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Abstract. In this paper, we present a purely algebraic proof of the strong rigidity
for non-Archimedean uniformization, in case the base ring is of characteristic zero. In
the last section, we apply this result to Mumford's construction of fake projective planes.
In view of recent result on discrete groups by Cartwright, Mantero, Steger and Zappa,
we see that there exist at least three fake projective planes.

Introduction. Let K be a non-Archimedean local field and R the ring of integers.

The Drinfeld upper half space Ω£ is a/?-adic analogue of the complex unit ball introduced

by Drinfeld in [6]. As a set, Ω% is the set of all geometric points of the projective space

Pκ~1 which do not lie on any A^-rational hyperplanes. Drinfeld proved that the space

Ω£ has a natural structure as a rigid analytic space. It has a natural analytic action of

PGL(n, K), and considering the procedure of taking discrete quotients, one gets a good

uniformization theory in />-adic analysis.

The space Ω£ has two essentially different ways of description. One of them is a

rigid analytic subspace of P^~1. The other one is a formal scheme Ω = Ωn

κ over the

discrete valuation ring RczK. The second description was developed by Kurihara [13]

and Mustafin [17] independently, and it is sometimes called p-adίc unit ball of Kurihara

and Mustafin.

In this paper, we will take up the viewpoint of the second one, because it is related

rather directly with a visual combinatorial object called the Bruhat-Tits building.

Interesting applications such as [16] were discovered through this viewpoint. Then the

procedure of uniformization is presented as follows (cf. [17]): Let Γ be a torsionfree

co-compact subgroup of PGL(n, K). Then one can take a quotient ΘCτ = ΩjT in the

category of formal schemes over Spf R. It is known that the resulting formal scheme

3CΓ is algebraizable, i.e., the formal completion of a scheme XΓ, which is proper and

flat over Spec R. Taking the generic fiber, one obtains a nonsingular projective variety

XΓη over SpecK as the algebraization of the rigid analytic space Ω^/Γ.

Recall the following result of Mustafin on the rigidity of the uniformization by the

Drinfeld upper half space.
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THEOREM 0.1 (cf. [17, §4]). The schemes XΓί and XΓl are isomorphic over Specif

if and only ifΓ\ and Γ2 are conjugate in PGL(n, K).

We generalize this theorem as follows in case char K=0.

THEOREM 0.2. Assume that the characteristic of K is zero. Let Γί and Γ2 be
torsionfree co-compact subgroups of PGL(n, K). Then the schemes XΓίη®κK and
XΓl η®κKare isomorphic over Spec K ifand only ifT^ andΓ2 are conjugate in PGL(n, K\
where K denotes an algebraic closure of K.

REMARK 0.3. In the framework of rigid analytic geometry, Berkovich obtained
an equivalent theorem without the assumption on the characteristic of K(cϊ. [2, Theorem
2]). Since the descriptions of the Drinfeld space are not equal, Berkovich's proof is
totally different from ours.

This theorem shows a strong rigidity property of the Drinfeld upper half space,
and will have possible applications to />-adic analysis, number theory and even algebraic
geometry.

We will prove the theorem in a purely algebraic way. In proving it, we will also
clarify several interesting algebro-geometric aspects of the Drinfeld upper half space
such as the behavior after base extensions, simultaneous crepant resolution of singu-
larities, etc.

A nonsingular complex surface of general type Wιi\\ pg = q = 0 and cf = 3c2 = 9 is
called a fake projectίve plane (cf. [1, V, Rem. 1.2]). In [16], Mumford constructed a
torsionfree co-compact subgroup Γ of PGL(3, Q2) such that XΓ η is a fake projective
plane for a fixed isomorphism Q2 ~ C Recently, Cartwright, Mantero, Steger and Zappa
(cf. [4], [5]) looked at certain discrete subgroups of PGL-groups rather systematically,
and obtained a complete list of torsionfree co-compact subgroups of PGL(3, Q2) of
some kind. Combining this result with our main theorem, we see that there exist at
least two more fake projective planes.

In §1, we give a brief summary of the construction of the formal scheme Ω and
the non-Archimedean uniformization basically according to Mustafin [17]. In §2 and
§3, we observe the base changes ΩR, = Ω®RR' and XΓR, = XΓ®RR', where R' is the
integer ring of a finite extension of K. The proof of Theorem 0.2 is given in §4. In the
last section, we apply it to the existence of new fake projective planes.

This work was firstly suggested by Harm Voskuil during his stay in Sendai from
1993 to 1994. The authors would like to express their deep gratitude to him. The authors
also thanks the referee and the editor for finding several mistakes in the first version
of this article.

1. Non-Archimedean uniformization in general. In this section, we give a brief

summary of the theory of non-Archimedean uniformization since the theory is not so
popular. We introduce it basically according to Mustafin [17] but in the dual formu-
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lations, since we wish to formulate notation and materials as in Mumford [16] and
Ishida [9].

Throughout this paper, we fix the following notation. Let R be a complete discrete
valuation ring. We fix a generator π of the maximal ideal of R. Let k = R/πR be the
residue field of R and K the fractional field of R. We assume that the field k is finite
and consists of q elements. We denote by η and 0 the generic point and the closed point
of SpecR, respectively. Let «>2 be a natural number. A matrix oc = (aij)eGL(n, K)
defines a linear automorphism of the vector space V=YJ

n

iZl KXt with indeterminates
* o , . . • , * » - ! by

Hence the induced automorphism αΛ of P(F) = Proj K\_X0, . . . , Xn_ {] is given in terms
of the homogeneous coordinates (Xo : : Xn_ x) by

Thus the composite β Λ o α Λ is equal to (ocβ)Λ.

