u < — 1, where C,=(t,)* "~ %k(t,). Hence we have

to to m/(q+1)
f (p"((J‘ k('c)dt> )ds< Cyp~ Y(z2mat 1)
t N

for some positive constant C5 independent of ¢. Consequently, we obtain

0=0(z)=y— j éw( rk(r)f(v(r))dr>ds2y—vC4Z""“‘"“ e+ 1)

z N

from (4.4) and (4.5), where C, is a positive constant independent of y and z. If z>0 is
small enough, we get a contradiction. |

(i) We can show (ii) by an argument similar to that of (i). ]

5. Proof of Theorem 5 (i), (ii). The purpose of this section is to prove (i) and
(ii) of Theorem 5, in which the special case f(u)=|u|?"'u is treated.
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Before giving the proofs, we state characterization of solutions in terms of the
Pohozaev identity.

LemMMA 5.1. Suppose that (f.0), (k.0), and (k.1) are satisfied. Then for any solution
u(t; @) to (P,), there exists a sequence {T;} such that T;— oo, T;k(T;) =0 and P(T;; v) -0
as j— oo, where P(t;v) is defined by (2.4).

ProoOF. By using (k.0), (k.1) and (c) of Proposition 2.2, we get k(t)+|v,| € L'[1, o).
Thus we can choose a sequence {7} such that 7;— oo, T;k(T;) -0 and T;|v(T;)| -0
as j— 0. Hence we have P(T}; v)—0 as j— 0. n

The following characterizations of solutions to (P,) in terms of P(t; v) are useful.

ProposITION 5.1.  Suppose that (f.0), (f.1), (k.0) and (k.1) are satisfied. Then the
following hold:

(@) If v=u(t; o) is of type R, then there exists a positive sequence {i;} such that
t;—0 and P(t;;v) -0 as j— oo.

(b) Ifv=u(t; o) is of type S and vv,>0 in a neighborhood of t=0, then there exists
a positive sequence {i;} such that i;—0 as j— oo and P(i; v) <0 for every j.

() If v=u(t; o) is of type O, then there exists a positive sequence {i;} such that
{;—>0 as j— oo and P(i}; v)>0 for every j.

Proor. If v=u(t; a) is of type R, then it follows from (b) of Proposition 2.1 that
1
j k(s)f(v)ds< oo .
0

Moreover, by (f.1), we have F(v) <vf(v) for v>0. Because v is of type R, we have v(0)=0
and there exists ¢, >0 such that v(t)<1 on [0, ¢,]. Hence we have

f k(s)F(v)ds < J k(s)f(v)ds< oo .
0 0
Thus there exists a positive sequence {7;} such that 7;,—0 and 7k(7;)F(v(f;; ®)) =0 as

j— 0. On the other hand, using (b) of Proposition 2.1 we have
lim|v,|™ " 2v,{ —tv,+ v} =0.
tl0

This implies that P(¢;; v) -0 as j— oo, and (a) is proved.

As for (b), we may assume that v>0 and v, >0 near t=0. The other case is proved
in the same way. If #>0 is sufficiently small, we have
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Pt o)=""

tlm(v,)G) + tk(t)F(v))

_m—1 , v tF(v)
= f<P(U.)< >t+ 70 (k(2)f (v)

_m—1 LAY tF(v)
= t¢(vt)<t>t ) (@(vy)),

m—1 (v/t), _ F(v) ((P(Ut))t}
W/t) [ o)

~(m—tyaptep{ 1 POt}

by (1.1) and the definition of ¢@. From (f.1), there exists g>m—1 such that
F(v) < 1

flow ~ q+1°

Noting that v, <0 near t=0 by (2.5), we have

-

. 1 10g(v,)}

dfft 1 vy, 1 v
=(m—1)ivp(v) - {(;"ﬁ) ‘°g<7> T ‘°g<a‘>} '

By (a) of Proposition 2.1, we get

P(t; v) <(m—L)tve(v,) % {% log<i> _ ; 1

v
—>1
tv,

for small > 0. Since v is of type S and g+ 1>m, we obtain

1 1 v 1 v
———— Jlog| — |+——log{ — | > ©
m qg+1 t qg+1 to,

as t | 0. Thus we can choose a sequence {7;} such that /;—0 as j— co and P(, v)<0
for all j. The assertion (b) is proved.

