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HANKEL OPERATORSON HARMONIC BERGMAN SPACES
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Abstract. We study Hankel operators on the harmonic Bergman spaces on bounded
smooth domains, and obtain a necessary anficguft condition for Hankel operators to be
bounded or compact on both harmonic Bergman space and its dual space.

1. Introduction. Let 2 be a bounded domain wiii®°-boundary inR"*, n > 2, and
V be the Lebesgue measure Bf. For 1 < p < oo, the L? harmonic Bergman space
b? = bP(£2) is the set of all complex-valued harmonic functionsn 2 for which

1/p
lull, = (/ |u|”dV> .
2

Also, by b*° we denote the space of all bounded harmonic function®ollt is known that
b*° is dense in each”.

As is well-known b7 is a closed subspace bf = L”(£2, V) and hence a Banach space.
In particular,b? is a Hilbert space. Each point evaluation is a bounded linear functional on
b2. Hence, for each € £2, there exists a unique functia®(x, -) € b2 having the following
reproducing property:

fx) = _/9 FOR(x, y)dy

for all f € b2, wheredy = dV (y). The reproducing kernelB(x, -) are known to be sym-
metric and real-valued. L&D be the Hilbert space orthogonal projection frdrf onto 2.
Then, the following integral formula holds:

(1.1) Q[f](x>=/QR<x,y)f<y)dy, xeQ

for all f € L2. For each fixedk € £2, the functionR(x, -) is known to be bounded of?.
Thus, the operato@ defined by (1.1) extends to an integral operator frbhinto the space
of all harmonic functions o2. Moreover, for 1< p < oo, itis known thatQ is a bounded
projection fromL? ontob?.

Letl < p < ocoandf e L. TheHankel operator H ¢ with symbol f is densely defined
onb? by

(1.2) Hpu= (I — Q)Mju

foru € b, whereM s is the multiplication operator defined Bf g = fg.
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Let f e LY. Thecommutator with symbol f is defined byC; = M;Q — QM. If
g € L™, then it is easy to see thal; g is well-defined. Sincd.* is dense in everg?, Cy
is densely defined oh” for each 1< p < oco. As we will see, there is a close relationship
between Hankel operators and commutators.

In this paper, we study Hankel operators on harmonic Bergman spécgsfined on
a bounded smooth domain R for 1 < p < co. We present a necessary and sufficient
condition for Hy to be bounded or compact on bdth and its dual space. The results of this
paper extend those in [6] on the unit ball to general bounded smooth domé&ifs in

This paper is organized as follows. In Section 2, we state our main results. In Section 3,
we collect some preliminary results that we will need. In the last section, we prove our main
result.

The author would like to thank Professor Hitoshi Arai for his help, encouragement, and
advice. He also thanks Dai Wakisaka for useful discussions during the preparation of this
paper.

NoOTATION. Throughout the paper, the exponentwill always denote the conjugate
exponentofp,i.e.,l/p+1/p’ = 1forl< p < oo. xs denotes the characteristic function of
a setS C R". We also use the notatioft < B if there exists a positive consta@itsuch that
A < CB. Also, we writeA ~ Bif A < BandB < A.

2. Mainresults. Letl< p <ooands € (0,1). Forx € £2, letr(x) = dist(x, 952)
and
Es(x)={y €2 |y—x|<dr(x)}.
Sinces < 1, Es(x) is actually the euclidean ball with centeraand radiusr (x).
For f € L?, we define

N 1
= dy,
f5(x) VESD oo fdy
1
MVE(f;ix) = ——— |fnIPdy,

V(Es(x)) JEsx)

MOZ (f; x) = 1F ) = f5(0)lPdy.

V(Es(x)) JE;x)
TheBloch space B andlittle Bloch space By are defined by

B={feCl); supr(x)|Vf(x)| < oo},
xef
Bo={f € CX82); r(x)|Vf(x)] > 0asx — £} .
The space BN} and its subspace V§are defined by

BM{ = {f € L?; supMV{(f;x) < oo},
xes

VM{ ={f € L? ; MV§(f;x) — Oasx — 9£2}.
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Since MV (f; x) = (|f/|705(x), Theorem 3.5 and Theorem 3.11 of [2] indicate thatjBamd
VMg’ are independent of the choice &fSo, we may drop and simply write BM = BM,‘§7
and VM? = VM¥.