1.1. Let Ao be the set of all free i?-submodules in V=Σϊ=o KXi o f r a n k n- W e

define an equivalence relation ~ on Ao by

Mγ ~ M2 <=> Mx = λM2 for some λ e Kx

o M1 =πdM2 for some deZ.

Define Δ0 = A0/^. We write the equivalence class of MeΛ0 by [M]. The group
PGL(n,K) acts transitively on the set zl0 by α[M] = [αM] for aePGL(n,K) and
[M]ezl0. Let yll5 Λ2eΔ0. Take a representative MίeΛί. Then, there exists a unique

M 2 Gyd 2

 s u c n

Similarly, there exists a unique π ^ e/li such that

It is easy to see that the nonnegative integer e does not depend on the choice of Mγ.
Define d(Λu Λ2) = e. Then d: Aox A0^>Z>0 is a metric function on Ao. If d(Λu Λ2) =
1, i.e., if M1^M2^πMί, then Aγ and yi2 are said to be adjacent.

DEFINITION 1.2. The Bruhat-Tίts building attached to PGL(n, K\ denoted by
A =Aχ, is a simplicial complex defined as follows:

1. The set of vertices of A is Ao.
2. A subset {Λo,..., A^aA0 forms an /-simplex if and only if At and Aj are
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adjacent for any /, j with iφj.

1.3. It is easy to see that a subset {Λo,..., At}<=A0 forms an /-simplex if and

only if, changing indices if necessary, there exist representatives MieAi for ι = 0 , . . . , /

such that

Mo =3 M1 =3 • ZD M{ ID πM0

(cf. [17, Lemma 1.1]). Hence, there exists a one-to-one correspondence between the set

of /-simplices having a fixed vertex Λo = [M o ] and the set of flags of length / in the

vector space M0/πM0 by considering quotients MJUMQ. In particular, / is at most n — 1.

Moreover, we have the following basic properties of the Bruhat-Tits building A attached

to PGL(n, K) (cf. [3] and [17]):

1. A is an (n— l)-dimensional locally finite simplicial complex.

2. A is a chamber complex, i.e., any simplex is a face of some chamber, where we

mean by a chamber a simplex of dimension n — \.

3. A is labelable by Z/«Z, i.e., there exists a map τ : A0->Z/nZ, called a labeling,

in such a way that the vertices of each chamber are mapped bijectively onto

ZjnZ (τ(Λ) is called the type of the vertex A with respect to the labeling τ).

4. T h e g r o u p PGL(n, K) a c t s o n A b y oc{Ao, ...,Aι} = {ocAo, . . . , α Λ z } .

A subgroup ΓaPGL(n, K) is discrete, if and only if the stabilizer in Γ of each /lezl

is a finite subgroup. Γ is said to be co-compact, if it is discrete and A has only finitely

many Γ-orbits. It is known that a co-compact subgroup Γ acts on A freely, if and only

if Γ is torsionfree.

EXAMPLE 1.4. In case n = 2, the Bruhat-Tits building A attached to PGL(2, K)

is a tree such that each vertex is an end of q + 1 edges (cf. [14]).

EXAMPLE 1.5. We consider the case n = 3. Let A be a vertex of A. Then yd is

contained in 2(q2 + q+\) edges of A, and this set of edges has a natural one-to-one

correspondence with the set of/:-rational points and ^-rational lines of P£. Let B2 be

the algebraic surface obtained by blowing up Pi along all ^-rational points. Then the

dual graph of the configuration of exceptional curves and proper transforms of the

lines is a one-dimensional simplicial complex which is isomorphic to the link of A in

A. The dual graph of case q = 2 is in Figure 1 (cf. [16, §1]), where pt (ί = 0 , . . . , 6) are

the exceptional curves and ζ (/ = 0, . . . , 6) are the proper transforms of the lines.

1.6. To each yl = [M]ezJ 0 , we associate the scheme P(A) = Proj(SymΛ M) over

Specif. This definition is independent of the choice of M. The generic fiber of P(A) is

equal to the projective space P(V) for every A. Hence all these integral i?-schemes are

canonically birational.

A subset S of Ao is said to be convex if Mί9 M2eA0 and [ M J , [ M 2 ] e 5 t imply

[Λ/\ + M 2 ] e S. Then we denote by A(S) the subcomplex of A consisting of all simplices

in A whose vertices are in S. For a subset T of Ao, the convex hull of T is the smallest
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convex set which contains T. It is equal to the intersection of all convex sets which

contain T.

Let Sa A be a nonempty convex subset. In [17] the i^-scheme P(A(S)) is constructed

as the limit of "joins" of P(Λ) for ΛeS. P{A(S)) is an integral scheme locally of finite

type over R with the generic fiber P(V).

The following characterization of P(A(S)) is convenient. Let Do be the rational

function field K(XJX0, . . . , Xn_JX0), i.e., the rational function field of P(V). Then a

local ring (A, P) in Do with πeP has a center in P(A(S)) if and only if there exists a

simplex in A(S) represented by {MOZDM1I^ =>M;=>πM0} satisfying the following

condition: For each z = 0, . . . ,/ , there exists nonzero x^eM,- such that xi~
1MiczA, and

Mi+ί is the largest among i^-submodules MczMt with [ M ] e S and xi~
1MczP, where

we set Mι + 1 : = πM0.

The closed fiber P(Δ(S))0 is a reduced normal crossing divisor with the dual graph

isomorphic to A(S). The formal scheme Ω(A(S)) is defined as a formal completion of

an integral 7^-scheme P(A(S)) along the closed fiber. Ω = Ω(A) is the Drinfeld upper half

space defined as a formal scheme.

