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Abstract. We generalize several results on the order of the isometry group of a com-
pact manifold with negative Ricci curvature proved by Dai et al. under the assumption of
bounded norm and an integral curvature bound. We also show that there exists a bound on the
order of the isometry group depending on the weak norm ofM.

1. Introduction. Let M be ann-dimensional compact Riemannian manifold. If the
Ricci curvature RicM of M satisfies RicM < 0, then the isometry group Isom(M) of M is fi-
nite by a classical theorem of Bochner (see [10]). Yamaguchi [12] found a bound on the order
of isometry groups depending on the volume under the assumption of negative sectional curva-
tures. In [3], Dai et al. showed that if{Mj } is aC1,α-convergent sequence of manifolds satisfy-
ing −K ≤ RicMj ≤ −k < 0, the injectivity radius injMj ≥ i0 and the volume vol(Mj ) ≤ V ,

then the order of isometry groups satisfieslimj→∞|Isom(Mj )| ≤ |Isom(M0)| < ∞, where
|S| denotes the cardinality of a setS. As a corollary,|Isom(M)| ≤ N(n,K, k, i0, V ) for a
constantN depending only onn,K, k, i0, V . In [11], Rong proved that a compact manifold
with negative Ricci curvature admits no non-trivial invariant F-structure, which implies that
if the sectional curvature|KM | ≤ 1, RicM ≤ −K < 0 and the diameter diam(M) ≤ d, then
|Isom(M)| ≤ N1(n,K, d). Although this theorem has no assumption on the lower bound of
the injectivity radius, a lower bound of it is obtained from the main theorem of [11].

Petersen introduced the (weak) norm of a manifold in [10]. The above condition that
−K ≤ RicM ≤ −k < 0 and injM ≥ i0 gives a bound on the harmonicC1,α-norm. We recall
briefly the definition of the (weak) norm of ann-dimensional Riemannian manifold(M, g)
on scaler > 0, whereg is the metric ofM in [9, 10].

DEFINITION 1 [9]. TheCk,α-norm of ann-dimensional Riemannian manifold(M, g)
on scaler > 0, ||(M, g)||Ck,α,r , is defined to be the infimum of positive numbersQ such that
there exist imbeddings

Φτ : B(0, r) ⊂ Rn → Uτ ⊂ M

with imagesUτ , τ ∈ I (an index set), with the following properties:
(1) e−2Qδ ≤ Φ∗

τ (g) ≤ e2Qδ, whereδ is the Euclidean metric;
(2) every metric ballB(p, re−Q/10) for p ∈ M lies in someUτ ;
(3) r |l|+α||∂lgτ,ij ||C0,α ≤ Q for all multi-indicesl with 0 ≤ |l| ≤ k, wheregτ = Φ∗

τ g.
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The weak norm ||(M, g)||W
Ck,α,r

is defined in a similar way except thatΦτ is assumed
to be a local diffeomorphism instead of a diffeomorphism. Then we may regardΦτ as a
weak coordinate. If the (weak) coordinate charts are harmonic, we call such a norm a(weak)
harmonic norm. In [8], it is proved that if the weakC0,α-norm is bounded and the diameter
is sufficiently small, thenM is diffeomorphic to a nilmanifold up to finite cover. Instead of
Ck,α-norm,Lk,p-norm can be used.

For constantsk ≥ 0,α ∈ (0,1], r > 0 and a positive functionQ(r) with limr→0Q(r) =
0, we define the following classes ofn-dimensional complete Riemannian manifolds:

Mk,α(n,Q) = {(M, g) | ‖(M, g)‖W
Ck,α,r

≤ Q(r)} ,
M̃k,α(n,Q) = {(M, g) | ‖(M, g)‖Ck,α,r ≤ Q(r)} ,
Mk,p

L (n,Q) = {(M, g) | ‖(M, g)‖W
Lk,p,r

≤ Q(r)} ,
M̃k,p

L (n,Q) = {(M, g) | ‖(M, g)‖Lk,p,r ≤ Q(r)} .

(1)

Note thatMk+1,p
L (n,Q) ⊂ Mk,α(n,Q).