The space BM® and its subspace VMQare defined by

BMOJ = {f € L” ; supMOj(f;x) < oo},
xes
VMOY = {f € L” ; MO} (f;x) — O asx — 32}.

We will see later that BM® and VMO, are independent of the choice®fTherefores will
be dropped in the future references to these two spaces.
Letl < p < ¢ < oco. A simple computation using Holder’s inequality gives

(2.1) MVE(f 0)YP < MVE(f 0l MOS(f; )P < MOY(f; )4
Thus, we have
BM? c BM”, VMY c VM?, BMOY c BMO?, VMO? c VMO?”.

Furthermore, it is easy to see that these inclusions are proper. For exampie affunction
with compact support il2 such thatf is in L? but notinL9, then f is in VMO? but not in
VMOY.

The main result of this paper is the following theorem, which extends the results obtained
by J. Miao in [6].

THEOREM 2.1. Letp e[2,00)and f € L”.
(a) Hy isbounded on both b and b if and only if f € BMO®”.
(b) Hp iscompact on both b” and b?" ifand onlyif f € VMO?.

The following two corollaries are immediate consequences of the theorem above.

COROLLARY 2.2. Let f e L2

(@) Hy isbounded on b2 if and only if f € BMO?.
(b) Hy iscompact on b if and only if f € VMO?2.
COROLLARY 2.3. Letp €[2,00)and f € b”.

(a) Hy isbounded on both 57 and b if and onlyif f € B.
(b) Hy iscompact on both b” and b?" ifand onlyif f € Bo.

3. Lemmas. Recall thatr(x) = dist(x, 052) forx € £2. Fore > 0, we set
2, ={ye2;r(y =c¢e},

andD, = 2\ £2.. Letz be the normal projection t&s2, namely, forx € £2 neard$2, (x)
is the closest point of$2 to x. Then the smoothness of the boundary implies that there
existseg > 0 such that the following hold.

(a) ris asmooth function ol,,.

(b) The projectionr : D, — 02 is well-defined and smooth.
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(c) Fort > O witht < eg, the projectionz |, : 082, — 952 is one-to-one and onto,
andn e 352, can be written ag = () +tn,(,;. Here and elsewhere; denotes the inward
unit normal tod$2 at¢ € 942.

(d) Vr(n) =ngu) forn e Dy,.

(e) Forall 0< ¢ < gg and nonnegative continuous functiofi®n D,

&
(3.1) swd~ [ [ pc s modnda ).
D 32 Jo
whereo denotes the surface area measur@ fn
We refer to [5] and [3] for more information and proofs.

LEMMA 3.1. Lets € (0, 1). Then we have
(3.2 AL=8rkx)<r@y) <@A+8rx)
forall x € 2 andy € Es(x).

PROOF. See Lemma 3.1 of [2]. m]

LEMMA 3.2, Letd e (0,1 andx € £2. If y € Es/3(x), then Esj3(y) C Es(x) and
Es/3(x) C Es(y).
PROOF. The proof is essentially the same as that of Lemma 5 of [6]. |
LEmmA 3.3. (@) Thereisa constant Co depending only on £2 such that
(3.3) Cot < R(x, x)r(x)" < Co
for all x € £2.
(b) Lets € (0,1). Thenthereisa constant C1 depending only on §2 such that
IRy, 2) = RO, )| C1d

G4 |R(x, x)] T (-t

forall x € 2 andy, z € Es(x).

PrROOF. Part (a) is an easy consequence of Theorem 1.1 of [4]. Now we prove (b). By
Theorem 1.1 of [4], there is a constaftsuch that
C

Z)n+l = r(y)”"'l ’

C
r(y)yrtt
forall y,z € 2, whered(y,z) = |y — z| + r(y) + r(z). Fory € Es(x), (3.2) shows that
r(y) > (L= 68)r(x). Thus, fory, z € Es(x), we have

IVyR(y,2)| <
Y d(y,

c
V.R(y, < <
IVeR(y z)l_d(yiz)nﬂ_

C C
V., R S < < 9
IVyR(y,2)| = r(y)rtt = (1= §)nt1lp(x)ntl
C
IV:R(y,2)| <

FOYFL S A= oy o
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If v,z € Es(x), then Mean Value Theorem gives

