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Abstract. In this paper, we generalize the concept of Kahler-Einstein metrics for Fano
manifolds with nonvanishing Futaki character. Similar to Kahler-Einstein metrics, these new
metrics have various nice properties. In addition, the equations for the metrics are in general
neither those of extremal Kahler metrics nor those of Kahler-Ricci solitons.

1. Introduction. For an n -dimensional compact complex connected manifold M with

c\ (M)R > 0, we consider the set /C of all Kahler forms in the class 2πc\ (M)R such that the

associated groups of the isometries are maximal compact subgroups* in the identity compo-

nent Aut°(M) of the holomorphic automorphisms of M. Let ω e JC. To such ω, we can

associate a real-valued smooth function fω on M such that

(1.1) Ric(ω) = ω + ^ί-ίdd fω and f ef»ωn = f ωn ,
JM JM

where Ric(ω) = y/^Λdd log(ω"). Let g := H°(M, O(TM)) be the complex Lie algebra of

all holomorphic vector fields on M. Then the Futaki character F : g —> C defined by

(1.2) F(X) : = ( T ^ T Γ 1 ί (Xfω)ωn/n\, X e g ,
JM

is independent of the choice of ω in JC. The group G := Aut(M) of all holomoφhic automor-

phisms of M has the Lie algebra g above. We now write

in terms of a system (z1, z 2 , . . . , zn) of holomorphic local coordinates on M. To each complex-

valued smooth function φ on M, we can associate a complex vector field grad^ φ of type (1,0)

on M by
l - βa d<P 9

2000 Mathematics Subject Classification. Primary 53C55; secondary 14J45, 14J50, 32J25.
Just to define the concept of Kahler-Einstein forms for manifolds with nonvanishing Futaki character, the max-

imal compactness of the group of the isometries is not necessary, as long as the condition (1.4) is guaranteed. Be-
cause, by an argument similar to [Cl; p. 109], the condition (1.4) automatically implies the maximal compactness, in
Aut°(M), of the group of the isometries.
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Then the vector space gω := {φ e C°°(Λf)c grad£<p e g,fMφωn = 0} has a natural

structure of a complex Lie algebra in terms of the Poisson bracket by ω. Moreover,

(1.3) gω = g , φ ** grad^<p,

is an isomorphism of complex Lie algebras. By abuse of terminology, we say that ω is a

Kahler-Einstein form on Λf if

(1.4) l-efωegω,

where Kahler-Einstein forms are often called Kahler-Einstein metrics, since a Kahler form

and the associated Kahler metric are used interchangeably throughout this paper. Take a

Kahler-Einstein form ω on Λf in the sense of (1.4). If F = 0, by setting φ = 1 — e ̂ ω, we have

e g by (1.3), and in view of (1.2),

φ)= ( ef«(dfω,dfω)ωn/n\,
JM

which implies fω = 1 by (1.1), i.e., ω is a Kahler-Einstein form in an ordinary sense. It is

thus expected that, even for F Φ 0, the above definition of Kahler-Einstein forms has some

good meaning.

In this paper, we shall show that even for F φ 0, Kahler-Einstein forms in the above

sense have several nice properties as those in an ordinary sense.

This work, except Section 6, was done during my stay at International Centre for Math-

ematical Sciences (ICMS), Edinburgh in 1997. I thank especially Professor Michael Singer

who invited me to give lectures at ICMS on various subjects of Kahler-Einstein metrics.

2. Extremal Kahler vector fields. For /C as in Section 1, let ω e /C. Let σω be the

scalar curvature Σ sF^Rβά of ω, where Rβ& := —(d2/dz^dza)(\ogωn). Moreover, we put

lω := {φ e gω φ is a real-valued function on M }.

