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Abstract. In this paper we mainly study the effect of the existence of deficient divi-

sors in the sense of Nevanlinna to the uniqueness problem of meromorphic mappings into a

projective algebraic manifold M. We give some uniqueness theorems for families of domi-

nant meromorphic mappings from the complex m-space into M with the same preimages of

divisors under the additional conditions on Nevanlinna's deficiencies.

Introduction. The main purpose of this paper is to study how the existence of deficient

divisors affects the uniqueness problem of meromorphic mappings. The uniqueness problem

of meromorphic mappings under conditions on the preimages of divisors was first studied

by G. Pόlya, R. Nevanlinna and H. Cartan, and they proved classical uniqueness theorems

for meromorphic functions on the complex plane C (cf. [7]). There have been a number of

detailed researches on the uniqueness problem of meromorphic functions on C. In the mul-

tidimensional case, we also have many studies. On the other hand, the defect relation for

meromorphic mappings implies that the deficient divisors in the sense of Nevanlinna are very

few. In fact, the set of these divisors is at most countable. Furthermore, we have the follow-

ing conjecture: Almost all meromorphic mappings have no Nevanlinna's deficient divisor (cf.

[6]). It therefore seems that the existence of deficient divisors imposes a strong restriction on

the behavior of meromorphic mappings. In this paper we prove unicity theorems for some

families of meromorphic mappings from the complex m-space Cm into projective algebraic

manifolds with the same inverse images of divisors under the additional conditions on Nevan-

linna's deficiencies. We note here that the unicity theorems for meromorphic functions on C

under the conditions on Nevanlinna's deficiencies were already studied and some interesting

results were obtained (cf. [8], [13], [14] and [15]).

Let M be a projective algebraic manifold and KM the canonical bundle of M. For a line

bundle L over M, we denote by Γ{M, L) the space of all holomorphic sections of L —> M.

DEFINITION 0.1. A line bundle L over M is said to be big provided that

dim Γ(M,vL) > CvάimM

for all sufficiently large positive integers v and for some positive constant C.
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We denote by Pic(Λf) the Picard group over M. Let F e Pic(M) ® Q and γ e Q. We

simply write γ F for F®γ. Then F is said to be big provided that a line bundle vF e Pic(M)

is big for some positive integer v. We fix a big line bundle L -* M. Now we set

[3- 1 is big}.

It is easy to see that [F/L] < 0 if and only if F ι is big.

DEFINITION 0.2. A meromorphic mapping / : Cm -» M is said to be dominant if

rank/ = dim M.

Throughout this paper, we assume that there exists at least one dominant meromorphic

mapping /o : Cm —> M. We note that KM is not big in our case (cf. [5, p. 143]). Let

D\,... , Dq be divisors in \L\ such that D\ + + Dq has only simple normal crossings,

where \L\ denotes the complete linear system defined by L. Let E\,... , Eq be hypersurfaces

in Cm such that dim E[ Π Ej < m — 2 for i ^ y. Assume that there exists a positive integer

ko such that the union of all irreducible components of /QDJ with the multiplicities at most

ko is equal to Ej for each j . Let

be the set of all dominant meromorphic mappings / : Cm —> M such that the union of

irreducible components of f*Dj with the multiplicities at most ko coincides with Ej and

/ = /o on Ej for all 1 < j < q. We also define the subfamily So of £ by

So = {/ e 8- δfQ(Dj) < δf(Dj) for all 1 < j < q}.

LetP^(C) be the n-dimensional complex projective space and Φ : M —• Pn(P) a nonconstant

meromorphic mapping. In this paper, we always assume that rank Φ = dim M. Set

Go = M- ({w e M - /(Φ) rankJΦ(w ) < dimM}U/(Φ)),

where /(Φ) is the locus of indeterminacy of Φ.

