CODIMENSION-ONE FOLIATIONS AND ORIENTED GRAPHS

Gen-ichi Oshikiri*

(Received January 29, 1998, revised June 30, 1998)

Abstract

In this paper, an oriented graph $G(M, F)$ is assigned to each co-dimension-one foliation (M, F), and topological relations between (M, F) and $G(M, F)$ are studied. A strong relation between admissible functions of (M, F) and $G(M, F)$ is given.

1. Introduction. Let (M, F) be a transversely oriented codimension-one foliation F of a closed oriented manifold M. On the set of all leaves of F, Novikov [6] introduced a partial order to define a so-called Novikov component. On the other hand, it is well-known that a partially ordered set is described as an oriented graph. In this paper, we assign to each (M, F), in a unique way, an oriented graph $G(M, F)$ by a similar way to Novikov's method, and show that for any oriented graph G, there is a codimension-one foliation (M, F) with $G=G(M, F)$. These are done in $\S 3$. We also show that there is a 'nice' embedding $\phi: G(M, F) \rightarrow M$, and in $\S 4$ we prove that the induced homomorphism $\phi_{*}: \pi_{1}(G(M, F)) \rightarrow \pi_{1}(M)$ is injective. Walczak [15] introduced the notion of admissible functions of (M, F) and the present author defined the notion of admissible functions of oriented graphs in [10]. As an application of the viewpoint obtained above, we show that these two notions of admissible functions are essentially same. This is done in $\S 5$. Finally, in $\S 6$, we give a brief discussion on Riemannian labels of oriented graphs, whose definition comes naturally from our viewpoint, and on the Laplacians on graphs.
2. Preliminaries. We begin this section with some definitions on graphs. For the definition of cellular complexes, see Spanier [13], and for generalities on graph theory, see Bollobas [2].
G is called a graph if G is a finite one-dimensional cellular complex. We set $V=V(G)=\left\{v_{i}\right\}=\{$ all 0 -cells of $G\}$ and $E=E(G)=\left\{e_{a}\right\}=\{$ all 1-cells of $G\}$. We call each $v \in V(G)$ a vertex, and $e \in E(G)$ an edge. For $e \in E(G)$, we also set $V(e)=\mathrm{Cl}(e)-e=$ \{endpoints of $e\}$, where the closure $\mathrm{Cl}(e)$ of e is taken in G.

Remark. (a) $V(e)$ may consist of only one point $\{v\}$. In this case, we call e a loop at v.
(b) $V\left(e_{a}\right)=V\left(e_{b}\right)$ may occur even if $e_{a} \neq e_{b}$. In this case, G is called a multigraph (see Bollobas [2]).

[^0]A path $P=(V(P), E(P))$ is a pair of ordered elements of $V(G)$ and $E(G)$ of the form

$$
V(P)=\left\langle v_{0}, v_{1}, \ldots, v_{l}\right\rangle, \quad E(P)=\left\langle e_{1}, e_{2}, \ldots, e_{l}\right\rangle \quad \text { with } \quad V\left(e_{i}\right)=\left\{v_{i-1}, v_{i}\right\} .
$$

The length $l(P)$ of P is defined to be the cardinality of the set $E(P)$, that is, l. In case $v_{l}=v_{0}$, we call P a closed path.

Let $G=(V, E)$ be a graph. Since each edge e is homeomorphic to $(0,1)$, e has a natural orientation induced, via a fixed homeomorphism, from that of $(0,1)$. In this case, we say that e is oriented. With this in mind, we give the following definition.
G is called an oriented graph if G is a graph and each edge is oriented. For each edge $e \in E(G)$, we call $I(e)=H(0)$ the initial vertex, and $T(e)=H(1)$ the terminal vertex. Here $H:[0,1] \rightarrow G$ is the extended map of the given homeomorphism $h:(0,1) \rightarrow e \subset G$. In case $I(e)=v$ and $T(e)=w$, we occasionally denote e by $[v, w]$. Note that if e is a loop at the vertex v, then $v=I(e)=T(e)$.

Now, let (M, F) be a transversely oriented codimension-one foliation F of a closed oriented manifold M. For generalities on foliations, see Hector and Hirsh [3]. In the following, we shall work in the C^{∞}-category.

