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Abstract. In this paper, a graph theoretic analog to the celebrated Faber-Krahn
inequality for the first eigenvalue of the Dirichlet problem of the Laplacian for a bounded
domain in the Euclidean space is shown. Namely, the optimal estimate of the first
eigenvalue of the Dirichlet boundary problem of the combinatorial Laplacian for a
graph with boundary is given.

1. Introduction. The celebrated Faber-Krahn inequality is stated as follows (see
(1], [2]):

FABER-KRAHN THEOREM. Let A,(Q) be the first eigenvalue of the Dirichlet Laplacian
for a bounded domain Q in R". If Vol(Q)=Vol(Q%*), where Q* is a ball in R", then

A(R)=4,(27%),
and the equality holds if and only if Q is congruent to Q*.
In this paper, we show an analog of the Faber-Krahn theorem for a graph. A
graph is a collection of vertices together with a collection of edges joining pairs of
vertices. Let us take a connected graph with boundary, G=(VudV, EudE) (see the

definition in Section 2). We consider the Dirichlet boundary problem of the combinatorial
Laplacian A on G:

{Af(X)=if(X), xeV,

f(x)=0, xedV.

Let us denote the eigenvalues for this problem by
0<A(G)<A(G)< -+ <AG),

where k is the number of vertices in V. We call 4,(G) the first eigenvalue of G.

We give the following two examples (1), (2) of graphs with boundary: Here we
denote by white (resp. black) circles, vertices in V (resp. V) and by solid (resp. dotted)
lines, edges in E (resp. OF).
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(1) (the graph of type L,) The graph in Figure 1.1 will be denoted by L,,.
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FIGURE 1.1.

(2) (the graph of type 4,,,,) 4,4+, will stand for the graph in Figure 1.2.
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FIGURE 1.2.

Our main results are stated in Theorems A and B below.

THEOREM A. Let G=(VudV, EudE) be a connected graph with boundary. Assume
that the cardinality of EudE satisfies #(EUOE)=m=>4. Then

M(G)=A4(L,),
and the equality holds if and only if G is isomorphic to L,

A graph with boundary G=(VudV, EUJE) is said (cf. [5]) to have the non-
separation property if each connected component of the complement, V'— {v}, of each
vertex ve V contains at least one boundary vertex. A class of graphs having the sepa-
ration property is also a large family. For instance, a tree with boundary has always
the non-separation property. The following theorem singles out the graph of type
Api s

THEOREM B. Let G=(VudV, EudE)be a connected graph with boundary satisfying
the non-separation property. Assume that $(Eu0E)=m. Then

A‘I(G)Z/II(Am+ l) )
and the equality holds if and only if G is isomorphic to A,,, ;.

We would like to express our gratitude to Professor Takashi Sakai for helpful
discussions.

2. Preliminaries. In this section, we review basic notions about the Laplacian
on a graph following [3] or [4].

Let G=(VudV, EUOFE) be a graph with boundary (see for instance [4] or [5]),
i.e., (1) each edge in E has both end points in V, (ii) each edge in E has exactly one
end point in ¥ and one in 0V and (iii) any vertex which has exactly one edge is in V.
We call vertices in V' (resp. dV) the interior (resp. boundary) vertices, and similarly for
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the edges. We always consider a finite connected graph with boundary, and fix once
and for all an orientation for each edge of G in this paper.

Let CJ(G) be the set of all real-valued functions on VuédV satisfying f(x)=0 for
all xedV. Let CY{G) be the space of all functions ¢ defined on the set of all
directed edges of G and satisfying

o([x, yD)=—o(ly, x]),

where [x,y], x,ye VudV, denotes a directed edge in EudE beginning at x and
ending at y. We define the following inner products on these spaces by

(21) xeV
(@1, 05):= Z ©,(0)p,(0),

ocecEUJE

{ (f1, f2):= Z m(x) f1(x) f2(x) ,

for f,, f,€CAG) and ¢, ¢, C}(G). Here m(x), xe V is the degree of x, which is by
definition the number of edges in EudF incident to x. The coboundary operator

df ([x, y]):=f(»)—f(x)
maps CJ(G) into CY(G). The combinatorial Laplacian is defined as
Af=d*df, feC3(G),

where d* is the adjoint of the coboundary operator d with respect to the above inner
products. By definition,

(2.2) (Afl’f2)=(dflsdf2)s f1,f2€C8(G),

and
1

(2.3) Afx)=fx)——— ¥ f(»), xeV, feCG),
m(x) y~x

where y ~x means that x and y are connected by an edge in FUdE. A real number
4 is an eigenvalue of A on CJ(G) if there exists a non-vanishing function fe CJ(G) such
that Af(x)=Af(x), xe V. The function f is called the eigenfunction with eigenvalue A.
This means that f and A satisfy the Dirichlet eigenvalue problem:

{Af(X)=/1f(X), xeV,
f(x)=0, xedV.