1.7. Let Yo,..., Yn_! be a basis of F. Then the set of vertices S = {\Σ"i=o Rlfi Yi~i I

α, e Z } is convex in J o . The subcomplex A(Y0,..., F n _ 1 ) : = zl(5') is isomorphic to the

triangulation of Z?""1 by the Weyl chambers of type An_1. This subcomplex is called

an apartment.

1.8. Each irreducible component of the closed fiber of P(A) is isomorphic to the

(n— l)-dimensional smooth ^-scheme Bn~ι which is defined as follows (cf. Example

1.5): For each integer 0 < / < « — 2, let It be the set of /-dimensional /c-rational linear

subspaces of P J " 1 . Set P0\=P^~ι. P1 is defined to be the blow-up of Po at all the

points belonging to Σo. For 1 <i<n — 2, 7^ is defined to be the blow-up of i^-i at the

union of proper transforms of the elements of Σi^ι. Then we set Bn~ι =Pn_2-

1.9. Let S be a nonempty convex subset of Ao. If a subgroup ΓaPGL(n,K)

stabilizes S, then Γ acts on P(zj(5)) as well as on Ω(A(S)). Furthermore, the action of

Γ on Ω(A(S)) is free if and only if that on A(S) is free.

Assume that the action is free. Then we can take the quotient Ω(A(S))/Γ of the

formal scheme, but the base becomes an algebraic space in general. In case S = A0, we

denote the quotient Ω(A)/Γ by 3CΓ. In this case, the base of &Γ is a scheme since the

relative canonical sheaf is ample on each irreducible component.

As for the algebraizability of 3CT. Kurihara and Mustafin showed the following.

THEOREM 1.10 (cf. [13, §2], [17, Thm. 4.1]). Let Γ be a torsionfree co-compact

subgroup of PGL(n, K). Then, the formal scheme 9Cτ is algebraizable, i.e., 3£Γ is the

completion of a projectίve scheme XΓ over Spec 7? along its closed fiber. Moreover, the

algebraization XΓ has the following properties:

1. The closed fiber XΓ0 is a reduced algebraic k-scheme with only normal crossing

singularities. The normalization of each irreducible component is isomorphic
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to Bn~ι. The dual graph of XΓ 0 is ίsomorphic to A/Γ.

2. The relative canonical sheaf KXrjR of XΓ over Spec R is ίnvertible and relatively

ample. In particular the canonical invertible sheaf of the generic fiber XΓη is ample.

In case n = 3, Mumford proved that if q = 2 and Γ acts transitively on A, then XΓη

is a fake projective plane (cf. [16, §1]).

2. Base change and desingularization. We use the following notation in the

following three sections. R is a complete discrete valuation ring with the quotient field

K and the residue field k as in Section 1. Let K' be a finite extension of K, and R' the

integral closure of R in K'. The residue field of R' is denoted by k''. We assume that

the fields k and k' are finite. We have [Kf: K~\ :=ef where e is the ramification index

a n d / : = [£':&].

R is excellent since it is complete. Hence, Rf is also a complete discrete valuation

ring, and is a free i^-module of rank ef

Let n>2 be an integer. We denote the Bruhat-Tits buildings attached to PGL(n, K)

and PGL(n, K') by A and A\ respectively. The sets of their vertices are denoted by Ao

and Δ'Q. We regard Ao as a subset of A'o by the correspondence [ M ] i—> [ M ® R i ? ' ] . For

a convex subset S oΐ A'o, we denote by A'(S) the subcomplex of A' generated by S.

For each simplex σeA of dimension w — 1, let σ^ be the convex hull of the set of

vertices of σ in A'o, and σ f the subcomplex A\σl) of zΓ. σ f is a subdivision of σ by

Weyl chambers of type A,,^. Let Al be the convex hull of Ao in A'o, and zlf the

subcomplex A'(Al).

LEMMA 2.1. 77ze simplicial complex A^ is equal to the union of σ^ for σeAn_v In

particular, A^ is a subdivision of A.

PROOF. The inclusion (J σ σ t <=zl t is clear. It is known that any two simplices σί9

σ2 in Δn-γ are contained in a common apartment of A (cf. [17, Lem. 1.2]). Hence if

\_N{\ e (σxχ5 and [7V2] e (σ2)o, then [Λ/\ 4- Λ^] is in (σ3)^ for a simplex σ 3 of the apartment.

Hence zl̂  is the union of σl for σe/!„_! . Let τ be a simplex of Zlf of dimension rf>l.

We prove that τ is in σ f for some σ by induction on d. Let A be a vertex of τ, and τ'

the complementary (d— l)-dimensional face. Then there exist σί,σ2inAn_1 with Ae{σι)l

and τ'e(σ2)\ σγ and σ2 are contained in a common apartment A oϊ A. Since U σ 6 ^ σ t

is an apartment of Δ\ τ is a simplex of this apartment. Hence τ is contained in σ f for

a simplex σ of the apartment A q.e.d.

Let ΓaPGL(n,K) be a torsionfree co-compact subgroup. Set Ω = Ω(A) and let

Ωf be the formal scheme Ω(Af) over SpfR' (cf. 1.6). The quotient formal schemes of Ω

and Ωf with respect to Γ are denoted by ΘCΓ and $7, respectively. By Theorem 1.10, the

formal scheme ΘCΓ is algebraized to a regular scheme XΓ over Specif. Set ΩΛ, = Ω(g)RR',

%Γ,R=%Γ®RR> a n d A Y ^ ^ A Y ® ^ ' . Here note that R' is a flat finite iί-algebra.