For givenQ,n, k, r > 0, M̃k,α(n,Q) is compact in the pointedCk,α
′
-topology for

anyα′ < α (see [11]). Furthermore, Petersen et al. showed that ifM ∈ M0,α(n,Q) for a
harmonic weak coordinate chart, then the metricg of M can be deformed to a metricg ′ with
|Kg ′ | ≤ K, whereKg ′ is the sectional curvature with respect to the metricg ′ andK depends
onα,Q (see [9]). So the (weak) norm can be considered as a generalization of the curvature.

It is our question if we can generalize the above results on the isometry group of a
negatively curved manifold under a bounded (weak) norm. It should be noted that it has not
been known that manifolds inM1,α(n,Q) can be deformed to those with metrics of bounded
sectional curvature without harmonicity. So we cannot use the arguments on F-structure in
[12] and it is not known whether collapsing could occur.

We will prove the following theorems. We can easily generalize the result in [3] under an
integral bound on Ricci curvature as follows: leth(x) be the largest eigenvalue for the Ricci
transformation Ric: TxM → TxM. Similarly as in [10], we consider

R̄M(K) = 1

vol(M)

∫
M

max{h(x)+K,0} dv .(2)

The classical Bochner theorem claims that ifR̄M(K) = 0 for someK > 0, then
|Isom(M)| < ∞ (see [11]). First, as a generalization of [3], we prove the following.

THEOREM 1. For fixedK,p > 0 and a positive functionQ(r) with limr→0Q(r) = 0,
let Mj be a sequence of manifolds in M̃2,p

L (n,Q) satisfying vol(Mj ) ≤ V . If Mj converges
to M in the L2,p-topology and R̄Mj (K) → 0, then:

(1) |Isom(M)| < ∞; and
(2) limi→∞ |Isom(Mj )| ≤ |Isom(M)|.
COROLLARY 1. For a given K > 0 and M ∈ M̃2,p

L (n,Q) satisfying vol(M) ≤
V , there exist constants N(n,K,Q,p, V ) and ε(n,K,Q,p, V ) > 0 depending only on
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n,K,Q,p, V such that if R̄M(K) < ε(n,K,Q,p, V ), then the order of the isometry group
is bounded by N(n,K,Q,p, V ).

Note that the class of manifolds satisfying−k ≤ RicM ≤ −K for some constantsk,K >

0, injM ≥ i0 and vol(M) ≤ V is contained inM̃2,p
L (n,Q) for somep,Q, r by [1]. Our proof

is much simpler than that of [3]. Corollary 1can be considered as an integral version of the
Bochner theorem.

It is not known whether Theorem 1 can be generalized to the classM1,α(n,Q)

(orM2,p
L (n,Q)) as collapsing could occur. However, our main result is to prove the corollary

without non-collapsing conditions (e.g., lowerbound on the injectivity radius) as follows.

THEOREM 2. Let K,Q,α be positive numbers and Q(r) be a positive function
satisfying limr→0Q(r) = 0. For M ∈ M1,α(n,Q) with diam(M) ≤ d, there exist constants
ε(n,K,Q, α, d) > 0 and N(n,K,Q, α, d) depending only on n,K,Q, α, d such that if
R̄(K) < ε(n,K,Q, α, d), then the order of the isometry group is bounded by
N(n,K,Q, α, d).

It can be considered as a generalization of a result in [11]. In [11], Rong showed that
a collapsing does not occur from the main result and used the theorem in [3]. However,
in our case, we do not assume that collapsing does not occur, so that we cannot obtain the
compactness theorem under a bound of the weakCk,α-norm.

2. Proof of Theorem 1. We prove the following theorem which has been proved in [3,
Theorem 1.3] under the assumption of bounded Ricci curvature. Once we prove the theorem,
the remaining part of the proof of Theorem 1 and Corollary 1 is the same as those in [3],
which requires onlyL2,p-convergence ofMj .

