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Abstract. We generalize several results on the order of the isometry group of a com-
pact manifold with negative Ricci curvature proved by Dai et al. under the assumption of
bounded norm and an integral curvature bound. We also show that there exists a bound on the
order of the isometry group depending on the weak nori of

1. Introduction. Let M be ann-dimensional compact Riemannian manifold. If the
Ricci curvature Rig; of M satisfies Rig; < 0, then the isometry group Isq) of M is fi-
nite by a classical theorem of Bochner (see [10]). Yamaguchi [12] found a bound on the order
of isometry groups depending on the volume under the assumption of negative sectional curva-
tures. In [3], Dai et al. showed that{i} } is aCcl-convergent sequence of manifolds satisfy-
ing —K < Ricy; < —k < 0, the injectivity radius inj; > io and the volume valM;) <V,
then the order of isometry groups satisfﬁjﬁoousom(Mm < |lsom(Mp)| < oo, where
|S| denotes the cardinality of a s8t As a corollary,|lsom(M)| < N(n, K, k, ig, V) for a
constantV depending only om, K, k, ip, V. In [11], Rong proved that a compact manifold
with negative Ricci curvature admits no non-trivial invariant F-structure, which implies that
if the sectional curvatureK ys| < 1, Ricyy < —K < 0 and the diameter diaiw) < d, then
[lIsom(M)| < Ni(n, K, d). Although this theorem has no assumption on the lower bound of
the injectivity radius, a lower bound of it is obtained from the main theorem of [11].

Petersen introduced the (weak) norm of a manifold in [10]. The above condition that
—K < Ricy < —k < 0and inj; > ig gives a bound on the harmonit:*-norm. We recall
briefly the definition of the (weak) norm of andimensional Riemannian manifold/, g)
on scale > 0, wherey is the metric ofM in [9, 10].

DEFINITION 1 [9]. TheC**-normof ann-dimensional Riemannian manifold/, ¢)
onscaler > 0, ||(M, ¢)||cke ., is defined to be the infimum of positive numbe¥ssuch that
there exist imbeddings '

&, :BOrcR*—=U, CM

with imagesU;, T € I (an index set), with the following properties:
(1) e7225 < @ (g) < €228, wheres is the Euclidean metric;
(2) every metric balB(p, re=2/10) for p € M lies in somel, ;
(3) "3 g i1l coa < O forall multi-indices! with 0 < |/| < k, whereg, = &% g.

2000Mathematics Subject Classification. 53C20.
Key words and phrases. Weak norm, killing vector field, isometry group.



220 S.-H. PAENG

The weak norm ||(M, g)||\év,m . is defined in a similar way except the is assumed

to be a local diffeomorphism instead of a diffeomorphism. Then we may refards a
weak coordinate. If the (weak) coordinate charts are harmonic, we call such a nevealg
harmonic norm. In [8], it is proved that if the weak'®%-norm is bounded and the diameter
is sufficiently small, thenV is diffeomorphic to a nilmanifold up to finite cover. Instead of
cke-norm, L*P-norm can be used.

For constantg > 0,« € (0, 1], » > 0 and a positive functio® () with lim, o Q(r) =
0, we define the following classes mfdimensional complete Riemannian manifolds:

ME(n, Q) = (M, g) | (M, DIk, < QM)
MA@, Q) = (M, 9) | |(M, 9)licre, < Q).
MyP(n, Q) =M, ) | I(M, 9%, , <0},
MEP(n, Q) = (M. g) | (M, 9)llr, < Q).

