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RECOVERY OF VANISHING CYCLES BY LOG GEOMETRY
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Abstract. We first construct compatible actions of the product of the unit interval and
the unit circle as a monoid on a semi-stable degeneration of pairs and on the associated log
topological spaces. Then we show that the log topological family is locally trivial in piecewise
smooth category over the base, i.e., the associated log topological family recovers the vanish-
ing cycles of the original semi-stable degeneration in the most naive sense. Using this result
together with the log Riemann-Hilbert correspondence, we introduce two types of integral
structure of the variation of mixed Hodge structure associated to a semi-stable degeneration of
pairs.

Introduction. Kato and Nakayama [KN] constructed a ringed space (X l o g, Oχg) over

a given fs log analytic space (X, Λ4χ) and proved a log version of the Riemann-Hilbert cor-

respondence on them (cf. (1.2), (1.3), (1.4)).

In the case where the fs log analytic space (X, Λ4χ) is the one corresponding to a divisor

D with normal crossings on a complex manifold X, i.e., Λ4χ := {/ e Oχ | / is invertible

outside A ed} (cf (1.1.4)), the projection τx : X l o g -> X is nothing but the real oriented

blowing-up of X along Dred (cf. (1.2.1)).

Let us consider a relative case. Let / : X -> A be a proper surjective flat morphism

of a complex manifold onto an open disc such that / is smooth over the punctured disc

A* := A — {0} and that the central fiber Xo := f~ι(0) is a reduced divisor with simple

normal crossings. Let Y be a divisor on X, flat with respect to / . We assume that Xo + Y is

also a divisor with simple normal crossings. Then, by [KN], we can construct a map / l o g :

X l o g —> z\ log and a subspace y l o g of X l o g over the given ones and we have a commutative

diagram:

(O.i)

The main result in the present paper is that the family

(0.2) / l o g : (X l o g - y l o g ) -• A]og
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of open spaces is locally piecewise C°° trivial over the base zAlog (Theorem (5.4)). As a

consequence, we see that the family (0.2) is the one which recovers the vanishing cycles, in
o

the most naive sense, of the degenerating family / : (X — Y) -> Δ.
o

This implies, in particular, that Lz '= Rq(flog)*Z is a locally constant sheaf of

Z-modules on Z\log. On the other hand, Steenbrink and Zucker [SZ] showed that V :=

Rq f*Ωχ,Δ(\og(Xo + Y)) is a free (9^-module with the Gauss-Manin connection V, filtered

by the W(y)-relative monodromy weight filtration M. We thus have

V-(τΔ)*(Oλo

A

g®c LC) on A

(Theorem (6.2)), under the log version of the Riemann-Hilbert correspondence established in

[KN]. As a corollary, we have two types of integral structure of the degenerate variation of

mixed Hodge structure on V (Theorem (6.4)).

We prove the main theorem (5.4) in a manner analogous to that in Clemens [C]. We first

construct a suitable family of multi-valued C°° global equations of the components of the

divisor XQ -f Y (Propositions (3.2), (4.3)) and with its aid we introduce compatible actions of

the monoid S := [0, 1] x C\ on the diagram (0.1), so that [0, 1] acts as shrinking and C\ acts

as rounding (Theorem (5.2)).

The author wishes to express his gratitude to Professor Chikara Nakayama for stimu-

lating discussions, from which the author was able to add Section 2 and fill in the gaps in

Steps 1 and 3 of the proof of Proposition (3.2) in a draft of this paper. The author also wishes

to express his gratitude to the referee for his careful reading and valuable suggestions and

comments on presentations.

Convention. In this paper, for every partition of unity {p^WeW subordinate to a cov-

ering W of a manifold, the closure of supp pψ is assumed to be contained in W for every

W € W.

1. Preliminary: Log geometry. We summarize here the definitions of the notions
and results in log geometry introduced and proved by Kato and Nakayama [KN], for our later
use.

(1.1) A commutative semigroup with unity is called a monoid. A homomorphism of
monoids is assumed to preserve the unity.

A monoid P is called anfs monoid if the following three conditions are satisfied:
(1.1.1) P i s finitely generated.
(1.1.2) If a, b,c e P mάab = ac, then b = c.

(1.1.3) If a e Pgp and an e P for some positive integer n, then a e P. Here P g p is

the abelian group associated to P.

Let X be a ringed space and Oχ its sheaf of rings. A pre-log structure on X is a sheaf of

monoids Λ4 on X endowed with a homomorphism of sheaves of monoids

a : M -+ O x ,
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where Oχ is regarded as a sheaf of monoids with respect to multiplication. A morphism

/ : (X, Mx) -» (Y, My) of ringed spaces with pre-log structures is a pair (/, φ) consisting

of a morphism / of ringed spaces and a homomorphism φ of pre-log structures which make

the following diagram commutative:

f"ιMγ — Ψ - ^ Mx

rιoY —L^ ox.
A pre-log structure M is called a log structure if a induces an isomorphism

where Oχ is the subsheaf of Oχ consisting of invertible elements. In this case, we regard Oχ

as a subsheaf of M via the above isomoφhism.

If M is a pre-log structure on X, the log structure MΆ associated to M is defined to be

the push out of the diagram

a~\O*) • M

UX

in the category of sheaves of monoids, endowed with the induced homomorphism α a : MΆ -»

Oχ.

Note that, in this case, we have M&/Oχ ^ M/a~ι (Oχ).

A log structure M = (M, a) on X is called an/5 log structure if locally on X there

exists an fs monoid P and a homomorphism β : P -> Oχ, where P is regarded as a constant

sheaf on X, such that (M, a) is isomorphic to the associated log structure ( P a , β a ). In this

case, (P, β) with an isomorphism P a ~ ΛΊ is called a c/zαrί of Λ l Charts exist locally on X.

Note that if M is an fs log structure, the stalk (M/Oχ)x is a torsion free fs monoid.

(1.1.4) EXAMPLE. If X is a complex manifold and D is a reduced divisor on X with

normal crossings, then

M := {f e Oχ\ f is invertible outside D} A Oχ

is an fs log structure, which is called the log structure corresponding to D. In fact, locally on

X, D is defined by Πi</<r zi = 0> a n ( ^ -M is associated to

α : W -• Oχ , α(n) := ]~[ zf° , where n = 0(1), ... , n{r)).
l<ί<r

Here z\,... , zr is regarded as a part of local coordinates on X.

(1.2) Let C1 := {w e C x | |w | = 1} be the unit circle and let R >0 be the set of all non-

negative real numbers. We consider R>o x C\ as a monoid by multiplication. The monoid
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homomorphismR>o x C\ 3 (r, u) \-^ ru e C makes

T := (SpecC,/?>0 x C\)

a log point. Let X be an fs log analytic space. Then the associated log topologίcal space X l o g

is defined to be the T-valued points

X l o g := Hom(7\ X)

as a set. This can be identified with the set

{(*, A) eX x HomOίfP^ Ci) | A extending / H> / / | / | , (/ G O*)}.

The topology on XXog is introduced as follows. Working locally on X, let a : P -» Oχ be

a chart of ΛΊχ Then, by using the homomorphism P g p -> Mψ, Xlog is identified with a

closed subset of X x Hom(P g p, C i). The topology of X l o g is given by this identification. It is

independent of the choice of a chart ofMχ, and defined globally. The projection τ : Xlog ->

X, (JC, A) ι-> x, is surjective, continuous and proper.

For x e X, τ~ι(x) is isomorphic to (C\)r where r = rank(.Λ/ίgp/C^)jc. In fact, since

^ x is a free abelian group, the exact sequence

has a splitting σ with π o σ = id. Hence we have an isomorphism

Hom(Λ^|p

x, C i) -^ Hom(C> * χ , C i) x Hom(CA/ί|p/C> * )X,C\).

A ι-> (h o i, h o σ).

A morphism f = (f, φ) : X -± Y of fs log complex spaces induces a continuous map

(1.2.1) EXAMPLE. Let / : X -> zl be a proper surjective holomorphic map of a

^/-dimensional complex manifold X to an open unit disc A such that / is smooth over the

punctured disc Δ* and that Xo := f~ι(0) is a divisor with normal crossings. Then, as in

Example (1.1.4), X and A carry the fs log structures corresponding to the reduced divisor

(Xo)red a n d the origin {0}, respectively. The map / can be regarded as a morphism of log

complex manifolds which is described, in terms of local charts, as follows:

Nr _ ^ Oχ m ^ Π i < / < ^ Γ ( 0

'ΐ 4 1 1
N ^±^ O Δ l , - • t
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where Πκ/<r ZT = ^ a n c * t = ^ a r e l° c al equations of Xo in X and {0} in z\, respectively.

This induces'/ 0 8 : X l o g -» ,4 l o g. These are locally described as follows:

C ^ l l y { f c , M / ) I < I < Γ e C r x {Cχ)r I z/ = \zi\ui f o r a l l /} x

Z\ l o g ~

ylog . j^log _ ^ ^log ^

(fc, M/)l</<r, (

Note that the first local identifications of X los and Δlo% show that τ x : Xlo% -> X and

t/\ : zl l o g -> ^ can be regarded as real oriented blowing-ups along Xo and {0}, respectively

(cf. [Mj]), and the second local identifications show that X l o g and Δlog can be regarded as

products of manifolds with corners, compact tori and complex manifolds (cf. [AMRT]).

