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L, AND BESOV MAXIMAL ESTIMATES FOR SOLUTIONS
TO THE SCHRODINGER EQUATION
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Abstract. Precise results on L, and Besov estimates of the maximal function of the
solutions to the Schrodinger equation are given. These results contain an improvement of the
theorem in Sj6lin [10].

1. Introduction. It is well-known that the solution to the Schrodinger equation
ou

(1.1) Ez—iAu, u(0,x) = f(x), (xeR', teR)

is given by
3 = e [[ 0V pyazay.

In this note we shall consider estimates of L;-norm and the Besov type norm of integrals of
this kind by means of the Besov norm of f, and give L ,-estimates of their maximal functions.
Our first results are the following two theorems:

THEOREM 1. Let o be a positive number, I = (0,1), y > landlet1 < g < oo.
Assume that h(t, §) is real-valued, measurable, and C* in t and the inequality
akn(t, &)
otk
holds for any positive integer k, where Cy is a constant independent of t and &. Then, the
operator Ty defined by

(13) TLf(t, %) = cn f f SEVEHRCE) () dEdy
Rn

where ¢, = (2m)™", is bounded from B{Z (R™) to ng(l; L>(R?)).

THEOREM 2. Let h be a real-valued function satisfying the condition (1.2). Then, the
operator Ty defined by (1.3) is bounded from B; /12 (R") to Ly(R"™; Loo(1)), L.e.,

(1.2) < Ck(1+ &%)

1/2
(1.4) ( /R TG -)Iliw(,)dx> < Clifllgye-

For the operator of the type (1.5) below acting on Sobolev spaces H¥, there are sev-
eral papers. Carbery [1] and Cowling [2] have prove that 7> is bounded from H*(R") to
Ly(I; Lo(R™)) for s > a/2, and Theorem 2 is an improvement of their results. P. Sjolin [10]
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has proved that if a > 1 then s > an/4 is a sufficient condition for all n, and if n = 1 then

s > a/4 is a necessary condition. S. Fukuma [3] has proved that if f € H 1/“(R"), n>2,

g =4n/(2n—1) and if f isradial, then T f € Ly(R"; Loo(1)). C. E. Kenig, G. Ponce and L.

Vega ([5], [6], [7]) have indicated the application of the estimate to the dispersive equations.
In this paper we also have the following theorem for the operator of type (1.5):

THEOREM 3. Leta > 1. Then, the operator T, defined by
1.5) Taf (1.3 = o [[ VSN fy)asdy

is bounded from Bgﬁ“(R") to Ly(R"; Loo(1)), iL.e.,

1/2
(fRn 172 f (x, ')Hiw(])dx) = Cl|f||Bg:/4(Rn) .

Noting that H® C B;"l/ Yifs > an /4, this result is an improvement of the theorem in
Sjolin [10].

Our L p-results are as follows:
THEOREM 4. Leta > 1,1 =(0,1),1 < p < oo and let

n

min l+( 1)1 ! +
g = — n — —_—— 1, —
2 2 pl| 4

n|l 1
212 pl}°

Then, the operator T, defined by (1.5) is bounded from Bgf’l (R™) to L,(R"; Loo(1)), ie.,

1/p
( / I f (x, -)uiw(,)dx) < CI\f e,y -
R '

In §2 we shall give a proof of Theorem 1. In §3 we state a lemma needed in the proof of
Theorem 2 and prove Theorem 2. In §4 we explain the proof of Theorem 3 and lemmas we
used. In §5 we prove the Lemma 2 in the previous section. Finally in §6 we prove Theorem
4,

NOTATIONS. f(s) = fe""ff(x)dx (Fourier transform of f); 3, = 9/dt,9; = 9/9x;,
V= @100, A= Y5000 x = (1, %) 0% = [192, 07, x% = T2y x5 Ly
denotes the usual Lebesgue space on R" withnorm || - || ,R; H * denotes the Sobolev space
defined by {f € S'; Il fllas = 1/ &)1 + 1§12/l L,gmy < 00}: BY, denotes Besov spaces
with norm || - IIBg‘ . which is explained, for example, in [11]; £(X, Y) denotes the space of
linear bounded operators from a Banach space X to Y; L,(- ; X) denotes the L ,-space of
X -valued functions.

