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Abstract. We prove a vanishing theorem for the Hodge number /z2'1 of protective
toric varieties provided by a certain class of polytopes. We explain how this Hodge number
also gives information about the deformation theory of the toric Gorenstein singularity de-
rived from the same polytope. In particular, the vanishing theorem for h?"J implies that these
deformations are unobstructed.

1. Introduction.

(1.1) For an arbitrary polytope A, Brion has introduced in [Br] certain invariants

hp'q(Δ). These are defined as dimensions of cohomology groups Hp'q of complexes which

are associated directly to the normal fan of the polytope A. In case that A is a rational

polytope, these invariants are exactly the Hodge numbers dim///7(/>(Z\), Ωq

p,Δ.) with P(Δ)

being the projective toric variety associated to A and Ωq

p,Δ, denoting the double space of the

Kahler q -forms. As a general reference for the theory of toric varieties one might use the

books [Fu] or [Od].

Let K be an arbitrary field between Q and R. In this paper, we focus on the AT-vector

spaces Dk(A) := HkΛ (k > 2) and Dι(A) := HXΛ/K\ cf. (3.4) for a discussion of the

embedding of K into Hι ι. The new notation is suggested by a second interpretation of these

vector spaces: In Section 6 we will show that there is a close relation between Dk(A) and,

after extending the scalars to C, the vector spaces Tk describing the deformation theory of the

toric Gorenstein singularity XCone(^) associated to the lattice polytope A.

Our main result is a vanishing theorem for D2(A) for a certain class of polytopes. An

important special case is

THEOREM (cf. (4.7)). Let A be an n-dimensional, compact, convex polytope such that

every three-dimensional face is a pyramid. If no vertex is contained in more than (n — 3)

two-dimensional, non-triangular faces, then D2(A) = 0.

There is a natural class of polytopes that arises from quivers (see [AH]) to which these

seemingly strange conditions apply. Special examples of such quiver polytopes appeared in

[BCKvS] as a description of toric degenerations of Grassmannians and partial flag manifolds

that appeared in the works of Sturmfels [St] and Lakshmibai [La]. In a forthcoming paper

[AvS], we will apply the above vanishing result to show that the Gorenstein singularities
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provided by the so-called flag like quivers are unobstructed and smoothable in codimension

three.

(1.2) The paper is organized as follows: In Section 2 we recall some notions of homo-

logical and cohomological systems on polyhedral complexes. For the special case of simpli-

cial sets, these can be found in [GM1] or [GM2]. We quote the definition of the polyhedral

Hodge numbers and review their basic properties.

In Section 3, we introduce the D-invariants from a slightly different point of view as

above and show their relation to the polyhedral Hodge numbers. We present some examples as

well as elementary properties, such as the relation of D] (A) to the Minkowski decomposition

of poly topes.

The paragraphs Section 4 and Section 5 contain the vanishing theorem for D2 and its

proof. The result is obtained from a spectral sequence relating the D -invariants of a poly tope

to those of its faces; D2(Δ) is represented as the kernel of some differential on the £2-level.

In Theorem (4.5), this description is transformed into an explicit set of equations describing

D2(Δ).
The final Section 6 deals with the relations of the D-invariants to deformation theory

that was mentioned before. In the paper [AS], a combinatorial description of the cotangent

cohomology modules Γ*(XC0ne(4)) was given. From this description it appears that the Tk

are very sensitive to the interaction of the polytope A with the lattice structure of the ambient

space. As a consequence, these invariants are often very difficult to calculate explicitly.

On the other hand, the invariants Dk(Δ) are rather coarse; they only depend on the

polytope A up toprojective equivalence, and the lattice structure is not involved at all. Never-

theless, in Theorem (6.6) we formulate a sufficient conditions on A ensuring that the Tk are

determined by Dk(A). In particular, the vanishing Theorem (4.7) yields a vanishing theorem

for Γ2(Xcone(^)) as well.

Acknowledgments. We would like to thank M. Brion and P. McMullen for valuable

comments and discussions.

2. Hodge numbers for polytopes.

(2.1) Let Σ = Uk>0 Σk be a finite, polyhedral complex in a ^-vector space V (Q c

K c /?), i.e., a set of poϊyhedra in V that is closed under the face operation and with the

additional property that for any two σ, τ e Σ, the intersection σ Π τ is either empty or a

common face of both polyhedra. Here Σk denotes the subset of ^-dimensional elements of

Σ. Examples for such polyhedral complexes are simplicial sets as well Άsfans.

DEFINITION. A cohomological system T on Σ is a covariant functor from Σ to the

category ΛB of abelian groups (or to any other abelian category A).

Here Σ becomes a small category by declaring the face relations "τ < σ" to be the

morphisms. So a cohomological system is nothing else than a collection of abelian groups

JΓ(σ)forσ € Σ together with compatible face maps T{τ) -+ T(σ). Similarly, a homological

system is defined as a contravariant functor from Σ to ΛB.
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We fix for each polyhedron σ e Σ an orientation. This enables us to introduce for each

pair (τ, σ) of elements of Σ a number £(τ, σ) as follows:

(i) If τ is a facet (i.e., a condimension-one face) of σ, then we may compare the

original orientation of τ with that inherited from σ. Depending on the result, we define

£ ( τ , σ ) : = ± l .

(ii) If τ is not a facet of σ, then we simply set £(r, σ) := 0.

Each cohomological system T on Σ gives rise to a complex CΦ(Σ, T) of abelian groups:

C\Σ, T) := φσ€Σk na) = ®[σ€Σ;dimσ=k] W

The differential d : Ck(Σ,JΓ) -> C*+1(27,.F) is defined in the obvious way, using the

ε(τ, σ) introduced above. The associated cohomology is denoted by

Hk(Σ,T) :=Hk(C9(Σ,D).

Note that there is an analogous construction for homological systems.

(2.2) The cohomology groups of a cohomological system T can sometimes be com-

puted using certain subcomplexes of Σ. To be more precise, let Mι c Σ be subcomplexes

with U / M
ι = Σ. The nerve M of this covering is the simplicial set defined as

Mp := {/o < < ip I M/o Π Π M[P φ 0}.

We obtain cohomological systems Hq (J7) on M via

nq{T): o'o < < //,) H> //^(M/o n . . n M ; > , T ) .