A compact saturated domain D of M is said to be a foliated trivial I-bundle if D is the total space of a trivial I-bundle over a compact leaf L of F and if the induced foliation on D from F is everywhere transverse to the fibers I. Note that the boundary ∂D consists of two copies of the compact leaf L. A compact saturated domain D of M is said to be a $(+)$-fcd (resp. (-)-fcd) if N is outward (resp. inward) everywhere on the boundary ∂D of D, where N is a non-vanishing vector field on M transverse to F so that the direction of N coincides with the transverse orientation of F.

It is well-known that if F has an infinite number of compact leaves, then all but a finite number of them are contained in some foliated trivial I-bundles (cf. Hector and Hirsh [3]).

Let $L \subset \operatorname{Int} M$ be a compact leaf of a foliated manifold (M, F) with a boundary which is a union of compact leaves of F. Construct a new foliated manifold (M_{0}, F_{0}) as follows: Delete the subset L from M and add two copies of L to $M-L$ by the natural identification so that the resulting manifold M_{0} to be compact with $\partial M_{0}=\partial M \cup\{$ two copies of $L\}$ and $F_{0}=(F-L) \cup\{$ two copies of $L\}$. We say that $\left(M_{0}, F_{0}\right)$ is obtained from (M, F) by cutting M along L.

Let (M, F) be as above and (G, V, E) be an oriented graph. We say that a mapping $\phi: G \rightarrow M$ is a transverse embedding if ϕ is a continuous injection and the restriction $\left.\phi\right|_{\mathrm{Cl}(e)}$ of ϕ to each $\mathrm{Cl}(e), e \in E$, can be extended to a smooth transverse embedding of some open interval containing [0,1], the domain of the extended map $H:[0,1] \rightarrow G$ of e. Furthermore, if the image of ϕ intersects all leaves of F and the induced orientation on e from the transverse orientation of F coincides with the original one of e, we call ϕ to be nice.
3. Construction of graphs and foliations. Let (M, F) be a transversely oriented codimension-one foliation F of a closed oriented manifold M with $\operatorname{dim} M \geq 3$. In this section, we shall construct, in a unique way, an oriented graph $G(M, F)$ from (M, F). Furthermore, from an arbitrarily given oriented graph G, we shall construct a transversely oriented codimension-one foliation of a closed oriented manifold (M, F) so that $G=G(M, F)$.

First, assume that F has no compact leaves. In this case, it is well-known that there is a closed transversal intersecting all leaves of F, where a closed transversal means an embedding $\phi: S^{1} \rightarrow M$ which is transverse to the leaves of F. Then take a point v on S^{1} and regard S^{1} as an oriented graph $G(M, F)$ with one vertex $\{v\}$ and one loop $\left\{S^{1}\right\}$ at v with the orientation induced from the transverse orientation of F.

Second, assume that F has at least one compact leaf, say L, and by cutting along which the foliated manifold obtained from M is a foliated trivial I-bundle. In this case, it is also well-known that there is a closed transversal S^{1} intersecting all leaves of F. By the same way as in the first case, take a point v on S^{1} and regard S^{1} as an oriented graph $G(M, F)$ with one vertex $\{v\}$ and one loop $\left\{S^{1}\right\}$ at v with the orientation induced from the transverse orientation of F.

Finally, we assume that F has compact leaves, but none of them have the property in the second case. In this case, take all (set-theoretical) maximal foliated trivial I-bundles $D_{1}, D_{2}, \ldots, D_{s}$, and set $M_{1}=M-\bigcup_{i=1}^{s} \operatorname{Int}\left(D_{i}\right)$. By assumption, M_{1} is not empty. Then take minimal (\pm)-fcd's $D_{s+1}, D_{s+2}, \ldots, D_{t}$, and set $M_{2}=M_{1}-\bigcup_{i=s+1}^{t} \operatorname{Int}\left(D_{i}\right)$. If M_{2} is not empty, cut M_{2} along all compact leaves in the interior of M_{2}, and list all connected components as $D_{t+1}, D_{t+2}, \ldots, D_{u}$. Note that the number of compact leaves in M_{2} is finite from the fact stated in Section 2.

