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Abstract. In this paper, a graph theoretic analog to the celebrated Faber-Krahn

inequality for the first eigenvalue of the Dirichlet problem of the Laplacian for a bounded

domain in the Euclidean space is shown. Namely, the optimal estimate of the first

eigenvalue of the Dirichlet boundary problem of the combinatorial Laplacian for a

graph with boundary is given.

1. Introduction. The celebrated Faber-Krahn inequality is stated as follows (see

[1], [2]):

FABER-KRAHN THEOREM. Let λγ(Ω) be the first eigenvalue of the Dirichlet Laplacian

for a bounded domain Ω in Rn. If Vol(Ω) = Vol(Ω*), where Ω* is a ball in R", then

and the equality holds if and only if Ω is congruent to Ω*.

In this paper, we show an analog of the Faber-Krahn theorem for a graph. A

graph is a collection of vertices together with a collection of edges joining pairs of

vertices. Let us take a connected graph with boundary, G = (VϋdV, EudE) (see the

definition in Section 2). We consider the Dirichlet boundary problem of the combinatorial

Laplacian A on G:

\ f(x) = 0, xeδV.

Let us denote the eigenvalues for this problem by

0<λι(G)<λ2(G)< - <λk(G),

where k is the number of vertices in V. We call λγ(G) the first eigenvalue of G.

We give the following two examples (1), (2) of graphs with boundary: Here we

denote by white (resp. black) circles, vertices in K(resp. dV) and by solid (resp. dotted)

lines, edges in E (resp. dE).
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(1) (the graph of type Lm) The graph in Figure 1.1 will be denoted by Ln

1 2 3 m-2

FIGURE 1.1.

(2) (the graph of type Am+1) Am + ί will stand for the graph in Figure 1.2.
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FIGURE 1.2.

Our main results are stated in Theorems A and B below.

THEOREM A. Let G = (Fu dV, EudE) be a connected graph with boundary. Assume

that the cardinality of EudE satisfies #(EudE) = m>4. Then

and the equality holds if and only if G is isomorphic to Lm.

A graph with boundary G = (V\JdV, EudE) is said (cf. [5]) to have the non-

separation property if each connected component of the complement, V— {v}, of each

vertex veV contains at least one boundary vertex. A class of graphs having the sepa-

ration property is also a large family. For instance, a tree with boundary has always

the non-separation property. The following theorem singles out the graph of type

THEOREM B. Let G = (VudV, Eu dE) be a connected graph with boundary satisfying

the non-separation property. Assume that #(EudE) = m. Then

λi(G)>λ1(Am+ι),

and the equality holds if and only if G is isomorphic to Am+ί.

We would like to express our gratitude to Professor Takashi Sakai for helpful

discussions.

2. Preliminaries. In this section, we review basic notions about the Laplacian

on a graph following [3] or [4].

Let G = (VudV, EudE) be a graph with boundary (see for instance [4] or [5]),

i.e., (i) each edge in E has both end points in V, (ii) each edge in dE has exactly one

end point in V and one in d V and (iii) any vertex which has exactly one edge is in d V.

We call vertices in K(resp. dV) the interior (resp. boundary) vertices, and similarly for
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the edges. We always consider a finite connected graph with boundary, and fix once

and for all an orientation for each edge of G in this paper.

Let CQ(G) be the set of all real-valued functions on Fu d V satisfying f(x) = 0 for

all xedV. Let Cι(G) be the space of all functions φ defined on the set of all

directed edges of G and satisfying

where [x, 3/], x,yeVudV, denotes a directed edge in EvdE beginning at x and

ending at y. We define the following inner products on these spaces by

(2.1) I
( i , φ 2 ) ' = Σ Φi(σ)φ2(σ),

σeEϋdE

for / l 5 f2 E CQ(G) and φu φ2 e Cι(G). Here m(x), xe V is the degree of x, which is by

definition the number of edges in E\J dE incident to x. The coboundary operator

maps CQ(G) into CX(G). The combinatorial Laplacian is defined as

Af=d*df, /eC0°(G),

where d* is the adjoint of the coboundary operator d with respect to the above inner

products. By definition,

(2.2) {Δfufi) = Wudf2)9 /i,/2eC0°(G),

and

(2.3) Δ/(x) = / ( * ) — l — Σ f(y), ^e K, /e C0°(G),
()

where .y^x means that x and y are connected by an edge in EudE. A real number

λ is an eigenvalue of Δ on C$(G) if there exists a non-vanishing function fe CQ(G) such

that Af(x) = λf(x), xeV. The function / is called the eίgenfunction with eigenvalue λ.