2. Proof of Theorem 1. First, consider the case where ¢ = 2 and o is a non-negative
integer m. Notice that By, = H™. It is easy to see that

B Tif = / / CVEHRCE) [ (1 ) F(y)dEdy
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with | Hi (2, £)| < c;((l + I‘;’l’”’). Hence, by Parseval’s formula we have

1
1TV A3 1 Loy < Co /0 I£1Z,dt = Coll £113, .

and

1
1OF T £, r: Loy < Ci /0 drl|(1+ [E1) F N, gy < Cill F gty g -
Combining these facts, we obtain that

UT0f W amr: Lyenyy < Comllf llmy ey -

Finally, we recall that the Besov spaces are identical with the real interpolation of the
Sobolev spaces:

(L2(82; X), H™ (82, X))o,q = Bﬁ'fZ(Q; X).

Here, X is a Banach space and (-, -)g,4 denotes the real interpolation spaces. Therefore, the
conclusion of the theorem follows from interpolation of linear operators and the fact that T
is bounded from H™Y (R") to H™(I; L»(R")) for any non-negative integer m.

3. Proof of Theorem 2. To get L, maximal estimates for the operator of type (1.3)
we need the following

LEMMA 1. LetlI = (0,1),1 <q < p < o0, and let ¢ be a positive number. Then, the
Besov space B;‘,‘ q (I; L, (R™)) is continuously imbedded in the space L ,(R"; Bg, q(I ).

PROOF. Consider first the case where 0 <o < 1. Assume that u(z, x) € Bg,q (I; Lp(R™)).
Then, by Minkowsky’s inequality we see that

I{lu(t, x) 8z ) Iz, @y = NI + 5, %) = u(t, )z, 01-sn}s ™ HizgillL, @
< NHClu + s, %) = u@, L, ©1-o) L@}~ ez ay
< Il + s, x) = ut, )L, @)L, 01-sn}s Nz
= |ulBg (I:L,R")) -

Here LZ (I) := L4(1, ds/s). In the same way we get for the case where o = 1;

I, 011 iy}, me
= Il + 25, %) = 2u(t + 5, %) + u(t, OllL,0,1-2505 Heznlllz, @e
< Il + 25, x) — 2u(t + s, x) + u(t, X)llL,,(R"))IILp((o,l—zs))S_l}IIL;;(I)

= lulgy ;L@ -
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Consider now the case where 0 = k + 0, k is a positive integer, and 0 < 6 < 1. By the
facts proved above we have

e, )1 g Yz, @y = 1085w, x)1gs, iy}, ke

k
< L (Rn
= |at“le,‘q(l,L,,(R )
= |ulBg  (1;L,@®R") -
Noting that the norm of Bg‘q(l; X) is given by || - || WE(I:X) + - lBg‘q(l;X) (see T. Muramatu
[8]), these estimate gives the proof of Lemma 1.

From Lemma 1 and the imbedding theorem B,/’(I) C Loo(I) (see Muramatu [9]) it

follows that
BYP(I5 Ly®") C LyR"; By/H(D) C LaR"; Loo(D)

with continuous inclusions, which, combined with Theorem 1, gives Theorem 2.

4. Proof of Theorem 3. Next, Theorem 3 has been proved if we show that the oper-
ator S defined by

5700 = [ [ el Rt ryyagay,
an/4

where ¢ (x) is a measurable function of x € R" with 0 < ¢(x) < 1, is bounded from Bz’1 (R™)
to Ly (R") and its norm is estimated by a constant independent of 7 (x).