Now we construct an oriented graph $G(M, F)$ from (M, F). Take $v_{i} \in \operatorname{Int}\left(D_{i}\right)$ $(i=1,2, \ldots, u)$ and set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{u}\right\}$. In case $M_{2}=\varnothing$, the argument below is valid by simply replacing u with t. For each compact leaf $L_{i_{j}} \subset \partial D_{i}$, take a point $p_{i_{j}} \in L_{i_{j}}$. If $L_{i_{j}}=L_{k_{l}} \subset \partial D_{i} \cap \partial D_{k}$, then choose $p_{i_{j}}$'s so that $p_{i_{j}}=p_{k_{l}}$. On each D_{i} it is easy to construct smooth arcs $\left\{c_{i_{j}}\right\}$ satisfying the following conditions: $c_{i_{j}}$ is a smooth arc between v_{i} and $p_{i_{j}}, c_{i_{j}} \cap c_{i_{1}}=\left\{v_{i}\right\}$ if $j \neq l$, each $c_{i_{j}}$ is properly contained in a smooth transverse curve, and the set $\bigcup_{j} c_{i_{j}}$ intersects all leaves of $F \mid D_{i}$. For each compact leaf $L=L_{i_{j}}=$ $L_{k_{l}} \subset \partial D_{i} \cap \partial D_{k}$, take a union $c_{i_{j}} \cup c_{k_{l}}$ and deform it slightly near L so that the resulting curve is again a smooth transverse curve between v_{i} and v_{k}. We denote this curve by e_{L} and give e_{L} an orientation induced from the transverse orientation of F. Note that this definition makes sense even in the case $i=k$. In this case, e_{L} is a loop. Set $E(G)=\left\{e_{L}\right\}$. It is easy to see that $G=(V(G), E(G))$ is an oriented graph. We define $G(M, F)=(V(G), E(G))$.

By the construction above, we get the following result.
Theorem 1. Let (M, F) be as above. For each (M, F) there exist an oriented graph $G(M, F)$ and a nice transverse embedding $\phi: G(M, F) \rightarrow(M, F)$. Furthermore, for each
edge $e \in E(G), \phi(\operatorname{Int}(e))$ intersects each compact leaf of F at most once.
Conversely, we have the following
Theorem 2. Let G be an oriented graph. Then there is a foliated manifold (M, F) so that $G=G(M, F)$.

Proof. Let $G=(V, E)$ be an arbitrarily given oriented graph. We shall construct a codimension-one foliation $\left(M^{3}, F\right)$ on a 3-dimensional manifold M^{3} so that $G\left(M^{3}, F\right)=G$.

The idea is the following: For each vertex $v \in V$ adjacent k edges, construct a 3-dimensional manifold M_{v}^{3} with k tori T^{2},s as boundary components and a codimension-one foliation F_{v} with $\partial M_{v}^{3} \subset F_{v}$. If v is adjacent to w, then glue suitable $T^{2} \subset \partial M_{v}$ and $T^{2} \subset \partial M_{w}$. After glue all T^{2} 's, we get the desired ($\left.M^{3}, F\right)$.