The goal of this section is to prove the following propositions:
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PROPOSITION 2.2. The formal scheme 9£γ is algebraized to a regular scheme (which

we denote by X'Γ).

PROPOSITION 2.3. There exists a natural Γ-equivariant morphism p : Ω1" -• ΩR which

makes the following diagram commute:

fit _ ^ QRι

0)

SpfR = SpΐR' .

The morphism p descends to a resolution of singularities p : X'Γ -» XΓ R, which is isomorphic

on the generic fiber. Moreover, the morphism p has no discrepancy, i.e., ωx>r/R> = p * ω X r Rl/R>,

where ωx>r/R> and ωXr R//R> are the relative dualizing sheaves of the R'-schemes X'Γ and

XΓtR>, respectively.

In fact, if e> 1 then XΓR, is no longer regular. Let us fix a generator π (resp. ζ)

of the maximal ideal of R (resp. R'). Clearly, there exists a unit element ue(R'Y such

that π = uζe. Since the scheme XΓ is etale locally defined by an equation

Zθ' ' 'Zn-ί=π 5

the scheme XΓR. is etale locally defined by

Zo'-z^^uζ6 ,

i.e., it has singularities along the double locus of the closed fiber when e>\. Note

that these singularities are locally hypersurfaces in smooth varieties over R'. In par-

ticular, XΓ R. has the relative dualizing invertible sheaf ωXr RijR. (cf. [8, Chap. Ill, §1]).

Furthermore, since the locus of the singularity is of codimension two, XΓ R> is normal

by Serre's criterion.

2.4. The /^'-scheme P(Δf) dominates P(Λ) for all ΛeA0. By the criterion in 1.6,

we see that the local rings of P(Δ^) has centers in P(A), i.e., there exists a natural

morphism P(Af)^P(A). By taking formal completions of these schemes, we get the

Γ-equivariant commutative diagram (1). The induced morphism p : Ω* -+ΩR, is locally

described as follows: Let {Zo, . . . , Zn_ γ) be a basis of the ΛT-linear space V. For each

0<j<n— 1, let Mj be the 7^-submodule of Vgenerated by

{Zo, . . . , Zn_j_u π Z n _ , , . . . , nZn_]] .

Then { [ M o ] , . . . , [ M ^ . J } form a chamber in A, and this chamber corresponds to a

/c-valued point in the closed fiber of ΩR, which is an «-ple intersection of local com-

ponents. Set Z^ZJZQ, z2 = Z2IZu...,zn_ι=Zn_JZn_2, zn = uζeZ0/Zn_1. Then the
singularity of ΩR. at this point is defined by

(2) A = R'lzu...,Zn]/(zi'Zn-uζe).
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The restriction of the morphism p : Ω1" -* ΩR> at this point is described by the theory of
toroidal embeddings. We can show that there exists an ideal I of A such that the
restriction of p is equal to the blow-up of Spf A along this ideal. Let U be a sufficient-
ly small open neighborhood of this point. Set U' = (p)~1(U). Then U'o consists of
(e+l)(e + 2) '(e + n— l)/(n — 1)! components and each component corresponds to an
R '-module

(3) Λ'ζβoZo + Λ/CβlZi+ +R'ζan-1Zn-ι

with integers 0 = ao<a1 < <an-ί <e ( = an). For α = (fl1? . . . , an), we denote by D(a)
the associated exceptional divisor. Set

C{a)=
i = 1

and £> = Σ α Q
β)^(α) Then D is an effective divisor with support in the exceptional set

of p. We can check that the ideal sheaf ΘUf( — D) is relatively ample, by using the theory
of toric varieties over a discrete valuation ring (cf. [12, IV, §3]). The combinatorial
part of this singularity is equal to that of [12, III, Expl. 2.3]. We review it briefly as
follows.

We set N=Zn. Then the ring A is denned by the cone

σ = {(xu ..., xn)eRn xu ..., xn>0}

in NR = Rn and the lattice N\ where N' is the sublattice of N defined by

N' = {(cl9....,cn)eZn:Cl+. +cn = 0 (mode)} .

For integers Uj with \<i<n and 0<j<e, the hyperplane

HtJ={(xl9 . . . , xn)eRn'9ex~j(Xl +-- +xn)}

intersects the interior of σ. Let Σ be the fan obtained by dividing σ by all these
hyperplanes. Then Σ is a nonsingular fan and the resolution of the singularity p
corresponds to the morphism of toric varieties associated to this subdivision.

The projectivity of the resolution is equivalent to the existence of a real-valued
continuous function h on σ with the following properties (cf. [18, Chap. 2]).

(1) h is linear on each cone τeΣ.
(2) h(x) + h(y) < h(x+y) for x, yeσ, and the equality holds if and only if x and y

are in a common cone of Σ.
(3) h is zero on the one-dimensional faces of σ.
This function h is called a strictly convex Σ-linear support function.
Let qe(x) be the function on [0, e] defined by qe(x) = (e — 2j—l)x+j(j+l) if

j<x<j+\ for an integer/ It is easy to see that qe is well-defined and is upper convex.
Note that qe(j)=j(e—j) for an integer j . An example of h is defined by
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h(xu ...,xn) = qe(x^) + + qe(xn)

for x = (xί, . . . , xn) with xt + +xn = e. Actually, hi defined by ht(xu . . . , xn) = qe(Xi)

is a strictly convex Zyiinear support function for the fan Σt obtained by dividing σ

by the hyperplanes HiΛ, . . . , Hie_γ for each /. Hence their sum is strictly convex for

Σ.