IR(y,2) = R(x,x)| = sup (IVuR(u,v)[ly —x[+ [VyR(u, v)||z — x|)

u,veEgs(x)
2Cs
< —-— .
- (1 _ 3)n+lr(x)n
Combining this with (a), we obtain (b). |

LEMMA 3.4. Letd € (0,1)andp € [1,00).If f € LP,then
1
3.5 MO? (£ 7/ / — Pdzd 2PMO?L (£
(3.5) s (frx) = VEE? Jn Em)lf(y) f@Pdzdy < 5 (f3 %)

for all x € £2.
PROOF. Foreveryy, z € £2,

1fO) = f@I<1fO) = B+ 1/ @) — )],

and therefore
If ) — F@IP < 27X F ) = HOIP+1f@) — fG0)IP).
Thus

1
V(Es(x))2 —~ Pdzd
V(Es(x))? /Ea(x) /Em) [ f(y) = f(@)|Pdzdy

2r-1 R ~
V(Es(x))2 - . - P)dzd
= V(Es(x))2 /Ea(x) /E(s(x)(lf(y) FsCOI? +1f(2) — fs(x)|P)dzdy

2r-1

=< — fs(x0)|Pd dz x 2=2PMO?(f; x).
V(Es())2 /Ea(x)lf(y) Ss(x0)| y/Ea(x) Z X 5 (fix)

On the other hand, we have

p

MOJ (f; x) = ) f(2dz| dy

V(Es(x) JEy 0 T V(Es() Sy

1 p
S i ) — f@)ld ) dy.
V(Es(x))1tp ./155(x) </;?5(x) 7O = J@ldz ) dy
Applying Hoélder’s inequality, we get

1
MOL(fix) =y [ — f@)IPdzdy. 0
W= vammr Lo | e = f@irdzdy

REMARK. If p =2, then it follows from a direct computation that

1 ] )
V(Es ()2 — F(2)2dzdy = 2 MOA(f;
V(Es(x))2 /Es<x>/Ea<x>'f(y) f@ldzdy 2(f; %)

forall x € 2.
LEMMA 3.5. Letp € [1,00)ands € (0, 1). Then B C BMO} and By C VMOY.
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PROOF. Supposef € B andx € 2. Fory € Es(x), it follows from Mean Value
Theorem that

lf) = f)] = < sup IVf(Z)I>Iy—XI =< ( sup V(Z)IVf(Z)I)

z€Es(x) z€Es(x)

_y=xl
(1—=0)r(x)
1)
< —< sup V(Z)IVf(Z)I)-

- z€E5(x)

The second inequality above comes from (3.2). It is easy to see that

1
MO?(f: x) < —— / / — f@)\Pdzd
s (f3x) < VEN? Sy Ea(x)lf(y) f(@)|Pdzdy

2r—1
< -
= V(E;(x))?
oD

= — — Pd
V(Es() Ea(x)lf(Y) f)Pdy

25 p P
S(—) ( sup r(z)IVf(z)l) .
1-3 z€Es(x)

This shows thaf € BMOY as desired.
Supposef € Bp. Then, for any > 0, there exist® > 0 such that(z)|V f(z)| < ¢ for
all z € 2 with r(z) < p. Forx € £ with r(x) < p/(1+ §), we obtain by (3.2)

/ / (F ) — FOIP + 1) — F)IP)dzdy
Es(x) JEs(x)

r@z) <A+ 8rx) <p for ze Es(x).

Therefore we have

sup r(@IVf()l <e
zeEs(x)

forall x € £2 with r(x) < p/(1+ 8), which implies that
25 P P
MOS (f; x) < <—> ( sup V(Z)IVf(z)I) -0
1-6 z€Eg5(x)
asx — 9£2. Thusf € VMOY and we are done. ]

LEMMA 3.6. Let p € [1,00) and§ € (0,1). Then BM? C BMO§’ and VM? C
VMOJ.
PROOF. Supposef € BM”. By Hoélder's inequality, we have
1 p
‘V(Es(x)) Es(x)

1 ) p-1
T — d d
= V(ES(X))p(—/Ea(x) 7o)l y)</;:"a(x) y)