PROPOSITION. There is a degenerating spectral sequence E^q = HP(M, Hq{T))

HP+q(Σ, T) with differentials dr : Er

p'q -> E^q~r+\

PROOF. Consider the double complex

. . . r W , l ^
σ ) w i t h dr C P ' ^ C ^ , dπ : +

The first spectral sequence yields Eζ'q = HpHq

u{Cm^) = H?(M, Hq{T))\ the other one

provides the complex C*(Σ, T) at the E\ -level, i.e., H*(Σ, T) is the cohomology of the total

complex. •

(2.3) Now assume that Σ is afan in the J-dimensional vector space V, i.e., its elements

are polyhedral cones with 0 as their common vertex. Note that the intersection of cones from

Σ is always non-empty. Another special feature of fans is that they come with an important

cohomological system for free: ^*(σ) := span^(σ). From this cohomological system "span"

one derives various other systems like V/span and its exterior powers. These give rise to the

so-called Hodge spaces of Σ, a notion which is due to Brion:

:= Hd~p(Σ,

For rational fans, Danilov has shown in Section 12 of [Da] that Hp'q(Σ) is HP(X, Ωq

χ),

where X = XΣ denotes the toric variety induced by Σ, and Ωq

χ is the reflexive hull of the
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Kahler g-differentials on XΣ For general fans Σ, Brion has obtained the following vanishing

results:

PROPOSITION (cf. Section 1 of [Br]). Let Σ be a fan in a d-dimensional vector space

V.Then

(i) HP>i(Σ) = 0forp < q.

(ii) If \Σ\ := UσeΓ σ ^ n o t contained in any hyperplane, then Hd'q(Σ) = 0 for

q < d, and Hd'd(Σ) is isomorphic to K.

(iii) If IΣI = V, and if e is a positive integer such that cones with dimension at most e

are simplicial, then Hp'q(Σ) = Ofor p — q > d — e.

(iv) Assume that \Σ\ = V and that any two non-simplicial cones in Σ intersect only

at the origin. Then Z/2'1 (Σ) = 0.

Note that the assumption of (iv) implies that any (d — 1)-dimensional cone in Σ is simplicial.

Hence, by (iii), it follows that Hp>ι (Σ) = 0 for p > 3.

(2.4) Let A c Kn be a compact, convex polytope. It gives rise to the (inner) normal

fan Σ(Δ) in the dual space (Kn)* = Kn. Brion has shown that the diagonal Hodge spaces

HP*P(Σ(Δ)) have then a special combinatorial meaning; they coincide with the spaces of the

so-called Minkowski /^-weights of Δ.

In this paper we will focus on the spaces Hp'] (Σ(Δ)) which sit close to the boundary of

the Hodge diamond, i.e., of the quadrangular pattern used to expose the cohomology groups

Hp'q or their dimensions.

3. The D-invariants.

(3.1) Let Δ c Kn be a compact, convex polytope. Then the cone over it, denoted by

cone(Z\), generates a (non-complete) fan cone(Z\) in Kn+X. This gives rise to the following

invariants of the polytope Δ:

Dk(Δ) := Hk(cone(Δ), Kn+ι/span) = Hk+{(cone(Δ), span).

The equality is a result of the exactness of the complex C*(cone(Z\), Kn+ι) sitting in the

middle of the short exact sequence of cohomological systems

0 -> span -* Kn+ι -+ /T^/span _> 0.

Up to isomorphisms, the vector spaces Dk(Δ) depend only on the projective equivalence

class of the given polytope Δ. However, there are examples showing that they are not com-

binatorial invariants of Δ. Take, for instance, for Δ the three-dimensional polytope obtained

from a 2d-gonal pyramid by slicing off each of the vertices of the base (McMullen, private

communication).

From now on, we will always assume that Δ c Kn has the full dimension n.

LEMMA. Denote by Δw the polytope that is polar to Δ, i.e., the face lattice of Δv is

opposite to that of Δ, and the cones cone(Z\v) and cone(Z\) are mutually dual. Then, there is

a perfect pairing

Dk(Δv) x Dn~k(Δ)^ K.
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PROOF. If σ < cone(zl) is an (n + 1 — k)-dimensional face, then [σ1- Π cone(z\v)] <

cone(Z\v) is a face of dimension k with spanfσ1- Π cone(Z\v)] = σL. Moreover, all faces of

cone(Z\v) arise in this way. Hence,

Dk{Δw) =Hk(com(Δv), /T+1/span) = #*(coneC4v), (i )1-)*)

=Hk(conε(Δv), t )-1)* = Hn+{-k(cone(Δ), span)* = Dn~k(Δ)* ,

with the strange notation (( ) x ) * meaning the cohomological system assigning to each σ e

cone(z\v) the vector space (σ-1)*. D

(3.2) The following remarks are intended to obtain a better feeling for the meaning of

the invariants Dk(Δ).

(i) For Δ = 0 we define cone(0) := 0. Hence Dk(0) = 0 for every k e Z.

(ii) If Δ is a point, then cone(z\) = K>o. In particular, D°(point) = K is the only

non-trivial D-space.

(iii) Let dim(Z\) > 1. Then, the defining complex for the Dk{Δ) looks like

0 — > C° — > C 1 — > ••• — > Cn — > Cn+ι — > 0

0

with a e Δ and f < Δ running through the vertices and facets of Δ, respectively. In

particular, the injectivity of C° °^ C1 implies D°(Δ) = 0 and, by the previous lemma,

Dn(Δ) = D°(ΔV)* = 0. Hence, Dι(Δ),... , Dn~x{Δ) are the only non-trivial D-invariants

of a polytope A c Kn.

Denote by fj(Δ) the number of j-dimensional faces of Δ with /_i := 1, i.e., the Euler

equation says Σn

j=-\(-l)j fj = 0. Then dimC* = (n + 1 - k) fk-\.

Case n = 2: The only non-trivial invariant is D 1 with d i m D 1 ^ ) = — dimC 0 +

dimC1 - d i m C 2 = /o(Z\)-3.

Case n = 3: Z)1 and D2 may be non-trivial with dimD2(Δ) — dimDι(Δ) =

Σk(-l)kdimCk = f2(Δ) - MΔ).

(3.3) We would like to compare the D-invariants with Boon's Hodge spaces. First,

there are the straightforward relations

Dk(Δ) = Hk(conε(Δ), ^ + 1 /span) = Hn+ι~kJ(cone(Δ))*

and

Dk(Δ) =

The D-invariants have also a direct description in terms of the normal fan Σ(Δ) of A.

PROPOSITION. Let Δ c Kn be a compact, convex polytope of dimension n and denote

by Σ(Δ) its inner normal fan. Then there is an exact sequence

0 -+ K -> HlΛ(Σ(Δ)) -* D\Δ) -> 0.

For the remaining indices k φ 1 we have Hk'l(Σ(A)) = Dk(Δ).
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PROOF. Assume that both A and Δy contain the origin as an interior point. Then the

projection Kn+X -» Kn induces an isomorphism of fans π : 3cone(Z\v) -> K>o SΔV =

Σ(Δ). Moreover, we obtain the following diagram of cohomological systems:

0

I
K — ^

i
on the fan d cone(Z\v) : 0 > span > Kn+X >

ϊ- 1
on the fan Σ(Δ) : 0 > span > Kn >

I
0

Since HkΛ(Σ(Δ)) = Hn~k(Σ{Δ)), /T/span)* and

Dk(A) = Dn-k(Av)* = Hn-k(conε(Av), Kn+X,

= Hn~k(dcone(Av), Kn+ι/span)* ,

0

1
K

1
/T+Vspan >. o

1
^"/span > 0

1
0

/span)*

the last column of the above diagram implies the long exact sequence

> Hn-k+x(dconε(Av),K)* -+ HkΛ(Σ(A)) -

-> Hn~k{d cone(z^v), Kf -> .