DEFINITION 0.3. A set [Dj}q

=^ of divisors is said to be generic with respect to /o

and Φ provided that

fo(Cm - /(/o)) n SuppD; n Go Φ 0

for at least one 1 < j < q, where /(/o) denotes the locus of indeterminacy of fy.

We denote by // the hyperplane bundle over Pn(C). We define FQ e Pic(M) <g) Q by

If Fo is sufficiently big, we can conclude 6 = {/o} as follows:

THEOREM 0.4. Suppose that [Dj}q

=ι is generic with respect to /o and Φ. IfFo® KM

is big, then the family 8 contains just one mapping /o.

In the definition of the family E we impose the strong condition on the meromorphic

mappings contained in £, that is, every mapping in 8 must be equal to /o on all Ej. We
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note that this condition cannot be simply dropped (see Remarks 2.8 in Section 2). In the case

where Fo <8> KM is not big, we cannot prove #£ = 1 in general. However we can show the

unicity theorem for E under an additional condition on the existence of Nevanlinna's deficient

divisors. Indeed, we have the following unicity theorem, which is our main result in this

paper:

THEOREM 0.5. Suppose that {Dj}q

 =ι is generic with respect to fo and Φ, and

Ifδfo(Dj) > Ofor at least one 1 < j < q, then the family E contains just one mapping /o

We note the following: In the case where [FQ1 <g)K~̂  /L] is positive, we cannot conclude

E = {/o} under the condition on the existence of deficient divisors in the sense of Nevanlinna

(see Remarks 2.25 in Section 2). For the family £Q, we have the following unicity theorem:

THEOREM 0.6. Suppose that [Dj}q.χ is generic with respect to fo and Φ, and

L

Then the family £o contains just one mapping fy.

We give the proofs of the above theorems in Section 2 by proving more general results.

1. Preliminaries. In this section we recall some known facts on Nevanlinna theory of

dominant meromorphic mappings into projective algebraic manifolds. Let z = (z i , . . . , zm)

be the natural coordinate system in Cm, and set

m

\\z\\2 = Σzvzv, B{r) = {zeCm \\z\\<r},

dc = — - ( d - d), a = ddc\\z\\2 .
4π

For a (1, 1)-current φ of order zero on Cm we set

where χβ{r) denotes the characteristic function of B(r).

Let M be a compact complex manifold and L ^ I a line bundle over M. We denote

by Bs|L| the base locus of \L\. Let [φo,... , φn) be a basis for Γ(M, L). Then we define a

meromorphic mapping Φι : M -> Pn (C) by

ΦL(Z) = (φo(z) : : φ n ( z ) ) , z e M - B s \ L \ .

Let I I be a hermitian fiber metric in L, and let ω be its Chern form. Let / : Cm ->• M be a

meromorphic mapping. We set
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and call it the characteristic functin of / with respect to L. In the case where M = Pn(C)

and L = H is the hyperplane bundle, we simply write Tf(r) for 7/(r, H). Furthermore, we

also define Tf (r, F) for F e Pic(M) 0 Q in the following way. If v is a positive integer with

vF e Pic(M), then we set

It is easy to see that 7/(r, F) is well-defined. Then we have Nevandinna's inequality for

meromorphic mappings as follows (cf. [11, Theorem 2.3]):

THEOREM 1.1. Let L ->- M be a line bundle over M and f : Cm -> M a meromor-

phic mapping. Then

N(r,f*D)<Tf(r,L) + O(l)

for D e \L\ with f{Cm) <£ SuppD, where 0(1) stands for a bounded term as r -> +oo.

Let E be an effective divisor on Cm such that E = Σj VjEj for distinct irreducible

hypersurfaces Ej in C m and for nonnegative integers vy , and let k be a positive integer. We

set

Nk(r, E) = ^min{fc, Vj]N(r, Ej).

j

Then we have the following second main theorem for dominant meromorphic mappings (cf.