Finally, let v=u(t; &) be of type O and let z;(«) be the jth zero of v(t; o). If v(z;(@); 2)=
0, then v/(z;(a); «) #0 by virtue of Remark 2.3. Then

—1
P(z;(a0): v(z;(@); ) =i"7n— z;(@)]v,[">0.

Thus (c) holds by taking #;=z;(«). [ ]
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ProoF OF THEOREM 5 (i). Consider the case G(t)=0. If v>0 on (0, o), then we
have v,>0 on (0, o) by (b) of Proposition 2.2. Thus there exist ¢>0 and 7> 0 such that
P(t; 0)=G@t)|v|** +(g+ l)f Gs)| v tovds>c

t
for te(0, 7] in view of the assumption on G. Hence v can be neither of type R nor of
type S. Thus v must have a zero on (0, o).
Now we consider the case G,(t) <0 and G, is not identically equal to zero. It follows
from (2.3) and Lemma 5.1 that P(t; v) is non-increasing and not identically equal to
zero. Thus there exist  and >0 such that

(GR)) P(t;v)>6 on (0,7).
Hence v is not of type R by Proposition 5.1. On the other hand, G,<0 implies that

ik,

<—u on (0, .
A 7 (0, )

Thus we get
k(ty>ct™ on (0,1]

with some constant ¢>0. Hence we have

_ 0 B B 1 B _ 1 _ B
® 1<J k(t)dr>2<p (e ‘<J T “dr>2<p ‘(C)mw (s'Tr—1),

which implies that
1 1
f @~ 1< f k(t)d‘r)ds =0
0 s

in view of (u—1)/(m—1)=(q+ 1)/m> 1. By (c) of Proposition 2.1, if v#0 near =0, then
vv,>0 near t=0. Thus v is not of type S by virtue of (5.1) and (b) of Proposition 5.1.
Consequently, v must be of type O. n

PrROOF OF THEOREM 5 (ii). Suppose that v has a zero. Let z be the largest zero of
v. It holds that v,>0 on [z, o0) by (b) of Proposition 2.2. Hence we see from the
assumption G <0 that

P(z;v)=(q+ I)Jw G@)lv|* v ds<0,

which contradicts P(z; v) =(m—1)z"|v,|"/m>0. Therefore we have v>0 and v,>0 on
(0, c0). Thus there exist d>0 and 7 >0 such that, for any ¢€(0, 1),



SINGULAR INITIAL VALUE PROBLEMS 17

Pt 0)=G@t)|v|"" 1 +(q+ I)J‘00 G(s)|v|? Yov,ds

t
<(g+ I)J G(s)|v]? tovds< —5<0
t
in view of the assumption that G <0 and G is not identically equal to zero. By Proposition
5.1, v is neither of type R nor of type O. Hence v must be of type S. n

6. Proof of Theorem 5 (iii), (iv). In the case m=2, we can obtain (iii) and (iv)
of Theorem 5 by virtue of (i) and (ii) of Theorem 5 and the Kelvin transformation
W(s)=u(t)/t and s=1/t. However, in the case m #2, the transformation does not work
well. Thus we need the following proposition similar to Proposition 5.1.

LeMMA 6.1. Suppose that (f.0), (f.2), (k.0), and (k.2) hold. Then for any solution
o(t; B) to (l~)ﬂ), there exists a positive sequence {¢;} such that &;—0, &;k(g;)F((e;)) -0,
and P(g;; 9) -0 as j— oo.

Proor. Let w(t)=10(t)/t. From (f.2), we have
k(t)F(0) <k(t)t| wf(tw)| < Mtk(t)| f(M1)|

near t=0, where M =sup,.(o.1,|w(t)|. Using (k.2), we have k(t)| f(Mt)|e L*(0, 1), which
implies k(t)F(#)e L'(0, 1). Thus, we get k(¢)F(5)+|%,|€ L*(0, 1) by virtue of (k.0), (k.2)
and (c) of Proposition 2.3. Thus there exists a positive sequence {¢;} such that ¢;—0,
g;k(e;)F(i(e;)) » 0 and ¢;| 7(¢;)| — 0 as j— co. Hence we have P(g;; ) »0asj—occ. N

Similarly to Proposition 5.1, there are characterizations of solutions at ¢=0.