On the other hand, by comparison with the cohomology groups H*•(coneί^), AT) = 0, we

obtain that H9(dcone(Δv), K) is also trivial—with the only exception//" (d cone(Z\v), K) =

K. •

(3.4) It is well-known that the vector space HX'X(Σ(Δ)) of Minkowski 1-weights is

generated (as an abelian group) by the semi-group of Minkowski summands of ^>o-multiples

of Δ. It is useful to see this fact directly: In fact, HXΛ{Σ(Δ)) = Hn~ι(Σ(Δ), /T/span)* =

Hn-\(Σ(Δ), ( ) x ) equals the kernel

k e r [Θ[dimσ=«-l ] σ -* Θ[dimr=«-2] τ J

= k e r [ θ ^ < ^ K'd-» θ [ / < ^ , d i m f=2] S P a n /

with d e Kn running through the edges of A. The latter space encodes Minkowski summands

of K>o - A just by keeping track of the dilatation factors of the A -edges, cf. [Al, Lemma (2.2)].

Note that the trivial Minokowski summand A itself induces the element 1 in Z/1'1 (Σ(Δ)) c
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®d<Δ κ d I t i s exactly this element which is killed in the projection HlΛ(Σ(Δ)) -» Dι(Δ)

from the previous proposition.

COROLLARY. Poly topes A with only triangles as two-dimensional faces have a trivial

Dι(Δ). In particular, for simplicial three-dimensional poly topes, the only non-trivial D-

invariant is D2(Δ); it has dimension fo(Δ) — 4.

PROOF. The first claim is clear. The dimension of D2(Δ) for three-dimensional poly-

topes follows from (3.2), the Euler equation, and the fact that 3f2(Δ) = 2f\(Δ) if Δ is

simplicial. •

EXAMPLES. 1) Since the icosahedron / is simplicial, one obtains Dι(I) = 0 and

dimD 2(/) = 8.

2) Consider three-dimensional pyramids Pm and double pyramids Om over an m-gon;

in both cases we have a trivial D 1 focusing again the interest on D2. Whereas D2{Pm) is also

trivial, we do have dim D2(Om) = m - 2.

(3.5) We finish this section by an extension of the previous example. We denote by

O(Δ) c Kn+X the double pyramid over the polytope Δ c Kn. On the polar level, this means

that O(Z\)V = Δv x I with / := [0, 1] c Kι.

PROPOSITION. The natural inclusion Dι(Δv) ^ Dι(Δv x /) has a one-dimensional

cokernel. Fork > 2, there are isomorphisms Dk(Δw) -> Dk(Δw x /). Thus, the D-invariants

of a double pyramid depend on those of the base via

Dk(O(Δ)) = D * " 1 ^ ) for kφn and dim£>"(O(zA)) = d i m D " " 1 ^ ) + 1.

PROOF. Just to impress the reader, we are going to use the language of triangulated

categories. The normal fan Σ(ΔV x /) can be easily expressed by Σ(ΔW); if N, S e Kn+X

denote the "poles" ±en+x, then

Σ(ΔV x /) = Σ(ΔV) U ΣN{ΔV) u ΣS(ΔV)

with ΣN/S(ΔW) := {(σ, N/S) c Kn+X \ σ e Σ(ΔV)}.

Since the complex C*(Σ(ΔV x /), A^/1+1/ sPan) is isomoφhic to the shifted mapping cone

C π 7 r ) [ - l ] w i t h

π : C (Γ(z\ v ), /Γ/ί+1/span) -» CΦ(Σ(ΔV), Kn/sp<m)

and(τr, π) : -• Θ , we obtain that C*(Σ(ΔvxI), ^ + 1 / s p a n ) [ l ] and C*(Σ(ΔV), K)[l]

are on the top of the distinguished triangles over the maps (π,π) and π, respectively. Hence,

the octahedral axiom for triangulated categories yields a new distinguished triangle

, Kn/spm)

C (Σ(ΔV), K)[l] C9(Σ(Δ



586 K. ALTMANN AND D. VAN STRATEN

inducing the long exact sequence

> HkΛ(Σ(Δv x /))* -

k χ Λ y x / ) ) *

Hn~k+2{Σ{Δy), K)

As already mentioned at the end of the proof of Proposition (3.3), the spaces

Hn~k+2{Σ{ΔW), K) vanish unless k = 2. Thus, it remains to use Proposition (3.3) itself, and

to remark that the injection D\(ΔW) C ^ Dι(Δv x /) cannot be an isomorphism. •

EXAMPLE. Let Δ be the three-dimensional cuboctahedron obtained by cutting the

eight corners of a cube as in Figure 1.

FIGURE 1.

Then, Δ may be decomposed into a Minkowski sum of two tetrahedra—the summands are

formed by shifts of the triangles in every other corner, i.e., by the two choices of four triangles

being mutually disjoint, respectively. In particular, dim Dι(Δ) = 1. Moreover, since fo(Δ) =

12, fι(Δ) = 24, f2(Δ) = 14, Example (3.2) implies άimD2(Δ) = 3.

The four-dimensional double pyramid O(Δ) has two kinds of facets: 16 tetrahedra and

12 pyramids over squares. From the previous proposition, we obtain D](O(Δ)) = 0,

dim D2(O(Δ)) = 1, and dim D3(O(Δ)) = 4.

4. The vanishing theorem.

(4.1) Let A c Kn be an n-dimensional, compact, convex polytope with n > 1. We

would like to find conditions under which some of the spaces Dk(Δ) vanish.

The first idea is to check Brion's properties (iii) and (iv) of (2.3) for this purpose. How-

ever, we do not find surprising results in this way—for instance the first two claims of the

following proposition are already contained in [Br]. The third assertion generalizes the obser-

vation made in Corollary (3.4).

PROPOSITION. Let Δ c Kn be an n-dimensional, compact, convex polytope with

n > 1.

(1) If Δ is a simple polytope, then Dk(Δ) = Ofor k > 2. In particular, for the space

of Minkowski summands we obtain dim D 1 (Δ) = Σ , (— fj(Δ)
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(2) If each face of A contains at most one non-simple vertex, then we have still

D2(Δ) = 0.

(3) If any l-face of Δ is a simplex, then Dk(Δ) = Ofor k < I.

(A vertex of A is called simple if it sits in exactly n = dim A different facets. Moreover, the

whole polytope is said to be simple if every vertex is.)