THEOREM 3. LetMbe an n-dimensional compact Riemannian manifold in M̃2,p
L (n,Q)

with limr→0Q(r) = 0 and vol(M) ≤ V . Then there exists ε(n,K,Q,p, V ) > 0 such that
if R̄M(K) < ε(n,K,Q,p, V ) and max{d(φ(x), x) | x ∈ M} ≤ ε(n,K,Q,p, V ) for an
isometry φ, then φ is the identity map.

PROOF. Let {Mj | j = 1,2, . . . } be a sequence of manifolds iñM2,p
L (n,Q) such that

R̄Mj → 0, vol(Mj ) ≤ V and diam(Mj ) ≤ D for a positive constantD > 0 and anyj > 0.
Assume thatMj has an isometryφj such that max{d(φj (x), x) | x ∈ Mj } = εj → 0.
We denote by(X, p)g a manifoldX pointed atp with a metricg. We choosepj ∈ Mj such
thatd(φj (pj ), pj ) ≥ εj/2. Rescaling the metricgj of Mj by multiplying ε−2

j , we have the
following convergence forpj ∈ Mj :

(Mj , pj )ε−2
j gj

→ (Rn, o)δ

in theC1,α-topology andφj → φ ∈ Isom(Rn) in theC2-topology from the proof of [2], where
φ(x) = Ax+ b for A ∈ O(n,Rn) andb 
= 0 ∈ Rn andd(φ(x), x) ≤ 1 for all x ∈ Rn. Then it
follows thatA = I andφj is almost translational. As(Rx + t)k = Rkx + (Rk−1 + · · · + I)t

on Rn, if φj ∗ → I , then the order ofφj satisfies that|φj | → ∞.
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Considering a subsequence, we may assume that(Mj , 〈φj 〉) → (M0, Z) with respect
to the equivalent Hausdorff distance for someC1,α-manifoldM0 and an isometry groupZ
onM0. There exists a diffeomorphismFj : M0 → Mj such thatF ∗

j gj → g0 in theC1,α-
topology. First, we show thatZ has a non-trivial element. IfZ has no non-trivial element,
then the diameter of the orbit ofφj diam({φkj (x) | k ∈ Z}) → 0 for everyx ∈ Mj . Let εj be

supx∈Mj
diam({φkj (x) | k ∈ Z}) and we choosepj ∈ Mj such that diam({φkj (pj ) | k ∈ Z}) ≥

εj /2. Rescaling the metricgj of Mj by multiplying ε−2
j , we have the following convergence

for pj ∈ Mj andZ′ ⊂ Isom(Rn):

(Mj , pj , 〈φj 〉)ε−2
j gj

→ (Rn, o, Z′)δ ,

where sup{d(φ(o), o) | φ ∈ Z′} ≤ 1. For the precise definition of pointed Hausdorff approxi-
mation, see [4]. It follows from the above arguments thatφkj converges to a translational

isometry asj → ∞ for all k, sinced(φkj (x), x) ≤ εj . However, this leads to a contradiction

as follows: if d(φk0
j (x), x) ≥ 3 supk d(φ

k
j (x), x)/4, thend(φ2k0

j (x), x) > supk d(φ
k
j (x), x)

for sufficiently largej , asφk0
j is almost translational, which is a contradiction.

Now we show that|Z| = ∞. For γ ∈ Z, let d(γ (p), p) = β > 0 andφ
kj
j → γ .

Then there existslj > 0 such thatβ/3< d(φ
lj
j (pj ), pj ) < β/2, wherepj → p. Considering

a subsequence of{φljj }, we can construct an isometryγ1 with β/3 < d(γ1(p), p) < β/2.
Inductively, we can construct isometriesγm for each positive integerm such that
β/(m+ 2) < d(γm(p), p) < β/(m+ 1). Hence,|Z| = ∞.

As |Z| = ∞, there exists a non-trivial Killing vector fieldX on M0. Let A be
maxx∈M0 ‖X(x)‖ > 0. It is well known that ifY is a compact Riemannian manifold, then
Isom(Y ) is a Lie group and there exists a Killing vector field when|Isom(Y )| = ∞ (see [7]).
Let Xj be a vector field onMj defined byFj ∗X. Then by Bochner’s formula (see [3]), we
have ∫

Mj

{RicMj (Xj ,Xj )+ (1/2)|LXj gj |2 − |∇gj Xj |2 − (divgj Xj )
2}dv = 0 .