(1.2.2) EXAMPLE. Let

be the universal covering of the unit open disc. We add a point at infinity oo to R and extend

the topology of R to R := R u {oo} so that a fundamental system of open neighborhoods in

R of the point oo is given by

Uη := {y e R \ y > η}, η running over all positive real numbers.

We introduce the product topology on ί) := R + *J—\R. Then, by addition, Z acts on f)

continuously and freely and we have

m:i)^>t)/Z~ Δλ0% , x + V^ϊy ^ (e~2πy, e2"^*),

which can be regarded as the universal covering of Z\log in (1.2.1).

(1.3) Let X be an fs log analytic space. Then X is endowed with a sheaf of rings Oχg

which is an enlargement of τ~]Oχ by adding the 'logarithms' of local sections of τ~ιΛ4ψ.

The precise definition of Oχg is as follows. First, define a sheaf C of logarithms of local

sections ofτ~ιMψ on X l o g as the fiber product of

Mapc( ,RV^) — ^ Mapc( ,

where Mapc( , Y), for a topological space 1\ denotes the sheaf of continuous maps into F, and

the vertical arrow comes from the definition of X l o g. We denote the projection C —> τ
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by exp. Then we have a commutative diagram of sheaves on Xlog in which the horizontal

rows are exact:

τ-{Ox

C

0 > Z(l) > Mapc( ,RV^Ϊ) ^ Mapc( ,C\) > 1.

Here Z(l) := Z 2πsΓ~T, and 0 is induced from the map τ~[Oχ -> Mapc( ,/?>/^T),

/ H> (/ - /)/2, and from the composite map r ^ O x - ^ r " 1 ^ -> τ~ιMf.

We define

^ x = ( τ~ ^ ^ ^ z Symz£)/X,

where Symz C denotes the symmetric algebra of C over Z and X is the ideal of τ~ιOχ <g>z

Symz £ generated by local sections of the form / <g> 1 — 1 <S> 0(/), / € Oχ.

For v € Xlog and x = τ(^), the stalk (Ol

χ% is described as follows. Let r :=

rankz(.M|p/(9£) x and let (//)i</<r be a family of elements of Cy whose image under the

composite map

Cy —> τ~X(Mgχ)y — -Mψx -^ {M^χ/@χ)χ

is aZ-basis of (λΛg

χ /Oχ)x. Then, (//)i</<r are algebraically independent over OχtX and

Note that this is not a local ring.

For an fs log analytic space X, let ωι

χ be the sheaf of differential forms on X with log

poles defined by

(1.3.1) ωι

x := (Ωι

x Θ (Oχ 0z Mf))/N ,

where ί2^ is the usual sheaf of Kahler differential forms on X, and N is the (9χ-submodule of

the direct sum generated by local sections of the form (dot(f), 0) — (0, a(f) <g> / ) , / e Λ4χ.

For a local section of Mψ, the class of (0, 1 <g> /) in ωι

χ is denoted by d log(/).

Let ω^ be the ^-th exterior power of ωχ over Oχ, and let

We have derivations J : (9χ -> ω^, / \-^ df, as well as

d:Ol

χ

g^ ωX

χ

Xog , df :=dlog exp(/) for / G £ .

These derivations are extended to de Rham complexes in a natural way:

zn ^ 1 d i d

/ O l o g flf l,log d 2, log ί/

u χ > ωχ > ωχ —> .
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(1.4) We consider the following condition on a log analytic space X.

(1.4.1) X is covered by open sets of type (SptcC[P]/(Σ))an, where P is an fs monoid,

Σ is an ideal of P, i.e., a e P and x e Σ imply ax e Σ, (Σ) denotes the ideal of C[P]

generated by Σ, and (SpecC[P]/(Σ))Άn is endowed with the log structure associated to P ->

Oχ.
If (1.4.1) is satisfied, then ωι

χ is a locally free Oχ -module of finite rank and the de Rham

complex ω*χ °
δ on X l o g is a resolution of the constant sheaf C (cf. [KN]).

It is proved in [KN] that if a log analytic space X satisfies the condition (1.4.1), then the

following two categories Lu nip(X l o g) and Dn\\v(X) are equivalent.

(1.4.2) Lu nip(X l o g): The category of locally constant sheaves L of finite dimensional

C-vector spaces on X l o g, which have, locally on Z l o g , a finite filtration 0 = Lo C L\ C

.. c Ln = L consisting of locally constant C-subsheaves of L such that each L//L/_i is the

inverse image of a locally constant sheaf of C-vector spaces on X.

(1.4.3) Dn[\p(X): The category of locally free Oχ-modules V of finite rank on X en-

dowed with an integrable connection V : V -> ωι

χ <g> V, which have, locally on X, a finite

filtration 0 = Vo C Vi C C Vn = V consisting of 0χ-submodules of V such that

VV/ C col

x ® V/, V//V/-1 is locally free and V on V//V/_i has no pole for all /.

The equivalence Lu niP(X l o g) -> Aiiip(^)» L \-> V and its inverse V ι-> L are defined as

follows:

V := τ*(OχS ®c L),

L : = Ker(r*V -^> ωl

χ

log ® iog τ*V),
x

where r*( ) := Ol

χ

g ®τ-ιOχ τ~\ ).

2. Some lemmas. In this section, we prove some elementary but non-trivial lemmas,

which will be used in the proof of Proposition (3.2) in the next section.

(2.1) LEMMA. Let φ be a C°° function in ξ := (ξ\, ... , ξn) defined on a convex

subset U ofRn. Then there exist C°° functions ψι in ξ, ξf defined on U x U (i = 1, . . . ,n)

which satisfy the following conditions:

\<i<n

(ii) Ψϊ(ξ, §) = (?)

PROOF. Since

dφ(t(ξ-ξ')+ξ')jΛ~ Ψ(ξ') = f
Jo at

~ Jo iZil-'tei
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we are done by taking

/ dφ
ψi(ξ, ξ ) := /

Jo dxi
D

(2.2) Let X be a complex manifold, and let D be a compact complex submanifold of

X. Let V be a finite family of open sets of X, which covers D. We assume that each V e V

has coordinates

(2.2.1) [ (Zi,v)l<i<r 1

(wj,v)\<j<s\ '

arranged vertically, such that (z,>)i</<r are local equations of D. Here d := dimX and

j := d-r.

For V G V, by using local coordinates (2.2.1) on V, we define a column vector of

functions

(2.2.2) Av(y,x) := (tu/,v(;y) - w; (y e V,x e D Π V).

If we fix JC, then these functions of j induce a regular system of parameters of the local ring

oD,x.
For x e V ΠVf Π D, we denote the Jacobian matrix for the change of parameters

a := α := Av(y,x)\yeVnD

at y = x by

Jyy(x) ! =(2.2.3)

Let

(2.2.4)

be a C 0 0 partition of unity on D, which is subordinate to the covering {V Π ,D}yev

modify the Aγ(y,x) as

(2.2.5) β v ( ;y ,z) :=

By the definition (2.2.5), we see easily that, for each x e V Π V " Π D and y in a

neighborhood of x,

(2.2.6) = Jv»v(x)Bv(y,x) i

(2.3) LEMMA. For each fixed x e V Π D, (zi,v(y))\<i<r and By(y,x) forms a

regular system of parameters ofOχiX.
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PROOF. For this, it is enough to show that By(y, x)\y&vnD is a regular system of pa-

rameters of OD,X = OχiX/((zi,v(y))\<ί<r) This follows from

d(Bv(y,x)\yeVnD)

d(Av(y,x)\yeVnD)
PvfnDWJvvfWJv'v(x) =

V'eV

(2.4) LEMMA. In the situation of (2.2), there exists an open neighborhood U of D

such that the following is a well-defined map:

(2.4.1) π :U -> £>, defined by π(y) =x if and only if By (y, x) = 0

for some (hence, any) V e V containing x and y.

PROOF. Denote zy := (z/,v)i </</-• F° r e a c n * £ D> choose V e V containing x and
set

(2.4.2) Fv(x) :={yeV\ Bv(y, x) = 0}.

Claim 1. For each x e D, we can find a neighborhood Vx of x in X contained in the

intersection of all those V eV with V 3 x and a small number ε > 0, so that Fy(xr) Π [y e

Vχ\zv(y) = c} contains only one point or is empty for every x' e Vx Π D and for every

constant vector c e Cr with norm \c\ < ε.

We prove Claim 1. Define a function on D by

μ(x) := max μy(x) (x e D), where
xeVeV

μy(x) := sup (distance from x to the complement of W).
xeWcV

Here, in the second equation, W runs over those neighborhoods of x on which zy and

Z?v ( y, x) form local coordinates.

By Lemma (2.3) and the compactness of D, we see that the function μ(x), x e Z), is

bounded away from 0. Suppose that there exist sequences of points {xn}n and {x'n}n on D

with xn φ x'n, so that x'n e Fy(xn) for some V e V for each n, and that the points xn and

x'n approach each other as n -> oo. Then μ{xn) —> 0 as n —> oo, which contradicts the

boundedness of μ. Hence, for each x e Z), we can find a neighborhood V'x in X contained

in some V e V such that Fy(xr) Π V'x Π D = {xf} for every x' e Vx Π D. Let Vx d V̂  be

a neighborhood of Λ: in X with the closure Vx compact and with Vx C Vx. Then it is easy to

see that there exists a small number ε > 0 so that, for every x' e D ΠVX and every constant

vector c e Cr with norm \c\ < £, FV(JC') Π {J G VX | zvίj) = c] consists of one point or

empty. This proves Claim 1.