PROOF. The first two claims exploit the fact that Dk{Δ) = HkΛ(Σ(Δ))foτk > 2. The

dimension of DX{Δ) follows from dim DX{Δ) = E * ( - ! ) * + 1 dimDk(Δ) = ] ^ ( _ i ) * + i ( n +

1 — k) fk-\ as in (3.2). On the other hand, the proof of the third assertion uses (2.3) (iii) for

the "dual" fan Σ(ΔV) : Dk(Δ) = Dn~k(Δv)* = Hn~kΛ{Σ{Δw)T = 0 if (w - *) - 1 >
rc-(/ + l). D

(4.2) More interesting results can be obtained from working with the spectral sequence

introduced in (2.2). When applied to the "affine" fan Σ := cone(^), it provides us with a

nice tool for studying the spaces Dk(Δ) up to a certain bound k < /:

Write Mι < Δ for the /-dimensional faces and denote by Z\(/) := | J / Mι the /-skeleton

of our polytope Δ. Then, the simplicial complex Λ4 with Λ4p := [io < — < ip] carries the

cohomological system

Vq : (io < < ip) \-> Dq(Mίo Π Π M1P) .

PROPOSITION. There is a degenerating spectral sequence with differentials dr\

E?'q -> E^q~r+X such that Ep/q = HP(M,V«) => DP+«(Δ) for p + q < /.

PROOF. Let Σ := cone(Z\)(/+1) be the union of cones with dimension at most (/ + 1).

Then, using the cohomological system

?i^(span cone) : (i'o < < iP) ^ Hq (cone Mio Γ\ - - Π cone Mip, span),

subsection (2.2) yields a degenerating spectral sequence with

cone)) =» Hp+q{Σ, span).

On the other hand, (3.1) we have //^(cone M^rλ- -Cλ cone M*pf span) = Dq~{ (M / o D- Π

M1P) and, for p + q < I + 1, HP+q(Σ, span) = //^+^(cone(Z\), span) = DP+q~\Δ).

Hence, an index shift by one completes the proof. •

(4.3) The cohomology groups E^q = HP(M, Vq) remain unchanged when we build

the complex C*(M, Vq) only from the strict tuples (/0 < < ip). In particular, besides

£ ° ° = 0, we obtain at the first glance that E^q = 0 for q > I or p > 1, q =1-1.

However, since the previous proposition restricts us to the region p + q < I anyway, these

first vanishings do not help.

For vertices a e Δwe denote by Δ(a) the corresponding vertex figure; it is the polytope

obtained by cutting A with a hyperplane sufficiently close to a. The faces of Δ(a) are exactly

the vertex figures of those A -faces containing a.
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LEMMA. Unless p = /, the vector spaces E%' on the bottom row vanish. The remain-

ing one may be expressed by singular cohomology groups with values in K as

2 WsaeA vertex v v ' v ; J ^UaeΔ vertex \ \ ' '

with Δ(a)V~ι) denoting the (/ — \)-skeleton of the vertex figure Δ(a).

PROOF. According to the remark at the beginning of the present subsection (4.3), the

vector space Eζ1 = Hp(Λί, T>°) is the p-th cohomology of the complex

0. _> O) D°(Mio) -» (Φ). . D°(Mio Π Miι)

.+ (Γ) D°(Mio Π Mh Π Mh) ->•••,

which will also be denoted by V° (creating a slight abuse of notation). On the other hand,

for any vertex a e Δ we call V°(a) the complex built similarly as V°, but using only those

faces Mι < Δ containing a. Since D° is trivial unless its argument is a point, the canonical

projection

yields an isomorphism of complexes.

This splitting enables us to fix an arbitray vertex a e Δ and to forget about faces Mι

which do not contain a. Then, using the vertex figures Mι (a) < Δ(a), the whole story may

be translated into singular cohomology with values in K via

D°(Mio Π Π M1P) = H°(Δ(a), Mio(a) Π 0 MlP(a)).

Denoting by Cq{ ) the singular g-chains, the Mayer-Vietoris spectral sequence yields

HP(V°(a)) = Hp ([c.(4(fl))/]Γ. C#(M'(β))]*) = H*> (Δ{CL\ (J. Mι(aή

= Hp(Δ(a), Δ{a){l~X)) = Hp~ι(Z\(β)(/"υ),

cf. (5.3) for more details. Now, the observation that the latter groups vanish unless p = I

finishes the proof. D

COROLLARY. (1) Let I > 2. If any at most l-dimensional face M < Δ satisfies

Dk(M) = Ofor 0 < k < /, then so does the poly tope Δ itself

(2) If there is an I > 2 such that Dι(M) = Ofor every l-face M < Δ, then Dι(Δ) = 0.

PROOF. (1) This generalization of the last claim of Proposition (4.1) follows directly

from the spectral sequence (4.2): The assumption means that E^q = 0 for p + q < l,q φθ,

and the previous lemma takes care of the case q = 0.

(2) Here, the assumption translates into the vanishing E%l = 0. •

(4.4) For the rest of this chapter, we focus on the case / = 3, i.e., we would like to

investigate Dι(Δ) and D2(Δ) by studying the 3-dimensional faces of Δ. Figure 2 shows

the actual situation of the second layer of our spectral sequence (the big circles stand for the

vanishing of the corresponding £2-term).

PROPOSITION. Denote by M[ < Δ the three-dimensional faces ofΔ. Then
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D2 ,

d2

FIGURE 2.

(1) D\Δ) =ker[© /D
1(M /)

(2) ifD2(Mi) = Ofor every i,

PROOF. The claims follow from Dι(Δ) = E^1 = E~Λ = H°(M,T>1) and, since

/ < y. Dx{Mi Π Λf')]

>2(Z\) = ker[d2 : E

= 0 in (2), from D2(Δ) = = E\Λ. D

(4.5) We are going to apply the previous properties to obtain an explicit description of

D2(Δ) by equations. In the following we will use the symbols a, V, M, F to denote Z\-faces

of dimension 0, 2, 3, and 4, respectively.

NOTATION. Whenever (V, F) is a flag with dimension vector (2, 4), then we denote

by M(V'F) and Λf(v,F) the t w o unique three-dimensional faces sitting in between. Their order

depends on the orientation of the whole configuration. For any two-dimensional face V < Δ

we fix some three-dimensional face M(V) containing V.

THEOREM. Assume that D 1 (M) = D2(M) = Ofor every three-dimensional face M <

Δ. Then, D2(Δ) c ^#{(0,2,3)-flags} -s given fry the following equations in the variables called

s(a, V, M):

(1) If (a, F) is a flag with dimension (0, 4) then

aeVCF

(2) For every flag (V, M), the coordinates s( , V, M) provide an afflne relation among

the vertices ofV, i.e.,

aeV

(3) Finally, for each (0, 2)-flag (a, V), we simply have

(3)(β,v) j(fl,V,Af(V)) = 0.

