Tohoku Math. J. 58 (2006), 149–159

SOME REMARKS ON WEAK COMPACTNESS IN THE DUAL SPACE OF A JB*-TRIPLE

ANTONIO M. PERALTA*

(Received March 30, 2004, revised January 18, 2005)

Abstract. We obtain several characterizations of relatively weakly compact subsets in the predual of a JBW*-triple. As a consequence, we describe the relatively weakly compact subsets in the predual of a JBW*-algebra.

Introduction. The study of relatively weakly compact subsets of the predual of a von Neumann algebra is mainly due to Takesaki [24], Akemann [2], Akemann, Dodds and Gamlen [3] and Saitô [22]. Their results on characterizations of relatively weakly compact subsets in the predual of a von Neumann algebra were the key tool for the description of weakly compact operators from a C*-algebra to a complex Banach space found by Jarchow [17, 18]

Every von Neumann algebra belongs to a more general class of Banach spaces known as JBW*-triples. A JB*-triple is a complex Banach space equipped with a Jordan triple product satisfying some algebraic and geometric properties (see the definition below). JB*-triples were introduced by Kaup [19] in the study of bounded symmetric domains in complex Banach spaces. The class of JB*-triples contains all C*-algebras and all JB*-algebras. A JBW*-triple is a JB*-triple which is also a dual Banach space; thus every von Neumann algebra is a JBW*-triple.

The study of weakly compact operators from a JB*-triple to a Banach space was developed in [9] and [21, Theorem 10 and the succedent remarks]. However, contrary to the case of C*-algebras, the characterization of weakly compact operators from a JB*-triple to a complex Banach space was not obtained by describing the relatively weakly compact subsets of the predual of a JBW*-triple. The objective of this paper is to describe the relatively weakly compact subsets in the predual of a JBW*-triple. Theorem 1.1 and Corollary 1.4 generalize the classical description of relatively weakly compact subsets in the predual of a JBW*-triple preduals. The above results are specialized to JBW*-algebra preduals in Theorem 1.5.

As a consequence of our results, we prove that for every norm bounded sequence (ϕ_n) in the predual of a JBW*-triple W, for each norm-one functional $\varphi \in W_*$ and for every $\varepsilon > 0$, there exists a tripotent $e \in W$ such that $\varphi(e) > 1 - \varepsilon$ and (ϕ_n) admits a subsequence

²⁰⁰⁰ Mathematics Subject Classification. Primary 17C65; Secondary 46L70, 46L05, 47B99.

Key words and phrases. JB*-triples, JB*-álgebras, weak compactness.

^{*} Partially supported by D.G.I. project no. MTM 2005-02541, and Junta de Andalucía grant FQM 0199.

which converges weakly to a functional in $(W_2(e))_*$, where $W_2(e)$ is the Peirce 2-subspace associated to *e*. This result extends [7] to the setting of JBW*-triples.

Let X be a Banach space. Throughout the paper, B_X and X^* denote the closed unit ball of X and the dual space of X, respectively. If X is a dual Banach space, X_* will stand for a predual of X.

1. Weakly compact sets in the dual of a JB*-triple. A JB*-triple is a complex Banach space E equipped with a continuous triple product

$$\{.,.,.\}: E \times E \times E \to E$$

$$(x, y, z) \mapsto \{x, y, z\},\$$

which is bilinear and symmetric in the outer variables and conjugate linear in the middle one and satisfies:

(a) (Jordan Identity)

 $L(x, y) \{a, b, c\} = \{L(x, y)a, b, c\} - \{a, L(y, x)b, c\} + \{a, b, L(x, y)c\}$

for all x, y, a, b, $c \in E$, where $L(x, y) : E \to E$ is the linear mapping given by $L(x, y)z = \{x, y, z\}$;

(b) The map L(x, x) is an hermitian operator with non-negative spectrum for all x ∈ E;
(c) || {x, x, x} || = ||x||³ for all x ∈ E.

Every C*-algebra is a JB*-triple with respect to the triple product

$$\{x, y, z\} = 2^{-1}(xy^*z + zy^*x)$$

Every JB*-algebra is a JB*-triple with triple product given by

$$\{a, b, c\} = (a \circ b^*) \circ c + (c \circ b^*) \circ a - (a \circ c) \circ b^*.$$

The Banach space B(H, K) of all bounded linear operators between two complex Hilbert spaces H, K is also an example of a JB*-triple with product $\{R, S, T\} = 2^{-1}(RS^*T + TS^*R)$.