Then its natural image, denoted by £, in g by the isomorphism in (1.3) coincides with the

space of all Killing vector fields on the Kahler manifold (Λf, ω). Let ϊ^ be the orthogonal

complement of lω in the Hubert space L2(M, ω)κ of all real-valued L2 functions on (Λf, ω),

and let pr : L2(M, ω)R (= \ω 0 1 )̂ -> \ω be the corresponding orthogonal projection. Then

the image υω et of the element pr(σω — n) in lω by the isomorphism gω = g in (1.3) is called

the extremal Kahler vector field on Λf, which is unique up to conjugacy in g (see [FM]). We

here show that vω is simultaneously the image of pr(l — e^ω) by the isomorphism gω = g.

The proof of this is reduced to showing the following:

THEOREM 2.1. pr(σω - n) = pr(l - efω).

Before proving this, we fix notation. For the Kahler manifold (Λf, ω), let Dω denote its

complex Laplacian ^ fc^d2/dz^dza on functions. By setting
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Ker F (D ω + 1) := {φ e C°°(M)F (Ώω + l)φ = 0}, (where F = R, C),

we see that Ker/r(Dω + 1 ) forms a Lie algebra in terms of the Poisson bracket by the Kahler

form ω. Note that the equalities (cf. [Fl])

(2.2) f (Πωφ{)φ2e^ωn = f φι(Πωφ2)e^ωn = - f ef«(dφu ~dφ2)ωn

JM JM JM

holds for all φ\,φ2 € C°°(M)c. Hence, all eigenvalues of the operator — Πω on the space

C°°(M)c of complex functions on M are nonnegative and real. We naturally have isomor-

phisms of Lie algebras

(2.3) Ker/?(Dω + 1) = t ω = t, φ oφ-φ o grad£<p ,

(2.4) Ker c (Q ω + 1) = gω = g , φ <-> φ - φ ** grad£<p ,

where φ := (fM ωn)~ι fM φωn. If 0 φ {0}, then the first positive eigenvalue of the operator

—D ω on the space C°°(M)c of complex functions on M is 1.

PROOF OF THEOREM 2.1. Let ψ be an arbitrary element of lω. Then ψ is written as

φ — φ for some φ e Ker#(Dω + 1). We now have

ί ψ(\ ~e

fω)ωn = ί φ(l-efω)ωn = f (Dωφ)efωωn - f (Uωφ)ωn

JM JM JM JM

= - f (Πωφ)ωn = -(dφ , dfω) 2 = {ψ , Πωfω) 2 - ί ψ{σω - n)ωn.
JM L L JM

It is now easy to see that pr(σω — ή) = pr(l — efω), as required. D

This theorem shows that vω = grad£pr(σω — n) = grad^pr(l — e^ω) e lω. Recall that

the corresponding real vector field v^ \= vω + vω on M satisfies

(2.5)

for some positive integer m (see [FM]), and that the equality υ% = 0 holds if and only if

Futaki's obstruction vanishes. In particular, we have:

(1) If v% Φ 0, then v% generates an S1-action on M.

(2) (XM '•= maxM pr(crω — n) = max^ pr(l — e^ω) is independent of the choice of ω in
/C, so that cίM is a holomoφhic invariant of the Fano manifold M.

Since we have fM pr(l — e^ω)ωn = 0 by pr(l — e^ω) e gω, the inequality Q?M > 0 always

holds. The identity (2.5) together with (1) and (2) above is called the strict periodicity of the

extremal Kahler vector fied on M.

3. Obstruction of Futaki's type. Let E be the set of all Kahler-Einstein forms in

/C in the sense of Section 1, i.e., E := [ω e /C; 1 — e^ω e gω}. Let ω e E. Then by
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1 _ efω — p r ( l _ efω) a n CJ efω > Q?

1 > max pr(l — e^ω) — CXM,
M

where OLM is the holomorphic invariant of M defined in the previous section. Therefore, we

have the following analogue of Futaki's obstruction:

THEOREM 3.1. If S Φ 0, then aM < 1.

REMARK 3.2. The Futaki character F : g -> C of M vanishes if and only if OCM = 0.

This is true even when £ is empty. To see this, let ω e /C. If F = 0, then by [FM], the

extremal Kahler vector field υω is zero, i.e., pr(l — e^ω) = 0, and hence OLM = 0. On the other

hand, if (*M = 0, then by

0 = aM > pr(l - efω)

and fM pr(l — e^ω)ωn = 0, we have pr(l — e^ω) = 0, i.e., F = 0 as required.