Note that the equations (2)(V,M) imply that we can completely forget about the triangular

faces V; they provide only trivial coordinates s( , V, •) = 0.
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The proof of the previous theorem consists of a detailed, but straightforward analysis of

the differential map dι : E^1 -> E^°. Since it is quite long and technical, we postpone

these calculations to their own section Section 5. In the rest of Section 4, we continue with a

discussion of the consequences and applications.

(4.6) COROLLARY. If the polytope A is four-dimensional, then D2(Δ) c
^#{(0,2)-flags} s g(ven fry the following easier equations

(1) ΣvBa 5 ( α ' ^) = Qfor every vertex a e A, and

(2) Σae v s(a> ̂ ) ' t β ' 1] = Qfor t n e two-dimensional faces V < A.

PROOF. Since F = A, we may just set M(V) := M(V,Δ) a n c * s(a, V) :=
)). D

EXAMPLE. Consider the double pyramid O(^) of Example (3.5). A non-trivial ele-

ment of the one-dimensional D2(O(A)) may be obtained by assigning ±1 to the vertices of

each rectangle such that adjacent vertices obtain opposite signs.

(4.7) The main point of the present paper is to provide a vanishing theorem for D2(A)

for poly topes whose three-dimensional faces are not assumed to be simplces.

DEFINITION. We define an inductive process of "cleaning" vertices and two-dimen-

sional faces of A. At the beginning, all faces are assumed to be "contaminated", but then one

may repeatedly apply the following rules (i) and (ii) in an arbitrary order:

(i) A two-dimensional m-gon V < A is said to be clean if at least (m — 3) of its

vertices are so. (In particular, every triangle is automatically clean.)

(ii) A vertex of A is declared to be clean if it is contained in no more than (n — 3)

two-dimensional faces that are not cleaned yet.

EXAMPLES . (1) If no vertex of A is contained in more than (n — 3) two-dimensional,

non-triangular faces, then every vertex and every two-dimensional face may be cleaned.

(2) Each vertex of the four-dimensional double pyramid O(Δ) shown in Example (3.5)

sits in exactly 2 — (n — 3) + 1 quadrangular, two-dimensional faces. In particular, it is not

possible to clean any of them at all.

THEOREM. Let A be an n-dimensional, compact, convex polytope such that every

three-dimensional face is a pyramid. If every vertex {or, equivalently, every two-dimensional

face) may be cleaned in the sense of the previous definition, then D2(A) = 0.

REMARKS. (1) Pyramids are the easiest three-dimensional solids with trivial D-

invariants. Moreover, poly topes with only pyramids as three-dimensional faces do naturally

arise from quivers, cf. [AvS] for more details.

(2) The double pyramid O(z\) from Example (3.5) has a non-trivial D2. This shows

that the assumption concerning the cleaning of vertices cannot be dropped.

PROOF. Using the equations of Theorem (4.5), we will prove the following two claims:

(a) If a vertex a is clean, then s(a, V, M) = 0 for every V, M, and

(b) if a 2-face V is clean, then s(a, V, M) = 0 for every a, M.
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Since the notion of cleanness has been defined by double induction, the proof has to follow

this pattern and proceeds along the previously defined rules (i) and (ii):

(i) If V is an m-gon, then, for any M, the equation (2){y,M) of Theorem (4.5) says that

the coordinates s( , V, M) describe a vector space of dimension < (m — 3). Hence, if (m — 3)

of them vanish, then they do all. In particular, as already mentioned in (4.5), we do not have

to care about triangular faces V.

(ii) Assume that M Λ , MB are two pyramids with common facet V < A containing a

fixed vertex a. We have to show that s(a, V, MA) = s(a, V, MB).

Denote by Δ(V) the (n — 3)-dimensional vertex figure of a slice of Δ transversal to V. In

particular, the faces of Δ(V) correspond to those of Δ containing V: While V := V(V) = 0,

the two pyramids turn into vertices MA := MA(V) and MB := MB(V). Moreover, any

four-dimensional face F < Δ containing V corresponds to an edge F in Δ(V).

The important feature about pyramids as three-dimensional faces is the following: Any

two nontriangular, two-dimensional faces of Δ span an at least four-dimensional space. Hence,

for any two-dimensional V, different from V, there is at most one four-dimensional F' < Δ

containing both V and V'. Thus, if there are given < (n — 4) (contaminated) faces Vk addi-

tional to V, then they induce at most (n — 4) four-dimensional faces Fk in this way. Since

dimZ\(V) = n — 3, this means that it is possible to find a path along the edges of Δ(V)

connecting the vertices MA and MB, but avoiding Fk (k = 1,... , n — 4).

Let us assume, without loss of generality, that MA and MB are directly connected via

an edge F with F not containing the (n — 4) faces Vk Φ V. Hence, MA = M ( V F ) , MB =

)» a n d in the equation (l)(a,F) of Theorem (4.5)

Σ ' Λί( ' F ) ) - s(a, , Af(#,/r))] = 0,

we automatically sum only over V itself and, additionally, over two-dimensional faces which

are already clean. D

5. The proof of the D2-equations. Here, we present the proof of Theorem (4.5). It

consists of a detailed, but straightforward analysis of the differential map άi : E^l ->. E\'°.

(5.1) Describing E^1: According to the remark at the beginning of subsection (4-3),

the vector space £ 2 = Hι(Λ4, V1) equals the kernel

Dι(Mio ΠMi{) -> (T) Dι(Mio ΠMh ΠM/2)1 .
-M M > r i o < ί l < ί 2 J

Denote by Vι,... , VM the two-dimensional faces of Δ which are not triangles; each Vk is

contained is some three-dimensional faces M®,... , Mk

 k. Note that certain Λ/'s might occur

in more than one of these lists. Nevertheless,

with the i-th summand in D{(Vk)®Nk being identified with Dι(M® Π M[)\ the remaining

entries in Dι(M1^ Π Mι

k

ι) may be obtained in the usual way as differences from those of
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Dι(M% Π M[x) and Dι(M% Π M^). On the other hand, if the intersection M<° Π M1"1 is

less than two-dimensional, then Dι(Mio Π Miχ) = 0, anyway. We choose the special three-

dimensional face M( V*) mentioned in (4.5) to be M®.

(5.2) Describing d2: From (2.2) we recall that the double complex inducing the spectral

sequence we are dealing with, looks as follows:

CPA = 0AG[M<on...nM</>L? φan(cone(A))

with dι : CP* -> C ' + K dn : C™ -> C ^ + 1 .

We fix one of the two-dimensional faces Vk and call it V. In Subsection (5.2), we abbreviate

the three-dimensional faces Λ/£,... , M^k containing Vk = V by M°, . . . , Λf̂ . The index

/ will be reserved for these Mι, while j £ {0,... , N] points to those three-dimensional faces

Λ/7 < z\ belonging not to this list.