Note thatM} ™7 (n, 0) ¢ M**(n, Q).
For givenQ, n, k,r > 0, M*%(n, Q) is compact in the pointed*¢ -topology for
anyo’ < « (see [11]). Furthermore, Petersen et al. showed that i€ M%%(n, Q) for a
harmonic weak coordinate chart, then the megrif M can be deformed to a metri¢ with
|Ky| < K, whereK  is the sectional curvature with respect to the mejfiand K depends
ona, Q (see [9]). So the (weak) norm can be considered as a generalization of the curvature.
It is our question if we can generalize the above results on the isometry group of a
negatively curved manifold under a bounded (weak) norm. It should be noted that it has not
been known that manifolds iM% (n, Q) can be deformed to those with metrics of bounded
sectional curvature without harmonicity. So we cannot use the arguments on F-structure in
[12] and it is not known whether collapsing could occur.
We will prove the following theorems. We can easily generalize the resultin [3] under an
integral bound on Ricci curvature as follows: Igtc) be the largest eigenvalue for the Ricci
transformation Ric T, M — T, M. Similarly as in [10], we consider

(1M) /M max{h(x) + K, 0} dv .

)

2 Ru(K) =

(2 Rm(K) ol
The classical Bochner theorem claims thaflif;(K) = 0 for someK > 0, then

[lIsom(M)| < oo (see [11]). First, as a generalization of [3], we prove the following.

THEOREM 1. Forfixed K, p > 0and a positive function Q (r) with lim,_.o Q(r) = 0,
let M; be a sequence of manifoldsin Mi”’(n, Q) satisfying vol(M;) < V. If M; converges
to M inthe L27-topology and R, (K) — O, then:

(1) [|Isom(M)| < oo; and

(2) lim;_ o [ISOMM;)| < |ISOM(M)].

COROLLARY 1. Foragven K > Oand M € /\;li”’(n, Q) satisfying vol(M) <
V, there exist constants N(n, K, Q, p, V) and ¢(n, K, Q, p, V) > 0 depending only on
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n,K,Q, p,V suchthat if Ry (K) < e(n, K, Q, p, V), then the order of the isometry group
isbounded by N(n, K, Q, p, V).

Note that the class of manifolds satisfyirg < Ricy; < —K for some constants K >
0, injys > ip and volM) < V is contained in/\hi”’(n, Q) for somep, Q, r by [1]. Our proof
is much simpler than that of [3]. Corollarycan be considered as an integral version of the
Bochner theorem.

It is not known whether Theorem 1 can be generalized to the cld$s!(n, Q)
(or Mi”’(n, Q)) as collapsing could occur. However, our main result is to prove the corollary
without non-collapsing conditions (e.g., lowsound on the injectivity radius) as follows.

THEOREM 2. Let K, Q,« be positive numbers and Q(r) be a positive function
satisfying lim,_.o Q(r) = 0. For M € MY2(n, Q) with diam(M) < d, there exist constants
en, K, Q,a,d) > 0and N(n, K, Q,«,d) depending only on n, K, Q, «,d such that if
R(K) < e, K,Q,a,d), then the order of the isometry group is bounded by
N, K, Q,a,d).

It can be considered as a generalization of a result in [11]. In [11], Rong showed that
a collapsing does not occur from the main result and used the theorem in [3]. However,
in our case, we do not assume that collapsing does not occur, so that we cannot obtain the
compactness theorem under a bound of the w&fak-norm.

2. Proof of Theorem1. We prove the following theorem which has been provedin [3,
Theorem 1.3] under the assumption of bounded Ricci curvature. Once we prove the theorem,
the remaining part of the proof of Theorem 1 and Corollary 1 is the same as those in [3],
which requires only.?”-convergence oM ;.

THEOREM 3. Let Mbeann-dimensional compact Riemannian manifoldin/\;li’p(n,Q)
with lim,_o0 Q(r) = Oand vol(M) < V. Thenthereexistse(n, K, O, p, V) > 0 such that
if Ru(K) < e(n, K, Q, p, V) and maxd(¢(x),x) | x € M} < ¢(n, K, Q, p, V) for an
isometry ¢, then ¢ isthe identity map.