[10, Theorem 2] and [11, Theorem 3.2]):

THEOREM 1.2. Let M be a projective algebraic manifold with m > dim M and L a

big line bundle over M. Let D\, . . . , Dq be divisors in \L\ such that D\ -f + Dq has only

simple normal crossings. Let f : Cm -» M be a dominant meromorphic mapping. Then

qTf(r, L) + 7>(r, KM) < £ > i ( r , f*Dj) + Sf(r),

7 = 1

where S/(r) = O(log T/(r, L)) + o(logr) except on a Borel subset E c [1, -fcx)) with finite

measure.

Let / : C m -> M be a meromoφhic mapping, and let D € |L|. We define Nevanlinna's
deficiency δf (D) by

a / ( D ) = l - l i m s u p ; / y / .

It is clear that 0 < 5/(D) < 1 and δf(D) = 1 if / ( C m ) Π SuppD = 0. If 5/(D) > 0, then

D is called a deficient divisor in the sense of Nevanlinna. Finally we state the following fact

as lemma (cf. [10, p. 566]):

LEMMA 1.3. Let L —> M be a big line bundle and f : Cm —> M a dominant mero-

morphic mapping. Then there exists a positive constant C such that

Clogr < 7>(r,L) + 0 ( l ) .

2. Unicity theorems for families of dominant meromorphic mappings. In this sec-

tion we prove unicity theorems for some families of dominant meromoφhic mappings of Cm
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into a projective algebraic manifold M. Let L —> M be a big line bundle. Let D\,... , D^

be divisors in \L\ such that Di + • + Dq has only simple normal crossings. Let E be an ef-

fective divisor on Cm, and let A: be a positive integer. If E = Σj vjE'j f° r distinct irreducible

hypersurfaces E' in Cm and for nonnegative integers υy , then we define the support of E with

order at most k by

Supp*E= | J E'j.
0<Vj<k

Let Zsi,... , Eq be hypersurfaces in C m such that aimEi Γ) Ej < m — 2 for i Φ j . Let

Jfci,... , kq be positive integers with k\ > •- > kq. Assume that there exists a dominant

meromorphic mapping /o : Cm -> M with Supp^./0*Dy = £ y for all 1 < j < q. Let

T = ^(/o; {*y }; (C"\ {£,}), (M, {/),}))

be the set of all dominant meromorphic mappings / : Cm -^ M such that

Supp^/*D ; = Ej and / = /o on £ 7

for all 1 < j < q. We define F! e Pic(M) 0 β by

Let ^b be the subfamily of J* defined by

To = {/ G .F; δ / o (D, ) < 57 (Dy ) for all 1 < j < q].

We first show the following unicity theorem:

THEOREM 2.1. Suppose that [Dj }q

j=ι is generic with respect to /o and Φ.IfF\® KM

is big, then the family T contains just one mapping /o

PROOF. Let / be an arbitrary mapping in T. We first show that Φ o f = Φ o / 0 . We

note that

(2.2) Nχ(r, f*D) < - ^ - ( ^ ( r , Supp*/*D) + N(r, f*D)}

for any positive integer k (cf. [3, p. 126]). We also note that

kj ^ *i

kj + 1 - jfci + 1

for all 1 < < q. By Theorem 1.1, Theorem 1.2 and (2.2), we have

qTf(r, L) + Tf(r, KM) < ^Nλ(r, f*D}) + Sf(r)

7 = 1

1 - ~(.r,Suppkjf*Dj) + N(r,f*Dj)) + Sf(r)
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We define an effective divisor E on Cm by E = E\ + •- + Eq. Then it follows from

dim Ei ΠEj < m - 2 (i φ j) that

q

Hence we obtain

Σ )Σ ^TT)
 τf^ r ' E )

For brevity, we set T(r, F) = 7/(r, F) + Γ/0(r, F) for F e Pic(M) 0 g. We also set