Let 5={(c l 5 . . . , cn)eZnnσ; c1-\- +cn = e}. The set of one-dimensional cones

in Σ is equal to {Roc; ceS}. Let Dc be the associated prime divisor. Then the divisor

ceS

associated to h [18, Chap. 2] is relatively ample. This divisor has support in the

exceptional set of the resolution by the condition (3) of h. The restriction of this

divisor to U is —D which we described above. Hence — D is relatively ample.

We take a sufficiently large integer J, so that the sheaf Θυ{ — dD) is relatively very

ample. Set Jυ — β^Θυ{ — dD)^.Θv. Then β restricted to U' is the blow-up of U by the

ideal Jυ. The ideal Jυ is a restriction of the ideal I a A defined as follows: For a vector

b = (b1, . . . , Z?π)e(Z>0)", we define

Then / is defined by

I=(zbζc; be(Z>0)\ c>0, <A, a) + c>dC(a) for every α> ,

where zhi = z\x- -zb

n

neA. Note that / is invariant even if we replace zf by wfzf for unit

elements ub since it is generated by monomials. By the symmetry of the definition of

C(α)'s, it is also invariant by permutations of indices. Hence J^'s are patched together

to a global ideal sheaf J c Θ^R, and β is the blow-up along this ideal.

LEMMA 2.5. We have (p)*ω^R / / R==ω^t/ i ? ', where co^Rt(R' and OL>fr/R> are the relative

dualizing sheaves of ΩR, -> Spf R' and Ω^ -• Spf R\ respectively.

PROOF. By the local expression (2), the dualizing sheaf coδR,/R> is locally generated

by

(4) ™Λ-- Λ ^ .

Each component of the exceptional divisor of the resolution β : W —• ΩR> corresponds

to an i^'-submodule as (3). Hence Ω f is etale locally isomorphic to a Zariski open subset

of the affine formal scheme
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and the local generator of the dualizing sheaf ω&/R> is again given by the local section

(4) since ζ in the differentials is a nonzero constant. q.e.d.

2.6. Since (OfiR,/R> is ample on each component of the closed fiber (cf. [17, §4])

and (p)*CDfiR,/R' = ωδt/R,, the invertible sheaf (o%™R, ® (ρ~ι J)Θ & is ample on each

component of the closed fiber of & for m sufficiently large. By the invariance, this

invertible sheaf descends to the formal scheme SCΓ'. Since it is ample on each component

of the closed fiber of SCΓ\ this proves Proposition 2.2 by the theory of Grothendieck

[EGA3, Thm. 5.1.4, Thm. 5.4.5].

By [EGA3, Thm. 5.4.1], we obtain the following commutative diagram

p
ΛΓ * ΛΓ,R' * ΛΓ

Speci?' • Speci?' • Spec 7?.

By construction, the i?'-morphism p is a desingularization of XΓ®RR'. Since p is the

descent of p, it is a blow-up along a closed subscheme whose support is contained in

the closed fiber. In particular, we have an isomorphism X'Γη z> XΓη®κK' over SpecK'.

By Lemma 2.5, we have Proposition 2.3.

3. Automorphisms of formal schemes. The goal of this section is to prove the

following assertion for the formal scheme ΩR==Ω®RR':

PROPOSITION 3.1. Assume char K=0. Then the natural homomorphism

PGL(n9K)-+AutR.(ΩR.)

is an isomorphism.

In case R = R\ i.e., Ω = ΩR,, this was proved by Mustafin (cf. [17, Prop. 4.2],

[10]).

3.2. For the proof of this proposition, we need to show some lemmas. Let B =

B n l and Σ{ {0<i<n-2) be as in 1.8. Let E^B be the exceptional divisor of the

projection p: B-+PZ'1 and A = An~ι aB the union of E and the proper transforms of

elements of Σn_2 By t n e construction of B, the morphism p defines a one-to-one

correspondence between the set of irreducible components of A and the union

I 0 u u2 1

n_ 2 . The intersection Dx n nDs of the irreducible components of A is an

irreducible subvariety of codimension s if {p(Dγ),... ,p(Ds)} with a suitable order is a

flag in P i " 1 , and is empty otherwise. Set Bk, = B®kk' and Ak, = A®kk'.

LEMMA 3.3. The natural homomorphism

PGL{n, k) -> A\xtk.(Bk>, Ak)

is an isomorphism, where Aut(i?fc,, Ak) denotes the group of k'-automorphisms of Bw
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which maps Aw to itself.

PROOF. We prove this lemma by induction on n. Let φ be an element of

Autk>(Bk., Ak). If n = 2, then Bk\ = Pk\ and Ak\ is the set of ^-rational points. Hence φ is

a /c-rational linear automorphism. For n>3, it suffices to show that φ(E) = E. Indeed,

Bk,\E is isomorphic to the open subset of Pk~
λ whose complement is the union of

/^-rational linear subspaces of codimension two. Hence Fic(Bk\E) ^ Z and φ induces

an automorphism of the homogeneous coordinate ring oϊ Pk>~1. Since p(E) is mapped

to itself, it is a /c-rational linear automorphism.

For n = 3, the components of Ak

2 are nonsingular rational curves with the self-

intersection numbers — q or — 1 , where q is the cardinality of k. Each component

is an exceptional divisor if and only if the number is — 1. Hence φ(E) = E.