Let Vb be a finite open covering of a neighborhood of D consisting of those open sets V̂

in Claim 1. For each x e D, we define a slice by

(2.4.3) F(x):= ( J {y e Vb \ By(y, x) = 0}.

Here, on the right-hand-side, V e V is chosen so as to contain Vb. Note that it is independent

of the choice of V by (2.2.6).
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We choose an open neighborhood U of D so that U is covered by Vb.

Claim 2. If U is small enough, then for each y e U, there exists at most one slice

F(x) passing through y.

We prove Claim 2. For simplicity of notation, we denote py := PVΠD in the proof of this

claim. In order to prove Claim 2, it is enough to derive a contradiction from the assumption

that there exist sequences of points {xn}n and {x'n}n on D with xn φ x'n which approach each

other as n —• oo and the corresponding slices F(JCΛ) and F(x'n) have a common point yn

which approaches Z) as n -+ oo. Taking subsequences, by the compactness of Z) and Claim

1, we may assume that the sequences {xn}n and {x'n}n converge to a common point xo e D.

By Claim 1, the sequence {yn}n also converges to the unique point xo of D Π F(xo). Take

and fix a pair of open sets Vb c V with Vb e Vb, V e V and x0 e Vb. We denote z := zv,

w; := u; v and 5 := £y in this proof for simplicity of notation, and write the change of local

coordinate as

(2.4.4) wv> = ay + byz + cyw + hψ {V' e V),

where ay is a constant vector, by and cy are constant matrices and hy is a vector whose

entries are holomorphic functions of order > 2 in z, w;. Then we have

Jyy(χ) =
dw(y)

dwy(y)

_ ίdwy(y)

~ \ dw(y)

(2 4-5) = (cv + λ'vΛ*)Γ' - gv(x)cy} , where

dw(y) m>0

Note that gy(x) converges to a matrix consisting of holomorphic functions in w(x) for x near

JCO Hence, by (2.2.6), we have

0 = B(yn,xn)-B(yn,x'n)

(yn, Xn) - pyix'^Jyyix'^Ayiyn^X^)]

byz(yn)cv(w(yn) ~ U*(xn)) + (hy(yn) - hy(xn))}

z(yn) + cy(w(yn) - w(x'n)) + (hy(yn) - hy(xf

n))}]

+ X] [{Pvf(χn)(-Cy}hf

v,(xn))gy(xn)(w(yn) - w(xn))
V'eV

- Pv>(x'n)(-Cy}hf

vf(xf

n))gv,(x'n)(w(yn) - w{x'n))}

+ {pV'(Xn)gv(Xn)Cy}(byz(yn) + (hy(yn) - hy(xn)))

~ PV>(Xn)gv>(xn)CyΨv'Z(yn) + (hy(yn) - hy(x'n)))}]

V'eV

V'eV

= (w(x'n)

Cn)gy \Xyj) c w /

- w(xn))



RECOVERY OF VANISHING CYCLES 11

(w(x'n) - w(xn))

+ Σ [-Pv'(χn)Cvhhf

v,(xn)gv>(xn) - h'vf(xf

n)gy(x'n)}w{yn)
V'eV

- {pv'(xn) - PVf(^n^cV'h/Vf<<Xn^9V'(

} >(x'n)w(x'n)}

PV'(Xn){9Vf(Xn) - gV'(x'n)}cyϊ{bv>z(yn) +hy>{yn))

x'n)cy}{bV'z(yn) + hv>(yn)}

xn) - gy> {x'n)c~}hy> (x'n)}

Since V is a finite covering, the extreme right-hand-side of the above equation contains only

a finite number of terms. Moreover, by Lemma (2.1) applied to the C°° function py(xn) —

py(xf

n), we can find C°° functions ψy,j(xn,x'n) and ψy,j(xn,Xn) in w(xn), w(xn), w(xf

n)

and w(x'n) (1 < j < s) so that

Pv'(xn) - Pv'{x'n)

^yU/i) ~ Wj(x'n)Wv'j(Xn,Xn) + i^j(xn) ~ Wj(x'n)}ψy, j(xn, Xn)λ •

Substituting this to the previous equation and dividing it by the norm \w(x'n) — w(xn)\, we

can observe that the first term does not converge to 0, whereas the other terms converge to 0.

This contradiction finishes the proof of Claim 2.

Claim 3. If U is small enough, then for each y e U, there exists a slice F(x) passing

through 3̂ .

We prove Claim 3. By Claim 1 and the result of the 'only one' part, there exist open

neighborhoods U (<= Uf of D in UvbeVb ^ b s u c n m a t m e boundary of F(x) Π U' is contained

in the boundary of Uf for every x e D and different slices do not intersect in U'. Here

U d U' means that the closure of U is contained in Uf. Let ΪJ and F(x) be the closures of

U and of F(x) Π U in U\ respectively. Then £/* := ΪJ - (\JXGD F(X)) is open in U. In

fact, let y e U* and consider the function μy(x) := distance(j, F(x)) in x e D. Since D is

compact, μy(x) attains its minimal value which should be positive because of the choice of

y. Hence 0* is open in U. Take a slice F(xo) which passes through a boundary point yo of

the set U*, take Vb e Vb and V e V with F(JC 0) C Vb c V, take a small neighborhood W

of xo contained in Vb, take a constant vector c with small enough norm and consider the map

φ : W Π D -> {y e Vb \ z(y) = c] defined by φ(x) := F(x) Π {z = c}, where z := zy as

before. By construction, φ is a C°° injective map and hence its Jacobian determinant vanishes

at at most isolated points of W Π D. It follows that φ is an open map and that its image

intersects U* Π {v e Vb \ z(y) = c}, a contradiction. This proves Claim 3.
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If the neighborhood U is small enough, then zv(y) is defined for y near F(x) in U with

x e supppvπD In fact, since V is a finite covering and, for each V e V, the distance from

x to F(x)Π (complement of V), considered as a function in x e supp pvnD, is bounded away

from 0, our condition is fulfilled for a small enough neighborhood U. This proves Lemma

(2.4). α

3. A family of normal projections. In the notation of (0.1), we construct in this

section a family of 'normal projections' onto the strata of the divisor Xo + Y with normal

crossings on the complex manifold X. Our method is analogous to that of Clemens [C, §5],

but since we have to modify the argument in [C] to fit our situation and since it seems to the

author that there are some points which are not clear in the proof of [C, Theorem 5.7] (cf.

Remarks (3.4), (4.4)), we give here a complete proof for the readers' convenience.

(3.1) Let

(3.1.1) f ' X^Δ

be a proper, surjective, flat, holomorphic morphism from a J-dimensional complex manifold

X onto an open disc in the complex plane C with center 0. Let

(3.1.2) Y= J2 YJ

be a reduced divisor on X with simple normal crossings, where each Yj is a prime divisor. We

assume that Y is flat with respect to / . Let t be a coordinate of A. Let

(3.1.3) f-\θ)=:χo = Σ m ( ί ) X i

\<i<a

be the central fiber of / . We assume that / is smooth over the punctured disc Δ* and that the

sum

£ m(i)Xi + Σ YJ
\<i<a l<j<b

of the central fiber Xo and Y is a divisor with simple normal crossings.

We denote

( 3 1 4 ) Ui-a if 0 + 1 <i<a + b,

Dι : = Π D ' " for / c { l , . . . , * + *},
iel

and

(3.1.5) I (a) := / Π {1, . . . , a], I(b) := / Π {a + 1, . . . , a + b].

Let V be an open neighborhood in X of a point of D\, carrying coordinates

(3.1.6)
Swj,V)l<j<d-\
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arranged vertically, such that

(3.1.7) Y\ (Zi,v)m(i) = (t o f)\V and f ] Zi,v = 0 = Y Π V .
iel(a) [iel(b) J

We call such local coordinates (3.1.6) standard local coordinates and such local equations

(zi,v)iei standard local equations, respectively. We call such open set V endowed with stan-

dard local coordinates a standard local coordinate open set.

For open subsets U and Uf of a topological space Z, we denote

U I) \J'

if U contains the closure of U' in Z.

(3.2) PROPOSITION. In the above notation, shrinking A, if necessary, we have a

family {Uj} of open tubular neighborhoods Ui of Dj in X and a family {πj} of C°° nor-

mal projections πj : U\ —> Dj with holomorphic fibers, where I runs over all subsets of

{1, . . . , a + b} with D] φ 0, which have the following properties'.

(i) u1nuj = uluj',
(ii) πj o πj \Uj = πj for I D J;

(iii) /// C { 1 , . . . ,a\,thenπjxφι ΠYj) = £// DYj for j = 1 , . . . ,b.

PROOF. We prove the assertion by descending induction on the cardinality |/ | of a

subset / C {1,... , a + b}. Since the proof is long, we divide it into five steps.

Step 1. Let

(3.2.1) / :=max{ | / | |D/ φ 0},

and let / c {1, . . . , a + b} with |/ | = / and Dj φ 0.

Choose first a finite covering V/ of an open neighborhood of £)/, consisting of standard

coordinate open sets. Applying Lemmas (2.3) and (2.4) to D — Dj and V = V/, we have

By(y, x) := By(y, x), open neighborhoods UJ' of D/ (1 < / < a+b), and a C°° projection

(3.2.2) πι : ϋfl) -> D, , πI(y)=x& B'yiy.x) = 0.