5(r) = 5/(r) + Sfo(r). Then we have

Now we assume that Φ o / ψ Φ o / 0 . Set ̂ ^(C) 2 = PΠ(C) x Pn(Q. We denote by

π y : Pn(Q2 -> PΛ(C) (7 = 1, 2) the natural projections on y'-th factor. We define the line

bundle H -+ Pn(C)2 by H = π*H ® π%H. Let Δ be the diagonal of Pn(Q2. We define a

meromorphic mapping ^ : Cm -> Pn(C)2 by φ = (Φ o f, Φ o /o). Since Φ o f ψ Φ o fo,

there exists a holomorphic section σ of ^ —> Pn(C)2 such that <p*σ ^ 0 and Δ c Supp(σ)

(cf. [2, p. 354]). It follows from Theorem 1.1 that

(2.4) tf(r, φ*(σ)) < Tf(r, Φ*H) + 7>0(r, Φ*//) + 0(1) .

Since / = /o on E and Δ c Supp(σ), it is clear that

(2.5) N(r,E)<N(r,φ*(σ)).

By (2.3), (2.4) and (2.5), we have

(2.6) Γ(r,Fi) + Γ(r,A:A#)<S(r).

Since F\ 0 AΆf is big, there exists a positive constant C such that

(2.7) CT(r, L) < Γ(r, Fi) + Γ(

Indeed, by Kodaira's Lemma (cf. [5, Lemma 2]), there exists a positive integer μ such that the

line bundle μ(F\ (g) KM) ®L~ι -• M is big. Thus there exists a nonzero holomorphic section

τ G Γ(M, v(μ(Fi 0 AΆf) ® ̂ - 1 ) ) for a sufficiently large positive integer v. By Theorem

1.1, we have

*(τ)) < Γ/(r, v(μ(Fi 0 KM) 0 L"1)) + 0(1)

= μv{Tf(r, FO + Γ/(r, ^ M ) } - vΓ/(r, L) + 0(1).

Hence

-7>(r, L) < Tf(r, Fι) + Tf(r, KM) + 0(1).
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This shows (2.7). By (2.6) and (2.7), we see

T(r, L) < S(r).

Thus, by Lemma 1.3, we have a contradiction. Therefore Φ O / Ξ Φ O / Q .

We now conclude T = {/o} in the following way. Let Go be as in the Introduction, that

is,

Go = M - ({w e M - I(Φy,τankdΦ(w) < dimM}U/(Φ)).

By the assumption, we have Rj := fo(Cm — /(/o)) Π SuppD; Π Go φ 0 for some j . Take a

point p e Rj. Then there exists an open neighborhood U of p such that Φ\JJ : U -> Φ(ί/)

is biholomoφhic. Set £/' = f^ι(U) and take an arbitrary mapping / in J7. It follows from

φ o / = Φ o /o and / = /o on £/ that / = / 0 on £/'. Thus we see / = /o by uniqueness

of analytic continuation. Q.E.D.

We give here some remarks on the above theorem.

REMARKS 2.8. (1) In the definition of the family T, we assume that / = / 0 on

all Ej for every / e T. The following simple example shows that this hypothesis cannot

be simply removed (cf. [2, p. 357]): Let M = P2(C) and Φ : P2(C) -> P2(C) the identity

mapping. Let D be a Fermat curve of degree d defined by

where {wo, w\, W2} is a homogeneous coordinate system in P2(C). We define distinct domi-

nant meromorphic mappings /, g : C2 -> P2(C) by

f = (φ:ψ:l) and g = ( ψ : φ : \),

where φ and ^ are distinct holomorphic functions on C2. Then it is clear that f*D = g*D as

divisors. Hence Supp^/*D = Suppkg*D for all positive integers k. Note that F\ 0 Kp2(Q

is positive if J > 8 (see the proof of Theorem 2.9 below). Thus we cannot conclude f = g

under conditions depending only on d.