This means that / and λ satisfy the Dirichlet eigenvalue problem:

= λf(x), xeV,

f(x) = 09 xedV.

The eigenvalues are labelled as follows:

0<λί(G)<λ2(G)< <λk(G),

where /:: = #( V\ the cardinality of V.
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EXAMPLE 2.1. (1) The first eigenvalue λί(Am+ί) of the graph of type Am+ί is

given (see, for instance, [5]) by

m

For the graph of type Am + ί, we have %(EvdE) = m and %(VudV) =

(2) The first eigenvalue of the graph of type Lm, ra>4 is rather complicated. Let

Hm(t) be a polynomial of degree m — 1 in t defined by

The eigenvalues of the Dirichlet problem for the graph of type Lm are 3/2 and the

roots of the following equation of order m — 2 in t:

where we regard H_ί(t) = 0 and Ho(t)= 1.

For examples, A1(L4) = 0.24170, A1(L5) = 0.12351 and ^(Lg) = 0.07809.

For the graph of type Lm, we have

3. Surgery of a graph. Now let us describe our main tool—surgery of a graph.

We consider the following cases:

( i ) There exists v1eV such that the complement G — {t^} of vι has at least

two connected components, say Gu G2, Two cases occur:

(i-1) Gγ has an element v2edV.

(i-2) G1 has no element of dV.

(ii) There exist vι,v2eV such that the complement G—{υί,v2} of {vu v2} also

has at least two connected components, say G l 5 G2, . . . .

We define surgery to obtain a new graph G' = (V udV, E' u 3£") by performing the

following operations on G = (V\jdV, EudE) in the above three cases:

DEFINITION 3.1. In the case (i-1), let us take an edge e = [x,y]eE such that

x,yφGx. The (G l 9 e)-operation of the first kind consists of

( i ) cutting Gγ at vι and e at x,

(ii) pasting the edges of Gγ to x, to have ^ as an end point, and

(iii) pasting v2 to e.

In this way, one gets a new graph G' = (VfudV', EfvdEf) (see Figure 3.1).
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FIGURE 3.1.

REMARK 3.2. By the (G1? e)-operation, the boundary vertex v2edV is changed

to an interior vertex of G', that is, v2e V.

DEFINITION 3.3. In the case (i-2), take x e V which does not belong to Gx and is

not equal to vx. The (G1? x)-operation on G is performed as follows.

( i ) cutting G1 at υl9 and

(ii) pasting the edges of G1 to x, to have vι as an end point.

One gets a new graph G' = (V'\jδV, EudE') (see Figure 3.2).

FIGURE 3.2.

DEFINITION 3.4. In the case (ii), we assume that both vί and v2 are branch points.

Recall that a branch point is x e V with m(x) > 3. Take an edge of G, e = [x, y]sE with

x, yφGί. The (G l 5 e)-operatίon of the second kind on G is performed as follows.

( i ) cutting Gλ at vγ and v2, and cutting ^ at x,

(ii) pasting edges of Gί to x, to have vι as an end point,

(iii) adding a new vertex ι;3, pasting it to e, and pasting the edges of Gί to ι;3,

to have v2 as an end point.

In this way one obtains a new graph G' = (V u 3 V\ E'

that both vί and ι;2 remain interior points of G'.

(see Figure 3.3). Note
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FIGURE 3.3.

Note that for a new graph G' = (V'\jdV\ E'udE') obtained by surgery, it holds

that #(EϋdE) = #(E' vdE'). Our key lemma is the following.