Here ϋfl) := f|/e/ U^2l). Shrinking the ϋ\2l), if necessary, we may assume that ufl) is

covered by V/. Put

(3.2.3) W/ :={VnuflI])}VGVl,

(3.2.4) PwoDj := Pv(W)nDf for W e W/,

(3.2.5) < ( ) ; , x ) : = ^

for W e W/, JC e W Π D/, and y e W near π~ι(x).

Here V(W) is the element of V/ defining W = V(W) Π ί/7

(2|/|). We add a remark here. If

there are different V, Vf e V/ which define the same W = V Π ί/7

(2|/|) = Vr Π ί/7

(2|/|), then

we throw away one of them. Going on with this process and shrinking Uj , if necessary,

we may assume that Wj 3 W \-^ V(W) G V is a well-defined map.
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Step 2. By the induction hypothesis, we assume that, for a positive integer m < I and

a subset K C {1, . . . , a + b] with \K\ >m and Dκ Φ ΰ, the following data (3.2.6)-(3.2.11)

have been constructed:

(3.2.6) The sequence of open neighborhoods £/(2/) D t//2 '""0 s) m ί//2m) of A

(1 < / < α + Z>);

(3.2.7) The finite family VK of standard coordinate open sets which satisfies the con-

ditions that

VK covers £/<?'*'> - \J < 2 | M | ) , and that
MDK

\M\ = \K\ + l

any element of VK does not intersect I I ί/ί?'M '~ 1 5

(3.2.8) The finite, open covering Wκ of uψK]"\ whose member W e Wκ carries the

standard local equation zk,w of Z)̂  in W (k e K)\

(3.2.9) The C°° partition {pwnDκ}weWκ of unity on DK subordinate to the covering

(3.2.10) For W e WK and x e W Π DK, the column vector B$(y, x) of holomorphic

functions of y near each fixed x e X, which induce a regular system of parameters of OQK,X\

(3.2.11) The C°° projection πκ : UχlK]) -> Dκ such that πκ(y) = x is equivalent

to £^(v, JC) = 0 for some W e WK- They satisfy πLoπκ = πL on ί/f|L|) (L D A:,

|L| = |ΛΓ| + 1).

Now fix / C {1,... , α + b} so that |/ | = m - 1 and D 7 ^ 0. If £>/ Π D^ = 0 for any

& e { l , . . . , α + fr} — /, then we apply for this / the construction in Step 1. Otherwise, choose

k e {1,... , α + b] - I so that D / Π D ^ 0. Put AT := / u {*}.

We define a multi-valued function ^ (y,x) in j near JC G DK by

(3.2.12) ζ*(y,χ)' =

This definition is justified in the following way. Let gk ^^t be the transition function of the

standard local equations of Dk'.

Then, for a fixed W' e WK, we have

tk(y>*)= Π Zk,wW

= expί
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= e χ p

= exp

The last equation is well-defined if we choose a branch of log(gk ψψ,(y)). The ambiguity of

the choice of a branch is the choice of a multiple

e Z ) .(3.2.13)

Claim 1. Let W e WK- For each fixed x e W Π Dκ, (zi ψ(y))iei, ζ*(y,x) and

5 ^ ( j , i ) form a regular system of parameters of Όχ~x.

In order to prove this claim, it is enough to show that (z{ ψ(y))iei and ζ£(y, x) induce

a regular system of parameters of OXx/{B^(y, x)) ~ Op ~. For simplicity of notation, we

assume / = {!,... , m — 1} and k = m. By the definition (3.2.12), we have

S i n c e °' Claim ! is
where # A ~(x,x) := f|

proved.

Let /, k and ΛΓ be as above. For W e WK, X ^ D^ Π W, x e π^](x)Π Dj ΠW near x,

and j G W near ί, we define

(3.2.14, <„.,):=[' ^^^ j.
Choose a family of small enough open neighborhoods £/ m of D/ such that

υfm)
(1 </<fl(3.2.15)

We define a C°° projection

(3.2.16) ^ f f

by ^"f C37) = x if and only if #£(;y, ί ) = 0 and f / ( j , jc) - ζ*(x, x) = 0 for some (hence,

any) W e WK containing x and y. Here JC := π ^ ( c). Obviously, we have

(3.2.17) πκ
on £/ < ? ' * ' " υ

3. Let m < / and / C {1, . . . ,a + b] be as in Step 2. Choose a family of open

neighborhoods f//2m~2) of A such that

(3.2.18) < <
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and choose a finite family V/ of standard coordinate open sets which satisfy the following

conditions:

V/ covers £/ 7

( 2 | / | ) - ( J U(2{Kl)

|*|=|/|+i

Any element of V/ does not intersect U
(2\K\-\)
K

KDI

(3.2.19)

Let

(3.2.20)

Choose a C°° partition of unity

(3.2.21)

on Dj which is subordinate to the covering {W^ Π Dj}wtι w « and satisfies the following

compatibility condition: If L D K D I,\K\ = \I\ +1 and V e VL, then

(3.2.22) } PW$DD t= /. Pwnnr,oπκ onUκ ΠD/,

where V(W^) (resp. V(W)) is the unique element of U M D / VM containing W$ (resp. W). By

the construction of the VM, M D I, and the same reasoning as that just after (3.2.5), VίW0)

and V(W) are indeed determined uniquely by W$ and W, respectively. As in [C, (5.14)], such

a partition of unity (3.2.21) can be constructed descending inductively by using the properties

(3.2.6), (3.2.15), (3.2.18), (3.2.7) and (3.2.19).

Divide each W =WΠ £/7

( 2 | / | ) (W e Wκ) into two parts

(3.2.23)

nu
MDl

\\M\ = \I\ + \

w2(W):=wn

Here the overline denotes the closure. We define a covering

(3.2.24) W, := [V Π ufm))VeVl U ( J
KDI

W2(W)}WeVVκ

We denote

(3.2.25) ) := {V Π u
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which is obtained from W/ by throwing away the open sets of 'type W\( )'.

Let W e Wi and x e W Π Dj. As a regular system of parameters of Oχ,x, we take

(3.2.26), (3.2.27) and (3.2.28) below, according to the following types:

Type

K = Iu

(3.2.26)

Type 1 :

Type 2 :

Type 3 :

W

W

W

? 1. When W

{k} and define

[

= Wι(W) for W

= W2(W) for W

= VίΊί/ 7

( 2 | / | ) for

= Wi(W) for W

A7

w(j,x) J "=

G W K with J

G WK with /<:

V G V/.

G WK with /̂

D I

Dl

: D

(y

and \K\ = \I

and \K\ = \I

I and \K\ =

G W).

l + i.
l + i.

I\ + 1, we put

Here A1- (y, x) is the column vector of functions in (3.2.14).

Type 2. When W = W2(W) for W G WK with Γ̂ as above, starting from W, we

follow backward the construction process of Wv( ) (v = 1,2) by descending induction,

and take W* := W*(W) e Wj* which is just the previous open set belonging to W7* (cf.

(3.2.25)). More precisely, let W(0) := W. If W(0) e w £ , we define /* := /<: and

W(0). Otherwise, there exist W^ e WκU) (1 < j < n) such that W{J~l) =

(1 < j < n) and W(w) G W^(/I). Then we define /* := K(n) and W*(W) := W{n). Putting

/iC = / u {&}, we define

(3.2.27) Π
G W) .

Here I (a), I(b), I* (a) are as in (3.1.5). Note that the precise definition of Zi,w(y) 0' € /(«))
is as follows:

Zi,w(y) '=zijy
1

m(j)logzjtw(y)) (y e W).

Although, globally on W2(W), these are multi-valued functions, they make sense as elements

of Oχ,x up to the choice of roots of unity.

Type 3. When W = V Π ί/7

(2|/|) for V G V/, we define

(3.2.28)
w ,x) J <j<d-\i\
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Choose a C°° function χ/ on Uj which is constant on each fiber of τπf, for every

K D / with \K\ = \I\ + 1, and takes values in [0, 1] so that

[ion U !/£•"-»,

(3.2.29) Xi =

KDI

0 outside U V(κ
(2|AΓ| —1)

nu
KDI
l

We define a C°° partition of unity on £)/, subordinate to the covering {W Π Z)/}VI/GVV/' by

taking a refinement of (3.2.21) in the following way:

/ ' PwtnD! if W = Wι(W) for some W e Wκ ,

(1 - Xi) ' PwtnDί if W = W2(W) for some W e Wκ ,(3.2.30)

Here we denote

For W, W

(3.2.31)

if w = V Π ί/
( 2 | / | ) for some V e V/.

:= W Π ί/

DΪ9 let

be the Jacobian matrix at y = x of the change of the parameters of OD],X induced by the

A!

w(y, x) in (3.2.26), (3.2.27) and (3.2.28). Modifying the A*w(y9 x) as before, we define

(3.2.32) B!

w{y,x):=

As in Step 1, shrinking the open neighborhoods £/j

necessary, we define a C°° projection
j 2 | / | )

(I < j < a + b) and the disc Δ, if

(3.2.33) TΓ/ : ί / 7

( 2 | / | ) - ^ / ) / , π 7 ( j ) = JC ̂  fi^(^, Jc) = 0.

Step 4. In this step, we prove that 7Γ/ in (3.2.33) is well-defined. In fact, in the proof

of Lemma (2.4), the arguments in the proofs of Claim 1 and Claim 3 work well for D/, W/,

(Zi,w(y))ίei and Bψiy, x). In order to show Claim 2 in the proof of Lemma (2.4) in the

present situation, we divide its proof into two cases by (3.2.19): Let x e Dj.