(2) Let eo = tfΦ"1 (Φ(w)) for u; e Go- In the case where [Dj}q.{ is not generic with

respect to /o and Φ, we can conclude tί^7 < eo as follows. Assume that there exist mutually

distinct mappings / o , . . . , fpinJ7. Let

G(> = {z e Cm fj(z) e G o and fj(z) φ fr(z) for 0 < j < f < p}.

Then G'Q is an open dense subset of Cm. For zo £ GQ, we have

Therefore p + 1 < ^o In the particular case where Φ is bimeromorphic mapping, we always

have T = {/o} without the generic condition on {Dj}q.χ.

(3) Since L is big, there exists a positive integer qo depending only on L and Φ such

that the number of mappings in the family T is bounded by eo if q > qo> Furthermore,

there exists a positive integer q\ depending only on L such that the family T contains just

one mapping /o if q > q\. Indeed, if we take the smallest positive integer qo such that

(qo/2)L <8> (—2)Φ*// 0 KM is big, then qo has the desired property. Let v be the smallest
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positive integer such that ΦVL : Λf -> ΦVL(M) is bimeromoφhic (cf. [4, Theorem 5]). If we

define q\ = qo for Φ = ΦVL, then we have T = {/o} provided that q > q\.

Now we have Theorem 0.3 as an immediate consequence of Theorem 2.1. In the case

of M = Pi(C), we have the unicity theorem due to Gopalakrishna and Bhoosnurmats (cf.

[3, Theorem 1]). In the case where M = Pn(C) and q = 1, we have the following unicity

theorem (cf. [2, Theorem 4.1]):

THEOREM 2.9. L<?ί D be a hypersurface in Pn{C) with simple normal crossings.

Suppose that the degree d ofD is greater than n + 3 + (n + l)/k. Then the family T(fo', [k}\

(C m , {£}), (Pn(C), {£>})) contains just one mapping / 0 .

PROOF. Let M = PΠ(C) and L = dH in Theorem 2.1. Let Φ : PΠ(C) -+ Pn(Q be

the identity mapping. Since Kpn(Q = — (n + l)H, we have

(2.10) F! 0 ^ n ( c ) = ( ^ ^ p -n-l\H.

Hence F\ 0 Kpn(Q is positive provided that J > n + 3 + (n + l)/fc. Thus we have the desired

conclusion. Q.E.D.

For the family To, we have the following unicity theorem:

THEOREM 2.11. Suppose that {Dj}q

=ι is generic with respect to /o and Φ, and

the family To contains just one mapping

PROOF. If F\ 0 KM is big, we have our assertion by Theorem 2.1. Hence we may

assume that [ F ^ 1 0 K^1 /L] > 0. Let / be an arbitrary mapping in To- For the proof, it

suffices to show that Φ o / = Φ o / 0 . As in the proof of Theorem 2.1, we have

(2.12) qT{r, L) + T(r, KM)

-*- 1

By the definition of Nevanlinna's deficiency, for any ε > 0, there exists ro > 0 such that

7V(r, f*Dj) + N(r, fζDj) < (1 - δf(Dj)+ε)Tf(r, L) + (1 - 8fo(Dj) + ε)Tfo(r, L)

for all r > ro (r £ /), where / c [1, +oo) is a Borel subset with finite measure. We may

assume that the exceptional set for S(r) is included in /. Now assume that Φ o / φ Φ o /Q.

Then we have

(2.13) qT(r, L) + Γ(r, KM) < -^-{Tf(r, Φ*H) + 7>0(r, Φ*//)}
1̂ T 1

^ 1
——{(1 - 5/φy) + ε)7>(r, L) + (1 - 5/o(Z)y ) + £)Γ/o(r, L)} + 5(r).
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By the definition of the family To, it is clear that

(δfo(Dj) - ε)T(r, L) < (8f(D) - ε)Tf(r, L) + (δfo(D) - ε)Tfo(r, L).