CRUCIAL LEMMA 3.5. Assume that Gγ is one of the connected components of the

complement ofv1eVorv2eVin G = (VvdV, EϋdE). Let f be the first eίgenfunctίon of

G. Take xeVsatisfying f(x) = maxveVf(v), and an edge e = [x, y] e E having x as an end

point. Assume that G1 and e have no vertices in common, and that G' — {V' \jdV, E' u dE')

is obtained by surgeries on G. Then

PROOF. Define a function/on V by

i f(x) if υ is a vertex of G l 5 or v3 in the case (ii),

[_ f(v) otherwise,

for ve V. Since f(v) = 0, vedV, it suffices to show

(3.1) (dfdf)G,<(dfdf)G,

and

(3.2) (//)G,

whence we obtain

(fj)θ' (f,f)G

The inequality (3.1) follows as

(df,df)a,= Σ

- = At(

e'eE' \JdE'

= Σ df(ef<(df,df)G.
e'eEuδE
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For (3.2), let us consider the case where G' is obtained by the (Gl9 ^-operation

of the first kind. By definition, for some α > 0 ,

Σ mG.(v)f(v)2+ Σ
veV',vφG\ veV',veGι

vΦv\,x vΦv2

Σ mG(v)f(v)2+ Σ rnG{v)f(x)2

veV ,υφG\ veV,veG\
υΦυ\,x vΦvj

In the case of the (Gu x)-operation, for some α > 0 ,

GW(v)2+ Σ
veV veV',vφGι

G Ψ

Σ mG(v)f(x)2+ Σ mG{v)f{υ)2

veV υeV,vέGι

In the case of the (Gu e)-operation of the second kind, for some α > 0 and b>0,

(/, /)c =mG{vι)J{υif +mG{v2)hv2)
2 +mG{vi)J{v,)2 +mG,(x)J(x)2

Σ mG,(v)f(v)2+ Σ mG,(v)f(v)2

veV',vφGι veV
vΦvι,V2,vτ,,x veG\

+ (b+l)f(x)2+ Σ mG{v)f(v)2+ Σ mG{v)f(x)2

veV,vφGi veV
v Φ V\,vi ,x veG\

hence we get Lemma 3.5. •

4. Proof of Theorem A. The main idea of our proof is to perform surgery on a

given graph G, so as to decrease the numbers of cycles and boundary points and

ultimately to obtain the graph of type Lm.

We use the following terminology: c = (v0, υu . . . , vs) is said to be a path emanating

from a vertex ve Fif vte VudV, υo = v and [vb vi+ι~]=eeE\)dE. A cycle of G is a path

c = (v0, vu . . . , vs) with ι̂ o = ^s with each vte Fand ^ > 3 . A branch point is a vertex xeV
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with m(x)>3. A graph with one boundary point and one cycle as in Figure 4.1, where

#(VudV) = rn, is said to be of type Lmi with m>4 and i>2:

m m—1

FIGURE 4.1.

Note that a graph of type Lm2 is also of type Lm. We shall show

if (

LEMMA 4.1. Let G = (VudV, Eu dE) be a graph with boundary. Let us add boundary

points to G so as to obtain a new graph G' of which each boundary point vedV has only

one boundary edge (see Figure 4.2). Then

λι(G) = λί(G').

PROOF. The set of interior points of G' is the same as that of G, so the eigenfunction

of G can be regarded as a function on V u δ V by regarding it to vanish on the boundary,

and the eigenfunction on G' vice versa. By definition, for all veV,

which implies

xeV.

FIGURE 4.2.

In the rest of this paper, we choose an interior vertex x0 e V satisfying

/(xo) = max/(ι;).
veV

D
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The first step. For any boundary vertex vedV, let ev = (v, vl9..., z;s_l5 vs) be a

path emanating from v and reaching the first branch point vs of G. Let G1 be the

complement of υs in ev (see Figure 4.3). Then one of the following occurs:

Case(i) xoeeΌ;

Case (ii) x 0 φ ev.

FIGURE 4.3.

In the case (ii), take an edge e = [mx0, x x ] EE which does not have vs as a common

end point. Perform a (G l 5 e)-operation on G to obtain G'. Note that the number of the

boundary vertices of G' is smaller than that of G and by Lemma 3.5,

λγ(G)>λx(G').