ίCase 1. If W e W/ contains JC, then W is of Type 1 or Type 2.

I Case 2. There exists W e W/ of Type 3 which contains JC .

Case 1. If W e W/ contains x, then we can take W e WK, K = I U {k}, so that

W = WV(W) (v = 1, 2). Let y e ί/^2|/|) and jc := πκ(x) e Dκ. Then, by using (3.2.33),

(3.2.32), (3.2.30), (3.2.22), (3.2.26) and (3.2.27), we have

0 = Bψ(y,x) = Σ Pw'nDIJw
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where

M(x):=
Γi o 1

Here we use (3.2.14). Since detM( c) = 1 ^0,B!

w(y,x) = 0 is equivalent to A^(y, x) = 0,

and hence equivalent to B^(y, x) = 0 and ζ£(y, x) — ζ£(x, x) = 0. Thus our assertion is

verified in Case 1.

Case 2. As in the proof of Claim 2 in the proof of Lemma (2.4), let [xn }n and [xf

n }n be

the sequences on Dj which converge to the common point xo, and let yn be the common point

of the slices F(xn) and F(x'n) so that yn -+ XQ as n -+ oo. Take W e Wj of Type 3 which
( 2 | / | )

contains XQ, and take V e Vwith W = Vnί/ 7

( 2 | / | ). Letz := (z, ,v)/e/» ^ : =

and B := J5^,. Then the change of local coordinates (2.4.4) becomes

(3.2.34) , x) = aw>(x) + bw>{x)z(y) hW'(y, x)

for Wf e W/. Hereaw'(x), bψ>(x), cψ'(x) and hψ'iy, x) are C°° inx. Inz and w, aψ>(x) is

a constant vector, bψ'W and cμ/'Cx) are constant matrices, and hψ'(y, x) is a vector whose

entries are functions of order > 2. As in (2.4.5), the Jacobian matrix Jψwf(x) := - / ^ ' ^ ^

becomes

dw(y)
JwwW =

(3.2.35)

Put

dB^(y,x)

dhw>(y,x)

y=x
dw(y)

^ - l — \ - i where

9 ^ω ^
v no ; and A(y := A^,. Since Aψ>(x, x) = 0, the argument proceeds as

> = B(yn,xn)-B(yn,x'n)

- pw>(x'n)JWW'(x'n){AWr(yn,x'n) - Aw>(x'n, x'n)

cw>(w(yn) - w(xn)) + (hW'(yn) - hW'(xn))}

>„) - u (x )) + (AW'(yn) - / * Ϊ W 4 ) ) } ] -

The rest of the argument works well and we get our assertion in Case 2.

Step 5. The descending induction is now completed. Finally we take

(3.2.36) Ui := £//2) (1 < / < a + Z?).



20 s. usui

Thus we obtain a desired family of C°° projections

(3.2.37) πι : Uj -> D/ (/ C {1,... , a + b})

with holomoφhic fibers, which have the properties (i), (ii) and (iii). D

(3.3) REMARK. We use the notation in (3.1) and in Proposition (3.2) and its proof.

I f i G D / Π ί/^2|/|) and if W e W/ contains x9 then W is of Type 1 or Type 2, because of

(3.2.19) and (3.2.23). Hence the proof in Case 1 in Step 4 in the proof of Proposition (3.2)

shows the following:

Let / C K := / u {k} c {1 α + i} and assume Dk φ 0. Let x e D\ and let

x := πκ(x) e ^A:- Then, the fiber π/^OO is a submanifold of the fiber π^ι(x) defined by

(3.4) REMARK. In the proof of [C, Theorem 5.7], the argument to show the well-

definedness of the projections π/ is missing. We prove this in Step 4 in the proof of Proposi-

tion (3.2). Section 2 and the constructions in Step 3 in the proof of Proposition (3.2) is needed

for this proof.

4. A family of global equations. By using the results in the previous section, we

construct in Proposition (4.3) below a C°° family of holomoφhic coordinates of the fibers

of the family of normal projections in Proposition (3.2), which fits to the original morphism

f : X —>z\ in (3.1.1). The argument in this section is a refined version of the proof of the

latter half of [C, Theorem 5.7] (cf. Remark (4.4)).

(4.1) Let / : X -> Δ9 XQ and Y be as in (3.1). We freely use the notation in Section 3,

especially the notation in Proposition (3.2) and in its proof.

Before stating the main result in this section, we refine the compatibility condition

(3.2.22) of the families of C°° partition of unity {Pw^nDί }w$ vy» introduced in (3.2.21) into

a form suitable for the proof of Proposition (4.3) below.

In Step 3 of the proof of Proposition (3.2), we have first constructed the covering wf,

in (3.2.20), of the tubular neighborhood ί/7

(|/|) of £>/, and then refined it into W/ in (3.2.24).

The family W7 in (3.2.25) is obtained from W/ by throwing away the open sets of Type 1.

Let W e W/. We recall the notation W*(W) introduced just before (3.2.27), i.e., when we

follow backward the construction process of W e W/ by descending induction, W*(W) is

just the previous open set belonging to W°M for some Me {1, ... ,a+b} containing /. We

understand here that W*(W) = W if W e W7.

For / C M C {1, . . . , a + b], we denote

(4.1.1) W^M) := {W e W/ | W*(W) e Wb

M].

Then, these form a division

(4.1.2) Wi = | _ | W/(M).
MDl
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By the definition (3.2.30) of the partition of unity {pwnz)/}we>V/> it satisfies the following

refined compatibility condition induced from the one in (3.2.22) for the partition of unity

{Pw*nDι}wt€Wt'> lfMDKDl,\K\ = \I\ + 1 and W* e Wb
M, then every W e W/(M) is

of type W\ ( ) and, on U%{Kl~l) Π £>/, we have

(4.1.3) Σ PwnDi = Σ χi ' pwnDK ° πκΣ Σ
WeWi(M) WeWκ(M)
W*(W)=W* W*(W) = W*

Here the χj is the functions in (3.2.29) and the 7Γ# is the projections in Proposition (3.2).

We prove a lemma, which will be used in the proof of Proposition (4.3) below.

(4.2) LEMMA. We use the above notation and also the notation in the proof of Propo-

sition (3.2). Let J C K = Ju{k} C M C {1,... ,a+b}withk <a.Letx e ^ m l \

F := πj (x) and x := πκ(x). Then, for y e F, we have

(4.2.1)

Here we regard Zk,w(y)PwnDκ(x) •= e*p(PwnDκ (x) log Zk,w(y)) etc. as usual

PROOF. Take a chain K =: K{ c K2 C C Kn := M with 1^1 + 1 = \Kj+\ |. We

have XKj(x) = XKj(y) (1 < j S n) for x and y in the Lemma, since the function XKJ on

U κ.
 j in (3.2.29) is constant on each fiber of the projection uτκ

j+ι in (3.2.16) by definition,

since the projections uτκ

j+ι and πKj coincide on Uκ. ' by Remark (3.3), and since the

projections π ^ . and πκi+ί are compatible on Uκ

 J . Hence the assertion (4.2.1) follows

from the following assertions (4.2.2) and (4.2.3).

For K, M, k, y and x in the Lemma,

(4.2.2)

For M, k, y and x in the Lemma,

(4.2.3) ζk

M(y, πM{y)) = ζ^(x, πM{x)).

By taking product over W* € >VM and using the definition (3.2.30) of the partition of

unity {PW*DDM}W*€WM> (4-2.2) follows from the following assertion (4.2.4).

(4.2.4) p ] zk,w(y)pwnDκ{Sί) =

W*(W)=W*

We prove (4.2.4) by induction on the length of the chain n. When n = 1, i.e., K = M,

(4.2.4) is obvious. When n > 1, by the induction hypothesis, we have

(4.2.5) γ\ zk w(
WeWκ2(M)

W*(W)=W*



22 s. usui

Then, using (4.2.5), the definition of the standard local equations (3.2.26) and the compatibil-

ity (4.1.3), we have

Π zkMy)pwnDκι(i)= Π
ιM) WeWKι(M)

W*(W)=W* W*(W)=W*

= Zk W* ( ) 0 ^ W 6 W * i W<WW=

Σ (M),W*(W)=W* χκ\ (y

\ xκλ (y)

WeWκ2(M)
^W*(W)=W*

= ( Z ^ V K * ^ ) ^ * 0 ^ ^ ^ ^ ^ ) ^ - 1 ^ ^ " ^ 2 ^ ^ 1 ^

Thus, (4.2.4) and hence (4.2.2) is proved.

We prove (4.2.3). For any set L with K C L c M and M = L u {̂ }, we have, by the

compatibility of the projections π. and the result in Remark (3.3), that

{y \ ? f (y, πM(x)) = ζk

M(πL(x), πM(x))}

F Cπ~ι(πL(x))

This, together with x e π^1 (TΓL(JC)), implies

ζk

M(y, πM(x)) = ζ?{πL(x\ πM(x)) = ζ^(x, πM{x)).

Thus, (4.2.3) is proved. D

We now prove the main result of this section:

(4.3) PROPOSITION. We use the notation in (4.1), in Lemma (4.2) and in Section 3.

Shrinking the open neighborhoods ί// of Di (1 < / < a + b) and the disc A, and restricting

the projections πj to the shrinked Uj, we have multi-valued C°° functions

Zi(y) on X (1 < / < a + b),

which satisfy the following conditions:

(i) For each 1 < i < a + b, zι is a global equation of Ό[ in X, which is multi-valued

as a global function on X with branches determined by the choice of multiples

(nItW eZ,y e X).