PROOF. Let{M; | j =12, ...} be asequence of manifoldsjﬁli”’(n, Q) such that
7_2Mj — 0, vol(M;) <V and dianiM;) < D for a positive constanD > 0 and any;j > 0.
Assume thatM/; has an isometry; such that magd(¢;(x),x) | x € M;} = ¢; — O.
We denote by(X, p), a manifoldX pointed atp with a metricg. We choosep; € M; such
thatd(¢;(p;), pj) = €;/2. Rescaling the metrig; of M; by multiplying sj*z, we have the
following convergence fop; € M;:

(Mj, pj) — (R",0)s

£%9j
intheC1*-topology andp; — ¢ € IsomR") in theC2-topology from the proof of [2], where
¢(x) =Ax+bforA e O(n,R") andb # 0 € R" andd(¢(x), x) < 1forallx € R*. Thenit
follows thatA = I and¢; is almost translational. A&Rx + 1)k = Rkx + (RF-1 4 ... + It
onR",if ¢; — I, then the order op; satisfies thalg;| — oo.
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Considering a subsequence, we may assume(Mat(¢;)) — (Mo, Z) with respect
to the equivalent Hausdorff distance for sodi&*-manifold My and an isometry groug@
on Mp. There exists a diffeomorphisifi; : Mg — M; such thatF;‘gj — go in the C1-
topology. First, we show tha has a non-trivial element. ¥ has no non-trivial element,
then the diameter of the orbit g; diam({¢§(x) | k € Z}) — Oforeveryx € M;. Lete; be
SUPe, diam({gbf(x) | k € Z}) and we choosg; € M; such that diar({q&f.(pj) |k €Z}) >
£j/2. Rescaling the metrig; of M; by multiplying g;z, we have the following convergence
for pj € Mj andZ’ C Isom(R"):

(M‘v Pj, <¢j>)£;zgj - (Rns o, Z/)S s

where sufd (¢ (0), 0) | ¢ € Z'} < 1. For the precise definition of pointed Hausdorff approxi-
mation, see [4]. It follows from the above arguments w:gatconverges to a translational
isometry asj — oo for all k, sinced(gbf(x), x) < ¢;. However, this leads to a contradiction
as follows: ifd(qsf"(x),x) > 3sup d(¢§(x),x)/4, thend(qsfk"(x),x) > sup, d(¢§(x),x)
for sufficiently largej, as¢§° is almost translational, which is a contradiction.

Now we show tha{Z| = co. Fory € Z, letd(y(p).p) = p > O andg, — y.
Then there exists > 0 suchthap/3 < d(¢if' (pj), pj) < B/2,wherep; — p. Considering
a subsequence c@tbl/}, we can construct an isometpy with 8/3 < d(y1(p), p) < B/2.
Inductively, we can construct isometrieg, for each positive integern such that
B/(m+2) <d(ym(p), p) < B/(m+1). Hence|Z| = co.

As |Z| = oo, there exists a non-trivial Killing vector fiel on Mp. Let A be
max.epm, | X (x)|| > 0. Itis well known that ifY is a compact Riemannian manifold, then
Isom(Y) is a Lie group and there exists a Killing vector field whH&om(Y)| = oo (see [7]).

Let X; be a vector field o, defined byF; X. Then by Bochner’s formula (see [3]), we
have

/ {Ricy, (X, X;) + (1/2)|Lx, gj|*> — V9 X;|? — (div% X ;)?}dv = 0.
M;

Note thatd/; can be identified withMo by F; as a space with different metrics. Th&n and
X also can be considered as the same vector field on the same Afsjace M;.
In general, we have that

Zg(V;g(Y, Z2)y=X@Y,2)+Y(y(Z X)) —Z(y(X,Y))

3

As Figj — goin the C1-%-topology andr; X = X; (i.e.,X; = X if we identify M; with
Mo by F;), it follows from (3) that
(Lx,g)(V. W) = g;(Vy/ X;, W) + g; (Vi X;, V)

4)
— go(VIPX, W) + go(Vie X, V) = (Lx go)(V, W) = 0



ISOMETRY GROUPS OF RIEMANNIAN MANIFOLDS 223
asj — oo. LetS; be{x | h(x) + K > 0}. As

/RicM_,(xj,xj)dqu/ K|X;|dv
M; .