A JBW*-triple is a JB*-triple which is also a dual Banach space. The bidual, E^{**} , of every JB*-triple, E, is a JBW*-triple with triple product extending the product of E (cf. [11]).

Let *E* be a JB*-triple. An element $e \in E$ is said to be a *tripotent* if $\{e, e, e\} = e$. The set of all tripotents of *E* is denoted by Tri(*E*). Given a tripotent $e \in E$, there exists a decomposition of *E* in terms of the eigenspaces of L(e, e) given by

(1)
$$E = E_0(e) \oplus E_1(e) \oplus E_2(e),$$

where $E_k(e) := \{x \in \mathcal{E}; L(e, e)x = (k/2)x\}$ is a subtriple of E(k : 0, 1, 2). The natural projection of E onto $E_k(e)$ will be denoted by $P_k(e)$. The following rules are also satisfied:

$$\{E_k(e), E_l(e), E_m(e)\} \subseteq E_{k-l+m}(e),$$

$$\{E_0(e), E_2(e), E\} = \{E_2(e), E_0(e), E\} = 0,$$

where $E_{k-l+m}(e) = 0$ whenever k - l + m is not in $\{0, 1, 2\}$. It is also known that $E_2(e)$ is a unital JB*-algebra with respect to the product and involution given by $x \circ y = \{x, e, y\}$ and $x^* = \{e, x, e\}$, respectively. When *E* is a JBW*-triple, $E_2(e)$ is a JBW*-algebra.

For background materials about JB- and JBW-algebras the reader is referred to [14]. We recall that JB-algebras (resp. JBW-algebras) are nothing but the self-adjoint parts of JB*- algebras (resp. JBW*-algebras) [26] (resp. [12]).

Two tripotents e, f in a JB*-triple Tri(E) are said to be *orthogonal* if e belongs to $E_0(f)$ and f belongs to $E_0(e)$. Let e, $f \in E$. Following [20, §5], we say that $e \leq f$ if and only if f - e is a tripotent which is orthogonal to e. It is also known that $e \leq f$ if and only if e is a symmetric projection in $E_2(f)$.

Let *W* be a JBW*-triple and φ a norm-one element in W_* . Let *z* be a norm-one element in *W* such that $\varphi(z) = 1$. By [4] the mapping $(x, y) \mapsto \varphi\{x, y, z\}$ defines a positive sesquilinear form on *W* which does not depend on the element *z*. Thus the law $x \mapsto ||x||_{\varphi} := (\varphi\{x, x, z\})^{1/2}, x \in W$, defines a prehilbert seminorm on *W*. If *E* is a JB*-triple and φ is a norm-one element in *E**, then $||.||_{\varphi}$ is a prehilbertian seminorm on *E*** and hence on *E*. The strong*-topology of *W*, introduced by Barton and Friedman in [5], is the topology on *W* generated by the family of seminorms $\{||.||_{\varphi}; \varphi \in S_{W_*}\}$. We use the symbol $S^*(W, W_*)$ to denote the strong*-topology of *W*. When φ_1, φ_2 are two norm-one functionals in W_* , then we write $||.||_{\varphi_1,\varphi_2}$ for the hilbertian semi-norm defined by

$$\|x\|_{\varphi_1,\varphi_2}^2 := \|x\|_{\varphi_1}^2 + \|x\|_{\varphi_2}^2$$

If *A* is a JBW*-algebra regarded as a JB*-triple, then the $S^*(A, A_*)$ coincides with the *algebra* strong*-topology of *A* generated by all the seminorms of the form $x \mapsto \sqrt{\phi(x \circ x^*)}$, where ϕ is any normal state in *A*. Consequently, when a von Neumann algebra *M* is regarded as a JBW*-triple, the $S^*(M, M_*)$ coincides with the strong*-topology on *M* (see [23, Definition 1.8.7]).

A JB*-triple *E* is said to be *abelian* if for every $x, y, a, b \in E$, the operators L(x, y) and L(a, b) commute. Every abelian JBW*-triple is a triple isomorphic (and hence isometric) to a von Neumann algebra.

Let W be a JBW*-triple with predual W_* . Since the triple product of W is separately weak*-continuous (cf. [6]), every maximal abelian subtriple is weak*-closed and hence a JBW*-subtriple of W.