The eigenvalues are labelled as follows:
0<2(G)<A,(G)< - - <A(G),
where k:=#(V), the cardinality of V.
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ExampLE 2.1. (1) The first eigenvalue 4,(4,,.,) of the graph of type 4, is
given (see, for instance, [5]) by

MAn+)=1 —cos<n> .
m
For the graph of type 4,,. ,, we have #(EU0E)=m and (VudV)=m+1.
(2) The first eigenvalue of the graph of type L,,, m>4 is rather complicated. Let
H, (1) be a polynomial of degree m—1 in ¢ defined by

H,(t)= ml:ll <t— 1 +cos (Jl)) .
j=1 m

The eigenvalues of the Dirichlet problem for the graph of type L, are 3/2 and the
roots of the following equation of order m—2 in ¢:

(6t>—9t+ I)Hm_4(t)——<t—;)Hm_5(t)=O ,

where we regard H_(t)=0 and H,(¢)=1.
For examples, 4,(L,)=0.24170, 4,(Ls)=0.12351 and 4,(L¢)=0.07809.
For the graph of type L,,, we have #(EU0E)=#VudV)=m.

3. Surgery of a graph. Now let us describe our main tool—surgery of a graph.
We consider the following cases:
(i) There exists v; € ¥ such that the complement G—{v,} of v; has at least
two connected components, say G,, G,, .... Two cases occur:
(i-1) G, has an element v,e€dV.
(i-2) G, has no element of dV.
(ii) There exist vy, v,€ V such that the complement G—{v,, v,} of {v, v,} also
has at least two connected components, say G, G,, ... .
We define surgery to obtain a new graph G'=(V'udV’, E'UJE’) by performing the
following operations on G=(VudV, EudE) in the above three cases:

DEerFINITION 3.1. In the case (i-1), let us take an edge e=[x, y]€ E such that
x, y¢ G,. The (G, e)-operation of the first kind consists of

(i) cutting G, at v, and e at x,

(i1) pasting the edges of G, to x, to have v, as an end point, and

(ili) pasting v, to e.
In this way, one gets a new graph G'=(V'udV’, E'UJE’) (see Figure 3.1).
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FIGURE 3.1.

REMARK 3.2. By the (G, e)-operation, the boundary vertex v,edV is changed
to an interior vertex of G, that is, v, V.

DEerINITION 3.3.  In the case (i-2), take x e V which does not belong to G, and is
not equal to v,. The (G4, x)-operation on G is performed as follows.

(i) cutting G, at v,, and

(ii) pasting the edges of G, to x, to have v, as an end point.
One gets a new graph G'=(V'udV’, EudE’) (see Figure 3.2).

FIGURE 3.2.

DEerINITION 3.4. In the case (ii), we assume that both v, and v, are branch points.
Recall that a branch point is x e V with m(x) > 3. Take an edge of G, e=[x, y] € E with
X, y¢ G,. The (G, e)-operation of the second kind on G is performed as follows.

(1) cutting G, at v; and v,, and cutting e at x,

(ii) pasting edges of G, to x, to have v, as an end point,

(iii) adding a new vertex v;, pasting it to e, and pasting the edges of G, to v;,
to have v, as an end point.

In this way one obtains a new graph G'=(V'udV’, E'UOE’) (see Figure 3.3). Note
that both v, and v, remain interior points of G'.
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FIGURE 3.3.

Note that for a new graph G'=(V'udV’, E'U0E’) obtained by surgery, it holds
that #(EU0E)=#(E'UdE’"). Our key lemma is the following.

CRUCIAL LEMMA 3.5. Assume that G, is one of the connected components of the
complement of vieVorv,eVin G=(VuadV, EUOE). Let | be the first eigenfunction of
G. Take x eV satisfying f(x)=max, ., f(v), and an edge e =[x, y] € E having x as an end
point. Assume that G, and e have no vertices in common, and that G'=(V'udV’, E'UdE")
is obtained by surgeries on G. Then

A(G)<4(G).