J M]

(5) < /M () + KX |2

< / (h(x) + K)||1X|1%dv < 2A?R 1, (K)vol(M;) — 0
S '

and
/M {(IV9 X 1% + (div9i X ;)%}dv > 0
J

asj — oo, we obtainX = 0, which is a contradiction. O

3. Proof of Theorem 2. Under the condition in Theorem 2, we cannot usk®-
compactness theorem, so that we cannot obtain an almost Killing vector field in the limit
space withC1*-metric directly. Hence, we first construct local Killing vector fields and
then paste them together. We are going to prove Theorem 2 by contradiction. Assume that
{M;} is a sequence of manifolds satisfying conditions in Theorem 27%;@51(1() — 0 but
[lsom(M ;)| — oo.

Fix a sufficiently small- > 0 such that am-ball in M € Mi”’(n, Q) can be consid-
ered as an almost flat structure [8] agdr) < 1/100. Let¢ be an isometry oM such
thatd(¢(p), p) < r/10000. Thenp can be lifted to an isometr : B(0, r/100 % (g;) —
B(0,7/2)¢+(4;) for a weak coordinaté with @(0) = p, whereB(0, s)p+(g,) for s < r is the
set{(xy,x2,...,x,) € R" | D ; x,? = 52} with a metric®*(g;). A pseudogroup means a set
I with a producteg € I defined for some, 8 € I and the local fundamental pseudogroup
is the set of geodesic loops based at a given point whose lengths are smaller than a positive
constant. (For the precise definition of pseudogroup and local fundamental pseudogroup, see
[5].) Let I', be the local fundamental pseudogroup of geodesic loops pnr/100) based at
p whose lengths are smaller thafL00. Then elements df, can be considered as isometric
embeddings fronB(0, /100 ¢+ (g;) into B(0, r/2) g (g;)-

We may assume tha¥/; — My for a compact length spac#o with respect to
the Gromov-Hausdorff distance. From the compactnes¥g@fwe can find aCo-covering
{B(p],r/100 | pj € M;, k =1,..., Co} of M; such that®/)*g; — ¢ intheC1*-norm,
wherecp,{ : B(0,7/100 C R" — M; are weak coordinates aroum@. For eachk, we have
the convergence

(B(©0.7/100. T, 4.,

and there exists a diﬁeomorphisﬁ,{ : By — B(0,r/100). For convenience, we abbreviate
(@,{)*gj to g;. We may identifyB with B(0, »/100) as a space.

We prove Theorem 2 by a contradiction. Assume that there is a sequence of manifolds
{M;} in ML*@n, Q) such that there exists a sequence of isometfies M; — M; with

— (Bi, T'i) g,
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maxd(¢;(x),x) | x € M;} — 0. Then we have; o y oéjfl eI,fory e I,and

d(X, (%)) < d(X, p) +d(p. $;(p)) + d($;(P), $; (X)) < d(p, $;(P)) +r/50
forall x € B(0, r/100)¢*(gj).
For the proof of Theorem 2, we need the following lemma.
LEMMA 1. If[lsom(M;)| — oo, then there exists a sequence of isometries {¢;} such
that (B(0, r/100), (qu))((p,-)*g_ — (B, ¢1)g for aone-parameter isometry (pseudo)subgroup
k J
¢, which yieldsa non-trivial Killing vector field X, = d¢,/dt on By for each k.