Note thatMj can be identified withM0 by Fj as a space with different metrics. ThenXj and
X also can be considered as the same vector field on the same spaceM0 = Mj .
In general, we have that

2g(∇g
XY,Z) = X(g(Y,Z))+ Y (g(Z,X))− Z(g(X, Y ))

+ g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z],X) .(3)

As F ∗
j gj → g0 in theC1,α-topology andFj ∗X = Xj (i.e.,Xj = X if we identifyMj with

M0 byFj ), it follows from (3) that

(LXj gj )(V ,W) = gj (∇gj
V Xj ,W)+ gj (∇gj

W Xj , V )

→ g0(∇g0
V X,W) + g0(∇g0

W X,V ) = (LXg0)(V ,W) = 0
(4)
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asj → ∞. Let Sj be{x | h(x)+K > 0}. As∫
Mj

RicMj (Xj ,Xj )dv +
∫
Mj

K‖Xj‖2dv

≤
∫
Mj

(h(x)+K)‖Xj‖2dv

≤
∫
Sj

(h(x)+K)‖Xj‖2dv ≤ 2A2R̄Mj (K)vol(Mj ) → 0

(5)

and ∫
Mj

{|∇gjXj |2 + (divgj Xj )
2}dv ≥ 0

asj → ∞, we obtainX = 0, which is a contradiction. �

3. Proof of Theorem 2. Under the condition in Theorem 2, we cannot useC1,α-
compactness theorem, so that we cannot obtain an almost Killing vector field in the limit
space withC1,α-metric directly. Hence, we first construct local Killing vector fields and
then paste them together. We are going to prove Theorem 2 by contradiction. Assume that
{Mj } is a sequence of manifolds satisfying conditions in Theorem 2 andR̄Mj (K) → 0 but
|Isom(Mj )| → ∞.

Fix a sufficiently smallr > 0 such that anr-ball in M ∈ M̃2,p
L (n,Q) can be consid-

ered as an almost flat structure [8] andQ(r) < 1/100. Letφ be an isometry onM such
thatd(φ(p), p) < r/10000. Thenφ can be lifted to an isometrỹφ : B(0, r/100)Φ∗(gj ) →
B(0, r/2)Φ∗(gj ) for a weak coordinateΦ with Φ(0) = p, whereB(0, s)Φ∗(gj ) for s < r is the
set{(x1, x2, . . . , xn) ∈ Rn | ∑

i x
2
i = s2} with a metricΦ∗(gj ). A pseudogroup means a set

Γ with a productαβ ∈ Γ defined for someα, β ∈ Γ and the local fundamental pseudogroup
is the set of geodesic loops based at a given point whose lengths are smaller than a positive
constant. (For the precise definition of pseudogroup and local fundamental pseudogroup, see
[5].) Let Γp be the local fundamental pseudogroup of geodesic loops inB(p, r/100) based at
p whose lengths are smaller thanr/100. Then elements ofΓp can be considered as isometric
embeddings fromB(0, r/100)Φ∗(gj ) intoB(0, r/2)Φ∗(gj ).

We may assume thatMj → M0 for a compact length spaceM0 with respect to
the Gromov-Hausdorff distance. From the compactness ofM0, we can find aC0-covering
{B(pjk , r/100) | pjk ∈ Mj, k = 1, . . . , C0} ofMj such that(Φjk )

∗gj → gk in theC1,α-norm,

whereΦjk : B(0, r/100) ⊂ Rn → Mj are weak coordinates aroundpjk . For eachk, we have
the convergence

(B(0, r/100), Γ
p
j
k

)
(Φ

j
k )

∗gj → (Bk,Γ k)gk ,

and there exists a diffeomorphismFjk : Bk → B(0, r/100). For convenience, we abbreviate

(Φ
j
k )

∗gj to gj . We may identifyBk with B(0, r/100) as a space.
We prove Theorem 2 by a contradiction. Assume that there is a sequence of manifolds