REMARK 3.3. There is actually a Fano manifold for which this obstruction of Futaki's

type does not vanish. This will be discussed in detail in Section 6. The existence of such an

example suggests that the concept of Kahler-Einstein forms in the sense of Section 1 will be

more closely related to the stability of complex manifolds than the concept of Kahler-Ricci

solitons (see for instance [Kl], [Gl] for Kahler-Ricci solitons).

4. Obstruction of Matsushima's type. If S φ 0, we have a decomposition theorem

of the Lie algebra g as shown for extremal Kahler metrics by [Cl]. In this section, we use

the same notation as in the previous sections. Let tc be the complexification of I in 9. For

nonnegative rational numbers μ, put

fl(μ) := Ker{ad(N/=ΊV) - μid0} = [X e fl [yΓΊυω , X] = μX}.

We set further λo := 0 for simplicity. Then the Lie subalgebra g(λo) of g is just the centralizer

ZQ(υω) of vω in Q.

THEOREM 4.1. Assume E φ 0 and let ω e 8. For some nonnegative integer r, there

exists a sequence of rational numbers 0 = λo < λ\ < "ki < λr such that

(1) e c = 0(λo) = Z 0 ( υ ω ) ;

(2) g is, as a vector space, nothing but the direct sum 0 [ = o β(λ/).

PROOF. Note that g = tc K U for the unipotent radical u of g. If u = {0}, then we are

done. Therefore, we may assume that u ^ {0}. By the strict periodicity of the extremal Kahler

vector field on M, there exists an increasing sequence of rational numbers λ\ < λi < < λ r

for some r > 0 such that u is, as a vector space, written as a direct sum 0 [ = 1 g(λ/). Then by

ϊc C ZQ(υω) (cf. [FM]), the proof of Theorem 4.1 is now reduced to showing λi > 0.

Choosing an element u φ 0 in g(λi), we have

(4.2)

On the other hand, there uniquely exist elements wo, fo of Kerc(Πω + 1) such that u, υω are

respectively the images in g of wo, VQ by the Lie algebra isomorphism Kerc(Qω + 1) = g in
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(2.4). In view of ω e £, we have

1 - e

fω = pr(l - efω) = v0 - Co ,

where Co is a constant as in Section 2. We first observe that the complex conjugate MO of

UQ φ 0 does not belong to Kerc(Qω + 1). Because otherwise, both the real part Re MO and the

imaginary part Im MO of MO would belong to Ker/?(Dω +1) , and hence u e l c in contradiction

to 0 φ u e u. On the other hand, by MO £ Kerc(Πω + 1),

/ uoefωωn = / uoef"ωn = - I (Πωuo)ef"ωn = 0.
JM JM JM

Note that all eigenvalues of — D ω are nonnegative real numbers and its first positive eigenvalue

is 1 (cf. [Fl]). Therefore,

(4.4) [ (-Πωΰo)uoefωωn > f \uo\
2efωωn .

JM JM

Again by u € Kerc(Uω + 1),

(4.5) f (-Uωuo)Hoe
fωωn = [ \uo\

2ef«ωn .
JM JM

By (4.4) and (4.5), /M{(-DωMo)Mo + (Bωuo)ΰo}efωωn > 0. This inequality together with

(2.2) implies

(4.6) f 2v/^T{(ImDω)MO}Moe/ωω/1 > 0,
JM

where ReD ω , ImD ω are respectively the real part and the imaginary part of D ω , so that

Πω = ReD ω + \[—T ImD ω . A simple computation shows that

(4.7) 2VZ4{(ImDω)M0}e/ ω = ( v ^ T r V ω , MO] = [Λ/

where the Poisson bracket is defined as in [FM]. By (4.2), [>/—Tvo» wo] = λjMo In view of

(4.6) and (4.7), we now obtain λ\ > 0 as required. D

This decomposition theorem is regarded as a variant of Matsushima's obstruction. I have,

however, a suspicion that Theorem 4.1 is true for any Fano manifold M even if 8 is empty.