ProrosITION 6.1.  Suppose that (f.0), (f.1), (k.0), and (k.2) hold. Then the following
hold:

(a) If 5=1i(t; P) is of type R, then there exists a sequence {T;} such that T;—
and P(T;; 9) -0 as j— oo.

(b) If5=it; ) is of type S and {t/t}, <0 near t= oo, then there exists a sequence
{T;} such that T;— 0 as j— o and P(T}; 5)<O0 for every j.

(c) If 5=ilt; p) is of type O, then there exists a sequence {Tj} such that Tj—> o0
as j— oo and P(Tj; 7)>0 for every j.

Proor. By (2.10), we have

t

@(B(1) = p(B)— j k(s)f(D)ds ,

0

which implies that

r Ks)f (6)ds = o(B)

0
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by (c) of Lemma 2.1. On the other hand, from (b) of Lemma 2.1 and the fact that 7 is
of type R, we have

J | 7, ]ds=J b,ds=lim §(t)—%(T) < o0
T T t— 0
for some 7>0. Hence we can choose {T;} with T;— oo as j— oo so that

as j— co. Consequently (a) is proved.
As for (b), suppose that #(t)>0 near t=o00. We see from (b) of Lemma 2.1 that
7(t)>0 near t=o0. By assumption we have

(1)

1(t)
o(t)

near =00, which implies

6.1) 0< <1

near t=o00. Thus, we have
m—1 _
P(t; )= ———— @(B,)(— 1D, + D) + tk(t)F(?)
m

__m—l S F(?)
Ri— OB ) —t,+0)+1 I

—1 F@®
=Lt 4 D)= e D (3,2,
m /@)

k(e)f (@)

=—(m-—1)| 5,]'"’25(_“714_5){&_ F@®) {—1t5,+7}, }

mi  f(B)F —ti,+0

by (2.5). From (f.1), there exists g >m—1 such that

F(7) 1
<—-.
J@)y  g+1
Noting that —¢#,+7>0, we have
o d |1 1
P(t; )< —(m—1)| 3, '"‘252<——’+1>—{—lo b— lo —tﬁ+ﬁ}
(t;0)< —(m—1)| 5| P dtmgq+1g(t)

3 1
= —(m—1)|5, |m-252<—&+ 1) 4 {(i—;yog o
v dat (\m g+1 g+1
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From (6.1), 1/m—1/(g+1)>0 and lim,_, ,, ()= 00, we can take a sequence {7}
with Tj—> o0 as j— oo such that P(f'j; 7)<0 for all j.
The proof of (c) is similar to that of Proposition 5.1 (c). [ ]

ProoF oF THEOREM 5 (iii). Consider the case H(t)>0 on (0, c0). Suppose that
#(t; B)>0 on (0, o). Then we have (¢(7,)), <0 on (0, o) by (1.1). Thus ¢(7,) is strictly
decreasing and ¢(5,)>0 on (0, o), which implies 5,>0 on (0, o). Then by (b) of
Proposition 2.3, (5/t),<0 on (0, c0). Hence by the assumption H>0, there exists a
constant ¢>0 such that

-
L (—v->ds2c>0
S s/,

near ¢=oco. Consequently, #(t; B) is neither of type R nor § by Proposition 6.1. Thus #
has a zero on (0, o).