{Mj } in M1,α(n,Q) such that there exists a sequence of isometriesφj : Mj → Mj with
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max{d(φj (x), x) | x ∈ Mj } → 0. Then we havẽφj ◦ γ ◦ φ̃−1
j ∈ Γp for γ ∈ Γp and

d(x̃, φ̃j (x̃)) ≤ d(x̃, p̃)+ d(p̃, φ̃j (p̃))+ d(φ̃j (p̃), φ̃j (x̃)) ≤ d(p̃, φ̃j (p̃))+ r/50

for all x̃ ∈ B(0, r/100)Φ∗(gj ).
For the proof of Theorem 2, we need the following lemma.

LEMMA 1. If |Isom(Mj )| → ∞, then there exists a sequence of isometries {φj } such
that (B(0, r/100), 〈φj 〉)(Φjk )∗gj →(Bk, φt )gk for a one-parameter isometry (pseudo)subgroup

φt , which yields a non-trivial Killing vector field Xk = dφt/dt on Bk for each k.

In our case, even if there exists a sequence of isometriesφj : Mj → Mj such that
maxx{d(φj (x), x)} → 0, it may occur that maxx{d(φ̃j (x̃), x̃)} does not converge to 0, i.e., ro-
tational parts do not necessarily converge toI if [φ̃j , Γpj ] 
= 0, which is the main difference
from the case of Theorem 1. (In the proof of Theorem 1, max{d(φj (x), x)} → 0 implies that
φj is almost translational.) We prove this lemma in Section 4. It follows from the proof of
Lemma 1 that{‖Xk‖C1 | k = 1, . . . } is bounded.

As LXkg
k = 0, we have thatgk(∇V Xk,W) + gk(∇WXk, V ) = 0. Furthermore, on

eachBk, everyXk can be obtained as a derivative of a one-parameter subgroup of isometries,
which is the limit of one cyclic group of isometries onMj . We identifyBk with B(0, r/100)

by the diffeomorphismFjk . AsXki are generated by one cyclic group of isometries onMj ,
we have

(Φ
j
k1
)∗(Xk1(x1)) = (Φ

j
k2
)∗(Xk2(x2))(6)

for somex1, x2 such thatΦjk1
(x1) = Φ

j

k2
(x2).

As φ̃j ◦ γ j ◦ φ̃−1
j ∈ Γ

p
j
k

for γ j ∈ Γ
p
j
k

, we see that forγ ∈ Γ k

γ∗Xk = Xk .(7)

As γ j → γ in theC2-topology forγ j ∈ Γ
p
j
k

andγ ∈ Γ k from [2], we have

‖(Φjk )∗(Xk(x))− (Φ
j
k )∗(Xk(γ

jx))‖C1 → 0(8)

for γ j ∈ Γ
p
j
k

from (7). Now we construct a global smooth vector fieldX j onMj which is

close to(Φjk )∗Xk in theC1-topology. LetAjk be the set of pseudogroup defined byAjk =
{γ ∈ Γ

p
j
k

| γpjk ∈ B(pjk , r/100)}. Let Xj
k be aC1-vector field on Im(Φjk ) defined as follows:

X
j

k(x) = 1

|Ajk |
∑
γ∈Ajk

(Φ
j

k )∗(Xk(γ x̃)) ,

wherex̃ is a point in(Φjk )
−1(x). Then from (8), (3) andgj → g in C1,α, it follows that

‖∇gj
V X

j
k − ∇gj

V (Φ
j
k )∗(Xk)‖C0 → 0 ,

‖gj (∇gj
V (Φ

j
k )∗(Xk),W)− gk(∇gk

V Xk,W)‖C0 → 0
(9)
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almost everywhere for smooth vector fieldsV andW on Im(Φjk ) asj → ∞. Similarly as in
(4), we obtain that

L
X
j
k

gj → LXkg
k = 0 ,(10)

as X
j
k → Xk and gj → gk in the C1-topology, identifyingBk and Im(Φjk ) locally.

Using a partition of unity, we can construct a globally continuous vector fieldX̄ j from X
j
k .