1
= — Pdy = MVE(f;x).
VE®) Jesn | f D[P dy 5 (f:x)

| f5 ()P = f)dy
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Thus

Per. _; _ 7 P
Mos(f’x)_V(E(;(x)) Eé(x)lf(y) Ss()|Pdy

p—1
S -
V(Es(x)) JEs(x)
< 2”_1(MV§7(f;X) +1f01P) < 2° MVfg’(f;X)-
This shows that BM ¢ BMOY and VM? C VMOJ. O
We have shown thaf + BM?” ¢ BMOY andBy + VM” C VMOY. We wish to show
the converse inclusions Bl\/gbc B+ BM? and VMO§7 C Bo+ VM?. This also means that

BMO; and VMC; are independent of the choice &fTo prove this, we need the following
lemma.

(AfODIP + 15 (x)1P)dy

LEMMA 3.7. Leté € (0,1). Then there exists a smooth nonnegative function » on
£2 x £2 which satisfies the following conditions:
(a) Foreachx e 2,y (x,y) =0ify ¢ Es/a(x) and

(3.6) [ vy =1,
2
(b) Thereare constants Cop, C1 depending only on £2 and § such that
(3.7 [ (x, y)| < Cor(x)™,
(3.8) Ve, I < Crre) ™t
forall x, y € £2.

To construct a function satisfying the above lemma, we need a smooth defining function
by which the distance functionis bounded from above and below. Lgebe a smooth defining
function for §2 such thatp (x) = r(x) for x € 2 close enough t62 (see Section 1.2 of [5]).
Then it is easy to see that there exists a constasuich that
P

“rix
We can also take a constamt satisfying|Vp(x)| < M forall x € £2.

R <R forall x € 2.

PROOF OFLEMMA 3.7. Letg € C3°(R") be a nonnegative function d®" with sup-
port insideB(0,§/3) = {y € R*; |y| < §/3} such thatfRn ¢dV = 1. Forx,y € 2, we
define

R \" (R(y —x)
3.9 ,Y) = )
(3.9) yeew (p(x)) ¢< p(x) >

We are going to prove that thus defined satisfies (a) and (b).
Letx e 2.1fy ¢ Es/3(x), then

Ry — x| -

| |>8()>(S (x), and we have )
y x_3rx_3R,ox, o) 3
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Since supp C B(0,8/3), it follows thaty (x, y) = 0if y ¢ Es/3(x). Next, by change of

variables, we get
[ wendy= [ gav=1.
9 R)l

To prove (b), let
C(¢) = supmax|¢(2)l, D1 ()], ..., |Dnp ()1} .

zeR?

Then
R n
[V (x, y)| < C(¢)<—) ,
r(x)

and we get (3.7). Note that fare 2 andy € E;/3(x),

R \" R(v — Ry —
vxw(x,y>=<—> vx(qs( & ’”))mnvx(p(x)")qs( b ’”).
p(x) p(x) (%)

SinceV(p(x)™") = —np(x) "1V p(x), we have

R(y —X))
p(x)

Rn

V(,O(X)_")tﬁ(

< nR"C(¢)< su(53|v/>(z)|>p(x)—"—1

<nR¥HLC(@)Mr(x)" 1.

i(ﬂm—m))‘
ax; p(x) '

ap
—(x)‘
ax]'

Foreachj =1,2,...,n, the chain rule then gives
i¢<R(y—x)> R(y—x))‘
dx; p(x)

p(x)
i(R()’k—xk)>‘< R
ax; p(x) ~p(x)

n

55

k=1

(Dk¢)<

Since

0Xk

+ Ry —x|p(x)"2
ax]‘

ly — x|
~ p(x) p(x)?
<>

R(y—x)>‘( R Iy—x|>
D + RM
2| "¢)< p )1\ ()2

< nC(¢)<R + R2M§>i < nC(¢)<R + R2M§>i
a 3)px) ~ 3)r(x)’

The second inequality follows from the fact th@;¢)(R(y — x)/p(x)) = O if |y — x| >
(6p(x))/(3R). Thus,

R(y —x)
V,
¢< p(x) >

we obtain

9 (R(y—=x)
3xj¢( p(x) )

n

< nJnC(p) (R + RZMé)i .
3/ r(x)
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Therefore, we obtain
2

Ve (x, y)| < (%) nfc<¢>><R+R2M ) G )+nR2"+1c<¢>Mr<x> -1

= nR¥*1C(¢) (f (R + R°M= ) )r(x)"l,

and we are done. O
Now, we can prove the following lemma.