(ii) If J C {1, . . . , a) and F is the fiber πjι(x) over x e Dj, then the restricted

functions Zj\F, j e / , which are now single-valued after choosing branches, form a system

of holomorphic coordinates on F.
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(iii) Let / , x and F be as in (ii). For k € {1,... ,a + b} — J, the functions Zk is constant
on the fiber F, if it is defined.

(iv) Let x e Xo. Let J := [j | 1 < j < a, Dj 3 x] and let F := πjι (x). Then

J~J zj(j) = (constant)r of on F ,

where the (constant) depends on the choice of x, the choice of zι (1 < / < a) and the choice

of their branches.

PROOF. We continue to use the notation in the proof of Proposition (3.2). Let Jj\ ) be

the open neighborhoods I// of D\ in Proposition (3.2) (1 < / < a + b). We choose smaller

open neighborhoods LΛ(1) of A (1 < i < a + b) so that

(4.3.1) ί//υ m ί//2).

For each / c {1,... , a + b], we denote

(4.3.2) U> := U? - (ijΊJp) .

Put f/(2) := Ui</<fl+^ ui N o t e t n a t t h e s e ° P e n s e t s ui f o r m a covering of U{2). Let

(4.3.3)

be a C°° partition of unity on U^ which is subordinate to the above covering and has the

following property:

For all J c / C {1,... , a + b) and all x e Dj,
(4.3.4) m

ψi is constant along the set πj (x) Γ) Uj .

Such a partition of unity can be constructed easily by descending induction on |/|.

We restrict the projections 7Γ/ to

(4.3.5) 7Γ/ : U\X) -+ Dι for / C {1,... , a + b}.

We shrink the disc Δ, so that X is covered by U^ (1 < i < a).

By using the ζj in (3.2.12), we define for each 1 < i < a + b, a multi-valued C°°

function zι on X by

(4.3.6) zi(y) =
I si

Like (3.2.12), this definition is justified in the following way. For / c {1,... , a 4- b}9 put

x := πi(y), if defined, and take Wj e W/ satisfying pwnz)/(*/) 7̂  0. Let #/,ww7 be the

transition function zt,w = 9i1wwIZitWi (W e W/,W Π W/ φ 0). Put W/ := W{/}. Let
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9i,wίwi be the transition function zι,Wι — 9i,wIwiZi,wi Then we have

The last equation is well-defined if we choose a branch of log(gi^wwI(y)9i,wIwι (y))> The

ambiguity of the choice of a branch is the choice of a multiple

(4.3.7)
/

Thus, (i) is proved.

We prove (ii). Let / C {1,... , a}, x e Dj and F := πjι(x), as in (ii). First, note that

(4.3.8) if / C {1,... , a + b} and supp ψι Π F φ 0, then I D J .

This follows from F C Ujl\ supp^/ c U\ and the definition (4.3.2) of U\. Hence, for

y e F Π Uj, we have

(4.3.9) 777 00 = 7Γ/ o πj(y) =

by the compatibility in Proposition (3.2) (ii). This, together with the property (4.3.4) of the ψi

and the definition (4.3.6) of the ZJ, implies that the restricted functions Zj\F, j e 7, which

can be regarded as single-valued functions, form a system of holomorphic coordinates on F.

(ii) is proved.

We prove (iii). Let 7, x, F and k be as in (iii). Put K := Ju{k}. If DK = 0, then zk is not

defined on the fiber F. So, we assume DK φ 0. For any M with K C M C {I, ... , a + b}

and DM φ 0, the function ^ M (y, πM(y)) is constant in y e F by (4.2.3) in the proof of

Lemma (4.2). Hence, by the definition (4.3.6) of the function zk and by the definition (4.3.3)

of the \j/κ, Zk is constant on the fiber F. (iii) is proved.

We prove (iv). Let x, J and F be as in (iv). By (4.3.6), (iv) follows if we prove the

following assertion:

For I D J and y e F — Xo, we have

(4.3.10) /„ , ( Λ ψ l l y )

Π SJ( ())m{]) ( ) ( o f{y)Ϋ'(y),
/„ , (Λ

ψlly)

Π SJw(y> *i(y))m{]) = (constant)(r
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where both sides are considered as single-valued functions on F after choosing their branches.

In fact, taking the products, over all / containing /, of the both sides of (4.3.10), we have

(
\ Ψi(y)

(
)

foτyeF — XQ. Applying (4.3.8) to both sides, we have (iv) on F — Xo, and hence on F by

the identity theorem.

In order to prove (4.3.10), we divide the problem into two cases according as / = / or

IDJ.

Case 1. / = J: In the present case, by using the division (4.1.2) of Wy, and the

definition (3.2.12) of the ζj the assertion (4.3.10) follows from Claim 1 below.

Claim 1.

Π Π (zjMy))mU)pwnDjix)

jeJ WeWj(M)

= (constantXf o /( y ))Σ^w y <A#) PWΠDJ 00 f ( ) Γ y e F _ XQ

We prove this by induction on \M — J\.

When \M - J\ = 0, we have Wj(M) = w) (see the definition (4.1.1)). Then, by the

descending-inductive constructions (3.2.27) and (3.2.28) of the standard local equations on

W e Wy(Λf) = Wy, we have

(4.3.11) Y \ ( Z i , w ( y ) Γ { i ) = t o f ( y ) for yeF.
iel

This implies Claim 1 in this case.

If \M - J\ > 0, we choose k e M - J and set K := J u {&}. By (3.2.23), we may

assume that such k is chosen so that Uκ contains x. The induction hypothesis yields

Π Π
(4.3.12) JeK(a)

= (constant)(ί o f(y))Σwe\vK(M) PWΠDK (*) for y e p - Xo ,

where x := πκ(x) and F := π^ι(x).
If k > a, Claim 1 follows directly from (4.3.12) and the compatibility (4.1.3) of the

partition of unity p..

Now we assume k < a. Taking the χ/(;c)-th power of the right-hand-side of (4.3.12),

and using the compatibility (4.1.3), we have

((constantX* o
(4.3.13)

= (constant)*' ( x\t o / ( y ) ) ^ ^ w y ( w ) PWΠDJ(X) for y e F _ XQ
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Put C := ΠweWκ(M)(zk,w(y»mU)P™nDκa)χΛX) τ h e n ' Lemma (4.2) shows that C is con-
stant in y G F. Taking the χy (jt)-th power of the left-hand-side of (4.3.12), using the fact that
the elements of Wκ(M) and of Wj(M) are of Type 1 (see (4.1)), and using the compatibility
(4.1.3), we have

Π Π (Zj,w(y»mU)f>*"Dκίi)XJix)

jeK(a)

Π Π
M

(4.3.14) W*(W)=W*= C Π Π Π
JeJ w*e>V b ^€>Vy(M)

M W*(W)=W*

= C Π Π (zjMy))
jeJ WeWj(M)

Combining (4.3.13) and (4.3.14), and denoting the new constant also by (constant), we have

Claim 1 in this case.

Case 2. I D J: In this case, we prove (4.3.10) by induction on \I — J\.

If \I — J\ = 0, our assertion is the result in Case 1.

Now we assume that (4.3.10) holds for every I D J with \I — J\ < m. Let J =: J'u{j],

x' e Dj>, F' := πj,ι(x;) and x := 7Γ/(JC'). Since supp^/ C U\, the assertion (4.3.10) for Jf

follows from:

Claim 2. ζί(y, x) is constant for y e F' Πί/j, where we choose and fix a branch of

the function.

Note that the projections JΓM, M C /, are compatible on U\. Let I' := / — {j}. Then

I D Γ D J' and
F' C π~x(x'), where i ; := πv(x').

Hence, Claim 2 follows from Remark (3.3), that is, πj~,ι(xr) is the submanifold of πjx(x)

defined by

ζjiy,x)-ζj(x',x)=O.

This completes the proof of (4.3.10) and the assertion (iv) is verified. D

(4.4) REMARK. The argument of Clemens to prove [C, Theorem 5.7 v)] (= our Propo-

sition (4.3) (iv)) breaks down. This point is rescued by our subdivisions (3.2.23) and their

resulting constructions in Step 4 in the proof of Proposition (3.2).

5. Monoid actions and recovery of vanishing cycles. In this section, by using the

multi-valued C°° global equations Zj of the components of Xo in Proposition (4.3), we lift

the natural action of the monoid S = [0, 1] x C\ on the disc A of the base compatibly to all

spaces of the diagram (0.1) (Theorem (5.2)). Our argument here is a variation of the one in

[C, Section 6]. As an application of this, we prove our main theorem (Theorem (5.4)).

(5.1) Let / : X -+ A, Xo and Y be as in (3.1).
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As in Example (1.2.1), let

(5.1.1) / l o g : X l o g -» Alog

be the log family induced by the flat family / : X -• A endowed with the fs log structures

Mx, MA asociated to (Xo)red and {0}, respectively. Let y l o g be the log topological space,

defined by the fiber product

ylog v γΊ°§

(5.12) τy| τ*j

y > x.

Let

(5.1.3) S := [0, 1] x C i

be the product of the closed unit interval [0, 1] and the unit circle C\ with center 0 in the

complex plane. S is regarded as a monoid by multiplication. We consider the following

actions of the monoid S on the disc A and on the associated space Z\log:

(s, v) -1 = sυt on A ,
(5.1.4)

(s, υ) - (t, u) = (sυt, υu) on Z\log , where t = \t\u .

