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Abstract. We consider a special wavelet transform of Moritoh and give new definitions
of wave front sets of tempered distributions via that wavelet transform. The major result is that
these wave front sets are equal to the wave front sets in the sense of Hormander in the cases
n=12428.Ifn e N\{1 2 4,8}, then we combine results for dimensions= 1, 2, 4, 8
and characterize wave front setstialirections, wheré are presented as products of non-zero
points ofR"1, ..., R, ny1+--+ng=n,n €{1,2,4,8,i =1,...,s. In particular, the
casen = 3 is discussed through the fourth-dimensional wavelet transform.

1. Introduction. In this paper, emphasis is put on the characterization of wave front
sets via wavelet transforms. We refer to [2] for the local analysis of functions and distributions
through wavelet expansions and wavelet $farms and to [3, 6] for the local and microlocal
analysis through wavelet transforms.

The paper is inspired by Moritoh [7], where a wavelet transform of a distribuficn
S'(R") is defined by

Wy f(x,8) = /Rn FOIEM?YER: (= x))dt,  (x,§) € R x R"\ {0},

wherey is an analyzing wavelet ankls € SO(n) mapst/|é| toe, = (O, ..., 0, 1). Integral
is interpreted in a distributional sense.

This definition of wavelet transform can be obtained from Murenzi’s definition [8]. In
Murenzi’s definition the wavelet transform involves dilatation, translation and rotation as pa-
rameters, while Moritoh fixes rotation (with a special choice&®gj and keeps dilatation and
translation as parameters.

In [7], the change of variables = |E|_1Rgl’ satisfiesdw/|w|" = d&/|&|". This is not
true for all rotations that were used in [7].

The aim of this paper is twofold. First, for dimension214 and 8, we improve the
results of [7] concerning the estimates of wdkents introducing a parameterized wavelet
transform and by an intrinsic analysis of transformations of variables in the frequency domain.
The second aim is to extend results to dimensiong 1, 2, 4, 8. Actually, we transfer the
results for quoted dimensions to generat N, excluding some directions in the frequency
domain.

2000Mathematics Subject Classification. Primary 46F12; Secondary 43A32.
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We start in Section 2 by examining the existence of rotatiBase O(n) such that
R:(¢) = |&le, holds for everye e R"\{0}. It will be shown that if we suppose that the
mappingé — Rg is continuous, then its existence is limited only to dimensions 1, 2, 4
and 8. In these cases, explicit constructions of such rotations are given. The proof that no
rotations with previously stated property exist for£ 1,2, 4 and 8 was given by Wagner
[10].

Although it is not stated in [7] that the mappi§g— R¢ has to be continuous, we find
that it had been used implicitly. Without ctmuity it would be hard to follow how some
relevant sets, for example conic neighborhoods, are transformed through different changes of
variables. Even if we allow discontinuity ¢f — Rz we can construct rotations such that
Re:(E/1E]) = en, butdw/|w|" = d&/|E|" is not satisfied (at points of continuity). R® one
such mapping would be a rotation around the |jnéhat passes through the origin and is
orthogonal tct and e3.

In Section 3 we introduce an analyzing waveleand a wavelet transfori,, associated
with it for the cases = 1, 2, 4 and 8. Wavefront sei/F, andWFlff) have been introduced
by means of this wavelet transform. In these definitions the\§Eis and\NFf) depend on
¥ Itis shown in main theorems thtF, = WF andWF (= WF ), whereWF andWF
are defined by Hérmander (see [4, 5]). Moritoh achieved in [7] only lower and upper bounds
for (Hérmander’s) wave front sets in terms of his wave front sets and the wavelet transforms.
In order to obtain an exact description of the wave front sets, we introduce a parameter in the
wavelet transform; if the parameter equals one, then the wavelet transform is that defined in
[7]. This parameter plays an essential role in achieving independeWE,pfandWFlff) on
¥. We can say that, the construction in [7] tends to overshoot Hérmander's wave front sets
by about a conic set obtained from the support of the Moritoh wavelet. By introducing this
parameter, this was corrected.

In Section 4 we overcome the fact that our results were limited to ease§, 2, 4 and
8. Definitions and theorems from the previous section are extended to the cases with general
n € N. Inthis case some directions had to be omitted in order to have the right characterization
of wave front sets. We discuss this question in Remarks 16 and 19. In particular, in the case
n = 3, we show that all the directions can be analyzed through the analysis of the fourth-
dimensional case.

In the proofs of main theorems some properties of rotatiywere used. We give these
properties in the form of lemmas in Sections 5 and 6.

2. Rotations. Let& € R*\{0}. For eackt we associate the following matrices for:

o n=1,

Re = —[&]:
ST
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o n=2,
Rg—i & —&
El] & &
o n =24,
&4 —& & &
1| —& & & &
Re = —
€1 | —& & —& &
&1 & & &
e n =28,
T & —& -t & &1 & & & T
& & & -t & & & &
-t & & & & & & &
& & & —& & & & &
R = —

&1 —&a —&3 & & & & & &
—& & & &5 & & & &
—& & & & & —& —& &

L & & & & & & & &

In the casea = 2,4 and 8 they represent rotations that belong to the gr&g®),

O(4) and SO(8), i.e., they are orthogonal matrices whose determinant is equal to 1. For

n = 1 the matrixR¢ is an orthogonal matrix whose determinant can be either Tr

They satisfy the following.

(i) R"\{0} > &+ R: € O(n) is continuous.
(i)  Re(5/IE]) = en, § € R\ {0} )
(i) Let & € R\ {0}. For everyr € R*\{0} there exist®R; € O(n) such that
Re (7) _ R (&)
Il €]
(V) Lett € R"\ {0} andw = [&|7R: (1), £ € R"\ {0}. Thendw/|w|" = d&/|&|".
These are easy to show and we omit the proof.
We only give a descrription of,. Letn = 1,2, 4 or 8 andt, t € R* \ {0}. Then

D, 1)

L 1 | €@ 1)
_E E(T)—@ s

(", 1)

w
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where the vectors™™, £, ... £ are row vectors of¢|R:. Obviously,

é(j) = (ijlén(./)(l)’ l'j2§n(j>(2), ceey ijnén(./)(n)) s

whererr (/) is a permutation of1, 2, ..., n}, andij1, ..., i, € {1, —=1}.
If we definer ) = (ijn(./)(l)fn(h(l), LD (@) Ta)(2)s -« - > ijn(_/)(n)fn(_/)(n))y then

<§-(j)’ T) = (€, ‘L’(j))

and the matrix

_ 1
c=— (D, @y

Il
satisfies (iii).