Assume n>3. Each point x of Ak> is said to be /-pie if there exists precisely i

irreducible components of Aw which contain x. Since Aw is a simple normal crossing

divisor, it is at most (n— l)-ple. For an /-pie point, the / linear subspaces of Pk~
x

corresponding to the components form a flag of length i. Let D be a component of Ak>

with dimp(D) = s. Then the number of (n — l)-ple points on D is equal to that of full-length

^-rational flags which contain the linear space p(D) as a member. The number of

(n — l)-ple points on D is calculated easily to be

s / 7 / + 1 ] n-2-s ni+ί 1π ^ π ^
i=i q—\ i = i q— 1

Since this number is invariant under φ, φ(D) is a component of ^ with dimp(φ(D)) = s

or n — 2 — s.

Since Z) is in £ if and only if dimp(D) < n — 2, it suffices to show that no component

D of Ak, satisfies άimp(D) = 0 and dimp(φ(D)) = n — 2. Suppose that a component D

satisfies the equalities. Let/?!: D^EX ^Pk~
2 be the morphism to the exceptional divi-

sor Eί of the blow-up of P^Γ1 at the point p(D), and p2: φ(D)-+E2=p(φ{D))aP£,-1

the restriction of p. By the construction of Bk, we see that these morphisms are both

isomorphic to the morphism Bk~
 2 -• Pk~

2. By the induction hypothesis, the isomorphism

D~φ(D) is induced by a ^-rational isomorphism Eι~E2. Let lλ and /2 be general lines

of Eγ and E2, l[ and Γ2 their proper transforms in D and </>(/)), respectively. Here,

we may replace k' by its algebraic closure in order to take sufficiently general lines.

Then Γ2 intersects the exceptional divisor at (qn~ι — X)j(q— 1) points while l[ does not

intersect the exceptional divisor other than D. Hence the intersection numbers of D l[

and φ(D)Ί'2 are - 1 and 1 ~{qn~ι- \)l(q— 1)= -(q+ - +qn~2\ respectively. This is

a contradiction, since we may assume I2 = φ(l[). q.e.d.

LEMMA 3.4. Let ΘB( — \ogA) be the sheaf of algebraic vector fields with logarithmic

zeros along A. Then H°(<9β(-logΛ))={0}.

PROOF. The restriction φ:B\E^Pk~
ι of p is clearly an open immersion.
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Let Ao be the union of ̂ -rational hyperplanes of Pk~
ι. Then Θ B( — \og A)\B^E is equal

to φ*ΘPn-i-\ogA0). We have

since the sheaf 6>Pn-i( — log^40) is reflexive and the complement of the image of φ is of

codimension two. Hence, it suffices to show that H°((9Pn-i( — log^40)) = {0}.

For each 0<i<n — 1, let D{ be the hyperplane Xt = 0. For D = Doϋ uDn_ί9

Θpn-i(-logD) is a free sheaf of rank n—\ (cf. [18, Prop. 3.1]). Let (w l 5 . . . , un_ι) be

the coordinate of the affine space (Xo φ 0) defined by ui = XJX0 for /= 1,...,« — 1. Then

H°(ΘPn i( — logD)) is the /c-vector space with basis

d d

The restriction of the hyperplane H=(X0+ -\-Xn-ί =0) to this affine space is denned

by the equation 1 + w : + +un_ί= 0. Let

be an element of H°(ΘP--<-logZ))). Since (5(1+1^+ +MΛ_1) = α1M1-f +(2π_1wn_1,

5 has logarithmic zero along H if and only if δ = 0. Hence H°((9Pn-i(-log(Z> + 7/))) =

{0}. Since D + HczA0, we have H°(Θpn-i(-log^ 0)) = {0} * q e d

LEMMA 3.5. If an R'-automorphism φ of the formal scheme ΩR fixes all the

irreducible components, then φ is the identity.

PROOF. For each ΛeA0,we denote by B(A) the corresponding component of ΩR,

with the reduced scheme structure. Set

A(Λ) = B(A)nί U B(Λ')
\Λ'ΦΛ

Then the pair (B(A), A(A)) is isomorphic to (Bw,Ak) (cf. 1.6 and 1.8). Hence the

automorphism of the pair (B(A), A(A)) induced by φ is the pull-back of a linear

automorphism of P{A)0 by Lemma 3.3. Since φ fixes the components neighboring B(A),

this /:'-linear automorphism fixes all ̂ -rational points of the projective space over k'.

Hence the induced automorphism of B(A) is the identity for an arbitrary AeΔQ.

It suffices to prove that the automorphism of

induced by φ is the identity for all nonnegative integers /, since φ is their projective

limit. We proceed by induction on i. The assertion is clear for / = 0, since Ωo is a reduced

scheme with support \JΛeΔ B(Λ).

Suppose that the automorphism is the identity for i = d— 1 >0. Then φ induces an



STRONG RIGIDITY FOR NON-ARCHIMEDEAN UNIFORMIZATION 549

automorphism φf of the sheaf Θ^d of R'/(ζd+ ^-algebras. Then φ* — 1 defines a

A:'-derivation of Θβ0:

Since Ωo is a normal crossing union of the nonsingular &'-varieties B(Λ) for ΛeA0,

the sheaf &£ϊk,(Θfi0) has a natural injective homomorphism to

Θ ΘB(Λ)(-\ogA(Λ))
ΛeΔo

(cf. [11, Thm. 2.1]). Since H°(ΘB{Λ)(-\ogA(Λ)))={0} by Lemma 3.4, for every ΛeΔθ9

there is no nontrivial k'-derivation of Θβ0. Hence </>* = l, and the assertion is true for

i = d. q.e.d.