Proor. Define a function fon V' by

70) {f(x) if v is a vertex of G,, or v, in the case (ii),
V)=
f(v) otherwise,

for ve V'. Since f(v)=0, vedV”, it suffices to show

(3.1 df. df )g- <(df, df )g »
and
(3.2) (. DNe=: Ne »

whence we obtain

_@dDe _df, df)s _
T B Ne T e
The inequality (3.1) follows as

@df)e= ) dfey= 3% df)

41(G) 4(G).

e’'eE'UJE’ e'eE'UJE’'
e'¢Gy
= Y dfle)<df.df)s.
e'eEVUJE

e’ ¢Gy
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For (3.2), let us consider the case where G’ is obtained by the (G, e)-operation
of the first kind. By definition, for some >0,

(fy F)ar=me(v) f(01)? +mgdx) F(x) + mg ;) f (1)
+ Y mefP+ Y mg()f(v)?

veV',véG, veV’',veGy
vF#EVLL,X v#vy

—a)f(vy)? +(mg(x)+a—1)f(x)* + 21 (x)?
+ Z me)f 02>+ Y mgv)f(x)?

veV,v¢ Gy veV,veG,
v#F VL, X PERP
>(f, fa

In the case of the (G, x)-operation, for some a>0,

(. Nor=ma )] 01 +ma0f(*+ 3 me@f@+ ¥ me)f©)
veGy v#=‘vv1,x !

=(mg(v,)—a) f(v,)* +(mg(x) +a) f(x)?
+ Y mg)f(xP+ Y me)f ()’

veV veV,v¢G,
veGy vFUL,X
=(f, flg

In the case of the (G, e)-operation of the second kind, for some a>0 and 5>0,

(17» f)(, =mc'(01)f(171)2+mo'(02)f(uz)2 +mc'(va)f(v3)2+mo'(x)f(x)2
+ Ym0+ Y me)f )

veV' v¢Gy veV’
VFV1,02,03,X veGy

=(mg(v) = a)f (v,)* +(Mg(v;) = ) f(v2)* +(mg(x) +a—1) f (x)?
+b+Df)*+ Y maf©*+ ) mev)f(x)?

veV,v¢ G, veV
vVFUL,U2,X veGy

>/, Ng »

hence we get Lemma 3.5. O

4. Proof of Theorem A. The main idea of our proof is to perform surgery on a
given graph G, so as to decrease the numbers of cycles and boundary points and
ultimately to obtain the graph of type L,,

We use the following terminology: ¢=(v,, vy, ..., U,) is said to be a path emanating
from a vertex ve Vif v,e VuadV, vg=v and [v, v;, {]=e€ EUJE. A cycle of G is a path
¢=(vy, Uy, ..., V) With vo=v, with each v;€ V and s>3. A branch point is a vertex xe V
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with m(x)>3. A graph with one boundary point and one cycle as in Figure 4.1, where
#(VudV)=m, is said to be of type L,,; with m>4 and i>2:

FiGURE 4.1.
Note that a graph of type L,, , is also of type L,,. We shall show
A(G)= Ay (L) = Ay(Ly)
if $(VuoV)=m.

LemMma 4.1. Let G=(VudV, EUOE)be a graph with boundary. Let us add boundary
points to G so as to obtain a new graph G’ of which each boundary point ve oV’ has only
one boundary edge (see Figure 4.2). Then

41(G)=4(G).

Proor. The set of interior points of G’ is the same as that of G, so the eigenfunction
of G can be regarded as a function on V' udV’ by regarding it to vanish on the boundary,
and the eigenfunction on G’ vice versa. By definition, for all ve V,

me(v)=mg(v) ,
which implies

Agf(X)=Agf(x),  xeV.

FIGURE 4.2.

In the rest of this paper, we choose an interior vertex x,€ V satisfying

J(xo)=max f(v).

veV
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The first step. For any boundary vertex vedV, let e,=(v, vy, ..., v,_,,v) be a
path emanating from v and reaching the first branch point v, of G. Let G, be the
complement of v; in e, (see Figure 4.3). Then one of the following occurs:

Case (i) xq€e,;

Case (i) x,¢e,.

®----O0—O0— o

FIGURE 4.3.

In the case (ii), take an edge e=[x,, x;]€ E which does not have v, as a common
end point. Perform a (G, e)-operation on G to obtain G'. Note that the number of the
boundary vertices of G’ is smaller than that of G and by Lemma 3.5,

A(G)=A(G).