THEOREM 1.1. Let W be a JBW*-triple with predual W_* and let K be a subset in W_* . Then the following are equivalent:

(a) *K* is relatively weakly compact.

(b) There exist norm-one elements $\varphi_1, \varphi_2 \in W_*$ with the following property: Given $\varepsilon > 0$, there exists $\delta > 0$ such that for every $x \in W$ with $||x|| \le 1$ and $||x||_{\varphi_1,\varphi_2} < \delta$, we have $|\phi(x)| < \varepsilon$ for each $\phi \in K$.

(c) The restriction $K|_C$ of K to each maximal abelian subtriple C of W is relatively $\sigma(C_*, C)$ -compact.

PROOF. (a) \Rightarrow (b) We assume that $K \subset W_*$ is relatively weakly compact. We may also assume that $K \subseteq B_{W_*}$. Let us fix $\varepsilon > 0$. Let $D = \overline{|co|}^w(K)$ denote the weakly closed absolutely convex hull of K in W_* . Then D is an absolutely convex weakly compact subset

of W_* . Let Y denote the Banach space $\ell_1(D)$ and F the bounded linear operator from Y to W_* given by

$$F(\{\lambda_{\varphi}\}_{\varphi\in D}) := \sum_{\varphi\in D} \lambda_{\varphi}\varphi.$$

Clearly, $F(B_Y) = D$. Since *D* is weakly compact, *F* (and hence F^*) is a weakly compact operator. By [21, Theorem 10] there exist norm-one elements $\varphi_1, \varphi_2 \in W_*$ and a function $N : (0, +\infty) \to (0, +\infty)$ such that

$$||F^*(x)|| \le N(\varepsilon) ||x||_{\varphi_1,\varphi_2} + \varepsilon ||x||$$

for all $x \in W$ and $\varepsilon > 0$.

Let $x \in W$. It is clear that

$$\sup_{\phi \in D} |\phi(x)| = \sup_{y \in B_Y} |F(y)(x)| = \sup_{y \in B_Y} |F^*(x)(y)| \le ||F^*(x)||$$
$$\le N\left(\frac{\varepsilon}{2}\right) ||x||_{\varphi_1,\varphi_2} + \frac{\varepsilon}{2} ||x||.$$

Finally, taking $\delta = N (\varepsilon/2)^{-1} \cdot \varepsilon/2$, we conclude that for every $x \in W$ with $||x|| \le 1$ and $||x||_{\varphi_1,\varphi_2} \le \delta$ we have $|\phi(x)| \le \varepsilon$ for each $\phi \in K$.

(b) \Rightarrow (c) Suppose that there exists a maximal abelian subtriple *C* of *W* such that $K|_C$ is not relatively $\sigma(C_*, C)$ -compact. Since *C* is a maximal abelian subtriple, *C* is weak*-closed and thus is isomorphic (and hence isometric) to a von Neumann algebra, provided the latter is considered as a JB*-triple. By [2, Theorem II.2] (see also [25, Theorem 5.4]) there exists an orthogonal sequence (p_n) of symmetric projections in *C* and a sequence $(\varphi_n) \subseteq K$ satisfying

$$|\varphi_n(p_n)| \ge \Theta > 0.$$

By hypothesis, there are norm-one elements φ_1, φ_2 in W_* and $\delta > 0$ such that for every $x \in W$ with $||x|| \le 1$ and $||x||_{\varphi_1,\varphi_2} < \delta$, we have $|\phi(x)| < \Theta/2$ for each $\phi \in K$.

Let ψ be a normal state of *C*. Since $\psi(p_n p_n^* + p_n^* p_n) = 2 \psi(p_n)$ tends to zero, it follows that (p_n) is a strong*-null sequence in *C*. By [8, Corollary] we conclude that $(p_n) \to 0$ in the S*(*W*, *W*_{*})-topology of *W*. In particular, $||p_n||_{\varphi_1,\varphi_2} \to 0$. Therefore, there exists $N \in N$ such that for every $n \in N$, $n \ge N$, we have

$$\|p_n\|_{\varphi_1,\varphi_2} < \delta$$

As a consequence, $|\phi(p_n)| < \Theta/2$ for each $\phi \in K$, which contradicts (2).