LEMMA 3.8. Letp e [l,00)ands € (0,1). Then
(@) BMO} = B+ BM?,
(b) VMO§’=BO+VMP.

PROOF. We have already seen that+ BM? ¢ BMOY andBp + VM” C VMO?.
To prove thatBMC§ C B+BMP?,let f € BMO§’ and letys (x, y) be given by Lemma 3.7.
Define

fix) = /Q FOO¥(x, y)dy

and f> = f — f1. Note thatf; is continuously differentiable. For € §2, we have by (3.6)
and (3.7),

p
| f2D)IP = ‘/Q(f(y) — f@)¥(y. 2)dz

Co” — d ’
<
= oy </Em(” If () = f@)] z)

Co? p-1
= n (/ |f()’)_f(z)|pdz)</ dZ)
V()’) P E5/3(y) Ea/s(y)

1
~N —_ B pd |
V(Ers) Joy 1) TN
Thus
1
p R )

MV5/3(f2’ x) = V(Es/3(x)) JEy 300) |20 1Pdy

= 1

S VBt V(Es () ~ f@|"dzdy.
~ V(Esa)) Jey 5 VEs3(0) JEy a0 If(y) = f(@)[ dzdy

Because (x) ~ r(y) andE(;/g(y) C Es(x) if y € Es/3(x), we have

3.10) MVv? : R — Pdzdy < 2"MO¥
(3.10) MV y(f2i%) S V(Eg(x)) /Eam/w'f(” F@)Pdzdy < (fix).

This implies thatf, € BM?.
Next we prove thaffy € B. For everyx € 2 anda € E;s/3(x), we have by (3.6),

fi) = /Q (O = Tral@ny . y)dy + fojs(@)
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and it follows from (3.8) that

FEOIV 1)) < Carx) ™ / 1FO) = Fra@ldy.

Es/3(x)
Since

- 1
- - ~ f@ldz,
Lf ) = fsr3(a)] < V(Es @) /55/3(a) lf () = f(@)ldz

we have by Lemmas 3.1 and 3.2

1 1
v < - e — - dzd
rIV i)l S VEG) Jiye) V Eora@) Em(a)lf(y) f(@)ldzdy

1
S VE @R - dzdy < 2MO3(f; x) .
S V(B ()2 /Em) /Ea(x)|f(y) f@)ldzdy < H(f: x)

By (2.1),
(3.11) r()IV 1) S MOF(f; x) < MO (f; )7

This shows thay; € B and finishes the proof that Bl\/gbc B+ BMP,
If we let f € vmog’, then (3.10) indicates that, € VM?. By (3.11), we have
f1 € Bo. O

It follows from the above lemma that BMand VMO, are independent of the choice
of §.
Let H be the set of all complex-valued harmonic functionsan

LEMMA 3.9. Letp €[1, 00). Then
(@ BMOPNH=BNH,
(b) VMO’ N'H = BgN'H.

PrOOF. By Lemma 3.5, we have
BNHcBMO’NH and BoNn'H cCc VMO’ NH.
To show the converse, let € 2 andx € Essz(a). Then, by Lemmas 3.1 and 3.2,
V(Es@) S V(Esj3x)) andEs3(x) C Es(a). For f e H,
1
| f(x) — (a)liif [f(y) = fla)ldy.
f ! V(Es/3(x)) JEg3x) fon =7 Y

Sincef(a) = f{g(a) by the mean-value property, we have

Ifx) — f@l < |f () — fs(@)ldy

V(Es(a)) JEs@)
= MOj(f;a) < MOY(f:a)V/7.

By Cauchy’s Estimates (see, for example, 2.4 of [1]),

Per. N1/p
IVf@l< sup [Vf(x)|= sup |V(f(x)_f(a))|5M

x€Es3(a) xeEs/3(a) r(a)
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Sincea € £2 is arbitrary, we conclude that BMON'H ¢ BNH and VMO’ N'H C
BoNH. O

In order to prove Theorem 2.1, we need tb#dwing lemma which indicates the rela-
tionship between Hankel operators and commutators.

LEMMA 3.10. Letp e (1,00)and f € LL.

(a) Cyisboundedon L7 if and only if H; is bounded on both 57 and b .