Let $v \in V$ be a vertex adjacent k_{v} outward edges and l_{v} inward edges, that is, v is a initial point of k_{v} edges and is a terminal point of l_{v} edges. Take a 2-dimensional sphere S^{2}, delete $k_{v}+l_{v}$ small open discs from S^{2}, and denote by D_{v} the resulting disc with $k_{v}+l_{v}$ boundary components. Set $M_{v}=D_{v} \times S^{1}$, and list all boundary components of ∂M_{v} as $C_{1}^{+}, \ldots, C_{k_{v}}^{+}, C_{1}^{-}, \ldots, C_{l_{v}}^{-}$so that each C_{i}^{+}corresponds to a vertex adjacent to v with an oriented edge outward at v and that each C_{j}^{-}corresponds to a vertex adjacent to v with an oriented edge inward at v. Now construct a transversely oriented codimension-one foliation F_{v} with $\partial M_{v}=\partial D_{v} \times S^{1} \subset F_{v}$ as follows: Give $S^{1}=\boldsymbol{R} / \boldsymbol{Z}$ the canonical orientation induced from the one of \boldsymbol{R}. Wind (Int $\left.D_{v}\right) \times\{t\}, t \in S^{1}$, along S^{1} in the negative direction near C_{i}^{+}'s and in the positive direction near C_{j}^{-}'s (cf. turbulization in [3] or [7]). Then we get a foliation F_{v} consisting of these leaves and compact leaves $\left(\partial D_{v}\right) \times S^{1}$. Note that the transverse orientation along $C_{i}^{+} \times S^{1}$ is outward and is inward along $C_{l}^{-} \times S^{1}$. The resulting foliated manifold (M_{v}, F_{v}) is the desired one. In case $k_{v}=l_{v}=1$, this construction simply gives a foliated trivial I-bundle over T^{2} and we need to deform it. To do this, the simplest way is to use the *-operation defined by Lawson [5]. Let ($M_{v}^{\prime}, F_{v}^{\prime}$) be the foliated manifold obtained by the above construction. Define $\left(M_{v}, f_{v}\right)=\left(M_{v}^{\prime}, F_{v}^{\prime}\right) *\left(T^{3}, F_{a}\right)$, where $\left(T^{3}, F_{a}\right)$ is the codimension-one foliation of T^{3} with irrational a 'slant', that is, F_{a} is defined by a closed 1-form and all leaves are dense in T^{3}. *-operation is an identification of foliations along closed transversals, and produces no new compact leaves.

If v and w are adjacent, then w corresponds to one of $C_{i}^{ \pm} \times S^{1}{ }^{\prime} \mathrm{s} \subset M_{v}$, say, $C_{i}^{+} \times S^{1}$, and v to one of $C_{j}^{\mp} \times S^{1}$ s $\subset M_{w}$, say, $C_{j}^{-} \times S^{1}$. Identify M_{v} and M_{w} along $C_{i}^{+} \times S^{1}$ and $C_{j}^{-} \times S^{1}$ naturally. In this way, identifying all $C_{i}^{ \pm} \times S^{1}$,s in M_{v} for $v \in V(G)$, we get the desired codimension-one foliation

$$
\left(M^{3}, F\right)=\bigcup_{v \in V(G)}\left(M_{v}, F_{v}\right) /\{\text { identification given above }\} .
$$

It is easy to see that $G(M, F)=G$. This completes the proof of Theorem 2.
4. A topological relation. In this section, we show the following topological relation between (M, F) and $G(M, F)$ constructed in Section 3.

Theorem 3. Let $(M, F), G(M, F)$ and ϕ be as in Theorem 1. If F has a compact leaf, then the induced map $\phi_{*}: \pi_{1}(G) \rightarrow \pi_{1}(M)$ is injective.