(c) \Rightarrow (a) Suppose that the restriction $K|_C$ of K to each maximal abelian subtriple C of W is relatively $\sigma(C_*, C)$ -compact. Let $x \in W$. Since the JBW*-subtriple of W generated by x is abelian, by Zorn's Lemma there exists a maximal abelian subtriple C of W containing x. By hypothesis, $K|_C$ is relatively $\sigma(C_*, C)$ -compact, and hence $\{\phi(x) : \phi \in K\}$ is bounded. It follows from the uniform boundedness theorem that K is bounded. Let \widetilde{K} denote the $\sigma(W^*, W)$ -closure of K in W^* . Since K is bounded, \widetilde{K} is $\sigma(W^*, W)$ -compact.

We claim $\widetilde{K} \subset W_*$. Indeed, let $\phi \in \widetilde{K}$. Let *C* be any maximal abelian subtriple of *W*. Then $\phi|_C$ is in the $\sigma(C^*, C)$ -closure of $K|_C$. By assumptions, $K|_C$ is relatively $\sigma(C_*, C)$ compact and thus $\phi|_C \in C_*$. Now, by [15, Theorem 3.23], it follows that $\phi \in W_*$ as claimed.

Since $\widetilde{K} \subset W_*$, \widetilde{K} coincides with the $\sigma(W_*, W)$ -closure of K in W, and hence K is relatively $\sigma(W_*, W)$ -compact.

The following corollary extends [10, Lemma 4] (see also [1, Lemma 1]) to general JBW*-triples, and it is in fact a natural extension of [25, Lemma III.5.5] to the setting of JBW*-triples.

COROLLARY 1.2. Let W be a JBW*-triple. Let (φ_k) be a weakly convergent sequence in W_* and (x_n) a strong-*-null sequence in W. Then

$$\lim_{n\to+\infty}\sup_{k\in N}|\varphi_k(x_n)|=0.$$

PROOF. Suppose that $(\varphi_k) \to \varphi$ weakly in W_* . The set $K = \{\varphi_k ; k \in N\}$ is a relative weakly compact subset of W_* by the Eberlein-Smulian theorem. Let $\varepsilon > 0$. By Theorem 1.1, there are norm-one elements $\varphi_1, \varphi_2 \in W_*$ and $\delta > 0$ such that for every $x \in W$ with $||x|| \le 1$ and $||x||_{\varphi_1,\varphi_2} < \delta$, we have $|\varphi(x)| < \varepsilon$ for each $\varphi \in K$. Since (x_n) is strong*-null, there exists $N \in N$ such that for every $n \ge N$ it follows that $||x_n||\varphi_1, \varphi_2 \le \delta$. Thus, for every $n \ge N$, we have $|\varphi(x_n)| \le \varepsilon$ for all $f \in K$.

REMARK 1.3. Let W be a JBW*-triple. Suppose that $K \in W_*$ is a relatively weakly compact set. Then, similar arguments to those given in the proof of Corollary 1.2 show that for each strong*-null sequence (x_n) in W we have

$$\lim_{n \to +\infty} \varphi(x_n) = 0$$

uniformly for $\varphi \in K$.

Using Theorem 1.1, we now generalize to the setting of JBW*-triples some known characterizations of weak compactness in the predual of a W*-algebra (compare [25, Theorem 5.4]).

COROLLARY 1.4. Let K be a bounded subset in the predual of a JBW*-triple W. Then the following assertions are equivalent:

(a) *K* is relatively weakly compact.

(b) The restriction of K to $W_2(e)$ is relatively $\sigma((W_2(e))_*, W_2(e))$ -compact in $(W_2(e))_*$ for every tripotent $e \in W$.

(c) For any monotone decreasing sequence of tripotents (e_n) in W with $(e_n) \to 0$ in the weak*-topology, we have $\lim_{n\to+\infty} \phi(e_n) = 0$ uniformly for $\phi \in K$.

PROOF. (a) \Rightarrow (b) Suppose *K* is relatively weakly compact in *W*_{*}. Let *e* be a tripotent in *W*. Since the map: $\phi \mapsto \phi|_{W_2(e)}$ is a weakly continuous operator from *W*_{*} to $(W_2(e))_*$, it follows that $K|_{W_2(e)}$ is relatively $\sigma((W_2(e))_*, W_2(e))$ -compact in $(W_2(e))_*$.