Carry out this process for each boundary vertex, until the case (i) occurs. The
resulting graph, denoted by G’, satisfies 4,(G)>4,(G’), and it holds that either

(a) G’ has only one boundary vertex v, and x, is a vertex in a path connecting
v, to a branch vertex, or

(b) x, 1s a branch vertex to which all boundary vertices are connected.

The second step. Let G’ be a graph which satisfies (a) or (b) in the first step. Here

we use the following terminology: A cycle c=(vy, vy, ..., v5) With v,=1v, is reducible if
there exist 1<i<j<s—1 and a path which connects v; and v; and is shorter than
(v, Vi 15 - .., v;). Otherwise, a cycle is called irreducible.

In the second step, we perform surgery on the graph G’ to obtain a graph G”
such that any cycle of G” contains a unique branch point. Indeed, assume that G’
admits a cycle ¢ which has at least two branch points. We may assume that ¢ is irreducible
by taking first an irreducible cycle and considering cycles step by step. Recall that x,e V'
is a vertex satisfying f(x,)=max,.y f(v). Let us take a path é in ¢ connecting two
neighboring branch points, say v, and v,, but not containing x, Let G, be the
complement of v; and v, in & which is the case (i) in Section 3. Take an edge e=
[x0, ¥] which does not have y as a common vertex to G,. Now perform the (G, ¢)-
operation of the second kind on G’ to obtain a new graph G” (see Figure 4.4).
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FIGURE 4.4.

The number of cycles of the graph G” is smaller than that of G" and 4,(G") = 4,(G").
Continue this process succesively. Then, finally we obtain the graph G” all of whose
cycles have only one branch point and 4,(G)>4,(G").

The third step. If the graph G" obtained in the second step admits at least two
cycles, we shall perform surgery on such G” to make a graph G” whose number of
cycles is smaller than that of G”. Finally we obtain a graph G"” which is of type L, ;
or in general, a star-shaped graph, that is, a graph which has no cycle and one branch
vertex (see Figure 4.5).

FIGURE 4.5.

Let G” admit at least two cycles each of which has one branch point. Let ¢ be any
fixed cycle of G”. Let e,=(v, vy, v,, ..., v;, ) be a path emanating from a unique branch
point v to a neighboring branch point . Let &, be the union of e, and ¢ (see Figure 4.6).
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FIGURE 4.6.

Then we get:
LEMMA 4.2. Let [ be the first eigenfunction of G". Then

max f(x)=max f(x).

xel, xec

PrROOF. Assume that this is not the case. Then there exists v;e e, with 1 <i<j such
that

f(v)=max f(x).

xeé.

Define f on the set of vertices of G” by

](x)={f(v,-), xecu{vy, ..., v},

f(x), otherwise .
By the definition of £,
(s New>(fs flg-» and  (df, df)g-<(df, df)g-
which contradicts our assumption that f is the first eigenfunction of G". O

Let us denote f(c)=max,..f(x) for each cycle ¢ of G"”. Let us choose a cycle ¢,
such that

[leg)=max f(c),

where ¢ runs over all cycles of G”. By Lemma 4.2, we may assume that ¢, contains x,,
that is,

f(co)=max f(v)=f(x,).

veVgr

For each cycle ¢ not equal to ¢, let v, be its branch point, let G, be the complement
of v, in ¢. Now perform the (G, x,)-operation on G” to get a new graph G"'. Then
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A1(G")=A,(G"") and the cycle of G" containing x, has two branch points. Performing
the process of the second step on G'” again, we get a new graph G all of whose cycles
have only one branch point and the number of cycles is smaller than that of G"".
Continue this process until the number of cycles is at most one. We obgain a graph of
type L,,; or in general, a star-shaped graph.

The last step. We shall show:

Lemma 4.3. Let G, be a star-shaped graph which is not of type A,, .. For some
i>2, we have

(G > A(Ap s 1) = A(Lyy) -
Moreover, for all i>2,
ALy )>A4(Ly,) .

Proor. For the first inequality, let G, be a star-shaped graph and f its first
eigenfunction (see Figure 4.5). Let 0V, ={v,, v, v, ..., v} be the set of all boundary
vertices of G,. Let ¢; be the paths connecting x, and v; (1 <i<t). Cut each ¢; 3<i<t)
at x,, paste ¢; to v;_, for all 3<i<r as to get a string, and change v; 2<i<t—1) to
interior vertices and change boundary edge of ¢; (2<i<¢—1) to interior edge. Then the
resulting graph G is of type 4, ;. Define a function f on G by

Jx)=

- {f(xo), x is a vertex of ¢; 2<i<t—1),
f(x), otherwise .