(b) C iscompacton L7 if and only if H is compact on both 57 and b”".

PROOF. Letp € (1,00) andf € LY. Suppose thall ; is bounded on both” andb”'.
If we let Hf = HyQ, thenHy is bounded orL?. SinceH ju = Hyu, the boundedness of
Hy onb?" yields that ; is bounded orL?". Thus the adjoint operatcﬁ;i_ is bounded orL.?.
Letu € C3°($2) and writeu = Q[u] + (I — Q)[u]. Then

Cru=MyQ[Qlu]l+ (I — Q)[ull = Q[M ¢ (Qlu] + (I — Q)[u]]

= - Q[MsO[ull — OMs(I — Q)[u] = Hyu — ﬁ?“'

Now H; andH* are bounded oi”. ThusC/ is bounded orl.?, as desired.

Next we show the “only if” part. Suppos€, is bounded orL”. Foru € b, Cru =
Hyu, and soH s is bounded ob?”. Also, H;i_ = Hy — Cy is bounded orL” and thusH ; is
bounded or.”". It follows thatH s is bounded om?”".

Itis easy to see that the same proof as above also works for compact operatorsl

LEMMA 3.11. Letl < p < oo. Then

(3.12) / P,y < f Vh()|Pdx,
o 0P 0

(3.13) / |h(x)|de</ IVEOI” |
otz R, o

for all h € C3°(£2).

PrROOF. Since the proofs of (3.12) and (3.13) are essentially the same, we only prove
(3.13). Lete = g0, Whereeg is the number provided by the first part of this section. Then we

have
h(x)|? 1
/ " < 2 [ heoPan
2, r(x)% &2 Jgo.

Poincaré’s inequality now shows that

/Ih(x)l”dng |Vh(x)|Pdx .
2 2

Since 1< 1/r(x) for x € £2, we have

P P
(3.14) / A o)) dng |Vh(x)|l’dx§/ VA"
2 2 2

. T(x)2P r(x)?
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For; € 082, letx = ¢ +sn; € D, 0 <s < ¢, wheren, is the inward unit normal to
982 at¢. Ifwe writew, = ¢ +tn;,0<1t <s, then

S0
o = [ Sty
< [ plhoort 31D o
=1

N
< / |h(w) [P~ VR (w,)|dr .
0

It follows from Fubini’s theorem that
/8 |h(¢ + sn)|P
0

g rs 1
< p-1 il
2 ds < /0/0 |h(¢ + tng) [P VR(C +tn;)|dts2pds

I3 &
1
:/ |h(¢ +tn§)|p71|Vh(§ +tn;)|/ Tdsdt
0 ¢ P

€ 1
-1
5/0 |h(¢ +tny)|P |Vh(§+tn;)|t2p—71dt.

Therefore, we have by (3.1)

lh()|P E (¢ + sng)|P
[l Y e

e 1
S/ / |h(¢ +tng)|PHVAE + tng)| ——dtdo ()
a Jo tep

~ / ()P~ Y VA ()| ———dx
D r(x)2r—1

_/ [hCO)IP~Y VAW
= X
D,

@D ()

1-1/ 1/
- (/ |h(x)|pdx) p(/ |Vh(x)|pdx> p’
p, r(x)2r p. Trx)P

/ |h<x>|de</ MIEILN
b, rZ T Jp r(oP

Combining this with (3.14), we obtain (3.13). |

which implies that

COROLLARY 3.12. Letl < p < oo. Then

h(x)|P Vh(x)|?
/ |h(x)] dx</ |Vh(x)| dx < Ak
2 2

r(x)er "~ r(x)P

forall h € C5°(£2).
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ProOOF. By (3.13), we have

lh(x)|pdx§ IVh(x)Ipdx
o rx)?r o rx)r

By (3.12), we have

IVh(X)I” <Z |Djh(x)[” h(X)I” dx

e ror S rr

S Z/ IV(Djh(x))|Pdx S/ |AR(x)|Pdx
oile 2

where the last inequality comes from Proposition 111.1.3 of [8, page 59]. This completes the
proof of Corollary 3.12. O

LEMMA 3.13. Letl < p < coand (bP)L = {u € L” ; (u,v) = Ofor all v € bP}.
Then {Ah; h € C3°(2)} isdensein (b7)*.