Assume that V is an m-gon with vertices av (v e Z/mZ). Then, by (3.4), an element

of D*(V) may be represented as an m-tuple ( ί i , . . . , tm) e Km with tv being the dilatation

factor assigned to the edge avav+x < V. In particular, we may start our tour through the

double complex with an

x = ( Λ . . . , tN) e Dι(V)ΘN c Eι

2

Λ with each tι represented as t[ = (ί{,... , 4 ) e Km .

The corresponding element x e C 1 ' 1 looks like

JC/O/I ( f l ^ ^ 1 ) = (41 - C ) « y β v + 1 e span(αy, α ^ 1 ) with ^ := 0,

and we have to walk through C* along the following path:
di

® >

t
Differential d2 : x e ClΛ ^ ^

t \dii
• H> d2(χ) e C 3 ' 0

The components of the image dj(x) e C 2 1 vanish unless exactly two of the three indices

belong to faces Mι containing V. In this case, we obtain

if (M ί 0 Π M'1) Π MJ2 = V Π M >2 = α y α v + 1 .

Now, we lift this result to an element y e C 2 0 , i.e., we solve the equation djj(y)

di(x). Obviously, the following 3; does the job:

v̂  _ K - l - C-.) -aV i f V

I i1 i° if V Π M^2 = α υfl v
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and y...( ) := 0 for any other constellation. Its image di(y) e C 3 0 asks for quadruples

O'o> *Ί» 72, 73) with still exactly two indices belonging to V-solids. Up to antisymmetric per-

mutation of the four indices, we have

) =

" C-l "
if V Π M'2 = avav+ι, V Π

-(fj1 - 4°) α y if V Π ΛfΛ = α υ α υ + 1 , V Π

and zero for any other constellation. The element dj (y) represents the cohomology class

d2(x) € £2
3'0 - H\V°) = Q)aeΔ H\v\a)).

Hence, the only non-trivial components d2{x) {a e A) occur for a = av e V, and they look

like dj{y)(av) in the formula above.

(5.3) Transfer from H^(D°(a)) to singular cohomology: Let a e Δ be an arbitrary

vertex. As already indicated in the proof of Lemma (4.3), we have to use the Mayer-Vietoris

spectral sequence to describe the isomorphism

H2(Δ(a){2)) = H3(Δ(a), Δ(a){2)) ^ H3(V0(a))

with T>o(a) meaning the complex built by the same recipe as V°(a) in (4.3), but using homol-

ogy
D o ( M i o Π Π M1P) : = H 0 ( Δ ( a ) , M i o ( a ) Π - ' - Π M ι P ( a ) )

instead of D°. Denoting by Cq( ) the singular ^-chains and abbreviating the vertex figures

Mι (a) < Δ(a) simply by Mι < Δ, we define

with d\ : Kp^q -> Kp-\^q, d\\ : Kp,q -> Kp,q-\ .

The spectral sequence obtained by taking the vertical homology first yields the complex T>o(a)

as E\ O and zero elsewhere. The other one, beginning with the horizontal homology, has EQ #

as the only entries at the first level. They form the complex C # ( ^ ) / $ ^ Cm(Mι) which is

quasi-isomorphic to Cm(Δ)/Cm(\JiMι).

Hence, the existence of the isomorphism promised above is clear. However, we have to

understand what the isomorphism really does with [F] e H3(Δ, U; Mι). To see this we chase

[F] along the following diagram:
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i i
' i )

4,

Fixing an arbitrary index j'o '•=• 0, we arrive at the third row with [dF] e C2(Δ)/C2(M°).

Let BF = M1 U UM 1 and assume that the orientation of the Mι is inherited from some

orientation of F. Then, a possible lift to the right is

-[Mi]eC2(Δ)/C2(M0Γ\Mi), i = l , . . . , / .

Applying the vertical boundary operator and lifting again to the right, we obtain

[M'"n Mj] e C\(Δ)/C\(M° Π M[ Π My)

with (M1 Π M y ) running through the pairs of mutually adjacent faces of F with / < j . Our

convention is that the edges [Mι Π M y ] inherit their orientation from the first argument, i.e.,

The continuation of the above diagram is

0 l 2 o ^ 2 3

^- Θ , o</i<ι2<i3 ^Oί^. ^ 4 " H3[ • - -+ ®LH0(Δ, Mi) -+ ] .

It is easy to apply the boundary operator to the edges [Mι Π MJΓ]; but for doing the last lifting
t 0 Φιo</i<i2<i3 Cθ(Δ)/Co(ML), we have to introduce for each vertex X G F a n auxiliary

function φ\. Its arguments are triples of F-facets containing X, and it is determined by the

following properties:

(i) φχ(Mι, MJ\ Mk) is antisymmetric in its arguments.

(ii) If any two of the arguments intersect, as in Figure 3, only in {X}, then

φχ{M[,W\,Mk) :=0.
(iii) Denote by u(X) the number of two-dimensional F-facets meeting in X. Then,

depending on u(X) and on the fact if there are "isolated" arguments or not, we distinguish

between the three cases depicted in Figure 4.

Now, it is not difficult to check that a possible lifting of the tuple (d[Mι Π M y ])/ < 7 to

the vector space φ/0<...</3 Co(Δ)/'CQ(ML) is given by

φx(M\ W\ Mk) [X] e Co(Δ)/Co(M° Π M[ Π W Π Mk)



POLYHEDRAL HODGE NUMBER AND VANISHING OF OBSTRUCTIONS 595

Mι

FIGURE 3.

M

u(X) = 3

MJ,Mk) :=

M

u(X)>4

, MJ,Mk) := 2/u(X)

FIGURE 4.

i, Mk) := \/u(X)

with (Λf', Mj, Mk) running through all triples of facets of F with M[ ΠMj ΠMk = {X} and

i < j < k. The projection to HQ(A, M° Π Mι Π M 7 Π Mk) does not change the shape of

the element ψχ{Mι, M y , MΛ) [X]. However, if X e M°, then the element [X] spanning the

whole homology group vanishes, anyway.

Note that the final result of the previous construction cannot depend on the choice of M°

made in the very beginning. In particular, one might exploit this freedom to take for M° one

of the F-faces, or to do exactly the opposite.

(5.4) Interpreting d2(x)(av) inside H3(Δ(av), Δ(av){2))\ We apply the previous cal-

culation to show how d2(x)(av) acts on a homology class [F] = [F(av)] e H^{A{av),

Δ{av)^) induced by a four-dimensional face F < A containing av: Unless V c F, we have

(d2(x)(av), [F]) = 0. However, assuming V c F, F then contains exactly two faces Mι, Mk

with common facet V, and the result is

(d2(x)(av), = (tk_{ - tk) - (ij_, -

PROOF. Using the notation of (5.2), we select the first V-solid M° = M(V) as the face

inducing the vertex figure M° < A = A(av) being fixed in (5.3). Then, the only quadruples
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having a chance to produce a non-trivial entry in both steps are

[0, i, J2, 73] with (a) i e {0,... , N] and M\ M' 2, M* < F,

(b) V Π M-J'2, V Π M->3 = {αy}, β y " 1 α y , or avav+x

(c) VflMΛflMΛ = {av}.