Hence we have

q

1
, KM) < - Y - — - ( S / o ( D y ) - ε)T(r, L) + S(r)

j l j +

Thus we see

/ 1 J^ \
T(r, F\) + Γ(r, KM) + I z2δfo(Dj) ~ aε I Γ ( r ' L) < 5(r)

V l 7 = 1 /

Take a rational number y so that γ > [F[ι 0 K~j£/L\. Then we have

-yΓ(r , L) < Γ(r, Fi) + Γ(r, £ M ) + 0(1) .

Hence

Thus we see

This contradicts the definition of TQ. Therefore Φ o f = Φ o fy. Q.E.D.

REMARK 2.14. We define the subfamily T\ of T by

~F7X®KT}Λ 1

' L

 M 1 < ̂ y 7 = 1

Then by an argument similar to the above proof, we can show that the family T\ = {/o} if

{Dj }q.=ι is generic with respect to /o and Φ. Note that To c ^ if the assumption of Theorem

2.11 is satisfied.

We have Theorem 0.4 as a special case of Theorem 2.11. Next we consider the case

where [F~ι 0 K~ι/L] = 0.

THEOREM 2.15. Suppose that {Dj}q_γ is generic with respect to /o and Φ, and

= 0.
I L

Ifδfo(Dj) > Ofor at least one 1 < j < q, then the family T contains just one mapping /Q.
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PROOF. Let / be an arbitrary mapping in T. Assume that Φ o / ψ Φ o / 0 . Then there

exist positive constants C\ and C2 such that

Tf(r,L)
(2.16) d < fy < c 27>0(r,L)

for all sufficiently large r with r ^ /. For the proof of (2.16), we first show the following: For

any positive constant v < 1, there exists a positive number r\ such that

(2.17) v{Tf(r, Φ*H) + 7>0(r, Φ*//)} < tf(r, £)

for all sufficiently large r > r\ with r φ I. Assume the contrary. Then there exist a positive

constant vo < 1 and a monotone increasing sequence {7̂ } with /-> φ I such that ru -

and

^(Γit, £) < vo{Tf(rk, Φ*H) + 7>0(^, Φ*H)}.

We may assume that vo e Q. Since (2.12) also holds for / e T, we have

, L) + Γ(rit, ^ M ) < T^ΓTiTfin, Φ*H) + Tfo(rk, Φ*H)}

9 1
{(1j T { ( 1

7 = 1 j +

We define F 2 € Pic(M) Θ β by

Then we have

(2.18)

, L) + (1 - 5/o(Dy) + e)Γ/0(rit, L)}

y) - ε)Tf(rk, L) + (ί/ 0 (D 7 ) - ε)Tfo(rk, L)} < S(rk).+ V Γ
j=ι j +

Since Φ*// is big, there exists a positive integer μ such that μΦ*H <S> L~x is big. Then it is

easy to see that

(2.19) —T(r, L) < T(r, Φ*/f) + 0(1).
μ

Set
2(1 -

k\ + 1

Note that μo > 0. Since F2 = F\ 0 μoΦ*H, it is clear that

(2.20) Γ(r, F2 0 KM) = T(r, Fx ® £ M ) + μo^(r, Φ*^) + 0(1)

> T(r, FX ® *A#) + — Γ ( r , L) + 0(1) .
β
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It follows from [Ff 1 ® K~j£/L\ = 0 that F\ ® KM Θ (μo/μ)L is big. Hence there exists a

positive constant C such that

(2.21) CT(r, L) < Γ(r, F{) + T(r, KM) + — Γ(r, L) + 0(1) .

By (2.18), (2.20) and (2.21), we see

4 1

CT(rk,L
^{kj + l

This is absurd. Thus we have (2.17).

We next note the following:

(2.22) N(r, E) < qTfo(r, L) + 0(1).