We therefore pose the following:

PROBLEM 4.8. Either prove the above decomposition theorem for every Fano mani-

fold M or disprove it by giving a counter-example.

REMARK 4.9. If M is an rc-dimensional toric Fano variety, there are affirmative an-

swers. Namely, the above decomposition theorem is true in the follwing cases:

(1) n = 2 and M is an orbifold (cf. [Nl]);

(2) n = 3 and M is nonsingular (cf. [SI], [Nl]);

(3) n — 4 and M is nonsingular (cf. [Nl]).
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5. Existence. In this section, by solving an ODE, we give an example of a Kahler-

Einstein form on a manifold with nonvanishing Futaki character (cf. [Cl], [HI], [KS], [Gl],

[Ml]).

Let W be a ̂ -dimensional compact complex connected manifold with a Kahler-Einstein

form φ in an ordinary sense such that Ric(0) = φ. Let L be a holomorphic line bundle over W

with Hermitian fibre metric h such that all eigenvalues, say μ\, μ2, , βk, of the curvature

form Ric(/z) = yf—ϊdd log/z are constant with respect to φ on W. Using vector bundles and

locally free sheaves interchangeably, we shall now define a vector bundle E := Oψ Θ L of

rank 2 over W. Consider the associated projective bundle M := P.(E) consisting of all those

lines in the fibres of E which hit the locus of the zero section of E. Then L and L" 1 are

naturally regarded as a Zariski-open subset of M in such a way that

Doo=P.({0}ΘL) = M\L,

where Do and Doo are respectively called the zero section and the infinity section of the total

space P.(E). Consider the Hermitian norm

p : L ^ t f > 0 , i h+ p(t):=\\i\\h,

on L induced by h. Then p is regarded as a function on the Zariski-open subset M \ Doo of

M. Note that the C*-action on L by scalar multiplication extends naturally to a C*-action on

M such that both Do and Doo are the fixed point set of the C*-action on M. As in [Ml], we

consider a smooth C*-equivariant blowing-down M of M possibly with the case M = M.

More precisely, let σ : M -> M be the C*-equivariant blowing-up of the Fano manifold

M along the nonsingular center Do := σ(Do) and D ^ := σ(Doo). Put no := codim^Do

and rioo := codimMDoo Moreover, put M° := M \ (Do U Doo) and M° := M \ (Do U

Doo). Since σ maps M° isomorphically onto Λf°, we hereafter identify M° with M°. Let r :

M°(= M°) -> R be the smooth function defined by

(5.1) r = - l o g ( p 2 ) .

Let p : M ->• W be the natural projection. Then the pullback p*0 is, when restricted to M°,

regarded as a 2-form on Λf °.

We are looking for a Kahler-Einstein form ω on M in the sense defined in Section 1. Put

n := k + 1 = dime M. The form ω is written as Ric(y ) for some Kahler form η on M in the

class 2πc\ {M)R. By restricting η to Λf°, we now write ηn as

(5.2) ηn = V ^ T π ^ - ^ p V ) ^ ^ Λ θr ,

where j = y(r) is a smooth function in r. By the same computation as in [Ml], we have

ω = p*0 + y/(r)Ric(/z) + v

/ r T j / / ( ^ ) a r Λ 3r, and hence

(5.3) ωn = Ric(r?r = V^T ^ / r(r) fj(l + μ,/(r)) (p»*3r Λ
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Note that y'(r) extends to a real-valued smooth function, denoted also by / = y'(r) by abuse

of terminology, on M. This / ( r ) , which maps M onto the closed interval [—«oo, «oL defines

the moment map for the Kahler manifold (Λf, ω) with respect to the C*-action on M. Then

with the notation in Section 2, we have yf(r) e Ker/?(Dω + 1) and in particular

(5.4) / - Co e Qω ,

for some real constant Co, so that grad£/(r) e g. Look at the identities (5.2), (5.3) together

with the equality e^ω = ηn /ωn. Then as the equation for ω to be a Kahler-Einstein form in

the sense of Section 1, we have the following:

(5.5) e~y y" fj(l + μ f/) = d + C 2 /,

where C\, C2 are real constants which will be specified later. In fact, if (5.5) holds, then by

combining C\ + C 2 / = e~~y{y" Π L i (1 +M//)}~ 1 = efω with (5.4), we obtain efω -1 e gω,

i.e., ω is a Kahler-Einstein form in the sense of Section 1, as required. For brevity, we put

ba := Γ pa f\(l + μiP)dp , α = 0, 1, 2 .