Consider the case H,(t)>0 and H, is not identically equal to zero. It follows from
(2.3) and Lemma 6.1 that P(t, #) is non-decreasing and P(t; 7)>0 and not identically
equal to zero. Thus there exist 6 >0 and 7'>0 such that

P(t; 5)=t_“’+”H(t)|51"“—(tI+I)JIH(S)
0

(6.2) P(t;7)=0>0

on (T, o). Hence # is not of type R by (a) of Proposition 6.1. On the other hand,
H(t)>0 implies that k(t)>ct™* on [1, c0). Hence, we have

o0 00
J s"k(s)dsZcJ s 2tatVimgg — oo
0 0

in view of —2+(q+1)/m> —1. Therefore we get &{/t},<0 by (d) of Proposition 2.1.
Hence # is not of type S by (6.2) and (b) of Proposition 6.1. Consequently # is of
type O. [

ProOOF OF THEOREM 5 (iv). Suppose that o(t; §) has a zero. Then there must exist

a critical point. Let Z, be the smallest critical point of #. Then we have

Zok(Z)| 8203 P17 >0

a/ =
<i> dr<0
t/y

by H(t)<0 and (b) of Proposition 2.3. This is a contradiction. Hence # has no critical
point on (0, oo) and thus #,>0 on (0, ) by #,(0)=> 0. Consequently, >0 on (0, o).
Thus there exist >0 and 7>0 such that, for any t€[7, o0),

1
P(Z,; D)=
(20; ) ey

On the other hand, we get

P(fo;17)=Z~5“’“’H(Z~o)l5]"“—(q+I)J H(t)

0

1]
t
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t q ﬁ
Pt;0)=t " DH@)| 51 —(g+1) | H(s) — ) ds
0 N t
M v
— Jds<—6<0
N t

in view of the assumption that H <0 and H is not identically equal to zero. By Proposi-
tion 6.1, & can be neither of type R nor type O. Consequently, 7 is of type S. |

0

N

v

N

S—(q+1)J‘tH(s)

0

Appendix. Here we give the outline of the proofs of Theorems 1 and 4 since they
are based on a standard argument. See Coffman-Ullrich [2] and Kitano-Kusano [9].

LemMa A.l. Suppose that (f.0) and (k.0) hold. Then for any t, >0 there exists ¢>0
such that (P) has a unique solution satisfying (1.4) and (1.5) on [t, —¢, t, +&].

To show the global existence of solutions, we need a priori estimate. We put

—1
E(t):= mm |v6) ™+ k() F(u(t)) -

LEmMMA A.2. Let v(t) be a solution to (P). Then it holds that

o | k(s)
mm{O, e }ds) te(0, to],

E(t)SE(to)exp<—J‘

1
and

E(t)<E(,) exp< ft max{O, kils) }ds) 1€ty )
k(s)

to
for any t,>0.
Now we consider (P,). We see the following fact by (c) of Lemma 2.1.

LemMMA A.3. Suppose that (f.0), (k.0) and (k.1) hold. Then the following conditions
are equivalent:

(1) v is a solution of (P,) satisfying (1.4), (1.5).

(i) ve (0, o))n L=(1, o) satisfies

u(t; oc)=oc—foO 0 1( fw k() f (v(z; a))dr)ds .

We obtain the following lemma similar to Lemma A.1.

LemMma A.4. Suppose that (f.0), (k.0) and (k.1) hold. Then there exists To>0 such
that (P,) has a unique solutions on [T, ©).

On the other hand, we consider (13,,).
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LemMMA A.S. Suppose that (f.0), (k.0) and (k.2) hold. Then the following conditions
are equivalent:

(1) 0 is a unique solution of (13,,) satisfying (1.4), (1.5) with v="7.

(i) e C(0, o)) satisfies

1 N
ot ﬁ)=j ¢_1<¢(ﬂ)—f k(z) f (8(t; ﬁ))df>ds :
0 0

LEMMA A.6. Suppose that (f.0), (k.0) and (k.2) hold. Then there exists to,>0 such
that (}3,,) has a unique solution on [0, t,].

Now we are in a position to prove Theorems 1 and 4.

ProoF OoF THEOREM 1. By Lemma A.1, (P) has a local unique solution satisfying
(1.4) and (1.5). The solution can be uniquely prolonged to (0, co) by Lemma A.2. Thus
the existence and the uniqueness of solutions are proved. [ ]

ProOF OF THEOREM 4. The local solvability and uniqueness of (P,) (resp. (f’ﬂ)) are
ensured by Lemma A.1 and Lemma A .4 (resp. Lemma A.1 and Lemma A.6). The global
solvability is obtained by Lemma A.2. ]
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