(b) \Rightarrow (c) Let (e_n) be a monotone decreasing sequence in W with $(e_n) \rightarrow 0$ in the $\sigma(W, W_*)$ -topology. Since for each $n \in N$, we have $e_1 \geq e_n$, it follows that (e_n) is a monotone decreasing sequence of projections in $W_2(e_1)$ with $(e_n) \rightarrow 0$ in the $\sigma(W_2(e_1), (W_2(e_1))_*)$ -topology. It is not hard to see that $(e_n) \rightarrow 0$ in the strong-* topology of $W_2(e_1)$. Since, by assumptions, $K|_{W_2(e_1)}$ is relatively $\sigma((W_2(e_1))_*, W_2(e_1))$ -compact, we conclude from Remark 1.3 that $\lim_{n \rightarrow +\infty} \phi(e_n) = 0$ uniformly for $\phi \in K$.

(c) \Rightarrow (a) To obtain a contradiction, suppose that *K* is not relatively weakly compact. By Theorem 1.1 there exists a maximal abelian JBW*-subtriple *C* of *W* such that $K|_C$ is not relatively $\sigma(C_*, C)$ -compact. As remarked above, *C* is a triple isomorphic to an abelian von Neumann algebra, provided the latter is regarded as a JBW*-triple. By [25, Theorem 5.4] there exists a monotone decreasing sequence (p_n) of projections in *C* with $(p_n) \rightarrow 0$ in the $\sigma(C, C_*)$ -topology and $\lim_{n\to+\infty} \phi(p_n) \neq 0$ uniformly for $\phi \in K|_C$. Therefore there exists a monotone decreasing sequence (p_n) of tripotents in *W* with $(p_n) \rightarrow 0$ in the weak*-topology of *W* and $\lim_{n\to+\infty} \phi(p_n) \neq 0$ uniformly for $\phi \in K$, which is a contradiction. \Box

We do not know if the semi-norm $\|.\|_{\varphi_1,\varphi_2}$ appearing in Theorem 1.1 (b) could be replace by a semi-norm of the form $\|.\|_{\varphi}$ for a suitable norm-one functional $\varphi \in W_*$. This problem is connected with a problem on Grothendieck's inequalities for JB*-triples (compare [21, Remark 3]). We next show a positive answer to the above problem in the particular case of a JBW*-algebra.

Let *M* be a JBW*-algebra with predual M_* . Let φ_1, φ_2 be two norm-one functionals in M_* . For each $i \in \{1, 2\}$ we take a tripotent $e_i \in M$ such that $\varphi_i(e_i) = 1$. Let ψ_i denote the norm-one functional in M_* given by $\psi_i(x) := \varphi_i(x \circ e_i)$ for any $x \in M$. From the expression

$$\{x, x, e_i\} + \{x^*, x^*, e_i\} = 2e_i \circ (x \circ x^*),$$

we conclude that ψ_i is a positive normal state of M. Moreover, the identity

$$\|x\|_{\omega_i}^2 + \|x^*\|_{\omega_i}^2 = 2\psi_i(x \circ x^*) = 2\|x\|_{\psi_i}^2$$

holds for all $x \in M$. Set $\psi = 1/2(\psi_1 + \psi_2)$. Then ψ is a normal state of M satisfying

$$||x||_{\varphi_1,\varphi_2} \le 2||x||_{\psi}$$

for all $x \in M$. We can now reformulate Theorem 1.1 to the setting of JBW*-algebras.

THEOREM 1.5. Let M be a JBW*-algebra. Let K be a norm bounded subset in M_* . Then the following assertions are equivalent:

(a) *K* is relatively weakly compact.

(b) The restriction $K|_C$ of K to each maximal associative subalgebra C of M is relatively $\sigma(C_*, C)$ -compact.

(c) There exists a normal state $\psi \in M_*$ with the following property: Given $\varepsilon > 0$, there exists $\delta > 0$ such that for every $x \in W$ with $||x|| \le 1$ and $||x||_{\psi} < \delta$, we have $|\phi(x)| < \varepsilon$ for each $\phi \in K$.

(d) For any monotone decreasing sequence of projections (e_n) in W with $(e_n) \to 0$ in the weak*-topology, we have $\lim_{n\to+\infty} \phi(e_n) = 0$ uniformly for $\phi \in K$.