We want to emphasize that matrices satisfying properties (i), (ii), (iii) and (iv) are not
uniquely determined. These properties remain true if we multiply some of the rows (except
the last one) by-1. New matrices obtained in this manner could be used instead of the quoted
ones and all the results presented in this paper hold with these matrices.

So, to summarize, for = 1, 2, 4 and 8 there exists a continuous mappsngR*\ {0} —
Gl(n), & — Sg, such that

Se@©)llen, & € R'\{0}.

One such mapping is given ¢ = Re.
A natural question arising from the construction of rotati®ads whether it is possible
to construct rotations in other dimensions in a similar way. The answer is negative. The proof
uses the fact that"—* is parallelizable which only holds if = 2, 4 or 8 (see [1]). Recall that
a differentiable manifold of dimensionis parallelizable if there exist vector fields that at
each point form a basis for the tangent space at that point.

PrRoPOSITION 1 ([10]). Letn € N\{1, 2, 4, 8}. Then there does not exist continuous
mapping S : §"~! — Gl(n) suchthat for every & € 5"~ thevector S (&) isparallel toe, (Sg
stands for S(&)). The proposition remainstrue if we substitute e, with an arbitrary non-zero
vector.

PROOF. Suppose the contrary, i.e., suppose that suekists.

Leté e "1 As S; e Gl(n) it holds thatZy = S;*. From defl; # O it follows
thatTe (e1), Te(e2), . . ., Te(e,) are linearly independent vectors. &s(e,) is parallel tog, it
follows thatTg (e1), T¢ (e2), . . ., &€ form a set of linearly independent vectors.

For eachk € {1, ...,n — 1}, we define a mappingj. such thatf; : -1 — R"” and

fi(&) = Te(er) — (T (er), £)6, &eS"L.

This gives us

(fi(€), &) = (Te(en), &) — (Te(en), £)(5,€) =0, &es8"t.
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As a consequencefi(§), f2(£), ..., fn—1(§) are linearly independent and they are all
orthogonal tes. This means thaftf1(§), f2(¢), ..., f,—1(€§)} is a basis of the tangent space
of the spheres” 1 at the point, which is not possible. a

We find that the continuity condition faf — Rg, & € R*"\{0}, is essential for our
needs. We need to follow how certain sets, such as conic neighborhoods, are transformed by
particular changes of variables that involve these rotations. It would be hard to follow this if
we would allow discontinuities. For that reason we do not definéor dimensions different
fromn =1,2,4 or8.

3. Wavelet transform and wave front set.
3.1. Wavelet transform. By the definitiog, € L?(R") is an admissible analyzing
wavelet if

22
(1) Cy = (h)n/ [ (&) a5 < o
re |E]"

Our analyzing wavelet is similar to those of [7] and is a functjor S(R") satisfying:

(1) ¥ eCFRY, ¥ >0;and R

(2) £ = suppy does not contain 0 andl(e,) # 0, wheree, = (0, ..., 0, 1).

It follows from @ € C3°(R") thatyr € S(R™), which implies that the microlocal proper-
ties are better localized in the frequency domain than in the time domain.

Wavelets satisfying Properties 1 and 2 can be easily constructed in the following way. It
suffices to construct a smooth non-negative funcionhose support is included iB; (e,,),
where O< r < 1. Theny € S(R"), wherey = ¢, is one such wavelet.

We restrict our consideration in this section to dimensiens: 1, 2,4 or 8 For the
wavelety, we define a wavelet transfori#,, of a distributionf € S’(R") by

Wy f(x,§) = /Rn FOIEMYER: (= x))dt,  (x,€) € R" x R"\{0},

where integration is understood in the distributional sense, as for a(fixéd the function
t = Y(|€|R:(t — x)) is an element o6 (R"). MappingsR; are rotations in0 (n) that have
been described more precisely in Section 2.

It is easy to verify that the Fourier transform @, f with respect toc is given by

Wy f (6, €)(x. £) = 20)" 2 F (D)2 (& Re(x)) . (1.6) € R x R\{0},

wheret stands for the variable corresponding, in the frequency domain, to the varialole
particular,

Wy f(x.6) = /R F@IETP (8 R (e ™ dT . (x.6) € R x R'\(0}.

Here we list several propositions without proofs. They were proven in [7] by making use
of Property (iv) in the previous section. As already claimed, this property is not satisfied for
all rotations used in [7]. As alRg given in Section 2 satisfy Property (iv), the proofs of [7]
are valid in these cases.
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PROPOSITION 2 (Parseval’s identity). Let f, g € L?(R"). Then W, f € L?(R" x
R™\{0}) and
/ . Ww‘(x,‘;%)Wipg(x,s>dxdé=C¢/R [0y dr,
where Cy, isgiven by (1).

CoROLLARY 3. Wavelet transform Wy, is an isometric transform of L2(R", dt) to
L2(R" x R"\{0}, Cl;ldxdg).

PROPOSITION 4 (Inverse formula). Let f € L?(R"). Then f can be expressed via
Wy f as
f@) = c;lfF{ /R Wy f(x, E)IEI"?Y (EIRe (1 — x)) dxdE, 1eR".
PROPOSITION 5. Let f € S'(R"). Then f € H*(R") if and only if

/Rn /R Wy f(x, )P+ £]3)* dxdE < oo

3.2. Wavefront set. In the reminder of this sectionyldbe an analyzing wavelet and
letr € (0, 1) be such that supp < B, (e,). For 0< A < 1 we definey; by

U (x) = APy ox), x eR.