PROOF. If h € C3°(£2), then
(Ah,v) = (h, Av) =0
forall v € b?. So we have
{Ah; he C(R2)) C (bP)*.
Next, suppose that € L?” and

/ uAhdv =0
Q

forall h € C3°(£2). Then Weyl's lemma (see Theorem 2.3.1 of [7]) shows thath?. O
LEMMA 3.14. Letl < p < oo. Then

/r(x)qu(x)Ipdx,S/ lu(x)|Pdx
Q o

for all u € b?.

PROOF. If x € 2, thenr(y) = r(x) for y € Ey/a(x) ofr x € Ez;4(y) by (3.2). By
Corollary 8.2 of [1], we have

1
IVu(o)l? < / lu(»)|Pdy .
r(-x)n+p E1/4(x)
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It follows easily from Lemma 3.2 thatg, ,x)(¥) < XEs4() () for all x, y € 2. Therefore
we get

1
/Qr(x)”IVu(x)l”dx S/ﬂr(x—),,/QXEm(x)(y)lu(y)l”dydx

< [ o | K0 gy
2 r"

V(E
/| o f/;‘,fy)) %/Qlu(y)l”dy. =

4. Proof of themain result. We divide the proof into three lemmas.

LEMMA 4.1. Letp € (1, 00).
(a) If f e B,then Hy isbounded onb”.
(b) If f € Bo, then Hy is compact on b”.

PROOF. First, we prove (a). Lef € B. By Lemma 3.13, we only need to show
[(Hypu, Ah)| = [(fu, Ah)| < Cllullp | Akl
foranyu € b> andh € C3°(£2) in order to prove the boundednessidf, since
[Hrullp = sup(Hyu,(I —Q)g+ Qg) = sup(Hyru,(I — Q)g) = sup (Hru, V).

ger? geL? Ye®dr)*
lgl<1 lgli<1 Iyl<1

Using integration by part, we have

(fu, Ah) =—/ u(Vf)-(vﬁ)dv+/ (Vu) - (V)hdV =11 + I>.
2 2

It follows from Hélder’s inequality and Corollary 3.12 that

Vh
I11I</ |u||Vf||Vh|dV</ lu ()|| (())C)I

1/p 1/p'
[Vh(x)|?
P - 7 < /
< </QIM(X)I dX) < PR dX) S lullpllAR]

On the other hand, using Holder’s inequality again, we get

|Iz|§/ |Vu||Vf||h|dV5/ r(x)IVu(x)||h(x)2|dx
“ 2 r(x)

1/p / 1/p
|h(x)]?
< (/ﬂr(x)”wu(xnpdx) ( R dx) .

Thus, Lemma 3.14 and Corollary 3.12 yield
2| < Nlullp AR, -

This completes the proof of (a).
To prove (b), lets; — 0 weakly inb?. Then it is well-known that there is a constaft
satisfying|lu ||, < M forall j, andu; goes to O uniformly on each compact subse®ofFor
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anye > 0, there is a compact s&t C £2 such that(x)|V f(x)| < eforx € 2\ K. Also, we
can choosgp such thatu ;(x)| < ¢, |[Vu;(x)| < e forx € K andj > jo, by Theorem 1.23
of [1]. For j > jo, we have by Corollary 3.12 and Lemma 3.14

/IujIIVfIIVhIdV=/ +/ luil|V fIIVRIdAV
Q 2\K K
[Vh| [Vh|
< lujle —dV + | ¢ ——dV
2\K r K r
SellujliphIVal/rlly +ellVRI/rlly S e(M + DAkl ,
and

/|Vuj||Vf||h|dV=/ +/ [Vu;||V fllhldV
2 2\K K

5/ r|\Vujle @dv+/ slh—zldv
2\K r K T

S ellrIVuilliplh/r?lly + elh/r?|

SellujllplAnlly + ellAhlly < e(M + D)||Ahll, .
Therefore, we have

(Hruj, Ah)| S e(M + D AR|
for j > jo, and this shows thatH su;||, — 0 asj — oo. O
LEMMA 4.2. Letp € (1, 0).

(a) If f € BM?, then H; isbounded on b?.
(b) If f € VM?, then H; iscompact on b?.