(5.2) THEOREM. We use the notation in (5.1) in Section 3 and in Section 4. Shrinking

the disc A, if necessary, the actions (5.1.4) of the monoid S lift to piecewise C°° actions on X,

on Y, on X l o g and on y l o g with the following three properties.

(i) The actions ofS are compatible with the inclusions X D Y and X l o g D y l o g, and

with the diagram

(ii) The action on Xo of each element (s, v) e S is homotopic to the identity.

(iii) The action ofS on X is compatible with the projections

\Di - ( J UIU[k) )
\ k<£I,k<a /

for any I C {1, . . . ,«}, where a is the number of irreducible components of the central fiber

Xo.

PROOF. We divide the proof into two steps.

Step 1. First we introduce 'hyperbolic polar coordinates' and an action of the monoid

[0, 1] on them. Recall the notation XQ = 5Zi<z<(3 m(i)Di for the central fiber of / .
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Let

C := [0, I f the unit cube in Ra ,

Cδ:= \(n)eC
(5.2.1)

J2 ff ( 0 =δ\ for 0 < δ < 1,

6 C
δ'e[0,<5] \<i<a

Let A := {1,... , a}. We choose a real number

(5.2.2) 0 < ε < 1.

In the following, we assume that all the cuboids contained in C are parallel to the cube C.

Let G be the cuboid in C with the two points B := (ε,... , ε) and (1, . . . , 1) as the extreme

vertices. We construct a family of projections from each face of G containing the vertex B to

the union of the faces of C containing the origin O as follows:

For / C A, we denote by B(I) the vertex of the cuboid G whose i-th coordinate is 1

for i e I and the other coordinates are ε. Let G(I) be the face of G with the two points B

and B(I) as the extreme vertices, and let C(/) be the face of C passing through O, parallel to

G(I) and of the same dimension as G(I). For each point Q e G(/), let Gil)^- + Q be the

affine subspace which is the orthogonal complement of G(/) passing through Q, and let pQ

be the projection in G(I)L + Q from the point Q whose rays are in the cuboid in G{I)L + Q

with the two points Q and (G(/)-L -f Q) Π C(/) as the extreme vertices. We denote by /?/ the

collection of the projections PQ (Q e G(/)). We thus have a family {pi}icA of projections.

Choose a positive number <5o < 1 so small that

(5.2.3) (n)ieA € E$o implies n < ε/2 for some i e A .

Then, for a fixed non-negative number δ < δo and any fixed point (rz ) e Cδo, the hypersurface

Cδ and the unique ray of the family of projections {pi}iCA passing through the point (r;)

intersect at one point and, moreover, the intersections are transversal except at the points of

the singular locus of Co. Denote this intersection point by

(5.2.4) (r, (r/)), where r := δ/δ0 and (r, ) e Cδo,

and call this hyperbolic polar coordinates of the point in Eδo.

We define a continuous action of the monoid [0, 1] on E$o

(5.2.5) R : [0, 1] x ESo -+ ESo by R(s, (r, (#•,•)» := (sr, (r, )>.

Then, this action has the following properties:

(5.2.5.1) R ispiecewise C°° .

(5.2.5.2) R(s, Cδ) = Csδ for δ e [0, δ0].

(5.2.5.3) fl(l, ) = i d .

(5.2.5.4) R(s, ) |c 0 = id for any s e [0, 1].
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Since δo is chosen to have the property (5.2.3), we see that

(5.2.6) {(n)eCδo\rj <ε/2}j=ι_,a

is an open covering of C&0. Take a C°° partition of unity

(5.2.7) {λ7 };=i,...,β

on Cs0 subordinate to the covering (5.2.6), and extend this over E$o by

(5.2.8) λj((r, (rj))) := λy((r/)) for all r e [0, 1].

Step 2. We define here actions of the monoid S on X and on X l o g.

Let

(5.2.9) r/O0:=|z/(30| and n(y)ui(y) := Zi(y) (1 < / < a),

where Zi(y) is the equation of £>/ on X, constructed in Proposition (4.3). Note that the r/(y)

are single-valued functions, whereas the Ui(y) are multi-valued. We may assume that the

positive number ε in (5.2.2) are chosen so small that

(5.2.10) {yeX\ n(y) < ε} c ί// (1 < i < β) ,

where ί// is the open neighborhood of /); in Proposition (4.3). We shrink A so that the U[

(1 < / < «) cover X, that r/(v) < 1 for all y e X and all / e {1, . . . , a}, and that the radius

of A is not greater than δo which is chosen in Step 1.

For y e X, let

/ : {/ I 1 / fl, ί// 3 ?}, * :

F l o g : the closure of τ~ι(F - F Π Xo) in X l o g .

Note that F Π XQ is a divisor with normal crossings on F, and hence F has the fs log structure

MF induced by (F Π Xo)red (see, (1.1.4)). F l o g -+ F in (5.2.11) is nothing but the one

defined by MF as in (1.2). Now for each U[ (ί e /), we choose a branch and regard U[ as a

single-valued function on F l o g . We thus have coordinates (r, ( ), M/( ))/ G / on F l o g . Now we

define an action of the monoid S = [0, 1] x C\ on F l o g

(5.2.12) Jx^f^ by ( rftT^ω

where

(5.2.13)

C/α/m 1. The action (5.2.12) is compatible with the restricted morphism / l o g : F l o g

Z\log.
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In fact, by (5.2.12) and Proposition (4.3) (ii), we have, for (s, v) e S and η e F l o g , that

r o / l o g(0?, υ) η) = (constant) ί s Y\n(η)m{ί) \ =s ro flog(η),
V iel I

u o fl°H(s, υ) η) = ( c o n s t a n t ) ί v f ] Ui(η)m(i) \=v uo f ι ° H η ) .
\ ίe/ /

Claim 2. The monoid actions (5.2.12) on the fibers F l o g fit together to give a continu-

ous action on X l o g.

In fact, in the notation in Section 4, it follows from (5.2.10) that

n(y) > ε forye ί//2) - ί// (1 < i < a).

Therefore, for each pair / C Λf c {1, . . . ,«}, by construction, especially by the property of

hyperbolic coordinates, we have

R(s,y)j=rj(y) and λj(y)=0

for all s e [0, 1], all y e Uj Π (U$ - UM) and all j e M - I.

From this together with (5.2.12), we get Claim 2.

By Proposition (4.3) (iii), we see that the 5-action on X l o g preserves the subspace F l o g .

Now, it is obvious that ^-actions on X l o g and on y l o g drop down to induce S-actions on X and

on Y and that these S-actions satisfy the other conditions in the theorem. D

(5.3) We assume that the family / : X -> Δ, in Section 3, is reduced. Using the action

of the monoid S in Theorem (5.2), we introduce a horizontal projection of the family of log

topological spaces / l o g : X l o g -> Z\log in (5.1) in the following way. We denote

(5.3.1)

For (0, 1), (s, 1) € S, we define a continuous map

(5.3.2) π : X l o g -• z j o

g

g by π(η) :== (0, 1) η = lim(ί, I) η .

Note that, by Proposition (4.3) (iii), π is compatible with the inclusion F l o g C X l o g.

(5.4) THEOREM. We use the notation in (3.1) and in (5.1). We assume that the family

f : X -> Δ is reduced. Then, the family of pairs of log topological spaces

Aog . (χlog^ ylogx _^ ̂ log

is locally piecewise C°° trivial over the base. In particular, the family of open spaces

/ l o g : (X l o g — y l o g ) -+ Δlog

o

is also locally piecewise C°° trivial over the base. This means that the above family / l o g

o

recovers the vanishing cycles of the given degenerating family f: (X — Y) —> Δ in the most

naive sense.
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PROOF. Let t = (t, u) e Δι°z and t0 = (0, 1) t = (0, u) e 0los. The theorem follows

from the remark after (5.3.2) and the following:

Claim. The restricted map ft : X~°s -> X~°s is bijective.

First, note that

(5.4.1) ί / ί ' : = £ / / - ( U Uk\ (/C{l,...,fl})
\k<£I,k<a I

form a subdivision of X = | J j <J,<a Uj•. Hence, by Theorem (5.2) (iii), it is enough to examine

the above claim on each U". Let x e D\ Π £/", F := πj~ι(x), and let F l o g be the proper

transform of F by %χ as in (5.2.11). By Claim 2 in the proof of Theorem (5.2), it is enough

to examine the claim even on each F^og. Here, by Definition (5.2.12), our restricted map

becomes

- l o g log ίn(η)^n((0, l)η) R(0,y)i
π ' ' "* ?o ' \ui(η)M>ui«0,l).η)=ui(η) U ' "

Here j := πχ(η). This is obviously bijective by construction. D

(5.5) COROLLARY. In the situation of Theorem (5.4), we have the surjective homo-

morphism of fundamental groups

πι(Xt-Yt)^πι(X0-Y0),

o

induced by the restriction of the shrinking map from the general fiber Xt — Yt = (f)~\t) to

the central fiber Xo - Yo = (/) - 1(0).