Letψ : [0, r) → [0,1) be a decreasing smooth function such thatψ(x) = 1 on[0, r/100−ε0)

and 0 forx ≥ r/100 for a fixedε0 < r/10000. Ifψk(x) = ψ(d(p
j
k , x)), then{ψ̄k | ψ̄k =

ψk/(
∑
k ψk)} is a partition of unity. LetX̄ j be

∑
k ψ̄kX

j
k . As ∇ψ̄k is uniformly bounded

almost everywhere, limj→∞ |Ajk | = ∞ and

‖∇gj
V X

j
k1

− ∇gj
V X

j
k2

‖C0 → 0(11)

by (6) and (9), we have

‖∇gj
V X̄ j − ∇gj

V (Φ
j
k )∗(Xk)‖C0 =

∥∥∥∥∇gj
V

∑
k

ψ̄kX
j
k − ∇gj

V (Φ
j
k )∗(Xk)

∥∥∥∥
C0

≤
∥∥∥∥d

( ∑
k

ψ̄k

)
(V )X

j
k0

+
∑
k

dψ̄k(V )(X
j
k − X

j
k0
)

∥∥∥∥
C0

+
∥∥∥∥

∑
k

ψ̄k∇gj
V X

j
k − ∇gj

V (Φ
j
k )∗(Xk)

∥∥∥∥
C0

→ 0

(12)

almost everywhere asj → ∞. Note that
∑
k ψ̄k = 1.

Now we follow the smoothing technique in [6]. Chooseρj with 0 < ρj < injMj . Let
dµx be the measure onB(x, ρj ) induced from the Lebesgue measure on{v ∈ TxMj | ‖v‖ <
2ρj } by exp. We define the smoothing kernelΨρj : Mj ×Mj → R by

Ψρj (x, y) := ψ(ρ−1
j d(x, y))∫

B(x,ρj )

ψ(ρ−1
j d(x, ·)) dµx

.

We denote byPyx (V ) the parallel translation ofV from x to y along the minimal geodesic.
LetX j be defined as follows:

X j (x) =
∫
B(x,ρ)

P xy (X̄ j (y))Ψρj (x, y)dµx .(13)

For u ∈ TxMj , let γ be the geodesic fromx with γ ′(0) = u. Also we let γy(t) =
expγ (t)(P

γ (t)
x (exp−1

γ (0)(y))). Let U be the vector field defined asU(y) = γ ′
y(0). As

expγ (t) ◦Pγ (t)x ◦ exp−1
γ (0) is measure preserving, we have

X j (γ (t)) =
∫
B(x,ρ)

P
γ (t)

γy(t)
(X̄ j (γy(t))Ψρj (x, y)dµx .
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Note that

‖Pγ (0)γ (t) ◦ Pγ (t)γy(t)
(X)− P

γ (0)
γy(0)

(X)− P
γ (0)
γy(0)

◦ (P γy(0)γy(t)
(X)− X)‖

= ‖Pγ (0)γ (t) ◦ Pγ (t)γy(t)
(X)− P

γ (0)
γy(0)

◦ Pγy(0)γy(t)
(X)‖ ≤ Kj tρj‖X‖ ,

(14)

whereKj depending on the sectional curvatureKMj ofMj . Hence,
∥∥∥∥ ddt P

γ (t)

γy(t)
(X̄ j (γy(t))

∣∣
t=0 − P

γ (0)
γy(0)

(∇gj
U X̄ j )

∥∥∥∥

=
∥∥∥∥ lim
t→0

P
γ (0)
γ (t) P

γ (t)

γy(t)
(X̄ j )− P

γ (0)
γy(0)

(X̄ j )

t
−
P
γ (0)
γy(0)

◦ (P γy(0)γy(t)
(X̄ j )− X̄ j )

t

∥∥∥∥
≤ Kjρj‖X̄ j‖ .