PROOF OF PROPOSITION 3.1. For any finite extension K"/K\ there exists a natural

injective homomorphism

where R" is the integer ring of K". Hence, we may assume that K'jK is a Galois

extension by the condition c h a r ^ = 0 . Let G be the Galois group. Let φ be an R-

automorphism of ΩR. For any element σeG, σ~1φ~iσφ is an R'-automorphism of

ΩR>. Since σ fixes all components of the formal scheme, this R'-automorphism also

fixes them. Hence σ~ ιφ~ 1σφ is the identity by Lemma 3.5. This implies that φ descends

to an i^-automorphism of the formal scheme Ω. We are done since the homomorphism

PGL(n, K) -* AutΛ(0)

is an isomorphism by Mustafin [17, Prop. 4.2]. (A precise proof of this proposition

of Mustafin is given in [10].) q.e.d.

4. Proof of Theorem 0.2. In this section, we prove the following theorem which

is equal to Theorem 0.2.

THEOREM 4.1. Assume charAΓ=0. Let Γi and Γ2 be torsίonfree co-compact

subgroups ofPGL(n, K). Let XΓί and XΓl be the R-schemes obtained by the algebraizatίons

of the formal schemes ^'Γί = Ω/Γ1 and &Γ2 = Ω/Γ2, respectively. Then, XΓiη®κK and

XΓiη®κK are isomorphic over SpecΛ" if and only if Γ1 and Γ2 are conjugate in

PGL(n, K), where K is the algebraic closure of K.

PROOF. The "if" part of the above theorem is clear (cf. [17, §4]). We are going

to prove the other part. Suppose we have an isomorphism XΓι η ®KK -3- XΓI η®κKover

Spec K. There exists a finite Galois extension K'/K such that this isomorphism descends

to an isomorphism XΓun®κK' ^ XΓ2,η®κK
r over K (cf. [EGA4, Cor. 8.8.2.5]). From

now on, we use the notation fixed in §2. Consider the normal schemes XΓ. R> = XΓ.®RR'

over Specif' for /= 1, 2. Since the generic fibers of these schemes are isomorphic, there
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exists a birational map

(5) ?:*•/•,.*-••->*/-,.*'

over Speci?'. First, we wish to show that φ is an isomorphism.

We look at the canonical rings

(6) θ H°(*Λ.* . <",«./*')
m>0

of XΓ^R' f° r i=l, 2. Since the sheaves ωXr R,/R> are ample on XΓ. for i=\, 2, it

suffices to prove that φ induces an isomorphism

(7) φ H°(Λ>2,R,, ω?? IR.) -=± φ H0(A-Γl,R,, (<%,,„.)
m>0 m>0

of graded i^'-algebras. Take the resolutions X'Γ. of XΓi,R' a s m Proposition 2.3 for /= 1,

2. Since these resolutions produce no discrepancy with respect to the relative

dualizing sheaves, we have isomorphisms of graded R'-algebras

θ Ή°{XΓitR.9 ω??oRt/R.) * θ H°(X'Γi9 ω®™R)
m>0 ' m>0 ι

for / = 1 , 2. The map (5) induces a birational map φ ' : X'Γl- -+X'Tr Since A^ is

regular and A^2 is proper over î , φ' is regular outside a closed subset of codimension

not less than two.

Let (X'Γί)° be the open subscheme of X'Γι denned as the intersection of the smooth

locus over R' and the regular locus of the rational map φ'. Clearly X'Γί ηa(X'Γι)°, and

{X'Γί)o is open dense in X'ruo Let (X'Γ2)° be the smooth locus of X'Tl over R'.

CLAIM. φ ' P ^ / M ^ r /

PROOF. Let x be a closed point of {X'Γι)° and let y = φ'(x)eX'Γ2. Let {Θx, mx) and

(Θy, my) be the local rings of x and y, respectively. Then we have dominations of regular

local rings

Since X'Γχ is smooth over R' at x, ΘJζΘx is a regular local ring. Hence ζφmx. On the

other hand, m^2 a m 2 since m^ c: mx. Hence ζ φ m 2 and Θy/ζΘy is a regular local ring.

Since X'Γl is smooth at all points of (X'Γ2)o which is regular in (X'Γ2)0, X'Γl is smooth

at y. q.e.d.

Since φ': (A^1)
o->(Zf2)° is a morphism of smooth T '̂-schemes, the pull-back homo-

morphism

of sheaves on (Xfi)0 is defined naturally. For any αe 0 m > o H ° ( A ^ 2 , ω^m

/i?,), the pull-
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back (φ')* α can be expressed as a regular differential form defined on a Zariski open

set of X'Γι whose complement is of codimension at least two. Hence we can prolong

(φ')*α to an element in ©m>0H°(X'Γi, ω®m

/R,), since cύχm

/R> is invertible and X'Γχ is

regular. Thus, we have an injective homomorphism

m>0 * 2 m>0 x ι

of graded i^-algebras. This is an isomorphism, since the inverse is obtained similarly

by φ'1. Hence, we have the isomorphism (7). This implies that we can prolong (5) to

an isomorphism φ: XΓUR' ^ ^Γ2,R' o v e r Spec7?'.

Then we lift the isomorphism φ to an automorphism φ of the universal covering

formal scheme ΩR>. Then we have φΓ1φ~1=Γ2. By Theorem 3.1, φ comes from an

element of PGL(n, K). Hence the groups Γx and Γ2 are conjugate in PGL(n, K) as

desired. q.e.d.

5. Fake projective planes. In this section, we consider fake projective planes as

an application of our main theorem. A fake projective plane is, by definition, a nonsingu-

lar projective complex surface of general type with

The underlying topological space of a fake projective plane has the same Betti numbers

as the projective plane CP2 (cf. [1, V, Rem. 1.2]). In [16], Mumford constructed a

fake projective planes as follows. He showed that, in case n = 3, the invariants of the

surface XΓη satisfies (8) if K=Q2 and Γ acts on Ao transitively. Then, for a fixed

isomorphism Q2 ^ C of fields, XΓn®QlC is a fake projective plane. Mumford [16]

constructed one example of torsionfree co-compact subgroup Γ of PGL(3, Q2) which

acts transitively on Ao. Theorem 4.1 implies that, if we find another such Γ which is

not conjugate to that of Mumford, we get another example of fake projective planes.