In our case, even if there exists a sequence of isomefries M; — M; such that
max{d(¢;(x), x)} — 0, it may occur that map{d(q},- (x), x)} does not converge to 0, i.e., ro-
tational parts do not necessarily convergé i [ti;j’ I'p;1 # 0, which is the main difference
from the case of Theorem 1. (In the proof of Theorem 1, fidex; (x), x)} — O implies that
¢; is almost translational.) We prove this lemma in Section 4. It follows from the proof of
Lemma 1 tha{||Xx|lc1 | K =1,...}is bounded.

As Lx, g = 0, we have that*(Vy Xi, W) + ¢*(Vw Xk, V) = 0. Furthermore, on
eachBy, everyX; can be obtained as a derivative of a one-parameter subgroup of isometries,
which is the limit of one cyclic group of isometries a#;. We identify B, with B(0, /100

by the diffeomorphisnF,j. As X, are generated by one cyclic group of isometries\bn
we have

(6) (@] )s(Xiy (x1) = (PL) (X (x2))
for somexy, x2 such thatb,fl(xl) = q),fz(xz).
Asgjoylo <i~5j_1 el for yl e r,, we seethatfoy € I'y
k k
(7) Ve Xk = Xk .

As y/ — y in the C2-topology fory/ € I, andy e I' from [2], we have
k

®) 1@ (Xi (1)) = (@) (Xic (¥ 2) |2 — O
fory/ e Fp,- from (7). Now we construct a global smooth vector fifd on M; which is
k

close to(cb,f)*Xk in the C1-topology. LetAi be the set of pseudogroup defined A);g/ =
rer,| ypi € B(p],r/100)}. Let X{ be aC*-vector field on Int®;) defined as follows:
k

. 1 . _
X{(x) = o PBCANCAZS
k y€A]
wherex is a point in(@,{)*l(x). Then from (8), (3) ang; — g in C1¢, it follows that
IV X] — Vi (@) (Xl co — O,

©) 9w koo
lg; (Vi (@)« (Xi), W) —g"(Vy Xi, Wllco — 0
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almost everywhere for smooth vector fieldsand W on Im(qﬁ,{) asj — oo. Similarly as in
(4), we obtain that

(10) Lyi9j = Ly, 9 =0,

asX] — X, andg; — ¢ in the Cl-topology, identifying B, and Ima/) locally.
Using a partition of unity, we can construct a globally continuous vector figldrom X,i
Lety : [0, r) — [0, 1) be a decreasing smooth function such the:t) =10n[0, r/100—¢p)
and 0 forx > r/100 for a fixedso < r/10000. Ifyy (x) = ¥ (d(p],x)), then{yy | Yx =

Wi /(X Yr)} is a partition of unity. Let¥/ be Y, 1/}kx-,§. As Vi is uniformly bounded
almost everywhere, lim., |A,’<| = oo and

(12) IVy X{, — Vy/ X} llco—> 0

by (6) and (9), we have

IVy X7 = Vi (@) (Xi)llco = H VY I X] = VY (@) (Xk)

x o
(12) < d( > ¢k)(V)X£O + > dn(V)(X] - X7, .
k k
+ ‘ DUV X = V@)X >0
k C

almost everywhere as— oco. Note that}", v = 1.

Now we follow the smoothing technique in [6]. Chogsewith 0 < p; < injy;. Let
du, be the measure oB(x, p;) induced from the Lebesgue measure{ore 7. M; | |[v]| <
2p;} by exp. We define the smoothing kerng), : M; x M; — Rby

V(ptd(x, )

/ ¥ (o td(x, ) dpy
B(x.p))

Wy, (x, y) i=

We denote byP; (V) the parallel translation of from x to y along the minimal geodesic.
Let X/ be defined as follows:

(13) X7 (x) = / Py (X (1)), (x, y)dpis -
B(x,p)

Foru e T.M;, let y be the geodesic fromv with y’(0) = u. Also we lety,(r) =

exg,(t)(P}’(” (exp;(o)(y))). Let U be the vector field defined a8 (y) = yy/(O). As