155

2. Applications. Let (ϕ_n) be a bounded sequence in the predual of a JBW*-triple W. It is known that, in general, (ϕ_n) needs not admit a weakly convergent subsequence. In the setting of von Neumann algebras we can say more about bounded sequences of normal functionals. Indeed, in a recent paper, Brooks, Saitô and Wright [7] have shown that each bounded sequence in the predual of a von Neumann algebra has a subsequence which is nearly weakly convergent. More concretely, for each bounded sequence (ϕ_n) in the predual of a von Neumann algebra M, for each normal state ψ and for each $\varepsilon > 0$, there exists a projection $e \in M$ such that $\psi(1 - e) \leq \varepsilon$ and the restriction of (ϕ_n) to eMe has a subsequence which converges weakly to a normal functional on eMe. The aim of this section is to obtain an analogue of the above fact in the setting of JBW*-triples.

The following lemma provides sufficient conditions to assure relative weak compactness in the predual of a JBW*-triple. It is also a natural extension of [7, Lemma 2] to the setting of JBW*-triples.

LEMMA 2.1. Let (ϕ_n) be a bounded sequence in the predual of a JBW*-triple W. Let φ be a norm-one element in W_* such that the following property holds; for each c > 0 there exists $\eta > 0$ such that for every tripotent $e \in W$ with $||e||_{\varphi} < \eta$, the set

$$\{m \in N ; \text{ there exists } u \in \operatorname{Tri}(W) \text{ with } u \leq e \text{ and } |\phi_m(u)| \geq c\}$$

is finite. Then $\{\phi_n : n \in N\}$ is relatively weakly compact in W_* .

PROOF. Let (e_n) be a weak*-null, monotone decreasing sequence of tripotents in W. Let c > 0 and let $\eta > 0$ be the positive number given by the property stated above.

Since for each $n \in N$, $e_1 \ge e_n$, we conclude that (e_n) is a weak*-null, monotone decreasing sequence of projections in $W_2(e_1)$. As remarked in the above section, it is not hard to see that (e_n) is strong*-null in $W_2(e)$ and from [8, Corollary], (e_n) is strong*-null in W. In particular, $||e_n||_{\varphi} \to 0$. Then there exists $m_1 \in N$ such that for each $n \ge m_1$ we have $||e_n||_{\varphi} < \eta$. Since the set

$$\{m \in N ; |\phi_m(e_n)| \ge c \text{ for some } n \ge m_1\}$$

is finite by hypothesis, we conclude that there exists $m_0 \in N$ such that for each $m \ge m_0$ we have $|\phi_m(e_n)| < c$ for each $n \ge m_1$.

Since for each $1 \le j \le m_0$ the sequence $(\phi_j(e_n))_{n \in N}$ tends to zero, we deduce that there exists $m_2 \in N$ such that for each $n \ge m_2$ and $1 \le j \le m_0$ we have $|\phi_j(e_n)| < c$. Therefore, for each $n \ge \max\{m_1, m_2\}$, we have $|\phi_m(e_n)| < c$ for all $m \in N$. Corollary 1.4 then yields the desired statement.

When, in the proof of Lemma 2.1, Theorem 1.5 replaces Corollary 1.4, we obtain the following

LEMMA 2.2. Let M be a JBW*-algebra and (ϕ_n) a bounded sequence in M_* . Let φ be a normal state of M such that the following property holds; for each c > 0 there exists $\eta > 0$ such that for every projection $e \in M$ with $||e||_{\varphi} < \eta$, the set

$$\{m \in N ; \text{ there exists a projection } p \in M \text{ with } p \leq e \text{ and } |\phi_m(p)| \geq c \}$$

is finite. Then $\{\phi_n : n \in N\}$ is relatively weakly compact in M_* .

Let *M* be a JBW*-algebra. Let φ be a positive normal functional on *M* and (ϕ_n) a normbounded sequence in M_* . We shall denote by Δ the set of all $c \in \mathbf{R}^+$ such that for each $\eta > 0$ there exists a projection $e_\eta \in W$ such that $||e_\eta||_{\varphi} < \eta$ and the set

 $\{m \in N ; \text{ there exists a projection } p \in M \text{ with } p \leq e_{\eta} \text{ and } |\phi_m(p)| \geq c \}$

is infinite. Following [7, Definition in page 162], we call Δ the *anti-compactness set* of (ϕ_n) with respect to the functional φ . It is clear that Δ is bounded.