Proof. We shall identify the oriented graph $G=G(M, F)$ and $\phi(G(M, F)) \subset M$. We assume that $\operatorname{Ker} \phi_{*} \neq\{1\}$ and derive a contradiction. Let α be a non-trivial element in $\operatorname{Ker} \phi_{*}$. Represent α by a closed path of the smallest length, say, $\alpha=\left\langle e_{1} e_{2} \cdots e_{k}\right\rangle$. Note that, as F has a compact leaf, each edge e_{i} intersects at least one compact leaf and distinct edges do not intersect the same compact leaf except at their vertices. Let $f: D^{2} \rightarrow M$ be a continuous map with $f(\partial D)=e_{1} e_{2} \cdots e_{k}$. We deform f so that except near vertices of e_{i} 's f is smooth and is in general position with respect to F. If L_{1} is a compact leaf intersecting $\operatorname{Int}\left(e_{1}\right)$, then $f^{-1}\left(L_{1} \cap f\left(D^{2}\right)\right)$ is a set of circles and arcs on D^{2}, and one of the arcs connects a point in $\operatorname{Int}\left(e_{1}\right)$ to a point in $\operatorname{Int}\left(e_{j}\right)$ for some j. If $e_{1}=[v, w]$, then, by considering the orientations, it is easy to see that $e_{j}=[w, v]$. If L_{2} is a compact leaf intersecting $\operatorname{Int}\left(e_{2}\right)$, then $f^{-1}\left(L_{2} \cap f\left(D^{2}\right)\right)$ is a set of circles and arcs on D^{2}, and one of the arcs connects a point in $\operatorname{Int}\left(e_{2}\right)$ to a point in $\operatorname{Int}\left(e_{l}\right)$ for some l. As the compact leaves L_{1} and L_{2} does not intersect, the arc between $\operatorname{Int}\left(e_{2}\right)$ and $\operatorname{Int}\left(e_{1}\right)$ does not intersect the arc between $\operatorname{Int}\left(e_{1}\right)$ and $\operatorname{Int}\left(e_{j}\right)$. This implies $l<j$, and if $e_{2}=$ $[x, y]$, then $e_{l}=[y, x]$. We can repeat this process until we find i so that $e_{i}=[u, z]$ and $e_{i+1}=[z, u]$. Therefore, $\alpha=\left\langle e_{1} \cdots e_{i-1}[u, z][z, u] e_{i+2} \cdots e_{k}\right\rangle=\left\langle e_{1} \cdots e_{i-1} e_{i+2} \cdots e_{k}\right\rangle$, which contradicts the minimality of the length of $e_{1} e_{2} \cdots e_{k}$ representing α. This completes the proof of Theorem 3.

Remark. It is still an open problem whether any smooth codimension-one foliation on a simply connected closed manifold always admit compact leaves or not (cf. Langevin [4]).

By the well-known Novikov's compact leaf theorem (see Novikov [6]), any smooth codimension-one foliation on S^{3} has a compact leaf. Thus, combining this with Theorem 3 , we have the following.

Corollary 1. For any $\left(S^{3}, F\right)$, the graph $G\left(S^{3}, F\right)$ is a tree. Here, the orientation of edges of $G\left(S^{3}, F\right)$ are negrected.
5. Admissible functions. First, we give further definitions on graphs. Let $G=$ $(V(G), E(G))$ be a graph. A graph K is called a full subgraph of G if
(i) K is a non-empty subcomplex of G, and
(ii) any $e \in E(G)$ with $V(e) \subset K$ implies $e \in E(K)$.

A proper full subgraph K of an oriented graph G is called a (+)-subgraph (resp. (-)subgraph) if $e \in E(G)$ with $V(e) \cap V(K) \neq \varnothing$ and $V(e) \cap(V(G)-V(K)) \neq \varnothing$ implies $I(e) \in$ $V(K)(\operatorname{resp} . T(e) \in V(K))$.

Recall the definition of admissible functions of an oriented graph G (see Oshikiri [10]). We call a function $f: V(G) \rightarrow \boldsymbol{R}$ admissible if every minimal (+)-subgraph contains a vertex v with $f(v)>0$, and every minimal (- -subgraph contains a vertex w with $f(w)<0$. Here "minimal" means the usual set theoretical sense, that is, being non-empty and containing no non-empty proper (+)-subgraphs (resp. (-)-subgraphs). In case G has no $(+)$-subgraphs, any function f with $f(v)>0$ and $f(w)<0$ for some $v, w \in V(G)$ or $f \equiv 0$ is called admissible.

Next we recall some definitions on foliations. Let F be a transversely oriented codimension-one foliation of a closed connected oriented manifold M. Let g be a Riemannian metric on M. Then there is a unique unit vector field N orthogonal to F whose direction coincides with the given transverse orientation of F. We give an orientation to F as follows: Let $\left\{E_{1}, \ldots, E_{n}\right\}$ be an oriented local orthonormal frame for the tangent bundle $T F$ of F. The orientation of M given by $\left\{N, E_{1}, \ldots, E_{n}\right\}$ then coincides with the given one of M. We denote the mean curvature of a leaf L at x with respect to N by $H(x)$, that is,

$$
H=\sum_{i=1}^{n}\left\langle\nabla_{E_{i}} E_{i}, N\right\rangle
$$

where \langle,$\rangle means g(),, \nabla$ is the Riemannian connection of (M, g), and $\left\{E_{i}\right\}$ is a local orthonormal frame for $T F$ with $\operatorname{dim} F=n$. We call $H(x)$ the mean curvature function of F with respect to g. We also define an n-form χ_{F} on M by