)

y(; —1 - .
exp, ) oPx " o exp,q is measure preserving, we have

Xy (1) = /B . P (T (ry ()W, (. )
x,0
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Note that
v (0) y(t) v (0) y(0) 7y(0)
(14) 15y © Pyyiny(X) = Py 0)(X) = Py 0y © (P gy (X) = Xl
_ P)’(O) P)’(t) X) — P)’(O) PV)’(O) X < K X
= ° (X) ° Xl = Kjtpi X1

y (1) vy (1) yy(0) yy(t)

whereK ; depending on the sectional curvatufgy; of ;. Hence,

d ), i ) 9i pj
H PO @ 0y 0], o — PGV )

yy (1)
YO pv®  piy _ prO® 5 7(0) O Sy _ pi
N 20 B0 @D = B0 Py 0 Byl (A — D)
t—0 t t
< K;jp;llX].

Therefore, ifp; K; — 0, then

<K;jpjIX/|| - 0,

(15) H Vi XT — f PY(V( X)Wy (x, y) iy
B(x,pj)
so that we choose very small; such thatp;K; — 0. From (qﬁ,{)*gj — ¢“in the
cle-topology and (12), (15), we have
16) AR - fo(éz)f(_xk)nco -
<V X =V X o + Vil X = VI (@) (Xl co — 0.
From (16),Lx,g* = 0 and(®])*g; — o,
|9; (V XT, W) + g; (Vi X1, V)|
< Ig (V8 X W) + o (VY X, V)
a7 + |gj(V€: X, W) — g <V€f(a>g )+ (Xi), W)
19 VY Xk, W) — g (V) (D) (X), W)
+1g; (Vi X9, V) = g (Vi (@) (X0), V)
16 VY Xs, V) — g (VE @]).(X0), V)] = 0.
As j — oo, we have
|Lyigj (V. W) = 1g; (Vi) XI, W) + g;(Vig X7, V)| - 0.
Now we use the integral version of Bochner’s formula [3]: & is a C1-vector field

onMj

/ (Ricy, (X7, X7) + (1/2)|L s 917 — |VXT 2 — (divA/)?)dv = 0.
M; ’
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AsLy;g; — Oand| VY X7 is bounded by virtue of the boundednesg 1728 X, we have
that

1 . . . .
. —Ricy (X7, XY + V9 X712 + (divx/)2)d
vol(M,) /M,-{ M; (X7, X)) + | [“+( )“}dv

(K| X711% + V9 X7 2 + (divx/)2dv

~vol(M)) Ju,
1
vol(M;)

(18)

/ Ricy, (&7, &) + K| X7 |?dv
M;

1 / 1|L [2dv — 0
= — = i g — U.
vol(M)) Jyy, 27X/ 91 Y

From (5), fM, Ricy, (X7, X7) + K||X7)2dv/vol(M;) < 2A%Ry,;(K) — 0. For some
coordinate@,{, voI(Im(@,{)) > vol(M;)/Co. Taking a subsequence, we have

1 -
S X7 |Ifdv — 0,
vol(Im(®})) Jim@})

which impliesX/ — 0 almost everywhere in |m>,{). As || Xy — X/|| — 0, we obtain
that X; = 0, which is a contradiction to Lemma 1. Hengksom(M ;)| is bounded for any
sequencgM;}, which completes the proof of Theorem 2.