5.1. Here, we refer to the recent work of Cartwright, Mantero, Steger, and Zappa

on discrete subgroups of PGL(3, K) (cf. [4], [5]).

Let A be the Bruhat-Tits building attached to PGL(3, K). Let Λ0 = [ M 0 ] be a

vertex. The labeling τ : Zlo->Z/3Z is defined as follows. For AeA, we choose a

representative M of A contained in M o . Then τ(A) is defined to be the length modulo

3 of the /^-module MJM. It is easy to see that this definition does not depend on the

choice of M. We denote by J^o the set of all adjacent vertices of Ao. We set

P: = {A e J^o I τ(A) = 1} and L : = {AEJ^0\ τ(A) = 2}. P and L correspond to the sets of

/:-rational points and lines of P(M0/πM0)^P^ respectively.

Let Γ be a discrete subgroup of PGL(3, K) which may not be torsionfree. We

assume that Γ acts simply transitively on Ao. Then, for each AeA0, there exists a unique

element gΛεΓ such that gΛ(A0) = A. The correspondence Ai—• λ(A): =g^ 1(A0) defines a

bijection λ: P^L, which is called a point-line correspondence (cf. [4, §1]). Set
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& = {(Λ9Λ'9Λ")eP3\gΛgΛ.gΛ . = l} .

Then it was shown that the group Γ is generated by {gΛ \ A e P) with the fundamental

relation {gΛgΛ,gΛ., = \\(A, A', A")eϊF} (cf. [4, Thm. 3.1]). The combinatorial data

(λ, ^) is called the triangle presentation of Γ. In the rest of this section, we assume

q = 2. Then there exist exactly eight combinatorial possibilities of triangle presenta-

tions for Pi up to projective transformations and correlations (cf. [5, Thm. 1]). These

were named A\, A2, A3, A4, B\, B2, B3 and C\ in [5].

REMARK 5.2. In [5, §2], the classification of triangle presentations was done

up to "correlations" of the projective plane. Hence a triangle presentation is identified

with its reverse. This identification is not convenient for us, since the group associated

to the reverse is not isomorphic but anti-isomorphic to the original group, in general.

Among the eight triangle presentations, A\,A2 and A3 are not reverse symmetric, while

the others are reverse symmetric. In the table of [5, p. 207], " N " (not reverse sym-

metric) for AA might be a misprint. In this section, we distinguish A\, A2 and A3 with

their reverses which we write AY, A2' and A3', respectively.

THEOREM 5.3 (cf. [5, §3]). (1) There exist discrete subgroups of PGL(3, F2((X)))

with triangle presentations A\, A2, A3 and AA which act simply transitively on Ao, where

F2((X)) is the quotient field ofF2\_\_XJ\.

(2) There exist discrete subgroups of PGL(3, Q2) with triangle presentations B\,

B2, B3 and C\ which act simply transitively on Ao.

We denote the group associated to A\ by ΓAl9 and so on. Then the transpose

groups of ΓA1, ΓA2 and ΓA3 in PGL(3, F2((X))) have the triangle presentations AY, AT

and A3', respectively.

5.4. Since the actions of the groups above preserve the orientation of A defined

by the labeling, the restrictions of the actions to A ι are also free. Hence, for each of

these groups, the action is free on A if and only if it is free on A2. For each triangle

presentation, the number of rows in the table [5, p. 212] is equal to the number of

Γ-orbits in Δ2. If the action of Γ on A2 is free, then the twenty-one F2-rational points

of the rational surface B2 are identified to seven triple points of XΓt0 (cf. [9, §1]).

Otherwise, it has more than seven Γ-orbits. Hence the action of Γ on A is free if and

only if the number of the Γ-orbits in Δ2 is equal to seven.

(1) By the table on [5, p. 212], we see that ΓAί and ΓA2 act freely on A, while

ΓA3 and ΓA4 are not free on A2.

(2) The group Γ C 1 is equal to the group found by Mumford which is embedded

in PGL{3,Q(y]—Ί))ciPGL(3,Q2). The groups ΓB1, ΓB2 and ΓB3 are embedded in

PGL(3, QQ^\5))czPGL{3, Q2) (cf. [5, §3]). By the same table, we see that ΓB3 is not

free on A2, while other three groups are free on A.

5.5. Since mutually conjugate groups in PGL(3, Q2) define equivalent triangle

presentations, ΓBl, ΓB2 and ΓC1 are not conjugate to each other. Hence, by Theorem



STRONG RIGIDITY FOR NON-ARCHIMEDEAN UNIFORMIZATION 553

4.1, the fake projective planes obtained by these groups are mutually distinct. Hence
there exist at least three fake projective planes. The Figures 2, 3 and 4 are the
configurations of the double curves of XΓ0 for these groups. Note that the numbers
of double curves with nodes for these three surfaces are mutually distinct.

FIGURE 1. The dual graph of the 14 rational curves on B2

FIGURE 2. Configuration of the double curves in the closed fiber of the uniformized

scheme for ΓBί.
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FIGURE 3. Configuration of the double curves in the closed fiber of the uniformized

scheme for ΓB2.

FIGURE 4. Configuration of the double curves in the closed fiber of the uniformized

scheme for ΓC 1 .
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