PrROOF. If f € BM? or VM?, Theorem 3.5 or Theorem 3.11 of [2] implies that the
multiplication operatorM ; is bounded or compact ab?’, respectively. Thusiy = (I —
Q)M is bounded or compact drf, respectively. O

LEMMA 4.3. Letp e (l,oc0)and f € LP.
(a) If Hy isbounded on both 7 and b”', then f € BMO?.
(b) If Hy iscompact on both b” and b”', then f € VMO®.

PROOF. (a) Supposéi; is bounded on both” andb”’. By part (a) of Lemma 3.10,
Cy is bounded orL?. Leté$ € (0, 1) and define
R(y,z2)
R(x,x)
It follows from Lemma 3.3 that for alt € 2 andy, z € E5(x)
R(y.2) = R, x)| - Cad
[R(x, x)| T @-ontt

Sx,y,2) =

(4.1) IS(x, y, 2| =

By definition, we have
1- R(y, 2)
R(x,x)

—S(x,y.2),



490 K. OSHIMA

which implies that

Doy ____jE____u/ ./’ _ .l
MOZ (/0 = i [, |, o) e -1az| ay
2r—1 R(y,2) , |”
. — - d
= V(Es(o)rtl /E,g(x) /E,g(x)(f W)= T g 0%

p
dy=11+1I.

o1
V(Es(x))P+L - S(x,y,z2)d
+ V(E(S(x))p+l /Elg(x) /Ea(x)(f(y) f@)Sx, y,z2)dz

We can estimaté;, as follows:

R(y,2) P

V(Es (e s

2r-1
1 = B
L= VE@)P IR 0P /Em /Em(f )~ f@)

p
dy,

2r-1
— R(y,2)hy(2)d
< V(ES(X)WR(X’X)“,/Q /Q(f(y) FEIRG, D (2)dz

where
XEs(x)(2)
V(Es(x)Y/r -
It follows from Lemma 3.3 that there is a const@htindependent o8 such that
2r—1 _ G
V(Es(x)P|R(x, x)[P — 8"

hy(2) =

Note that forg € L,

Crg(y) =MsQlgl — QlfaD(y) = [(z(f(y) — f@IR(Y,2)9(x)dz.

Thus we have
Co »
I < 8Tp||cfhx||p~

Next, we estimatdy. It follows from (4.1) and Holder’s inequality that

2r—1clsr ‘)
f2= (1—8)P+DV (Es(x))p+t /155(x) (/;Eg(x) = f(Z)|dZ) '

2r=tcysr »
< [f(») = f@)| dzdy
(1= 8)Pr+DV(Es(x))? /Eg(x) Lg(x)
22r—1cysp

P
SWMOS(J(:X)«

We use Lemma 3.4 for the last inequality. Combining the above two estimates, we obtain

C
MO (f; x) < 5Tp||cfhx||5 +

22r=tcysr
@y MO 0
Now we choosé& small so that
22r=1cysp
<

1
(1— )P+l = 2"
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Then
2Co
s

(4.2) MO (f; x) < ICrhxllp .

Since|lhx |, = 1forallx € 2, we have

2Co
Pir. ) P
fg,?MOS (fix) = 5 ICrII”.
This shows thayf € BMO? and completes the proof of (a).

(b) SupposeH s is compact on botf»” and Y. By part (b) of Lemma 3.10C s is
compact on..”. Because of (4.2), it suffices to show thigt— 0 weakly inL? asx — 952.
For everyg € LY, by Hoélder's inequality, we have

1 ) 1/p
h adV‘ < 7/ gldV < (/ |g|”dV> =0
/g * V(Es))YP J gy Es(x)

asx — 0£2. This completes the proof of Lemma 4.3. a

PROOF OFTHEOREM 2.1. (a) Iff € BMO?, thenf € BMO?, sincep > p’. Thus
by Lemmas 3.8, 4.1 and 4.2/ is bounded on both” andb?’. This proves the sufficiency
of f € BMOP? for (a). The necessity of € BMO? for (a) has already been proved in
Lemma 4.3.

(b) If f € VMOP?, thenf e VMO, sincep > p’. Thus, by Lemmas 3.8, 4.1 and 4.2,
Hy is compact on both” andb?’. This proves the sufficiency of € VMO? for (b). The
necessity off € VMO? for (b) has already been proved in Lemma 4.3. a
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