4. Proof of Lemma 1. existence of Killing vector fields. Assume that there exists
a sequence of manifold®; such that/lsom(#;)| — oo. Let M; converge to a compact
length spacé{p in the Gromov-Hausdorff metric. We may assume that| k =1,..., N}
in My satisfy thatMg can be covered bM,N:(i) B(pk, €) andB(py, €/2) are pairwise disjoint.
Let {p,{ | k=1,...,N(e)} C M; convergestdp; | k = 1,..., N(e)} € Mo. We define
F(¢)(i) as the smallest such thatb(p,f) € B(pf, ¢). ThenF is a map from Isor¥;) to
SE)S® ={f | f:S() — S()}, whereS(e) = {1,..., N(e)}. As|S()5®)| = N(e)N®
and|lsom(M;)| — oo, there exist® € Isom(M ;) such that max{d(¢(x),x) | x € M;} <
10s. Furthermore, we obtain that

(19) l{¢ | maxd (¢ (x), x) < 10¢}| > Isom(M,)/N()N® - oo

asj — oo.

LetF;={¢;: |1/ =1,...,n(j)} be asetofisometries dff; such that max{d(¢; (x),
x)} < g;. From (19), we can find a sequeneg such thats; — 0 and|F;| — oo as
Jj — oo. If we lift the isometry¢;; € Isom(M;) to the isometryfsj,l on B(0, r/100)(¢]§-)*gj
and rescale the metric by multiplying‘2 as the proof of Theorem 1, we hawéj,[(x) —
(b + A% x)llca - Oasj — oofor A4 € O(n, R) by the same reason as in Theorem 1. As
O(n, R0 = O(n, R) x - - - x O(n, R) is compact, there exist  such thalnA’;!S - A’;J | - 0
asj — oo for all k, whereCp is a number of coverings by/100-ball in Section 3. Then
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|¢~5;fsl¢~5j>r| — 00. Hence, there exists; such thatg;| — oo and

(20) Ifpj(x) — (Ajx +bj)llc2— O

on B(0, r) with A; — I, with respect to the rescaled metrics. We use the same arguments as
in Theorem 1. We have the convergence

(B(0,7/100), (§;)) g1, = (B(O,7/100), Z)gs

for isometry groupZ. By the same reason as in TheoremZljs non-trivial. For non-
trivial isometryy € Z, we can construct isometries, such thatd(y (p), p)/(m + 2) <
d(ym(p), p) <d(y(p), p)/(m + 1). Hence|Z| = oo. Furthermore, there exists a sequence
of { f; € Z} such thatf; converges to a translational isometry in th&topology by (20).

Now we show that there exists a Killing vector field Bp, £0/100) in a similar way as
in [7]. First, we construct a one-parameter sub(pseudo)grou ais follows. Let
fi € Z be a sequence such that converge to the identity in thé2-topology ands; =

maxd(f;(x), x) | x € B0, r/100) } — 0. 1fh; = [1/e;], thenf " — f foranisom-

(@})*g;
etry f by considering a subsequence. By the same reason as in LZLOL;rpfi[rh(i)] exists for
everyr € [0, 1]. We denote lim., o ]‘i[’h(i)] by f(r). Thenwe havef (r1 +r2) = f(r1) f(r2)

if r1 +r2 < r/2, so thatf(r) is a one-parameter pseudo subgrougZofAs f(r) is an
isometry for allr, || f(r)llc2 < C(r) for a functionC depending on- (see [2]). It yields
a one-parameter (pseudo)subgroupBi0, r/2) by f(#)x. Then we have a Killing

vector fieldV as follows:
_4 o S o fx = fDx _ f(h)x —x
Vx) = dtf(t)x = ;I,'Lno p = f(t)*)lILno —

Taking a subsequence if necessary, lim(f (r)x — x)/t exists. Now we show that is a
Cl-vector field. Asf(r) is bounded in th&?-topology,

d d (d d(d d
—Vi(y(s) = —<Ef(t)(7/(5))) = E(gf(t)(V(S)) = E(f(t)*(w)))

(@])*g;

ds ds
(21) _ i L D) = f(0)(w)
h—0 h

o f()s(w) —w
= f(t lim ————
( )*(h—>0 h
for y’(0) = w. Hence, there exists@!-Killing vector field on B(0, r/2)(¢,j)*g_.
k J
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