Puts2, = suppy,.. Itis not hard to see tha, < B, (e,).
We denoteWy, (f) by Wy 1 (f). Let& € R"\{0} andrg > 0. In the sequel we use
I’ (&) to denote an arbitrary conic neighborhood of the pégrand " (&g, ro) for

3 &0
I'(%0,r0) = {«‘E; — - < ro}-
1€l 6ol
Let f € S'(R"). We define wave front sel&F, (f) and\NFj,(f) through the definition
of the complements of these sets, as usual.
3.2.1. WF(f) and WFy, (f). We start with defining ouy-wave front seiWF, (/).

DEFINITION 6. Letf e S'(R"). WFy (f) € R" x R"\{0} is the complement of the
set ofy-microlocally regular pointgxg, £&) € R" x R"\{0}, that is, (xo, £&g) ¢ WFy (f) if
and only if

3¢ € C5°(R") (p(x0) #0) @A'(0)) (Ere(0,1)) (YN>0 @ECy >0
Wys@N(x. 6)(@. &) < CylEl™N, TeR'. &€ 5 >1.

Note that(xg, £&9) ¢ WFy, (f) is equivalent to

(3¢ € Cg°(R") (p(x0) #0) (3A'(0)) (Er€(0,1) (YN >0 @(ECy >0
6F OVl Re ()| < Cy g™, T e R, & € I'%o), 18] > 1.

The next theorem shows thaiF (/) does not depend ap. In the proof we use results
from Section 5.
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THEOREM 7. Let f € S'(R"). Then WFy, (f) = WF(f).

PROOF. Let (xo, &0) ¢ WF(f). Letg € C3°(R"), ¢(x0) # 0 andI” (¢p) satisfy that for
eachN > 0 there exist€y > 0 such that

BF©)| < ChlEI™Y, £ e M), & >1.

To prove that(xg, &) ¢ WFy (f) we need to find™ (&) andx € (0, 1) (¢ will be the same)
such that for eaclv > 0, there exist€”, > 0 satisfying

16f @OV (517 R (1) < Cyl€I™, 1€ R, & € ['o), €] > 1.
As the mapping — o = |§|‘1R5(r) is a bijection ofR" onto itself, we can reformulate the
problem and look fol" (£9) and € (0, 1) such that for eactv > 0 there existL)y, > 0
satisfying

6f (€IR @) (@) < Cyls|™N, o eR", & e ['o), 5] > 1.
With the already introduced notation su’lﬁp = £2,, we further reformulate the problem and
look for I" (£9) andx € (0, 1) such that for every > 0 there exist€, > 0 satisfying
2) 16F (EIR; (@) (@)| < CyIEI™Y, we @, & el&), &> 1.

Lemma 23 below implies that for a given (&) there existl" (&) and A such that
|§|Rg1(a)) € I' (&) for everyé € I'(§) andw € £2;. Thus, we conclude that fav €

2., § € ['o), 51> 1,
16F (€1R; (@) ()] < Clof (€] R; H(@))]

CCN(EIIR @)V,

NN

where we have usedo, &) ¢ WF(f). This continues as
= CCylo| Mgl
< Cylsl™
forw € 2;, £ € I'(%0). |€] > 1. Thus,(xo, £0) & WFy (f).
Now, let (xo, é0) ¢ WFy, f. Then there exisp € C3°(R"), ¢(x0) # 0, I'(é0, o) and
A € (0, 1), which satisfy that for eaclV > 0 there exist€}, > 0 such that (2) is satisfied for
I"(§0) = I" (60, ro). Ase, € 2, andy; (en) # 0, we getforg € I" (6o, ro), 5] > 1,
16F )] = |7 (EIR; (en))]
C/
< =—jg7V.
Y (en)
Thus,(xo, &0) ¢ WF(f) and the proof is completed. O

3.2.2. WFW(f) and\NFf;)(f). Now we define our Soboley-wave frontseWFiff)
(f)-
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DEFINITION 8. Letf € S'(R"). Then\NFlff)(f) C R* x R"\{0} is the complement
of the set of Sobolev,-microlocally regular pointgxg, £9) € R" x R*\{0}, that is,(xo, &) ¢
WE (/) if and only if

@3p € CRY) (p(x0) #0) @A) (@r € (0, 1))
/ Wy (@) (T, )21+ £]D)° drdE < 0o
I'(&) JR"

Now, we show that a theorem equivalent to Theorem 7 holds for the Soljelesve
front set. In the proof we again use the lemmas in Section 5.

THEOREM 9. Let f € S'(R"). ThenWF” (f) = WF ().

PROOF. Assume thatxo, £9) ¢ WF ©)(f). Then we have
I= / f Wy ()T, £)12(L + €% drdE
I'(&g,r0) JR™
P / A+ (£ di / 6T (O 2IE P58 Re (0))2 dT
I' (&0.r0) R

=(2n>"/ A+ 1E7°de | 1of @©P1EI ¥ (&) 7 Re (2)) % d
I' (&0.r0) )

I (%o

where
I'(&) = {t € R*\ {0} ; there exist§ € I' (&, ro) such thanérle(r) € 2;)}

(see Lemma 23 below). So, it follows that

I =Q2n)" / l¢f (D)2 dt / L+ 1E1D% 161" P (€] Re (0))2 d
I' (&) I'(&o,r0)
and using the change of variables> », wherew = |§|_1Rg (1), we obtain

1=(2n)"f~ |<?>?(r>|2drf

I (%0) £2'(7)

(1 |t|2)s —n7p 2
+— | lo| " Y(w) do,

lw|?
where
2'(r) = {w € R"\ {0} ; there exist§ e I" (&, ro) such that = |$|*1Rg(r) € 2,},

for t € I'(&) (see Lemmas 21 and 22). There exist positive cons@nedC» such that

oy 1 712\’ 2
C1(A+ |79 < 1+ — ) <C(A+ 79", wef.

|o]" |w|2
As 2'(t) C 2, C £, it follows that

1 2\*
G+ 1t < = (1+ D) <o+ 1e?y, we '@,
o " el
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which implies that

2\¢
o~ T o~
Ga+ie? [ fhPdo< f <1+ '—'2) o " @) do,
2'(0) 2'(v) |l
LAY —-n5 2 2\s = 2
14+ 0 ol P @)2do < A+ 122 [ Fr@?do.
2'(v) || 2'(0)

Let ro = r/2 andx be such thatp,, the conic radius of2, (see Section 5), is less than
r/2. From Lemma 22 we know thdt (&) < I'(£o, 70 + r,), Which implies thatl" (£9) <
I' (&, r). Furthermore, we have