To prove this we need the following partition of unity in &£-space. Let g9 € C*®°(R"),
@ € C®°(R") and ¥ € C*°(R") be functions such that

&)

wE +Y 978 =1, 0<g@E <1, 0<p®) <1,

j=l1
1
supp(go) C {€ € R"; |§| <2}, supp(p) C [E €R"; 5 < &l < 2} .
Put ¢;(§) := p(277€), Yo (&) := o(£/2), and

V() =9 (%) +E) +9Q8), Y€)=y /E) forj>1.
Then

1
2
and for j =0,1,2,...,¢;(&) = 1 holds for any £ € supp(¢;). Hence, it follows that

1
supp(y) C {s €R"; i 3] <4} , Y@ =1 if <=2,

o0

(4.1) Y vi®eiE) =1.
Jj=0

From this identity we see that

Sfx) =S fix),
Jj=0
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where
42) S;9(x) = cn / PEHIWIEI Y (2)aE)dE |
43) £1) = cn f ¢ 0 (6) F(E)dE .

To estimate || Sl z(r,,1,) We need the following

LEMMA 2. Let ¢ € C* with support contained in the set {£;1/4 < |§| < 4}, t(x) a
measurable function of x € R™ with 0 < t(x) < 1, j a positive integer, and let a > 1. Define
the operator S; by (4.2). Then,

4.4) ISl 2Ly @), LyRny) < €294,

where C is a constant independent of j and t (x).

From this lemma we can immediately prove Theorem 3, that is,
o0 o0 4
!
I5f1lz, < };; 185 fillz, < c;)z“"/ 1fillzs < 1A gonss ey -

5. Proof of Lemma 2. In order to prove Lemma 2 we need several lemmas. We start
with recalling the formulas for products and adjoints of Fourier multipliers.

LEMMA 3. Let X,Y and Z be Hilbert spaces, and let T and S be the operators defined
by

Tf() = cn f / FEER € f(dEdy.  Sg(x) = e f f SOV () g(y)dEdy ,

where K &) is L(X, Y)-valued functions of ¢ € R" and H (&) is LY, Z)-valued functions of
& € R" with

sup 1K @)l cexyy < 00, sup 1A E)llzv.z) < oo
Then, T* is the bounded operator from Ly(R"; Y) to Lo(R"; X) defined by the formula
rg) = o [[ 65 R @ a0dedy

and ST is the bounded operator from Ly(R"; X) to Lo(R"; Z) defined by the formula

STf(x) =cn / / EEEHEK ) f(y)dedy .
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PROOF. Let f € S(R"; X) and g € S(R"; Y). Then, we have

@ TH)Lawr:) = n / (9(x), € R (8) F (8))ydxd

— ¢, / ( / e"xsgu)dx,k(s)f(s)) de
Y

=cn f (K (§)*§(&), f(&))xdE

= ¢y / (1%@)*@(5), / e“i"gf(X)dx)Xd§

— / ( f e""ﬁk(s)*a@ds,f(x))xdx.

Therefore, we have
T*g(x) = cn f €% R (§)*§(6)d = o / / ¢/ R (6)* g(y)dEdy
Next, since 7 (§) = K () £ (€), it follows that
STF(x) = cn / 5 A TT(E)dE = ¢, / / ¢V )R (€) £ (y)dEdy.

Secondly, we prove the following

LEMMA 4. Let ¢ € Ci°(R"), and ¥ a real-valued C*-function in a neighborhood of
the support of ¢. Assume that

vyl = C, [8%Y] < CalVY|

hold for any x € supp ¢ and any multi-index a. Then

/ei'/’(")w(x)dx

holds for any positive integer m. Here c,, (n) is a constant depend only on n, m and {Cy }|a|<m-

5.1) < c242m (M C " [l llyam

PROOF. If0 < C < 1, we have

’/ eV®o(x)dx

Therefore, we may assume that C > 1. Since

<lglz, = C*lglL, -

VD = vy |22V iay) VY|PV,
we have
/e""’("%p(x)dx = —f{Ae"'“"’}w(x)lvwl‘zdx +ife"‘/’(x>¢(x)Aw(x)|v¢|—2dx.