PROOF. Let t e Δ, t e τ^ι(t) and to := (0, 1) t e τ^ι(0). The assertion follows

immediately from the observation that the composite map τx oft of the shrinking map (5.3.2)

and the projection induces a continuous surjective map

xt-γt = x\os - Ff

log - ^ < o g - y;°g - xo - Yo,

whose fibers are products of circles, in particular connected. D

6. Integral structure of limit of variation of mixed Hodge structure and its local

monodromy. In this section, we introduce two types of integral structure and local mon-

odromy on the variation of mixed Hodge structure associated to a semi-stable degeneration of
o

pairs, as an application of the local topological triviality of the family / l o g : (Xlog — y l o g) -•

Δlog in Theorem (5.4) and the log version of the Riemann-Hilbert correspondence by Kato-

Nakayama.

(6.1) Let / : X —> Δ, Xo and Y be as in (3.1). In this section, we assume moreover

that X cPN x Δ, for some N, and / is the restriction of the second projection, and that Xo

is reduced.

Let

(6.1.1)
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be the fs log structure on X corresponding to the divisor with normal crossings X$ + Y (cf.

Example (1.1.4)), and let

ω\(Y)

be the sheaf of differential forms on X with log poles associated to the fs log structure

Mχ(X0 + Y) (cf. (1.3.1)). We denote by

(6.1.2) ωι

x/Δ(Y):=ωι

x(Y)/f*ωι

Δ

the sheaf of relative differential forms on X with log poles along Xo + Y, and by ωm

χ ,Δ {Y)

its de Rham complex. In the present case, ωχ,Δ(Y) = Ωχ,Δ(\og(Xo + Y)) in the classical

notation.

(6.2) THEOREM. In the notation in (6.1), (5.4) and (1.4), let V := Rq f*ωm

χ/Δ{Y)

and Lc := Rq (f]og)*C for any integer q. Then we have

(i) Lc ~ Ker(V : (τΔ)*V -> α £ l o g O ^ g (τ*)*V) on z\ log ,

or, equivalently,

(ii) V - (τ^)*(O^ g 0 C L c ) on 4 .

PROOF. Let TV := log γ be the monodromy logarithm of the locally free sheaf V\Δ*

on Δ* := Z\ — {0} with the Gauss-Manin connection V. Choose a multi-valued, flat frame

{<?!, . . . , er} of V|Z\*. Modifying

(6.2.1) βj := exp(-zΛ^) ^7 , z := (2τrv C T)" 1 logί,

we get an invariant frame {e\,... , er] which extends over Δ and induces a frame of the

canonical extension V of V|Z\*.

Let W be the weight filtration corresponding to Y. [SZ, Section 5] showed that there

exists a W-relative monodromy weight filtration M of the central fiber V(0), which is charac-

terized by the properties

(6.2.2) NMk c Mk.2 , ΛT* : grf+̂  gvj -^> grf_* gτj .

We may assume that the basis of V(0) induced by {e\,... , er} respects the filtration M. Then,

by using the frame {e\, . . . , er], we extend M over V. Here we add some comments on (6.2.2)

for the readers' convenience. For ej e Mk, we have

S/ej = -dz <S> N • exp(-zN) βj = —dz 0 exp(-zΛ^)

= -dz®exp(-zN) -

where ]Γ^ β/^ := TV^ e M^_2, α/ G C Hence
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Note also that exp(—zN) and TV commute. Hence we have

TV = -2πJ~-i Reso(V)

under the identification

πτ*(V|2l*)(iι) -^> V(0), βj(u) κ> ej(O),

where m : f) -> z\* is the universal covering and M G I ) .

Thus we see that V endowed with V and M is an object of Dn[\p(Δ) in (1.4.3). Applying

the log Riemann-Hilbert correspondence (1.4), we get a locally constant sheaf

Ker(V : (τ^)*V -> ωl

Δ

log ®Qiog τ* V)

on Δlog of C-vector spaces.

On the other hand, since by Theorem (5.4) the family

/ l o g : ( Z l o g — y l o g ) —• Z\ l o g

is locally piecewise C°° trivial over the base, LQ := ̂ ( / l o g ) * C is also a locally con-

stant sheaf on Z\log of C-vector spaces. These two locally constant sheaves coincide over

(τA)~X(Δ*) —> Z\* by construction, and hence they coincide over all Z\log.

The second isomoφhism follows from the first by the inverse correspondence. D

(6.3) We use the notation in (6.1) and (6.2). Choose now a multi-valued, flat frame

(6.3.1) {*!,... ,er}

of V\Δ* from the image of

(/^(/ l o g )*Z) I ( τ ^ ) " 1 ^ * ) -• «τΔ)*V) I ( τ ^ ) " 1 ^ * ) -^> V | Δ* .

We regard (6.3.1) also as a multi-valued, flat frame of (τ^)*V, by abuse of notation. Putting

(6.3.2) ej := exp(-zTV) • ej , z := (2πv C Γ T)" 1 logί,

as before in the proof of Theorem (6.2), we have an invariant frame

(6.3.3) {?!,... ,~er}

of V|Z\*, which extends over Δ and induces a frame of the canonical extension V of V|zA*.

We use the same letters for the induced frame of V, by abuse of notation.

(6.4) THEOREM. In the notation of Theorem (6.2) and of (63), we have two types of

integral structure onV = Rq f*ω^,Δ (F):

(i) The integral structure determined by the multi-valued, flat frame (6.3.1) of

(τΔ)*V ~ Ol2g ®z RqCfXog)*Z on Δι°*.

Here the local monodromy is induced by the C \ -action on Z\log.

(ii) The integral structure determined by the invariant frame (6.3.3) of

V ~ OA ®Z (τΔ)*Rq{fXo&)*Cf{°gTXZ[z\ on A .
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Here z = (2π^/—l)~ι logt as before, and the monodromy logarithm is given by

PROOF. We prove (i). By Theorem (6.2) and the universal coefficient theorem, we see

that

(τΔyv - d°Δ

g 0 c LC ~ OXo

Δ

g ®c C 0z W l o g ) * Z - d°Δ

g 0z W l o g ) * Z .

We prove (ii). We regard Z [z] as a sheaf of algebras on Z\ log.

Claim. RHfι°Z)Λ(flogΓlZ[z]) ~ Z[z] 0z ^ ( / l o g ) * Z .
o v

Set φ = / l o g . For a small open set U C Δlog, we will prove, by the Cech method, that

(6.4.1) ι ι ι

In fact, let U be a suitable open covering of φ~ιU. Then, by the property of the sheaf Z[z],

we have

Γ(u0n-..nuq,φ~ιZ[z]) -Z[z](U)<g>z Γ(uon.. n ί / ? , z ) .

Hence

C«(ZY, ^ - ^ [ z ] ) - Z[z](I/) ®z Ĉ (ZY, Z ) .

This implies (6.4.1), and the Claim is proved.

By the Claim, we see that

l°g df [zi Z[z] ®z Rqφ*Z

- (τΔ)~lOΔ ®z Z[z]

This together with (i) yields

Taking (τ^)*, we obtain (ii), by the projection formula.

The other assertions are obvious by construction. D

Note that the integral structures (i) and (ii) in Theorem (6.4) are independent of the choice

of a multi-valued, flat frame (6.3.1). However, the integral structure (ii) depends on the choice

of a coordinate t on Δ. Note also, in the case Y = 0, that the integral structure (i) in Theorem

(6.4) is the one in the limiting mixed Hodge structure of Schmid [Sc], whereas the integral

structure (ii) is the one in the limiting mixed Hodge structure of Steenbrink [Stl].

(6.5) REMARK, (i) In this paper, we restrict ourselves to the case of one-dimen-

sional base throughout, and we use the log version of the Riemann-Hilbert correspondence

of Kato-Nakayama [KN] in the proof of Theorem (6.2). However, we note that our argument

can be generalized to the case of higher-dimensional base. We note also that Section 6 can

be rewritten by using the theory of canonical extensions of P. Deligne instead of the above

correspondence.
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(ii) The author was informed by Morihiko Saito, on May 24, 1996, that there is a

correction of [St, (5.9)] in [Sa, 4.2].

(iii) When the base is 0 l o g in (5.3.1) and Y = 0, the assertion of type (ii) in Theorem

(6.4) is stated in [KN]. The proof of the Claim in the proof of Theorem (6.4) is due to C.

Nakayama.

(iv) Steenbrink [St2] introduced an 'integral structure' of the limiting mixed Hodge

structure by using the log structure associated to the pair Xo C X (cf. (1.1.4)). However,

he used fractions there and consequently neglected torsions. In this sense, his structure can

be regarded as a Q -structure. In contrast, in our formulation in Theorem (6.4) (i), we can

consider, for example, Rq ( / l o g ) * (Z/(/)) in the notation there, and hence /-adic cohomologies.

(v) After writing up this manuscript, Kazuya Kato and the author, we introduced in

[KU] a notion of polarized logarithmic variation of Hodge structure and a notion of polarized

logarithmic Hodge structure. The latter is the weaker notion obtained from the former by

forgetting the Griffiths transversality. Consider the case 7 = 0. Let Hχ be one of the integral

structures in Theorem (6.4), F be the Hodge filtration on V = Rq f*ωm

x,Δ, and (,) be the cup

product modified by the Lefschetz decomposition. Then the result in this section shows that

(Hz, (,), τ^/7) is a polarized logarithmic variation of Hodge structure.

(vi) After writing up this manuscript, the author was informed by T. Matsubara and

by F. Kato, independently, that they obtained in [Mt] and in [K] the integral structure of type

Theorem (6.4) (i) in the case where Y = 0 in our notation. Their method is different from

ours. They first proved a log version of the relative Poincare lemma and then used it to obtain

the integral structure.
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