2\ S
1=(27r>"f~ W(mzdr/ (Hﬂ) o] ™" () de

I (%) 2'(1) |w|?
< Ca(2m)" f 16f (D21 + |212)* dT Ui () dw
I'(&o) 2/(7)

< Co2r)" / GFOPA+ 11 dr [ T Pdo

I"(%0) 2,

< c/~ BF @R+ [ dr
I' (&)

< C/ 16f () 2L+ |t]?)* dr,
I'(&o,r)

whereC = C2(2n)" [, U ()2 dw. Thus, the assumptiotxo, &) ¢ WF®)( f) implies that
(x0. &0) ¢ WF (" ().
Let now (xg, &0) ¢ V\/Ff;)(f). Then by Definition 8 (and” (&g, ro) instead ofl" (&g))

/ / |Wmf)(f’§)|2(l+|§|2)s dtdté < co.
I'(éo,r0) /R"

Then, by Lemma 21, there exist3’ neighborhood of point, such that for everyyr €
I’ (§0,10/2)

Q' cR).
Now, from Lemma 22 it follows thaf™ (&9, r0/2) € I'(£0). Then

2\S
[ =2n)" / @(m?dr/ <1+ ﬂ) lo| " P (w)% dw
I' (o) (1)

|w|?

> C1(2n)" f 16f (O 2L+ |712)* dt U (@) dw
I (%o) 2/(7)

> C1(27T)"/
I (§0,r0/2)

FFORA+IeD dr [ TP do

> C/ 16f ()21 + |t?)* d,
I'(50,70/2)

whereC = C1(27)" [, ¥(@)? dw. We conclude thatro, £0) ¢ WF @) (). O
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4. Waveet transform and wave front set-generalization. In this section we gen-
eralize the definition of wavelet transforms and the characterization of wave front sets via
wavelet transforms of Section 3 in dimensions different fiom 1, 2, 4 and 8.

Letn € N and Ietnl,.. ,ng € {1,2,4,8} be such that = n1 + --- + ng. Lety; €
SRY), jelr ={1,. satlsfy the following:

(1) w, € CSO(R”J) andw,(g’) 0,&/ e R for j € Iy;

2 2;= suppw, does not contain 0 anﬂl, (en;) #0forj € I.

We will use the following partition of, = {1, ..., n}. Let{pl, . ..,p,],'].}, j € Iy, be

disjoint subsets of,,, j € I, such thatolj < p'lj+l, 1<i<nj—1, jel. Then

Y(x X i xj), xt=@,,....,x;)eRY, jel,
v(x) = ]"[w,(i X0 ) CHNTREND Jj €k

nj

represents an analyzing wavelet. Clearly,

T _ 7. ) ) Jj_ ) ) 7 .
VO =[1vi¢, ) =€, ..6, ) eRY. jel.
Note that we could choose another wavelet both for a different choieg,of ., n;,,
different partitions off, and thus, different;, ..., v¥;,. The idea s to represent wavelet as a
product of wavelets that belong R} for somek = 1,2, 4 or 8.

In the sequel, we will assume that

XL = XL, ey Xpg = xp%l, Xy = xpnk
Thus, forx, £ € R", we use the notation = (x%,...,x%) andé = (¢1,...,&5), where
x/, &/ € RY, j € It. We also use the notatiatt = (e,, . ..., e, ), Wheree,, are the unit

vectors ofR"/ for j € I.
We define the wavelet transform of a distributigre S’(R") by

Wy f(x,§) = /f(r)]"[51|"f/21/f,(|s/|Rs,<ﬂ—x/))dt

j=1

for (x,&) e R" x ]'[’;zl(R”f\{O}), where integration is understood in the distributional sense.
Obviously, for a different factorization of a wavelet into a product of wavelets we obtain
different wavelet transforms.

The Fourier transform oy, f with respect toc is given by

k
Wy f (e, 6)(1.8) = )2 F (o) [T 18 17/%5, (&7 17 R (2.

j=1
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for (&) € R" x [T5_1(R"\{0}). In other words,

Wy f(x, &) = / f(r)]_[léfl‘"f/zx//,(|§f| 1R, (t))e'™ dr,

j=1

for (x,£) € R™ x [T5_; (R"\{0}).

As f is atempered distribution, we have tii#}, f is a tempered distribution with respect
to the variablex, while & belongs tq T;_ (R"\{0}).

The complement dR" x ]'[’;zl(R"./ \{0}) in R* x R" is of zero measure. Thus, excluding
this set in the domain of integration, we can apply the same argument as in the assertions of
Section 3.1 fom = 1, 2, 4, 8 and obtain the next four assertions.

PROPOSITION 10 (Parseval's identity). Let f, g € L2(R"). Then Wy f € L2(R" x
[T5_1(R'\{0})) and

/ o Wwf(x,S)ng(x,é)dx&:Cw/R f(tg(r) dt,
where

Iw,(éf)l

n

G =00 / 1_[ BIE

COROLLARY 11. Thewavelet transform Wy, isanisometric mapping from L2(R", dt)

to L2(R" x [T5_y(RY\{0}), C ' dxds).

PROPOSITION 12 (Inverse formula). Let f € L?(R"). Then f can be expressed via
Wy f as

ro=cit [ [ wree [ 167125 TR @ =7 e
j=1
Note that this formula does not hold for polynomials as all the momentsexjual zero.
We refer to [3, 9] for the (generalized) wavetetinsforms of tempered and other classes of
distributions.

ProPOSITION 13. Let f € §'(R"). Then f € H*(R") if and only if

/n /R Wy f(x, )P+ €17 dxdg < oo

4.1. Wavefront set. In the remainder of this section we assume thatysupp
Br(en;), r € (0.1), j € {1,....k}. For0 < & < 1, we definey (x) = [T5_; ¥ja(x)),
x € R*, where

1=2)

Vi) = Ao Yi(x’), x/ eR"M .
Js

F’UI.QJ'))L = SLJpp/l/f\j))L ands$2;, = Hﬁ:l Qj,)u CIearIy,.Qj,A C Bkr(en_/)-
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4.1.1. WF(f) and WFy (f). We define af-wave front seWF (f) with respect to
the newly introduced wavelet transform as a subsé&ok ]_[’]‘-zl(R".f \{O}).