Therefore, ifρjKj → 0, then∥∥∥∥∇gj
u X j −

∫
B(x,ρj )

P xy (∇gj
U X̄ j )Ψρj (x, y) dµx

∥∥∥∥ ≤ Kjρj‖X̄ j‖ → 0 ,(15)

so that we choose very smallρj such thatρjKj → 0. From (Φ
j

k )
∗gj → gk in the

C1,α-topology and (12), (15), we have

‖∇gj
u X j − ∇gj

u (Φ
j
k )∗(Xk)‖C0

≤ ‖∇gj
u X j − ∇gj

u X̄ j‖C0 + ‖∇gj
u X̄ j − ∇gj

u (Φ
j
k )∗(Xk)‖C0 → 0 .

(16)

From (16),LXkg
k = 0 and(Φjk )

∗gj → gk,

|gj (∇gj
V X j ,W) + gj (∇gj

W X j , V )|
≤ |gk(∇gk

Ṽ
Xk, W̃ )+ gk(∇gk

W̃
Xk, Ṽ )|

+ |gj (∇gj
V X j ,W)− gj (∇gj

V (Φ
j

k )∗(Xk),W)|
+ |gk(∇gk

V Xk,W) − gj (∇gj
V (Φ

j

k )∗(Xk),W)|
+ |gj (∇gj

W X j , V )− gj (∇gj
W (Φ

j
k )∗(Xk), V )|

+ |gk(∇gk

W Xk, V )− gj (∇gj
W (Φ

j
k )∗(Xk), V )| → 0 .

(17)

As j → ∞, we have

|LX j gj (V ,W)| = |gj (∇gj
V X j ,W) + gj (∇gj

W X j , V )| → 0 .

Now we use the integral version of Bochner’s formula [3]: AsX j is aC1-vector field
onMj , ∫

Mj

{RicMj (X j ,X j )+ (1/2)|LX j gj |2 − |∇X j |2 − (divX j )2}dv = 0 .
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AsLX j gj → 0 and‖∇gjX j‖ is bounded by virtue of the boundedness of‖∇gkXk‖, we have
that

1

vol(Mj )

∫
Mj

{−RicMj (X j ,X j )+ |∇gjX j |2 + (divX j )2}dv

= 1

vol(Mj )

∫
Mj

{K‖X j‖2 + |∇gjX j |2 + (divX j )2}dv

− 1

vol(Mj )

∫
Mj

RicMj (X j ,X j )+K‖X j‖2dv

= 1

vol(Mj )

∫
Mj

1

2
|LX j gj |2dv → 0 .

(18)

From (5),
∫
Mj

RicMj (X j ,X j ) + K‖X j‖2dv/vol(Mj ) ≤ 2A2R̄Mj (K) → 0. For some

coordinateΦjk , vol(Im(Φjk )) ≥ vol(Mj )/C0. Taking a subsequence, we have

1

vol(Im(Φjk ))

∫
Im(Φjk )

‖X j‖2dv → 0 ,

which impliesX j → 0 almost everywhere in Im(Φjk ). As ‖Xk − X j‖ → 0, we obtain
thatXk = 0, which is a contradiction to Lemma 1. Hence,|Isom(Mj )| is bounded for any
sequence{Mj }, which completes the proof of Theorem 2.

4. Proof of Lemma 1: existence of Killing vector fields. Assume that there exists
a sequence of manifoldsMj such that|Isom(Mj )| → ∞. Let Mj converge to a compact
length spaceM0 in the Gromov-Hausdorff metric. We may assume that{pk | k = 1, . . . , N}
inM0 satisfy thatM0 can be covered by

⋃N(ε)
i=1 B(pk, ε) andB(pk, ε/2) are pairwise disjoint.