Focusing on the vertex figures V < Mι < F at av, we see that Mι is a polygon with V =

av-\av+\ a s o n e of j t s edges/While V Π M^ Π M 73 = 0, the result of (5.3) implies that the

intersection Mι Π Mjl Π M^3 has to be some point X φ άv~~x, άv+\ cf. Figure 5.

Hence, fixing Mι and choosing the ordering of the A -faces and their corresponding in-

dices well, we obtain contributions to {d2(x)(av), [F]) only from the arguments M y 2 and M^

running through the two-dimensional F-faces fitting in one of the following cases:

(i) M^2 has a common edge av+ιX with Mι. Then, if A/73 3 X is adjacent to one of

them, we obtain twice

dl{x)θihh{av) φx{M\ W\ Mh = -tl 2/u(X).

Moreover, there are (u(X) — 4) possibilities such that A/73 3 X is "isolated". Each constella-

tion yields the contribution — tι

v l/u(X).

(ii) M^ has a common edge Xav~ι with Mι. Then, as in (i), we obtain twice tι

v_χ

2/u(X) and (u(X) - 4)-times t[_χ l/u(X).

(iii) If both άv+x £ Mh and άυ~ι φ Mj\ then the result of (5.2) shows that this case

contributes nothing to (d2(x)(av), [F]).

Altogether, this adds up to {t[_x — tι

v). The exceptional cases "w(X) = 3" and "Mι is a

triangle" yield the same result. In the latter situation, the cases (i) and (ii) might overlap.

Finally, we should remark that it is exactly the differences tι

v_χ — tι

v which are called

s(av, V, Mι) in (4.5). The equations (2)(V,M) of the theorem say nothing else than that these

^-variables come from some ί's satisfying the equations for Minkowski summands of V as

mentioned in (3.4). •
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6. Applications to deformation theory.

(6.1) Let N, M be two finitely generated, free abelian groups which are mutually dual;

denote by NR, MR the vector spaces obtained by extending the scalars. Each polyhedral,

rational cone σ c NR with apex in 0 gives rise to an affine toric variety Xσ := SpecC[σv Π

Λf ]. It comes with an action of the torus N ®zC = SpecC[M], which leads to a stratification

into orbits which are parametrized by the faces of σ. We refer to [Da] for more details. In

particular, the trivial face σ < σ corresponds to a unique fixed point orb(σ) = 0 of the torus

action. It is the "most singular" point of Xσ, and we are going to study the deformation theory

ofthegerm(Xσ,0).

The point that makes toric varieties so exciting is the fact that many algebro-geometric

properties of Xσ (or its non-affine generalizations) translate directly into combinatorial prop-

erties of cones and their relation to the lattice structure N c NR. A first example of such a

translation can be seen in (2.3). We will need in the future the following two further examples

of such translations:

(i) Xσ is Gorenstein if and only if σ is the cone over a compact, convex lattice polytope

A c Rn sitting in an affine hyperplane of height one. This means that N = Zn x Z, and A is

a polytope with vertices in Zn x {1}.

(ii) Xσ is, additionally, smooth in codimension two iff the edges of A do not contain

any interior lattice points.

(6.2) If X = Spec A is an affine algebraic variety, then the cohomology of the cotan-

gent complex produces A -modules Tχ which play an important role in deformation theory:

Tχ describes infinitesimal automorphisms, Γ 1 describes infinitesimal deformations, and Tχ

contains the obstructions for extending deformations to larger base spaces. See [BC] for a

nice survey, or [Lo] for the details. In the case that X = Xσ is a toric variety, the ring

A = C[σ v Π M] as well as the modules Tχ are M-graded. It is possible to obtain combinato-

rial formulas for the homogeneous pieces Tχ(—R) with R e M. This has been done in [AS],

and we recall the result:

Assume we are given a rational, polyhedral cone σ = (a1,... , am) c NR with a1,... ,

am G N denoting its primitive fundamental generators, i.e., none of the av is a proper multiple

of an element of N. For any degree R e M and face τ < σ we introduce a special subset of

lattice points of the dual cone σ v :

K* := σ v Π(R- in tτ v ) Π M c ( σ v Π M).

In particular, KQ = σw Π M, whereas κ£ consists of a finite set of lattice points. For an

arbitrary subset ^ c M w e set:

Hom(K, C):={f:K-+C\ f(r) + / ( * ) = f(r + s) if r,s, r + s e K).

For each given R e M, these sets give rise to a cohomological system Hom(Λ^, C) on the

"affine" fan σ_.

THEOREM (cf. [AS], (5.3)). For k < 2, one has

ik
«(-R) = Hκ(σ_, Hom(K?, C)).
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Moreover, if either k < 1, or ifk = 2 and Xσ is Gorenstein in codimension two, then

Tk(-R) = ff*(gr,spanc(tf.*)*)

REMARKS. 1) There is always a natural homomorphism of cohomological systems

spanc(A^)* -• H o m ( ^ , C), but in general their cohomology groups are different. The

second part of the theorem thus gives a condition under which we can replace the complicated

system H o m ( ^ , C) by a slightly simpler system of vector spaces.

2) The module structure of Tχ is the natural one: If xs e C[σ v Π M], then the multipli-

cation with xs is obtained from the map Tχ(—R) —> Tχ(—R + s) provided by the inclusions

K*~s c K*.

3) The property Gorenstein in codimension two translates into the following condi-

tion for the cone: For every two-dimensional face (av, aμ) < σ there is an Rvμ € M with
(av,Rvμ) = (aμ,Rvμ) = l.

(6.3) Let Δ c Rn be a lattice poly tope; via σ := cone(z\) it gives rise to a tone

Gorenstein singularity X := XΔ. For this special case, we are going to explain the relations

between the vector spaces Tχ(—R) and the coarse D-invariants Dk defined in Section 3.

If**1,... ,am e Zn denote the vertices of Δ, then av := (av, 1) e //are the fundamental

generators of σ. Moreover, there is a special degree R* := [0, 1] e M; it recovers the

poly tope from the cone via Δ = σ Π[R* = 1].

PROPOSITION. Let Δ and X := XΔ be as before. If R e M is a degree such that

R < 1 holds everywhere on Δ, then Δ Π [R = 1] is a face of Δ and

T*(-R) = Dk(Δ Π [/? = 1]) for k < 2.