DEFINITION 14. Letf € S'(R"). WFy(f) € R" x ]'[’;:l(R"f\{O}) is the comple-
ment of the set of-microlocally regular pointgxo, £&9) € R" x H’;:l(R"./\{O}), that is,
(xo, &0) ¢ WFy (f) if and only if

k
(3¢ € C°(RY)  (¢(x0) #0) <5|F($0) c ]_[(R'”\{O}))
j=1
Fre€(0,1) (YN>0 {ECy >0

Wy @), ). &) < Cylgl ™, teR' & el &), 5> 1.

Note, in this definition the conf (&p) is a subset oﬂﬁzl(R"f \{O}).
Let (xo. &0) € R" x [T5_; (R"\{0}). Then(xo, £0) ¢ WF, (f) if and only if

k
(3¢ € Cg°(RY)  (¢(x0) #0) <5|F($0) c ]_[(R'”\{O}))
j=1
Fre€(0,1) (YN>0 {ECy >0

k
6F I I1E/17/ 200, (&7 |7 Ry () < Cy 17N, 7 € R & € I'ko) . €] > 1

j=1

and, further, if and only if

k
(3¢ € C5°(RY)  (p(x0) #0) <5|F($0) c H(Rﬂj\{o}))
j=1
@re©0,1) (YN>0 @ACy >0

k
6f O] ¥ix (8 T Ry () < CwlEI™Y, T eR'. £ elGo). & >1.

j=1

We are going to give a variant of Theorem 7. We use the lemmas in Section 6.
THEOREM 15. Let f € S'(R"). Then WFy, (f) = WF(f) NR" x ]‘[’;zl(R"f\{O}).

PROOF. Itis expected that the proof will be similar to the one of Theorem 7, but one has
to take care about the directions in the domaié-wfriable. In order to achieve completeness,
we will give the details of the proof.

Let (xo. £0) ¢ WF(f) and&o e [15_,(R"\{0}). To show thai(xo. £0) ¢ WFy (f) we
need to findl" (&) < ]'[’;zl(R”f\{O}) andx € (0, 1) (such that for eactv > 0 there exists
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C) > 0) such that

k
6f O[] V008 7 Ry () < CjlEI™Y . T e R & e M'(&). & > 1.

j=1
As for everyé e ]_[';:l(R"f\{O}) the mapping — o, where
o = |§/|'Re;(e)), T ER",

is a bijection of setR" onto itself, the problem can be reformulated to fildgy) <
]'[’;zl(R”f\{O}) andx e (0, 1) such that

k
(YN >0 (3Cy>0) (v(» eT] rm) (V& € F(&) (1> 1)

j=1

k
(3) 187 (EH RS @), .. IERGH @D [ [ W@ < Clylg ™™
j=1
By Lemma 26 there exist a conic neighborhodté) and » e (0,1) such that

(|51|R;(w1), s IékIngl(a)k)) e I'(&) forw € ﬂ’;zl 25 andg € I'(&). We conclude
that

k
EF (SR @Y, ... [E IR @) ]‘[f;,x(a)f)
J=
< CIBFUEHRI @Y, ... 8 R @)

-N
<CCy (\/(Iélllell(wl)l)z +eee (|sk||Rgl(wk)|>2>

—N
<ccy (\/uslnwln? - (|sk||w'<|)2)
< coyminflol], ... | )N g"Y
< Cylel™,
wherew € H’;zl 2j1, £ € (&), |€] = 1. Thus(xo, &) ¢ WFy, f.

Now, let (xo, &0) ¢ WFy f. Then there exisp € C;3°(R"), ¢ (xo0) # O, I’ (£9), a conic
neighborhood ok, andi € (0, 1) such that for eaclv > 0 there exist€), > 0 such
that (3) is satisfied for every € 2, = ]’[’;zl Q5. &€ (&), €] > 1. Ase” € 2, and
Vs (en) £ 0, we get

16 &) = 165 (€ R eny). - 1 IR en) )]
Cl
g A—N _N b
¥ (en) ¢l
wheret € I"(£o). |§] > 1. Thus,(xo. é0) ¢ WF(f). =
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REMARK 16. For a different choice of factorization of a waveeinto a product of
wavelets described in the introduction of Section 4, the equality in Theorem 15 would hold
on corresponding subsets®f x R" due to the fact thaW,, is defined on these subsets. It
is natural to ask whether it would be possible to achieve the characterizativhofin full
forn #£ 1,2, 4,8. We can start with looking at the set of all factorizations:pflenoted by
S, into the sum consisting of addends214 and 8. Denote by, m € §, the corresponding
wavelets, as it is described, and denoteR}fy the set of directions, whe& . is defined in
&-direction. LetR" = | J,,c5 Ri'. Obviously, we have

WF(f) N R x R = [ WFyn(f).
meS

One can easily check that far= 3 the directions

(07 O’ 53) ’ (01 521 0) ’ (él? 07 O) ’

(different from Oe R®) are not inR3.
In order to analyze all directiorisof R3\ {0}, we can proceed as follows. Lig be the
characteristic function of the real line. Then we see

R'x R"\ {0} 5 (x,§) ¢ WFf < ((x,0), (§,0)) ¢ WF(f ® 1R) .

Thus, for the analysis of direction®, 0, £3), (0, &2, 0) and (¢1, 0, 0), we have to consider
Wy (f ® 1r), whereyr = 4 is the fourth-dimensional wavelet described in Section 3.1 and to
see whether the directionée, 0), (0, 0, &3, 0)), ((x, 0), (0, &2, 0, 0)) and((x, 0), (&1, 0,0, 0))
are out oWFy, (f ® 1R).

In the general case, far ¢ {1, 2, 4, 8}, one has to combine ideas described in the case
n = 3. Such analysis involves a lot of combinatorics and it will not be given.