$$
\chi_{F}\left(V_{1}, \ldots, V_{n}\right)=\operatorname{det}\left(\left\langle E_{i}, V_{j}\right\rangle\right)_{i, j=1, \cdots, n} \quad \text { for } \quad V_{j} \in T M,
$$

where $\left\{E_{1}, \ldots, E_{n}\right\}$ is an oriented local orthonormal frame for $T F$. Note that the restriction $\left.\chi_{F}\right|_{L}$ is the volume element of $\left(L,\left.g\right|_{L}\right)$ for $L \in F$. Then we have the following formula.

Proposition R (Rummler [12]). $d \chi_{F}=-H d V(M, g)=\operatorname{div}_{g}(N) d V(M, g)$, where $d V(M, g)$ is the volume element of (M, g) and $\operatorname{div}_{g}(N)$ is the divergence of N with respect to g, that is,

$$
\operatorname{div}_{g}(N)=\sum_{i=1}^{n}\left\langle\nabla_{E_{i}} N, E_{i}\right\rangle
$$

Let f be a smooth function on M. We call f admissible if there is a Riemannian metric g on M so that $-f$ coincides with the mean curvature function of F with respect to g (see Walczak [15] or Oshikiri [8], [9]). A characterization of admissible functions, which is conjectured by Walczak (see Langevin [4]) and proved affirmatively by the author (see Oshikiri [11]), is the following

Theorem O. Let F be a transversely oriented codimension-one foliation of a closed connected oriented manifold M. Assume that F contains at least one $(+)$-fcd. Then f is admissible if and only if $f(x)>0$ somewhere in any minimal $(+)$-fcd and $f(y)<0$
somewhere in any minimal (-)-fcd. In case F contains no $(+)$-fcd's, any smooth function f with $f(x)>0$ and $f(y)<0$ for some $x, y \in M$ or $f \equiv 0$ is admissible.

Now we shall discuss a relation between these two definitions of admissible functions. Let (M, F) and $G=G(M, F)$ be as in Section 3. Let $v \in V(G)$ and $e \in E(G)$ correspond to a foliated compact domain $D_{v} \subset M$ and to a compact leaf $L_{e} \in F$, respectively. For a saturated compact domain D of (M, F) we denote by $G(D)$ the subgraph of G consisting of all vertices $v \in V(G)$ with Int $D \cap D_{v} \neq \varnothing$ and all edges $e \in E(G)$ with $L_{e} \subset \operatorname{Int} D$. It is easy to see the following.

Lemma. If D is a $(+)$-fcd (resp. (-)-fcd), then $G(D)$ is a $(+)$-subgraph (resp. $(-)$-subgraph $)$. Furthermore, D is a minimal $(+)-f c d($ resp. $(-)-f c d)$ if and only if $G(D)$ is a minimal $(+)$-subgraph (resp. (- -subgraph).

Let f be a smooth function on M and $d V$ a volume element on M. Define a function $G_{d V}(f): V(G) \rightarrow \boldsymbol{R}$ by

$$
G_{d V}(f)(v)=\int_{D_{v}} f d V \quad \text { for } \quad v \in V(G)
$$

The main result of this section is the following
Theorem 4. For a smooth function f on M, the following two conditions are equivalent.
(1) f is a admissible on (M, F).
(2) There is a volume element $d V$ on M so that $G_{d V}(f)$ is admissible on $G(M, F)$.

Proof. First assume that f is admissible. By definition, there is a Riemannian metric g on M so that $f=-H$, where H is the mean curvature function of F with respect to g. Set $d V=d V(M, g)$, that is, the volume element of (M, g). We show that $G_{d V}(f)$ is admissible. Let K be a minimal (+)-subgraph of G. Set $D_{K}=\bigcup_{v \in V(K)} D_{v}$. By the above lemma, D_{K} is a minimal (+)-fcd. Using Rummler's formula (Proposition R) we have

$$
\sum_{v \in V(K)} G_{d V}(f)(v)=\int_{D_{K}} f d V=\int_{\partial D_{K}} \chi_{F}>0,
$$

since D_{K} is a $(+)$-fcd. Thus $G_{d V}(f)(v)>0$ for some $v \in V(K)$. Similary, we also have $G_{d V}(f)(v)<0$ for some $v \in V(K)$ when K is a $(-)$-subgraph.