PROOF. The readers should convince themselves of the fact that the property R < 1 in

Δ implies

ίτ- 1 if τ < cone(Δ Γ)[R = 1]),
= | - v L

[ 0 otherwise.

The claim then follows from Theorem (6.2). •

(6.4) It is possible to describe Tχ(—R) in the Gorenstein case also for degrees with

R ^ 1 on Δ. However, in the following three sections of the present paper, we look for

sufficient conditions forcing Tχ(—R) and Tχ(—R) to vanish for those R.

Assume that σ = (a1,... , am) c NR is a rational, polyhedral cone as in (6.2). For any

degree R e M, we define another homological system Vm

R 2 spanc(A^) on σ_ by

Vτ

R :=• p | Vβ with V« := s p a n c ( i φ =
aveτ

Mc if {av,R)> 2,

(av)L if (a\ R} = 1,

0 if(a\R)<0.

Let Xσ be smooth in codimension two, i.e., whenever (αy, aμ) < σ is a two-dimensional face,

then the set {av, aμ] may be extended to a Z-basis of the whole lattice N. In particular, for
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any R e M, we have VRv^μ) = spanc(KR

av aμ)) for these faces. Hence, for Xσ smooth in

codimension two one has

DEFINITION. If Xσ is smooth in codimension two, then we define the local contribu-

tion of a three-dimensional face τ < σ to Tχ(—R) as

^ioc(-tf) := (Vτ

R/spmcKτ

Rr = (Π f l,Gτ(spanc/Φ/spanc ( f U τ **>))*

If dimσ = 3, then Theorem (6.2) tells us that T%(-R) = T^]oc(-R). Moreover, for the

general case, we obtain a straightforward

PROPOSITION. Let Xσ be smooth in codimension two. If there are no local contribu-

tions from three-dimensional faces to Tχ(—R) (i.e., ifT\ sits in codimension at least four),

then

APPLICATION. If the three-dimensional faces of σ are either smooth (generated by a

part of a Z-basis of N) or isomorphic to cones over unit squares in Z 2, then Xσ is a conifold

in codimension three, i.e., it is smooth in codimension two and has at most A \ -singularities

(ordinary nodes) in condimension three. In particular, for those cones, the assumption of the

previous proposition is satisfied for every multidegree R e M.

EXAMPLE. TO get some familiarity with the sets KR, we explain the vanishing of the

local contributions for conifolds on the combinatorial level. Let τ be the cone over a unit

square. Unless R is positive at the four vertices of this square, the space f\v e τ(spanc^fv)

vanishes, anyway. Now, focusing on these four positive values, there are only the possibilities

depicted in Figure 6.

(α 4 , R) = 1 <α3, R) = 1 1 > 2 > 2 > 2

τ τ

1 (

τ

I i

τ

{aι,R) = \ (a2,R) = \ >2 >2 >2 >2 >2 >2

FIGURE 6.

For these four cases we get:

(i) n β * £

(ii)

(iii)

0 0

spanc(ΓU
1 1

0 0 0 1

1 1 0 1
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1 1 1 0 0 0

(iv) Γ\aveτ κav contains , , and hence spancίΓVeτ Kav) = MC-

0 0 1 0 1 1
So indeed T?loc(-R) = 0 for all R.

(6.5) Since we have related Tχ(—R) to the cohomolgy groups of C.(σ, V/), we are

going to show the exactness of this complex for the degrees in question. Let us begin with a

topological lemma stating the contractibility of certain subcomplexes of polytopes.

LEMMA. Let A c Rn be a polytope. For a hyperplane H c Rn+X and any subfan

C c {τ < cone(Z\) | τ C H], we define

COΏQ(Δ)H^C := {τ < cone(^) | τ c //+ and τ Π H e C}

with H+ denoting a closed half space corresponding to H. Then, ifΔΠ int(//+) is non-empty,

the constant cohomological system is acyclic, i.e.,

H*(cone(Δ)HX,Z) =0.

PROOF. We have to check that the corresponding polyhedral subcomplex ΔHfC c Δ

is contractible. But this is a consequence of the following two facts:

(i) ΔH c := Δ Π [int(//+) U \C\] c Δ is star shaped, hence contractible.

(ii) We use the general fact that, if Q is a polytope and H+ is a subset of the closed

halfspace //+ containing int(//+) with Q <£. H+, then dQ Π H+ is a deformation retract of

Q Π H+. This enables us to successively get rid of "damaged" zA-faces contained in ΔHc-

In the end we get that ΔH'C is a deformation retract of ΔHQ α

(6.6) We return to the situation of (6.3) and (6.4), i.e., Δ c Rn is a lattice polytope

giving rise to the Gorenstein cone σ := cone(Z\) <z NR= Rn+X.

PROPOSITION. If R G M is a degree such that R ^ 1 on Δ, then the complex induced

by the homological system V^ is exact.

PROOF. The degree R e M induces a subfan

cone(Z\)[/?-1] := {τ < cone(z\) | {av, R) > 1 for every av e τ} c cone(^).

For every τ e cone(Z\)^-^, we write τ < τ for the face spanned only by those genera-

tors av e τ satisfying (av, R) = 1. The homological system V^ can be described more

conveniently as

Λ _ ί τL c M c if τ € cone(Z\)[/?-1],
τ I 0 otherwise.

We construct a homotopy between 0 and the identical map id : (V/)* -> (V/)*. Hence,

denoting by Z[cone(Z\)ί - ] the free abelian group generated by the ^-dimensional cones, it
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remains to construct a homotopy

d

such that Dk(τ) e Z[com(A)[R_^l]] may be written as Dk{τ) = Σv λvφv with λv e Z and

φv e cone(Z\)^-^ such that φ c f: Assume that Dk~x has been already constructed. If τ e

cone(zA)[/?-1] is an A:-dimensional cone, then we can apply Lemma (6.5) with H := [R = 1]

and C being the fan consisting of τ and its faces. Since (τ — Dk~ι (3τ)) e conefzA)^ and

3(r - D * " 1 ^ ) ) = 9τ - (3 o D * " 1 ) ^ ) = (Dk~2 o 3)(3τ) = 0 ,

there exists an element Dk(τ) e cone(Δ)£f{ such that 3Dk(τ) = τ - Dk~{(dτ). D

As a straightforward consequence of the Propositions (6.3), (6.4), (6.6) and of Theorem

(4.7), we obtain the following

THEOREM. Assume that the two-dimensional faces of A are either squares or triangles

with area 1 and 1/2, respectively, i.e., XA is a conifold in codimension three. Then, if R e M

is any degree, we have for k < 2

7 ί ( - « ) = I D t ( 4 n I Λ = 1 1 ) VR<lanΔ,
I 0 otherwise.

In particular, if A additionally satisfies the cleaning condition (4.7) and contains only pyra-

mids as three-dimensional faces, then Tχ = 0.
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