4.2. WFO(f) and\/\/FIEf)(f). Now we define Soboley-wave front setSNFf;)(f)
S R" x [T}y (RV\{0D).

DEFINITION 17. Letf e S'(R"). ThenWFf;)(f) C R" x Hﬁzl(R'lj\{O}) is the
complement of the set of Sobolg+microlocally regular pointsxo, &) € R" x ]'[’;zl(R”i\
{0}), that s, (xo. &) ¢ WF " (f) if and only if

k
(3¢ € C5°(R") (p(x0) # 0) (EF(SO) - H(R"f\{o})> (31 € (0, 1)
j=1

/ (Wyr @) (T ) P(L+ £]D)° drdE < oo.
I' (&) JR"

Now we give a theorem equivalent to Theorem 9. We use the lemmas from Section 6.
THEOREM 18. Let f € S'(R"). Thenvva;)(f) =WFEO(£)n R x [T5_1(R™\(0}).
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PROOF. Let£o e [T5_, R"/\{0} and(xo, &) ¢ WF*(f). Then
I= / f Wy (@) (x, ©)P(L + &%) drd
I'(é0,r0) /JR"
= 2n)" f 1+ 182 dt f 7)1 ]"[ 18717 55.(87 | R ()2 d
I"(§0.70) j=1

where " (§) = {r: there exist§ € I'(£o,ro) suchthat&/|~*R.;(r/) € 2;,forj =
1,...,k}. So, we have

k
I=(2n)" / 6f (D)2 dt / A+ €D [TIE/ 1T P08 T R (r7))? dE
I'(¢0) I"(¢0.70) j=1
and with the change of variables

1712 |7k

1 = 277,’" o7 Zd / (1+ + .. 4+ > J—n;j j d
( )/f@o)lrﬁf(t)l (i " 1_[|a)| 7 1a (@ 2do,

where, fort € I'(&), £2'(7) is defined by
k
{a); there exist§ € I'(éo, o) such that|gY| " R, (z1), ..., ¥ R (%)) € ]_[ QM}.
j=1

As 2'(t) C H§=1 £2; 1, there exist positive constant§ andC», independent from, such
that for everyw € 2'(1)

1,2 2
& "|

Cil+171?)° < (l+| |2 ) ]_[|a>f| < Co(L+ 1)),

which implies that

k
C1(1+ [ f [[¥in(@)?do
205

1|2 k|2

k
|t |t >S S ;2
< 1+ +ot [Tl 1702 de
/mf)( 1|2 |ok|2 !

j=1

k
< Ca(1+ |r|2>“’/ [[Vir@)?de.
25
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Lemma 24 implies that we can choosgesuch thatf(go) is a subset of " (¢p) and then

I =@2n)" / @f(mzdr/

712 AR = TP
R I ! |71 ()2 do
I (50) /(1) i1

w2 |k |2

k
6 @A+ |77 dr / [1Vj2@)?do
I"(§0)

2j2 j=21

< C2(27T)"/
<c/ BF @R+ 1)’ dr,
I' (¢0)

whereC = C2(21)" i1, [15-1 ¥j.1.(0/)2 dow. This implies thatxo, &) ¢ \NF$>( 1.
Let now (xo, &) ¢ \/\/Ff(f). Using Lemma 25, we see that there exists a conic neigh-

borhoodI™ (&) such thatl™ (&9) € I (£0) and that for every e I''(&) it holds thats2’(t)
contains the same neighborhoocdf which we call]‘[’j‘.:1 !2}. Then we have

12 kj2\s K
[T~ I7%| ji-n 5 N2
2+"'+W o’ |7 Yja(@)) dw
j=1

I =@2n) / |<$]\”(r)|2dr<1+

F (&) ||

> C1(27T)n/

k
167 (@21 + |2?) de / [1Vjn(@v?do
I' (&) 2@

> cf BF (ORA + 212 dr,
I’ (&)

whereC = C1(2m)" [y 2 1‘[’;:l V.1 (01)? do. This implies thatxo, &) ¢ WF®) (f). O

REMARK 19. The same conclusions concerning the directions laying def afiven
in Remark 16 hold folWF* ( f).

5. Auxiliary lemmasA. We assume that =1, 2,4 or 8.

LEMMA 20. Lett € R"\{0}. Then thefollowing hold.

(1) Themapping & — w, wherew = |§|_1R5(T), is bijective from R™\{0} onto itself.
Theinverse mapping w — £ isgivenby &€ = (|7]/|w|?)[R.]~ (), where w € R"\{0}.

(2) Foragiveng € R"\{0} and every w € R"\{0O} there exists R/, € O(n) such that
£ = lo| 7R, (7).

(3) Letrg > 0. Theabove mapping & — w is bijective from I (z, rg) onto I" (e, ro).

PROOF. (1) Forever¥s, & € R'\{0}, we see that

1117 Re, (1) = 18217 Re, (1) = |£1] = |E2] = Ry (1) = Rey (7).
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First, implication is a consequence of the fact that any rotation preserves the norm. Further-
more, we have

Ry (1)  Re(1)  Re(&1)  Re(£2)
Izl &l &l
and this proves thdt — w is injective.
To prove that — w is surjective we need to show that for every R"\{0} there exists
£ € R"\{0} such that&|~1Rs (t) = w. We can easily verify that given by

= R:(51) = R (&82) = &1 =&,

T —
£ = 1 1R, w)
|l
satisfies this.

(2) As we did before when taking, € O (n) for eachRg such that

Re() _ R (&)
7] €]
(see Section 2), we can talké, € O(n) for [R,]~* such that
[R:] M (@) R, (7)

|l 7|

Then it is clear that
£ =|w|'R,(1).