Note that the equality 0 < 1 + μip holds for all i whenever — rtoo < p < ΠQ (see for instance

[Ml]). Then by the Schwarz inequality, b\ < bφi holds. Moreover, by fM e^ωωn = fM ωn

and ef°> = C\ + C2j r, we have

(5.6) Ci&0 + C2fci =b0.

On the other hand, by / ( r ) € Ker/?(Dω + 1) together with (2.2), we obtain fM y\r)eίωωn =

— fM(Πωy/(r))e^ωωn = 0. Hence, the compatibility condition

(5.7) C{bι+C2b2=0

holds. Recall that the Futaki character of M vanishes if and only if b\ = 0 .

We now divide the whole situation into the following two cases:

Case 1. b\ = 0. In this case, by (5.6) and (5.7), we put (C\, Ci) = (1, 0), where the

compatibility condition (5.7) above reduces to the vanishing b\ = 0 of the Futaki character.

Then it is well-known (see for instance [Ml]) that the equation for M to admit a Kahler-

Einstein metric in an ordinary sense is exactly (5.5).

Case 2. b\ φ 0. Then M does not admit a Kahler-Einstein metric in an ordinary

sense. Let us exclude the case — n^ < bi/bx < no, so that either £2/^1 > «o or

-ΠOQ. Now by (5.6) and (5.7), it follows immediately that (Ci,C2> =

b\), —bob\/(bob2 — b\)). Then the right-hand side of (5.5) is bounded from below by some

positive real number.
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We now solve the equation (5.5) with (C\, C2) as above. Define a polynomial Λ = A(x)

in x e R by

fx
 k

A(x) :=- p(Cι + C2 p) J"J(1 + μ, p)dp .

By the condition (5.7), we have A(no) = A(—n^) = 0. In view of [Ml], the order of zeroes

of A(x) at x = no (resp. x = — ΠQQ) is no (resp. Woo) Note also that both 0 < A(x) < A(0)

and A\x)/x < 0 holds for all nonzero x with — n^ < x < no- In particular, the rational

function A'(x)/(x A(x)) is free from poles and zeroes over the open interval (—«oo, no), and

has a pole of order 1 at both x = —noo and x = no. Then

B(x) := - Γ A\p)/(pA(p))dp

is monotone increasing over the interval (—n^, no), and B maps (—n^, no) diffeomorphi-

cally onto R, because in a neighbourhood of x = no (resp. x = — /too), #(*) is written

as — log(fto — x) + real analytic function (resp. log(«oo + ^) + real analytic function). Let

B~ι : R —• (—Woo, «o) be the inverse function of Z? : (—^oo, «o) -> ^ We define a smooth

function x = x(r) in r by

jc(r) — ^ - ' ( r ) , r e / ? .

Since x'(r) = -x(r)A(x(r))/A'(x(r)), by setting u(r) := -log(Λ(jc)), we obtain w'(r) =

JC(Γ). Then by A'(x(r)) = -x(r)(C\ + C2JC(Γ)) f lLi ί1 + M/^(O), we have

u"{r){C\ + C2w
;(r)) Y[(1 + μ/iέ'ίr)) = exp(-«(r)),

i.e., j = u(r) satisfies (5.5). Moreover, u"(r) = — x(r)A(x(r))/Af(x(r)) is a real analytic

function in x(r) which is nonvanishing on (—n^, no) and has a zero of order 1 at both x = no

anάx = — ft 00.

Let us now assume

(1) The function p (resp. p~ι ) on M° extends to a smooth function on M \ Doo (resp.