Then
df, dfy<(df, df), and (f, [)>(f. f).

which implies that

@A) ) o
TV,

For the second inequality, let f be the first eigenfunction of a graph of type 4,,. ;.
Let v; and v, be the two end points of the graph 4,,, ;, and let x,, be the interior vertex
attaining the maximum of f. Paste the end vertex v, to the vertex x, to get a cycle ¢
and the graph K, ; for some i. Define a function f on the graph L, ; by

j'(x)z{f(x())’ X€ec,

f(x), otherwise.

ll(Am+ 1)—<—

Then (£, /)y, .=2(fs Na,., and (df, df )y, ,<(df, df ), . which implies that 4,(4,,+,)>
Ay(L,, ;) for some i.

It remains to show A,(L,,)<4,(L,,;) for all i>2.

Let G be a graph of type L,,;, X, its vertex attaining the maximum of the first
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eigenfunction f, and c its cycle. By Lemma 4.2, it follows that

(1) xg€ec.

To see the inequality, we want to show that:

(2) the function f is monotone increasing on the path é=(v,, v,, ..., v, 0), where
vy is the boundary vertex and # is the branch point, that is, f(v;)< f(v;) < f(?) if i <J.

Indeed, otherwise, we replace f by f on V in such a way that 7 is linear on the
part where f is lower convex. Then

df. df) _(df. df) _
(. /) (f )

1( ml)a

which is a contradiction.

We also have:

(3) x, is a branch point of c.

Indeed, otherwise, for G=L,,;, we cut G at § one of the edges of ¢ having ¢ as
an end point, and paste the edge to x, to obtain G’ (see Figure 4.7).

‘m,i

FIGURE 4.7.

Define f on G’ by

~ f(xo), xisin the cycle of G',
J(x)= .
f(x), otherwise.
Then we get
(df. df) _(@f, df)
S ~~=1,(G)=A4L,.) ,
G S THOTHE

which is a contradiction.
Let ¢=(, 0y, D,, ..., 0j—5 0;_1, U;) be a cycle of G=L,, ;. We have

4) f(x)=f(9), for all xec,
since, if there exists ¥, ¢ such that f(7,) < f(7), and we define f on L, ;by

{f(ﬁ), xec,

f(x), otherwise,



280 A. KATSUDA AND H. URAKAWA

then we get
(df, df)<(f, df), and (£, /)>(f, f),

which is a contradiction to our choice that f is the first eigenfunction.
Now cut the edge [#, 5;] of ¢ at # and paste it to the vertex 7;_,. Then we get a
graph G of type L,, (see Figure 4.8).

®----O0— le} |:> - --O—e
v, v, vg Uy 3

FIGURE 4.8.

Define f on G by the function corresponding to f. Then (df, df)=(df, df) and
(f. £)=(f, f). However, f cannot be the first eigenfunction on G, for otherwise, f must
be a strictly monotone function on the path emanating from the boundary vertex
to the branch point by the fact (2). By definition, however, it is not the case, a
contradiction.

Thus we obtain

(df, df) _ (df, df)
L L A L.
VARV End

Therefore, we obtain Lemma 4.3, and hence Theorem A. O

)'I(Lm) <

5. Proof of Theorem B. To prove Theorem B, we first note that any cycle ¢ of
a graph G=(VudV, EudE) with the non-separation property admits at least two branch
points. Indeed, if ¢ has only one branch point v, then ¢—{v} is one of the connected
components of the complement G— {v}. However, ¢—{v} has no boundary vertex, a
contradiction to the non-separation property of G.

Let G be a graph with the non-separation property. We first perform the
(G4, e)-operation on G as in the second step of the proof of Theorem A, and get a graph
G’, the number of whose cycles is smaller than that of G and which still has the
non-separation property. We continue this process successively and finally obtain a
graph, denoted by the same letter G', which has no cycle and the non-separation
property.

Next, as in the third step of the proof of Theorem A, we perform the (G, x)-operation
on G', and get a graph G” whose number of boundary points is smaller than that of
G'. Continuing this process successively until x, is the only one branch vertex, we obtain
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a star-shaped graph G”. By Lemma 4.3, we obtain Theorem B. O
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