(3) First, we note that € I'(t, ro) implies|§|—1Rg(r) € I'(ey, ro), which follows
from

TR () | ‘Rs(r) RO _ ‘Rr@) _ R(0)
€171z " 7] 7] H 7|
S L
IR

Second, for everw € I'(e,, ro) there existg € R"\{0} such thato = |§|_1Rg(‘[). Indeed,
suché is given byt = |t||w|2[R:] 1(w). We only need to show that it belongs k4, ro).
This follows from

7|

AEEN -3 B | _
Il Il || oo
lw|?
= ‘ﬁ —ey|l <ro. (|
||

LEMMA 21. Let& € R*\{0}andrg > O.
(1) Lett € I'(&0,r0/2). Then

I'(ey,r0/2) C{w; thereexists& € I'(&o, ro) such that w = |§|_1Rg(l’)},
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or equivalently for every t € I" (&0, ro/2), it followsthat I" (e,,, ro/2) iscontained in theimage
of I (%o, ro) under the mapping & > o = |£|R: (7).
(2) Let £2 beaneighborhood of ¢,,. Let
2'(t) = {w e R"\ {0} ; thereexists € € I' (%0, o) such that w = |&|"1R: (1) € 2},

where T € R" \ {0}. Then there exists a neighborhood 2’ of ¢, such that for every t €
I’ (§0,70/2),
Q'c ﬁ Q'(v).
el (§0.r0/2)
(3) Let$2 € Byy(en) CR", 19 € (0,1) and

ro = SUf|w/|w| —e,|; w e £2}.

Then rg,; is the smallest non-negative real number such that 2 < I'(e,, re). Moreover,
ro < /2ro/(1 - ro).
(4) £2’ defined in the above can be chosen in such way that ror < ro/2.

PrROOF. (1) Lett € I'(éy,r0/2). ThenI'(z,rg9/2) C I' (&0, ro) because for every €
I'(t,r0/2), we have

& %o £ T t b | ro ro_

— = — | < |- — — - < = =1rp.
&1 1ol &l Iz Izl 1ol 2 2
From Lemma 20 we know thdt (z, ro/2) is mapped ontd”(e,, ro/2) by & > » = |£|1R;
(1). So, for everyr € I' (&0, r0/2)
I'(en,10/2) = {w € R"\ {0} ; there exist§ € I'(t, ro/2) such thatw = |§|*1Rg(r)}

C {w € R"\ {0} ; there exist§ € I' (&, ro) such thaty = |§|*1R5 (1)},

which is what we had to prove.

(2) This assertion is a direct corollary of part (1). The claim is satisfiedZbr=
2N T (ey,ro/2).

(8) Clearly,2 C I'(ey,re) andrg is the smallest non-negative number such that
this inclusion holds. If we show tha? < I'(e,, ﬂro/(l —rp)), then it follows thatrp <
V2ro/(1 — rg). We havelw — ¢,| < ro, w € £2, i.e.,

|a)|2<r§+2wn—l, w€E .

Also, w € 2 implies thatjw| > |e,| — |e, — w| > 1 —ro > 0 andw, > 0. Furthermore, we

have

2
w

|l

_ 20 = 20lo] _ 20§ +20, =1 — 2]

~

€n

lw|? lw|?
2 2
2r0 - 2r0

< Y - v
T o2 T (1-r0?’

which implies that2 C I'(e,, v/2ro/(1 — rg)).
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(4) Thisis a consequence of part (2). |

We callrg, the conic radius of2 € B, (e,) € R", rg € (0, 1). Note that fom = 1 the
conic radius of any se® (contained in(—ro, rg)) is equal to 0.

LEMMA 22. Leté € R"\{O}ande, € §2 C By,(e,), Whererg < 1. Define
(&) = {t € R*\ {0} ; thereexistsé € I' (£, ro) such that |$|_1Rg(l’) € R2}.

Then the following hold.

(1) I (%) isa conic neighborhood of &, in particular, I' (¢o, r0) € I (£0).

(2) I'(k0) S I'(Eo,ro+r2).

PrROOF. (1) By definition, ift € I' (%), then there exist§ € I'(&o, ro) such that
|£]71Rs (1) € 2. Leta > 0 andg € I'(éo, o). Thenaé € I'(£o, ro). AS Re(t) = Rus(7)
andaRg (t) = Re(at), we get

lag| " Rue(at) = |E| 1R (7) € £2.

HenceI (&) is a conic set. As, belongs tof2 and |§'|_1Rg(§') = ¢,, it follows that
I (&0, r0) € I'(%0). Now, we conclude thaf (o) is a conic neighborhood &.
(2) To prove that"(£9) € I'(éo, ro + r) We need to show that for everye I" (&)

T o

Il ol

Fort e I'(&) there exist e I'(&, ro) andw € £2 such thais|1R: (1) = o, i.e., 7 =
|€|R; (). So, we have

<ro+rg.

EIR @) & ‘R;(a)) » ‘ 1 )
DT TS0 — R ew| + [R7 e — 22
Ellol ol o] g len)| R en) = ]
) & &o
=|l——ée|+ | — + . |
wl T e el 2T

LEMMA 23. Let I'(§9) bea conic neighborhood of &g € R"\{0}. For every A € (0, 1)
let 2, € By, (e,). Then there exist a conic neighborhood I” (&) of & and A € (0, 1) such
that

(@) felGo). oe2 = ER ™ ) eI

PROOF The mapping given byR" \ {OHhx R" 5 (§,w) > 7 = |§|R§?1(a)) is contin-
uous at(&p, e,), which is mapped t§p. So, there exist neighborhootdg&p) of &g andU (e;,)
of ¢,, such that

EIR; (@) € I'(§0), & € Uko), weUley).

Furthermore, there exisise (0, 1) such that2;, < U (e,), which means that

EIR; M (@) € I'(%0), & € Uko), € 2.



388 S. PILIPOVIC AND M. VULETIC

Let I" (&) be a conic set formed by (&0), that is defined by

(o) = {a& ;& € U(ko),a > O}.

For everyé € U(&) andw € £2;, we have that§|Rg1(a)) € I'(&y). Thus, fora > 0, we
obtain

|a€| R () = alé|R; () € T'(€o) ,

becausd™ (&) is a conic set. So, andI” (&) satisfy property (4). o

6. Auxiliary lemmasB. We have already introduced the multidimensional notation
(see the very beginning of Section 4).

LEMMA 24. Let& e [[5_;(R"\{0}) andr € (0, 1). For every 2 € (0, 1) let 2, €
Bir(en;), j=1,... k. Foreveryroe R" and 1 € (0, 1) denote
Foa(Eo)={1 ; thereexists& e I' (€0, ro) such that [£/| 'R, (t/) € 2j5 for j =1,.... k}.

(1) Ifforsomex € (0,1),¢,; € 2, for j =1,...,k, thenfor every ro € R the set
I, (0) isa conic neighborhood of &. In particular, I' (o, ro) < I7,,5.(60) (T arepointsin
[Tj_1(R\(0D).)