M \ Do ), and

(2) p2n°(p*φ)kdr A dr (resp. p~2n°°(p*φ)kdr A dr ) extends to a smooth nonvanishing

2(k + l)-form on M \ Doo (resp. M \ Do),

where these conditions are satisfied, for instance, if no = «oo = l Then by (2), for the

solution y = u{r) for (5.5), the Ricci form ω = p*0 + ii'(r)Ric(A) + VΓ=:TM//(r)ar Λ dr of

V ^ π ^" v(p*0) / :ar Adr = J^in e~u{r) (p*φ)kdr A dr extends to a smooth Kahler form

on M, which is a Kahler-Einstein form on M in the sense of Section 1.

EXAMPLE 5.8. Let W = Pk(C) and L = Opk(l), where n0 = n^ = 1. Then

M = P.(Opk Θ (Ppλ(l)) admits a Kahler-Einstein metric in the sense of Section 1 as follows.

For the standard Hermitian metric h for L, we have μ\ = μ 2 = = /x*= 1/n, where
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n = k + 1. Moreover,

feα = / pa(l+p/n)kdp>0, a= 0 , 1 , 2 ,

and we can easily check that b2 > b\ > 0. Now by £2/^1 > 1 = no and no = «oo = 1,

the above solution of (5.5) applied to this case gives an explicit example of a Kahler-Einstein

form in the sense of Section 1. Note also that M has nonvanishing Futaki character by b\ φθ.

EXAMPLE 5.9. Let W =Pι(C) xP2(C) and L = 0 ( 1 , -1), where 0 ( 1 , -1) denotes

the line bundle p\ΌP\ (1) <g> p\ΌPi{-\) on W, and /?/ : PX{C) x />2(C) -* P'(C), i = 1, 2,

are the natural projections. Moreover, let no = «oo = 1. Then we may choose (μi, μ2, M3) =

(1/2, —1/3, —1/3), and b\, b2 are computed as follows:

bx = -4/45 , b2 = 26/45 .

By b2/b\ = —13/2 < — 1 = — ΠQQ, the above solution of (5.5) applied to this case gives

again an explicit example of a Kahler-Einstein form in the sense of Section 1. This M also

has nonvanishing Futaki character by b\ φ 0.

6. A Fano manifold M satisfying OLM > 1. We here consider exactly the same situ-

ation as in the last section except that, in this section, M does not necessarily admit a Kahler-

Einstein metric in the sense of Section 1. We in particular keep the same notation as in the last

section. For simplicity, we further assume that W is a /:-dimensional irreducible Hermitian

symmetric space of compact type, where W obviously admits a Kahler-Einstein form φ in

an ordinary sense such that Ric(φ) = φ. As in the last section, we consider a Kahler form

ω := Ric(λ/) on M, where η is a Kahler form on M in the class 2πc\(M)R such that the

restriction to M° of the volume form ηn is given by (5.2). We write

ω = p*φ + /(r)Ric(h) + V^ϊy"(r)dr Λdr.

Recall that h is a Hermitian fibre metric for the line bundle L such that all eigenvalues μ\,

μ2, , βk of the curvature form Ric(n) are constant with respect to φ on W. Recall further

that y'{r) maps M onto the closed interval [—n^no], and this defines the moment map

for the Kahler manifold (M, ω) with respect to the C*-action on M. In particular, y'(r) e

Ker*(Dω + 1).

Now, using the notation in Section 2, we consider the finite-dimensional vector subspace

S := R 0 tω of the Hubert space L2(M, CO)R, where R denotes the space of real constant

functions on M. Let pr$ : L2(M, ω)n(= S 0 S1) -> 5 be the orthogonal projection. Then

(6.1) / ( r )eKer*(Πα, + l ) c S .