Carry out this process for each boundary vertex, until the case (i) occurs. The

resulting graph, denoted by G', satisfies λί(G)>λi(G'), and it holds that either

(a) G' has only one boundary vertex vί and x0 is a vertex in a path connecting

Vι to a branch vertex, or

(b) x0 is a branch vertex to which all boundary vertices are connected.

The second step. Let G' be a graph which satisfies (a) or (b) in the first step. Here

we use the following terminology: A cycle c = (v0, vί9 ..., vs) with vs = v0 is reducible if

there exist \<i<j<s—\ and a path which connects vt and Vj and is shorter than

(vh vi + 1,..., Vj). Otherwise, a cycle is called irreducible.

In the second step, we perform surgery on the graph G' to obtain a graph G"

such that any cycle of G" contains a unique branch point. Indeed, assume that G'

admits a cycle c which has at least two branch points. We may assume that c is irreducible

by taking first an irreducible cycle and considering cycles step by step. Recall that x0 e V

is a vertex satisfying f(xo) = maxveVf(v). Let us take a path e in c connecting two

neighboring branch points, say vγ and v2, but not containing x0. Let Gx be the

complement of v1 and v2 in e which is the case (ii) in Section 3. Take an edge e =

[^o^^] which does not have y as a common vertex to Gί. Now perform the (G l 9 e)

operation of the second kind on G' to obtain a new graph G" (see Figure 4.4).
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FIGURE 4.4.

The number of cycles of the graph G" is smaller than that of G' and λ^G')^ λ^G").

Continue this process succesively. Then, finally we obtain the graph G" all of whose

cycles have only one branch point and λί(G)>λί(G").

The third step. If the graph G" obtained in the second step admits at least two

cycles, we shall perform surgery on such G" to make a graph G" whose number of

cycles is smaller than that of G". Finally we obtain a graph G" which is of type Lmi

or in general, a star-shaped graph, that is, a graph which has no cycle and one branch

vertex (see Figure 4.5).

FIGURE 4.5.

Let G" admit at least two cycles each of which has one branch point. Let c be any

fixed cycle of G". Let ec = (v, υu v2,..., vp v) be a path emanating from a unique branch

point v to a neighboring branch point v. Let ec be the union of ec and c (see Figure 4.6).
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FIGURE 4.6.

Then we get:

LEMMA 4.2. Let f be the first eigenfunction of G". Then

max f(χ) = max f(x).
xeec xεc

PROOF. Assume that this is not the case. Then there exists vt e ec with 1 < i <j such
that

Define / on the set of vertices of G" by

J \X) ~
^ ' xecv{υl9...,Όi}9

(X), otherwise .

By the definition of /,

( / , / ) G " > ( / , / ) G " , and {df9df)G..<(df9df)G>',

which contradicts our assumption that / is the first eigenfunction of G". D

Let us denote f(c) = maxxecf(x) for each cycle c of G". Let us choose a cycle c0

such that

/(co) = max/(c),
c

where c runs over all cycles of G". By Lemma 4.2, we may assume that c0 contains x0,
that is,

veVG"

For each cycle c not equal to c0, let vc be its branch point, let Gx be the complement
of υc in c. Now perform the (G l 5 x0)-operation on G" to get a new graph G'". Then



278 A. KATSUDA AND H. URAKAWA

G'") and the cycle of G'" containing x0 has two branch points. Performing
the process of the second step on G" again, we get a new graph G(4) all of whose cycles
have only one branch point and the number of cycles is smaller than that of G".
Continue this process until the number of cycles is at most one. We obgain a graph of
type Lmi or in general, a star-shaped graph.

The last step. We shall show:

LEMMA 4.3. Let G^ be a star-shaped graph which is not of type Am+ι. For some

i > 2, we have

Moreover, for all z>2,

PROOF. For the first inequality, let G* be a star-shaped graph and / its first
eigenfunction (see Figure 4.5). Let dV^. = {vu v2, v3, . . ., vt} be the set of all boundary
vertices of G .̂ Let c{ be the paths connecting x0 and vt (1 <i<t). Cut each c{ (3<i<t)
at x0, paste ct to v^γ for all 3<i<t as to get a string, and change vt (2<i<t—\) to
interior vertices and change boundary edge of ci (2<i<t — 1) to interior edge. Then the
resulting graph G is of type Am+1. Define a function/on G by

7( \_ίf(χo)> x i s a vertex of ct ( 2 < / < ί - l ) ,

[ f(x), otherwise .