By integrating by parts we have
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/ (AeV Do) Ty 2dx

= f VOUAPNVYIT2 + D 3j0(0)0;(IVY72) + () A(VY|H)]dx ,
j=1
which gives

/ (8O (x) vy~ 2dx

By making use of the formula

< C3C gy -

/ e Vo) Ay (x) VY| 2dx

=- f {2V D)) AY (x) VY| dx + i / Vo) Ay (x)|IVY| T dx,
we also have the estimate

/ VDo) A (0| VY| Pdx| < CLCellyz + C2C2lgllL, < CaC2ligllyz -

Thus we have proved the inequality (5.1) for the case m = 1.
From the formula

/-ei'/’(x)q)(x)dx = /ei'/’(x)wl(x)dx,

where

P1(x) = — {DpNTYI™2 = Y 3j0(x)9;(IVY ™) — p(x)A(VY )
j=1

j=

—iAMe@)AYITYI VY2 =i Y 3 AY ()IVY |28 (1vy ]2
i=1

J
— gAY @)V ANVYIT) — p{AY @)[VYI 2,
and the inequality (5.1) for the case m = 1 it follows that

}/ eV®o(x)dx

since ||¢; ||W'2 < CéC‘ZHgollW;;. Hence we have the inequality (5.1) for the case m = 2.

Repeating this argument we get the inequality for arbitrary m.
Next, we prove the following

< C4C2lerlly2

LEMMA 5. Let ¥ € C%(R") with support contained in the set {§;1/4 < |&| <
4}, |t <1,andlet N > 1, a > 1, 1/N < |x| < 2a(4N)*~". Then

ixg+irlgle g, (5
[ (%)

< C(n,a, y)N"*x|™"/2 .
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PROOF. Assume that 1 < N|x| < 2al|t|4*~!N?. Apply Lemma 1 in Sjolin [10] to the
integral

Kn(t.x) = /eix§+itlsl”11/ (i) dt = Nn/eiNxEHtN"IEI"w(g)d;:.
’ N
Then, we have

|Kn(t, x)| < C(n,a, $)(|tIN) ~"/2N"

N|x|
2a44-1

-n/2
<C(n,a,¥) ( ) N" = C'(n,a, y)N"?|x|™"/%.

When |x| > 2alt|(4N)*~1,
INx 4 atN°|&|°72€| > N|x| — alt|N9|E|°"" > N|x|/2 > alt|4*"IN9,

|0g (Nx& + tN®[£|)| < Col{Nx +atN“|§|*"%¢}| for any «
holds for any 1/4 < |£| < 4, so that by Lemma 4 we get

Kn(,2) < C'(n, a, ) (NIx) " N"

Here, m is the least integer such that 2m > n. Combining this with the simple inequality
|[Kn(t, x)] < C(¢)N", we have

|Kn(t, x)| < [C(n, a, Y)N"~2" x|~ 2mp/4m[C () N" ] = 4m
= Cln,a, y)N"2|x| /2.

Now, let us prove Lemma 2. It is easy to see that

S}'-‘g(x) =cy // ei(x—}’)E—it(,V)lé’l“wj(é-)g(y)dgdy ,

SjS;fg(x) =cp f/ el = YEF ()~ (NNEN" wj(S)zg(y)dfdy

= [ ki@ a0y,

where

K;(x,y) = cn fei(x—y)€+i[t(X)—t(y)}IEI” V() .
The norm of the integral operator S; S;‘ is obtained from the inequalities:
(5.2) f |Kj(x, )ldx < C(n,a, $)29*/2, / |Kj(x, »ldy < C(n, a, )22,
which can be proved as follows: It is clear that

|K;j(x, y)| < Ca [ W Q27/8)%|dE = Cu2Mly 117,
holds for any x and y. Also, we have as in Proof of Lemma 5 that