Since the extremal Kahler vector field υω is in the center of t, we can find real constants C\,

C2 such that

(6.2) pr 5 (e / ω ) = Ci + C2y'(r).
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By (6.1), we have fM y'(r) p r 5 ( ^ ) ωn = fM y\r) e^ωn = - fM(Pωy'(r)) e^ωn = 0, and

in view of (6.2), we obtain the equality

(6.3) C\b\ + C2b2 = 0,

where bo, b\, b2 are the same as in the last section. Recall the inequality bob2 > bf. By

JM Vτs{e^ω) of = fM efω ωn — fM ωn, we further obtain

(6.4) C\b0 + C2b\ = bo.

We here consider the case where b\ φ 0, i.e., the Futaki character is nonvanishing. Then as

in Case 2 of the last section, it follows from (6.3) and (6.4) that

(Ci,C2) = (bob2/(bob2-bf)i-bobι/(bob2-bf)).

Since pr(l — e^ω) = prs(l — e^ω) = 1 — C\ — C2y\r), and since y\r) maps M onto

[—rioo, no], the invariant CCM = maxM pr(l — e^ω) is given by the following:

THEOREM 6.5. In the above situation, we have

= ί 1 + (~b0b2 + bobmo) - Φob2 - b\)~x if b\ > 0,
aM " 11 + i-b0b2 - bobχnoQ) (b0b2 - b\Γx if bx < 0,

and in particular a M > 1 ifand only if —«oo < ^2/^1 < ̂ 0 Moreover, OLM = 1 if and only
if(b2/bl+n00)(b2/bl-no) = 0.

EXAMPLE 6.6. Let W = P2(C) and L = OP2(2), where n 0 = «oo = l Then the

Fano manifold M = PXOpi 0 OPi{2)) admits no Kahler-Einstein forms in the sense of

Section 1, because the inequality OLM > 1 holds as follows. For the standard Hermitian metric

h for L, we have μ\ = μ2 = 2/3. Therefore,

b\ = 8/9, b2 = 38/45,

and we can easily check that —1 = —«oo < b2/b\ < 1 = «o Thus, CIM > l

7. The equation for "Kahler-Einstein forms" is a second order PDE. Let M and

/C be as in Section 1, and fix a maximal compact subgroup K of Aut(M). Consider the set Kκ

of all ̂ -invariant Kahler forms in /C, and let C°°(M)^ denote the space of all ^-invariant

functions in C°°(M)R. Take a Kahler form ω e )CK. For each φ e C°°(M)%, we put

ωφ := ω + \/—T39<p. The equation for ω^ 6 /C* to be a Kahler-Einstein form in an ordinary

sense is known to be

(7.1) (ω + V=ϊddφY _ c_φ+f^
ωn

If the Futaki character of M does not vanish, then (7.1) above has no solutions. Let vω e g

be the extremal Kahler vector field as in Section 2, and let ϋω be the corresponding element

of gω by the isomorphism Q = gω. Note that vω is independent of the choice of ω in JCK, and

hence vω will be written simply as V. Then by [FM; p. 208],
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Now, the equation for ωφ e /C to belong to E, i.e., to be a Kahler-Einstein form in the sense

of Section 1 is

( 7 2 ) (
ωn 1 - vω - -s/^ϊ Vφ '

Because, taking the >/—T53 log of both sides of (7.2), we obtain Ric(ω^) — Ric(ω) =

- ^f-ίddfω + y/^ϊdd\og(l - vωv) and this together with Ric(ω) = ω +

implies y/^Λddfa^ = Ric(ω^) - ωφ = V ^ T a a log(l - 5*V), and hence

efωφ _ i — 5*^, i.e., ωφ e ε.

In view of Section 3, we may assume that CXM < 1, where Q?Λ/ is the holomorphic invari-

ant of M as defined in Section 2. Note that the denominator of the right-hand side of (7.2) is

1 — vω(f>, and it is bounded from below by a positive real number, since

max υωφ = (*M < 1
M

Note also that the equation (7.2) is a second order PDE. Moreover, Kahler-Einstein forms

in the sense of Section 1 have various good properties about uniqueness. For instance, the

arguments in [BM] go through also for Kahler-Einstein forms in the sense of Section 1, except

that some special care must be taken in handling a priori estimates. (This delicate part was

pointed out in ICMS by Tian.) These will be treated elsewhere (cf. [M2]).
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