Then

(dfdf)<(dfdf), and (/ ,/)>(/,/) ,

which implies that

For the second inequality, let / be the first eigenfunction of a graph of type Am + ί.
Let vγ and v2 be the two end points of the graph Am+15 and let x0 be the interior vertex
attaining the maximum of /. Paste the end vertex v2 to the vertex x0 to get a cycle c
and the graph Kmi for some /. Define a function / on the graph Lmi by

/ ( χ ) f/(*o), xec,
I f(x), otherwise .

Then (/, f)LmJ>(f f)Λm + ί and (df df)Lrni<{df df)Am + 1, which implies that ^ μ w + 1 ) >
λ^L^i) for some /.

It remains to show A1(Lm)<A1(LWIii) for all i>2.
Let G be a graph of type Lmh x0 its vertex attaining the maximum of the first
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eigenfunction /, and c its cycle. By Lemma 4.2, it follows that

(1) xoec.

To see the inequality, we want to show that:

(2) the function / is monotone increasing on the path e = (vu v2,..., vs, v), where

vx is the boundary vertex and v is the branch point, that is, f(Vi)<f{Vj)<f(v) if i<j.

Indeed, otherwise, we replace / by / on V in such a way that / is linear on the

part where / is lower convex. Then

jdf, df) _, lτ

(//) " l ( m4h

which is a contradiction.

We also have:

(3) x0 is a branch point of c.

Indeed, otherwise, for G = Lmh we cut G at v one of the edges of c having v as

an end point, and paste the edge to x0 to obtain G' (see Figure 4.7).

p ^ o o o x °

—o / c \ cẑ > o σ— —o 6 / p

'\-J

FIGURE 4.7.

Define / on G' by

~ {f(xo), x is in the cycle of G'.

[ / ( ) , otherwise .

Then we get

(d/,d?) (df,df)_

ΊΠΓ ΊΠΓ l{) ι

which is a contradiction.

Let c = (v, ϋu v2, ..., ΰj-2, Uj-i, #,-) be a cycle of G = Lmi. We have

(4) f(x)=f(v), for all x e c ,

since, if there exists vsec such that f(vs)<f(v)9 and we define / on LOTtί by

(£), x e c ,

(x), otherwise ,
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then we get

{df d?)<(df, df), and (/,/)>(/,/),

which is a contradiction to our choice that / is the first eigenfunction.
Now cut the edge \_v, fy] of c at v and paste it to the vertex ΰ }-2. Then we get a

graph G of type Lm (see Figure 4.8).

FIGURE 4.8.

Define / on G by the function corresponding to /. Then (df df) = (df df) and
(f f) — (/? / ) . However, / cannot be the first eigenfunction on G, for otherwise, / must
be a strictly monotone function on the path emanating from the boundary vertex
to the branch point by the fact (2). By definition, however, it is not the case, a
contradiction.

Thus we obtain

Therefore, we obtain Lemma 4.3, and hence Theorem A. •
5. Proof of Theorem B. To prove Theorem B, we first note that any cycle c of

a graph G = (VvdV, EΌ dE) with the non-separation property admits at least two branch
points. Indeed, if c has only one branch point v9 then c — {v} is one of the connected
components of the complement G — {v). However, c — {υ] has no boundary vertex, a
contradiction to the non-separation property of G.

Let G be a graph with the non-separation property. We first perform the
(Gu e)-operation on G as in the second step of the proof of Theorem A, and get a graph
G', the number of whose cycles is smaller than that of G and which still has the
non-separation property. We continue this process successively and finally obtain a
graph, denoted by the same letter G', which has no cycle and the non-separation
property.

Next, as in the third step of the proof of Theorem A, we perform the (G, x)-operation
on G\ and get a graph G" whose number of boundary points is smaller than that of
G'. Continuing this process successively until x0 is the only one branch vertex, we obtain



FABER-KRAHN TYPE ISOPERIMETRIC INEQUALITIES

a star-shaped graph G". By Lemma 4.3, we obtain Theorem B.
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