Let {pjk | k = 1, . . . , N(ε)} ⊂ Mj converges to{pk | k = 1, . . . , N(ε)} ∈ M0. We define

F(φ)(i) as the smallestk such thatφ(pjk ) ∈ B(p
j
i , ε). ThenF is a map from Isom(Mj ) to

S(ε)S(ε) = {f | f : S(ε) → S(ε)}, whereS(ε) = {1, . . . , N(ε)}. As |S(ε)S(ε)| = N(ε)N(ε)

and|Isom(Mj )| → ∞, there existsφ ∈ Isom(Mj ) such that maxx{d(φ(x), x) | x ∈ Mj } ≤
10ε. Furthermore, we obtain that

|{φ | maxd(φ(x), x) ≤ 10ε}| ≥ Isom(Mj )/N(ε)
N(ε) → ∞(19)

asj → ∞.
LetFj ={φj,l | l = 1, . . . , n(j)} be a set of isometries ofMj such that maxx{d(φj,l(x),

x)} ≤ εj . From (19), we can find a sequenceεj such thatεj → 0 and |Fj | → ∞ as
j → ∞. If we lift the isometryφj,l ∈ Isom(Mj ) to the isometryφ̃j,l onB(0, r/100)

(Φ
j
k )

∗gj
and rescale the metric by multiplyingε−2

j as the proof of Theorem 1, we have‖φ̃j,l (x) −
(bkj,l+Akj,lx)‖C2 → 0 asj → ∞ forAkj,l ∈ O(n,R) by the same reason as in Theorem 1. As

O(n,R)C0 = O(n,R)×· · ·×O(n,R) is compact, there exists, t such that‖Akj,s −Akj,t‖ → 0
asj → ∞ for all k, whereC0 is a number of coverings byr/100-ball in Section 3. Then
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|φ̃−1
j,s φ̃j,t | → ∞. Hence, there exists̃φj such that|φ̃j | → ∞ and

‖φ̃j (x)− (Ajx + bj )‖C2 → 0(20)

onB(0, r) with Aj → I , with respect to the rescaled metrics. We use the same arguments as
in Theorem 1. We have the convergence

(B(0, r/100), 〈φ̃j 〉)(Φjk )∗gj → (B(0, r/100), Z)gk

for isometry groupZ. By the same reason as in Theorem 1,Z is non-trivial. For non-
trivial isometryγ ∈ Z, we can construct isometriesγm such thatd(γ (p), p)/(m + 2) <
d(γm(p), p) < d(γ (p), p)/(m + 1). Hence,|Z| = ∞. Furthermore, there exists a sequence
of {fi ∈ Z} such thatfi converges to a translational isometry in theC2-topology by (20).

Now we show that there exists a Killing vector field onB(p, ε0/100) in a similar way as
in [7]. First, we construct a one-parameter sub(pseudo)group ofZ as follows. Let
fi ∈ Z be a sequence such thatfi converge to the identity in theC2-topology andεi =
max{d(fi(x), x) | x ∈ B(0, r/100)

(Φ
j
k )

∗gj } → 0. If hi = [1/εi], thenf h(i)i → f for an isom-

etryf by considering a subsequence. By the same reason as in [7], limi→∞ f
[rh(i)]
i exists for

everyr ∈ [0,1]. We denote limi→∞ f
[rh(i)]
i byf (r). Then we havef (r1 + r2) = f (r1)f (r2)

if r1 + r2 < r/2, so thatf (r) is a one-parameter pseudo subgroup ofZ. As f (r) is an
isometry for allr, ‖f (r)‖C2 ≤ C(r) for a functionC depending onr (see [2]). It yields
a one-parameter (pseudo)subgroup onB(0, r/2)

(Φ
j
k )

∗gj by f (t)x. Then we have a Killing

vector fieldV as follows:

V (x) = d

dt
f (t)x = lim

h→0

f (t) ◦ f (h)x − f (t)x

h
= f (t)∗ lim

h→0

f (h)x − x

h
.

Taking a subsequence if necessary, limt→0 (f (t)x − x)/t exists. Now we show thatV is a
C1-vector field. Asf (r) is bounded in theC2-topology,

d

ds
V (γ (s)) = d

ds

(
d

dt
f (t)(γ (s))

)
= d

dt

(
d

ds
f (t)(γ (s)) = d

dt
(f (t)∗(w))

)

= lim
h→0

f (t + h)∗(w)− f (t)∗(w)
h

= f (t)∗
(

lim
h→0

f (h)∗(w)− w

h

)
(21)

for γ ′(0) = w. Hence, there exists aC1-Killing vector field onB(0, r/2)
(Φ

j
k )

∗gj .
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