IKj(x, )| < C(n, a, )2/ =2 |x — y|=2m
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holds for any [x — y| > 2a22+)@=D_where m is an integer such that 2m > n. Hence, by
Lemma 5 we obtain that

flKj(x,y)ldy

=Cn,a,¥) {/ 2/"dy +/ 22|y — x|72gy
ly—x|<27/ 2-J <|y—x|<2a2@+i)a=1)

+f ‘ 2j(n~2m)ly_x|—2mdy}
ly—x|>2a2@+)@=1)

< C'(n,a, y)2/4/?

holds for any x € R". The second inequality in (5.2) can be proved in the same way. Now,
from (5.2) we have

1SS 2Ly Ly < C227472,

where C is a constant independent of j and 7 (x), which gives (4.4), because [|A| = [|AA*|'/?

holds for any bounded linear operator A between Hilbert spaces.

6. Proof of Theorem 4. To prove Theorem 4 we start with
LEMMA 6. Let € C* with support contained in the set {§; 1/4 < |&| < 4}, and let

J be a positive integer, I = (0, 1), 1 < p < 00, and a > 1. Define the operator P; by
Pj:g—cn / HEHIET Y 27T E) j(E)dE .
Then,
1 Pjll 2L, R, Ly (R Loo(1))) < c2ian/?,
where C is a constant independent of j.

PROOF. We consider P; as an integral operator with £(C, Lo (/))-valued kernel, i.e.,

P f(x) = / (= fOdy,
where
Bi(0) = K;(6,x) = ¢ f SEHIEL 5 (2T )

Hence, the conclusion follows from the estimate

/||1€j(x)||£(c,Lm(,))dx = /ess. sup |Kj(t, x)|dx < C(n,a, ¥)2/%"/%

lr=1
It is clear that
|Kj(t, 0] < / [y @779)ldE = 2" |1,
holds for any x. Also, we have as in Proof of Lemma 5 that

IKj(t,x)| < C(n,a, )2/ =2 |x|=2m
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holds for any [x| > 2a2@+N@=1 where m is an integer such that 2m > n. Hence, by Lemma
5 we obtain that

/ess. sup |K(z, x)|dx

lt]=1

<Cmay) { f 2"dx + / 202 |x | dx
lx[<2-J 2-J <|x|<2a2@+)a=1)

+/ 2j(n—2m)|x|—2mdx}
|x|>2a22+) @~

< C'(n,a,¥)2/"2.
PROOF OF THEOREM 4. The results for the case p = 2 are given in Theorem 2 and
Theorem 3. Next, consider the case where p = 1. It follows from the identity (4.1) that
o0
Tf =) Pifj
j=0
where

Pit g vt x) = ca f eHEHIER ()6

£1) = cn / ¢ i (€) f(€)dE .

By this formula we see that

oo
IT2 f L) (R Loo(D)) = Z 1P fill Ly R Loo (D)) »
j=0

which gives with the aid of Lemma 6 that

o0
o )
IT2f Ly R Loo (1)) < CX(:)W“"/ ity = CF N ganz gy -
J:

In the same way we have

(&3]
U2 F Lo R Loo(1) < D NP Fill Lo (R Loo(1))
i=0

o0
< C Y 22 £l Ly ery
Jj=0
/
=< C “f"ng‘/]z(Rn) .
For the case 1 < p < 2 (the case 2 < p < 00) the result follows from that for the cases
p = 1,2 (the cases p = 2, 0o) and the complex interpolation:

[} o] _— o
[Bpo,qo' Bm,qlle - BP,q
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with
1—-6 6 1 1-6 6

o= (1-60)oy+ 00y,

k)

1
P Po P q q0 q1
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