We prove the converse. By Theorem O , it is sufficient to show that $f(x)>0$ somewhere in any minimal $(+)$-fcd and $f(y)<0$ somewhere in any minimal $(-)$-fcd. Let D be a minimal (+)-fcd. By the above lemma, $G(D)$ is a minimal (+)-subgraph. Thus, there is a vertex $v \in V(G(D))$ so that $G_{d V}(f)(v)>0$, as $G_{d V}(f)$ is admissible on $G(M, F)$. By definition, this means that $\int_{D_{v}} f d V>0$. Therefore there must be a point
$x \in D_{v} \subset D$ with $f(x)>0$. Similary, there must be a point $y \in D_{v} \subset D$ with $f(y)<0$ for any minimal (-)-fcd D. This completes the proof.

Corollary 2. For any admissible function h on $G(M, F)$, there are an admissible function f and a volume element $d V$ on M so that $h=G_{d V}(f)$.

Proof. Let h be an admissible function on $G(M, F)$. If there are a smooth function f and a volume element $d V$ on M so that $h=G_{d V}(f)$, then, by the above theorem, f is automatically admissible. Thus, we have only to show the existence of a smooth function f and a volume element $d V$ on M so that $h=G_{d V}(f)$. Choose an arbitrary volume element $d V$ on M and fix it. Set $f_{1} \equiv 0$. For each $v \in V(G)$, deform f_{1} smoothly on Int $D_{v} \subset M$ so that $h(v)=\int_{D_{v}} f_{1} d V$, and set the resulting smooth function f. It is easy to see $h=G_{d V}(f)$.
6. Concluding remarks. The viewpoint given above enables us to translate many notions on foliated manifolds into the ones on graphs. We shall discuss on this point briefly.

Let $G=(V, E)$ be an oriented graph. Set

$$
C^{0}(G)=\{f: V \rightarrow \boldsymbol{R}\} \quad \text { and } \quad C^{1}(G)=\{\phi: E \rightarrow \boldsymbol{R}\} .
$$

We call $g_{G}=\left(g_{V}, g_{E}\right)$ a Riemannian label, where $g_{V}: V \rightarrow \boldsymbol{R}_{+}$and $g_{E}: E \rightarrow \boldsymbol{R}_{+}$are functions with positive real values. Define inner products on $C^{0}(G)$ and $C^{1}(G)$ by

$$
\left\langle f_{1}, f_{2}\right\rangle=\sum_{v \in V} g_{V}(v) f_{1}(v) f_{2}(v) \quad \text { for } \quad f_{1}, f_{2} \in C^{0}(G)
$$

and

$$
\left\langle\phi_{1}, \phi_{2}\right\rangle=\sum_{e \in E} g_{E}(e) \phi_{1}(e) \phi_{2}(e) \quad \text { for } \quad \phi_{1}, \phi_{2} \in C^{1}(G) .
$$

Recall the boundary operator $d: C^{0}(G) \rightarrow C^{1}(G)$ defined by

$$
d f([x, y])=f(y)-f(x) \quad \text { for } \quad f \in C^{0}(G) \text { and an oriented edge }[x, y] \in E .
$$

Define the coboundary operator $\delta: C^{1}(G) \rightarrow C^{0}(G)$ by

$$
\delta \phi(v)=\frac{1}{g_{V}(v)} \sum_{e_{v}} \operatorname{sgn}\left(e_{v}\right) g_{E}\left(e_{v}\right) \phi\left(e_{v}\right)
$$

where the summation is taken over all edges $e_{v} \in E$ adjacent to $v, \operatorname{sgn}\left(e_{v}\right)=+1$ if v is the terminal point of e_{v}, and $\operatorname{sgn}\left(e_{v}\right)=-1$ if v is the initial point of e_{v}. It is easy to see that

$$
\langle d f, \phi\rangle=\langle f, \delta \phi\rangle \quad \text { for } \quad f \in C^{0}(G) \text { and } \phi \in C^{1}(G) .
$$