Indeed, (2.22) is an immediate consequence of Theorem 1.1. By (2.17), (2.19) and (2.22), we

see

v

μ ' ~

This shows (2.16). Now we assume that δ/0(A) > 0 for some /. By (2.13), we have

) - e)Γ/(r, L) + ( i Λ ( D y ) - e)7>0(r, L)} + S(r)

< qεTf(r, L) - -f^- - qε Tfo(r, L) + S(r).

Hence

T(r, Fi) + Γ(r, KM) + ( γ ^ f " ^«) τfo(r> L) - qεTf(r, L) < S(r).

Take a rational number γ > 0. It follows from [Ff 1 (8) K^/L\ = 0 that

(2.23) -γT(r, L) + Cψ^γ ~ qε\ Tfo(r, L) - qεTf(r, L) < S(r).

By (2.16), (2.23) and Lemma (1.3), we see

where C3 and C\ are positive constants independent of ε and γ. This implies δfo(Dι) = 0

and hence we have a contradiction. Therefore Φ O / = Φ O / Q . Q.E.D.

We now obtain Theorem 0.5 as a special case of Theorem 2.15. In the case where M =

P\ (C) and Φ : Pi (C) —• P\ (C) is the identity mapping, we have Ueda's unicity theorem ([14,

Theorem 1]) by Theorem 2.11 and Remark 2.14. In the case where M — Pn(C) and q = 1,

we have the following:
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COROLLARY 2.24. Let D be a hypersurface in Pn(C) of degree n + 4 with simple

normal crossings. Ifδfo(D) > 0, then the family J^(/o; [n + 1}; ( C m , {£}), (P Π (O, {£>}))

contains just one mapping /o

PROOF. By (2.10), Fi <g> / ^ ( o is trivial. Hence [F~ι <g> K~n\C)/L] = 0. Thus we

have our assertion. Q.E.D.

REMARKS 2.25. (1) In the case where [Ff 1 0 KJ^/L\ is positive, we cannot con-

clude J 7 = {/o} under the condition on the existence of deficient divisors. We now give the

following counter example: Let fo : C -^ P\ (C) be a meromorphic function defined by

fQ(z) = expz. Set D\ = 0, D2 = σo, D 3 = 1 and D 4 = - 1 . Then it is clear that D\ and D2

are Picard's deficient divisors of /o. Let kj = 1 and put Ej = Suppi fξDj for 1 < 7 < 4. Let

Φ : P\ (C) -> Pi (C) be the identity mapping. In this case L = H and [Ff 1 (8) ^ / ( C ) / ^ = L

Now we see 5/0(Di) = 8fo(D2) = 1 but $? > 2. Indeed, /(z) = exp(-z) e T and / 0 # / .

Note that the proofs of the above theorems also work in the case where some of Ej are empty

sets.

(2) We now consider the case where kj = +00 for some j . We first note that

Supp/*D = Suppkj f*D if kj = +00. Set *,-/(*,•+ 1) = 1 and l/(Jfc/ + l) = Oforifc/ = +00.

Then it is easy to see that the proofs of Theorems 2.1 and 2.11 also work in the case where

kj = +00 for some j . In the case where [ F ^ 1 (g) K^1 /L] = 0, we have the conclusion of

Theorem 2.15 if we assume that δ/0(Dι) > 0 with k\ φ +00 for some /. Indeed, the proof

of Theorem 2.15 is still valid under this condition. We note here that the condition k\ φ +00

cannot be simply dropped in this case. Indeed, let D i , . . . , D4, /o and Φ be as in (1). Now

let kj = +00 for all 1 < j < 4. Then we see [F~ι ® K~^C)/L] = 0 but βj7 > 2.

We give here some examples of families of dominant meromorphic mappings with defi-

ciencies that satisfy the assumptions of Theorem 2.15.

EXAMPLE 2.26. Let M = P2(C) and Φ : P2(C) -+ P2{C) the identity mapping. Let

{wo, tι>i, w2] be a homogeneous coordinate system in P2(C). Let D\ be a Fermat curve of

degree two in P2(C) defined by

w0 + wx + w2 = 0.