(2) Thereexistro € RT and A € (0, 1) such that I, (%0) < I (%0, 7).

PROOF. (1) Ift = (¢1,...,7%) € [},.(%0), then there exist = (£1,...,&5) €
I'(§0,r0) andw = (0%, ..., @/) € 2) = 21 x --- x 2. such that

(5) /7R () =0, j=1,... k.
Then, fora > 0, it follows thata& € I" (&g, rp) and
lat/ | 'R i@t =, j=1,... k.

Thus,at € I},(60). ThatI" (§o, ro) € I, (60) is a consequence of the fact that € ;.
and|g/| 1R, (§7) = ey, for j =1,... k.
(2) Itis necessary to fineh > 0 andi € (0, 1) such that for every € fro,x(éo)

L
6 _ >
© ol ol |
Let
o (EH R @Y, ... IR @)
, W) = .
(LR @), ... [EK R @h)]

For everyr e I, (£o0) there exist € I'(o, 7o) andw’ € 2, j = 1,...,k, such that (5)
holds. So, (6) is equivalent to

|1, w) — 159, €M) <r.
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As the mapping
k

) [ JRY\O) x R'\{0} 5 (5, 0) > I (£, )

j=1
is continuous atép, ¢"), there exist neighborhodd (&p) of &g andx € (0, 1) such that
15, w) — (60, M| <r, &eU(o), we 2.

Now, it remains to construct a conic set frdif{¢p) and to show that for every from this
conic set and every € £2, the same inequality holds. If the given inequality holds for
& € U(&p) it will hold for a&, a > 0, because the mapping in (7) magsw) and(a&, w) to
the same point. Finally, ley > 0 be such that

I"(§0,r0) € {a& ; & € U(éo) anda > 0}.
This proves the second part of the lemma. O
LEMMA 25. Let& e [T5_y(RY\{0}) andro € R™. Let 2 = €21 x -+ x £ such
that £2; € R/ are neighborhoods of e, ; forj=1,..., k. Let
I[(£0) = {r ; thereexists& € I' (€0, ro) suchthat [£7| 7R, (x/) € 2; for j =1,..., k).
For every t € I"(£0), we define 2/(t) by

. thereexists & € I'(£o, ro) suchthat w/ = [§7| 1R, (1) € 2; }

Q(T):{w’ forj=1,...k

(t/ and w above are pointsin l_[]}=1(R”-" \{O}).)
Then there exist a conic neighborhood of &, denoted by I’ (£9), and a neighborhood of
e", called ]_[’;=l £/, such that I (&) C I' (&) and that for every T € I'/(£) it holds that

2'(7) contains [T;_, £

PROOF. Lett € R" andr > 0. Denote byU(z, r) the product of ballsB, (t/), j =
1,...,k. AsT'(&,rp) is a neighboArhood ofop, there exists: > 0 such thatU (&, r) C
I" (&0, r0). We can take < 2 minj{|§(’,|}. This requirement will become clear later.

First, we want to show that for evetye U (&g, r/2)

Ue".r/@lkl) ¢ | {0 RaeY, L IEN T R (7))}

Eel(t,r/2)
Note that, ifr € U (%0, r/2), thent e [T5_,(R"/\{0}) because foj =1, ...k,
/| > |81 — 18] — /| > 1&g — /2> 0.
Also, o € [T5_1(R'\{0)) if w € U(e". /(8l%0])), because foj = 1,.... k,
/] > 1= len; — | > 1—r/(8léol) > 1—r/(4l&3]) > 1/2.
Then from Lemma 20 we know there exi§te ]'[’;:l(R"f\{O}) such that

ol =g/ R (x) ., j=1... k.
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We need to show that thisbelongs taU (z, r/2). We know that
Rej (t/) _ Rg/(é-j)
&7 &7
1 . . |a,j| . .
= |t/ - =— /=&, j=1,... k.
1§71 [t/|
So,|t/ — &/ = (It/|/lw/ D! —e,;|for j =1,... k. As

J_ —
lw en,-|—

] < &SI+ 1T/ — &1 < Igol +r/2 < 280l ,
we conclude that
2|&| r r .
—_— = -, =1 ...,k.
128 2 7
This implies that e U (z, r/2). Furthermorel (z, r/2) C U (%o, r) for everyr € U (&p, r/2).
AsU(t,r/2) C U(&,r) C I' (&, rp), it follows that

(®) U r/@lgoh) ¢ | (T Rah, .. 1E T Rk ()

&el'(%o,r0)

It/ —&/] <

for everyr e U (&, r/2). We construct a conic set frofi(&o, r/2) and denote it by™ (£o).
It is easy to verify that (8) holds for every € I''(£). As U(é,r/2) € U(&,r) C
I'(&0,r0) € I'(&) (see Lemma 24), it follows that’(&9) < I'(£0). Then we choose’

such thaf T_, £/ is a neighborhood af" and[T5_, 2, U r/@l) N 2. o

LEMMA 26. Let I'(&o) be a conic neighborhood of &y € Hﬁzl(R"f\{O}) and r €
(0.1). For every 1 € (0, 1) let 2, = [[5_y 2., satisfy 2, C By (en)) for j = 1,... k.
Then there exist I"(§9) < Hﬁzl(R"f\{O}), a conic neighborhood of £y and A € (0, 1) such
that

9) (|§1|Rg11(w1) ..... |§k|RE_kl(wk)) elE), E£el (&), we .
PROOF. The mappinq_[’;:l(R"j\{o}) x R" 3 (€, w) — T, Where
o= IR @), =1k,

is continuous atéo, ¢"), which is mapped t&p. So, there exist neighborhoods(&p) <
[T5_1(R/\{0}) of & andU (e") of ¢" such that

(EHRG @Y. ... [E RGN @) € T'(60). § € Uo). weU(").
Furthermore, there exisise (0, 1) such that2, € U (e"). Then we have
(&R @Y. ... [E IR @) € T60) . § € UGo). o< 2.

Let I"(£o) be a conic set constructed frdif(&g). Obviously,I” (£9) € Hﬁzl(R’lf \{0}). These
1 and I (&) satisfy property (9). O
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