This enables us to define the so-called Laplacians $\Delta_{V}^{g}: C^{0}(G) \rightarrow G^{0}(G)$ and $\Delta_{E}^{g}: C^{1}(G) \rightarrow C^{1}(G)$ by

$$
\Delta_{V}^{g}(f)=\delta d f \quad \text { and } \quad \Delta_{E}^{g}(\phi)=d \delta \phi
$$

If we choose $g_{V}=g_{E}=1$, then Δ_{V}^{g} is the standard Laplacian on graphs (cf. Biggs [1], Urakawa [14]). Note that the definition of δ involves the orientation of edges, however, the definitions of Δ^{g} s work without orientation of edges.

Finally, we mention the so-called Stokes' Theorem. For an oriented graph G with a Riemannian label $g=\left(g_{V}, g_{E}\right)$, define the integrations of f and ϕ by

$$
\int_{K} f=\sum_{v \in V(K)} g_{V}(v) f(v) \quad \text { for } \quad f \in C^{0}(G)
$$

and

$$
\int_{K} \phi=\sum_{e \in E(K)} g_{E}(e) \phi(e) \quad \text { for } \quad \phi \in C^{1}(G),
$$

where $K=V(K) \cup E(K)$ is a set of vertices and edges with orientations in G. Here the following convention is used: If the orientation of $e \in E(K)$ is opposite to the one of the corresponding edge $e^{\prime} \in E(G)$, then define $\phi(e)=-\phi\left(e^{\prime}\right)$. For a full subgraph H, we have the well-known Stokes' Theorem:

$$
\int_{H} \delta \phi=\int_{\partial H} \phi \quad \text { for } \quad \phi \in C^{1}(G)
$$

where ∂H is the set of oriented edges e such that $\partial e \cap V(H) \neq \varnothing$ and $\partial e \cap(V(G)-$ $V(H)) \neq \varnothing . e \in \partial H$ is oriented from H to the complement of H, that is, outward from H.

References

[1] N. Biggs, Algebraic Graph Theory, Cambridge Univ. Press, 1993.
[2] B. Bollobas, Graph Theory. An Introductory Course, Springer-Verlag, New York, 1979.
[3] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations: Part B, Vieweg, Braunschweig, 1983.
[4] R. Langevin, A list of questions about foliations, Contemporary Math. 161 (1994), 59-80.
[5] H. B. Lawson, Foliations, Bull. Amer. Math. Soc. 80 (1974), 369-418.
[6] S. P. Novikov, Topology of foliations, Trudy Mosk. Mat. Obsc. 14 (1965), 248-278.
[7] G. Oshikiri, The surgery of codimension-one foliations, Tôhoku Math. J. 31 (1979), 63-70.
[8] G. Oshikiri, Mean curvature functions of codimension-one foliations, Comment Math. Helv. 65 (1990), 79-84.
[9] G. Oshikiri, Mean curvature functions of codimension-one foliations II, Comment Math. Helv. 66 (1991), 512-520.
[10] G. Oshikiri, A remark on oriented graphs, Interdisciplinary Information Sci. 2 (1996), 85-88.
[11] G. Oshikiri, A characterization of the mean curvature functions of codimension-one foliations, Tôhoku Math. J. 49 (1997), 557-563.
[12] H. RummLer, Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts, Comment Math. Helv. 54 (1979), 224-239.
[13] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.
[14] H. Urakawa, Laplace Operators and Networks (in Japanese), Shokabo, 1996.
[15] P. Walczak, Mean curvature functions for codimension-one foliations with all leaves compact. Czech. Math. J. 34 (1984), 146-155.

Faculty of Education
Iwate University
18-33, Ueda 3-chome
Morioka, 020-8550
Japan
E-mail address: oshikiri@iwate-u.ac.jp

[^0]: * 1991 Mathematics Subject Classification. Primary 57R30; Secondary 05C20.