We define a dominant meromorphic mapping /o : C 2 -> P2{C) by

Mzi,Z2) = (coszi : sinzi : z2).

Then /0*£>i is defined by ^ + 1 = 0 - Since / 0 *^i is an algebraic curve in C2, we have

N(r, f*D\) = O(logr). On the other hand, we have 7/0(r) = (2/3π)r H- o(r). Indeed, we

first note that /o has a reduced representation

^Tzi +exp(-V^Tzi)) : (expV^Tzi - expC-v^Tzi)) : z2 )
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We define a subset V(z) of C by V(z) = W-lzu - V - l z i , 0}, where z = (zuzί)- We let

C{V(z)) denote the circumference of the convex hull of V(z) in C We define

K(V) = -ί-
2π

where σ is the invariant measure on the unit sphere S = S3 c C2 normalized so that σ (S) =

1. By [12, Lemma 3], we have 7/0(r) = K(V)r + <?0*) In our case, it is easy to see that

C(V(z)) = 2\z\ l Furthermore, by [9, p. 14], we see

K(V) = — ί 2\zι\dσ(z)
2π Js

= — / 2|u;| —
2π JB π

2

~ 3π '

where β = {u; G C; |u;| < 1}. Now it is clear that 8fo(D\) = 1. Let q = 4 and let

fcy = 1 for 1 < j < 4. In this case, we have L = 2H. It follows from ^p2(O — —3//

that Fi 0 /^p2(C) is trivial. Thus [F^x (8) Kp^/L] = 0. It we take D 2 , D 3 , £>4 G |2//|

to be generic and set Ej = Suppi/0*D ; for 1 < j < 4, then Di + + D4 has only

simple normal crossings and dimis; Π Ej = 0 (/ / 7). By Theorem 2.15, the family

•Fί/o; {^}; (C2, {£;}), (P2(C), {^7})) contains just one mapping / 0 .

The following example is due to B. Shiffman (cf. [11]):

EXAMPLE 2.27. Let {wo, w\, w2} and Φ : P2(C) -> P2(C) be as in Example 2.26.

Let d be a positive integer not less than three. We define a dominant meromorphic mapping

/o : C 2 -> P2(C) by

/o(zi,Z2) = (expz2 + exp(l - d)z\ :

Let C be a curve in P2(C) defined by wd

χ — wowf'1 = 0. Then the singular locus of C

consists of the single point (1 : 0 : 0) and fo(C2) Π C = 0. We define a divisor D on

P2(C) by D = H\ + 4- Hd, where //j = {wo — wi = 0} and H2,... , Hd are projective

lines such that D U C - ( 1 : 0 : 0 ) has only simple normal crossings and (1 : 0 : 0) ^ D.

Then we have 8fo(D) = d~2. For details, see [11, pp. 179-181]. Let q = 1 and k\ = 3.

Now we assume that d = 6. Then L = 6// and hence Fi ® Kp2(C) is trivial. Set £ =

Suρp3/0*Zλ Note that £ ^ 0. Indeed, /0*//i is defined by expz2 + exp(l - d)z\ - 1 = 0 .

Hence it is clear that Supp3/0*//i φ 0. Thus we see E φ 0. By Corollary 2.24, the family

Hfc (3}; (C2, {£}), (P2(C), [D])) contains just one mapping / 0 .

We now give the final remark. In the proofs of the above theorems, we use the second

main theorem for dominant meromorphic mappings due to Sakai and Shiffman. We note here

the following: If we use a second main theorem of another type, we can obtain results similar

to the above theorems. For example, in the case of meromorphic mappings of Cm into Pn (C)

with hyperplanes as divisors, we can prove some unicity theorems under certain conditions
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on Nevanlinna's deficiencies by making use of the second main theorem for meromorphic
mappings into Pn(C) with hyperplanes as divisors. See [1] for these results.
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