REMARK 2.3. Let M be a JBW*-algebra. Let φ be a positive functional in M_* , (ϕ_n) a norm-bounded sequence in M_* , and Δ the anti-compactness set of (ϕ_n) with respect to φ . We claim that (ϕ_n) is relatively weakly compact in M_* whenever $\Delta = \emptyset$. Indeed, let $c \in \mathbb{R}^+$. Since $c \notin \Delta$, there exists $\eta > 0$ such that for every projection $e \in M$ with $||e||_{\varphi} < \eta$, the set

 $\{m \in N ; \text{ there exists a projection } p \in M \text{ with } p \le e \text{ and } |\phi_m(p)| \ge c \}$

is finite. We conclude from Lemma 2.2 that (ϕ_n) is relatively weakly compact in W_* .

We recall that a positive functional ψ of a JB*-algebra A is said to be *faithful* if and only if $\psi(x) > 0$ for every positive element $x \in A \setminus \{0\}$. Suppose that a JBW*-algebra M has a faithful normal state ψ . Then the strong*-topology in the closed unit ball of M is metrized by the distance

$$d_{\psi}(a,b) := (\psi((a-b) \circ (a-b)^*))^{1/2}.$$

More precisely, a bounded net $(x_i)_{i \in I}$ in M converges in the strong*-topology of M to an element $x \in M$ if and only if $d_{\psi}(x_i, x) \to 0$ (cf. [16, p. 200]). When M is regarded as a JBW*-triple, we have $d_{\psi}(a, b) = ||a - b||_{\psi}$.

The following lemma is a verbatim extension of [7, Lemmma 3] to the setting of JBW*algebras.

LEMMA 2.4. Let M be a JBW*-algebra with a faithful positive normal functional ψ . Let (ϕ_n) be a norm bounded sequence in M_* and let Δ be the anti-compactness set of (ϕ_n) with respect to ψ , considering M as a JBW*-triple. Then (ϕ_n) is relatively weakly compact in M_* if and only if $\Delta = \emptyset$.

We sketch the main ideas of the proof for completeness. We have already shown that $\Delta = \emptyset$ implies (ϕ_n) being relatively weakly compact in M_* (cf. Remark 2.3).

To prove the necessity we suppose, contrary to our claim, that $\Delta \neq \emptyset$. There is no loss of generality in assuming $\|\psi\| = 1$. Let $c \in \Delta$. Then for each $k \in N$ there exists a tripotent $e_k \in M$ satisfying $\|e_k\|_{\psi} < 2^{-k}$ and the set

(3) $\{m \in N : \text{ there exists } u \in \operatorname{Tri}(M) \text{ with } u \le e_k \text{ and } |\phi_m(u)| \ge c\}$

is infinite. Thus (e_k) is a bounded sequence in M satisfying

$$d_{\psi}(e_k, 0) = ||e_k||_{\psi} \to 0$$
.

Since ψ is a faithful normal state of M, and the strong*-topology of M is determined by the metric d_{ψ} , we deduce that (e_k) tends to zero in the strong*-topology of M.

Since, by assumptions, (ϕ_n) is relatively weakly compact, by Theorem 1.1 there exist norm-one functionals $\varphi_1, \varphi_2 \in M_*$ and $\delta > 0$ satisfying that for every $x \in M$ with $||x|| \leq 1$ and $||x||_{\varphi_1,\varphi_2} < \delta$ we have $|\phi_n(x)| \leq c/2$ for all $n \in N$. Since $(e_k) \to 0$ in the strong*topology, there exists $k_0 \in N$ such that for each $k \geq k_0$ we have $||e_k||_{\varphi_1,\varphi_2} < \delta$. Let $k \geq k_0$. It is not hard to see that (from the orthogonality of u and $e_k - u$) for each tripotent $u \leq e_k$ we have $||u||_{\varphi_1,\varphi_2} \leq ||e_k||_{\varphi_1,\varphi_2} < \delta$. Consequently, $|\phi_n(u)| \leq c/2$ for all $n \in N$, which contradicts (3).

Having the above facts in mind, the proof of [7, Proposition 4] can be slightly adapted to prove the following result.

PROPOSITION 2.5. Let M be a JBW*-algebra with a faithful positive functional ψ . Let (ϕ_n) be a norm bounded sequence in M_* . Then, for every $\varepsilon > 0$, there exists a projection $p \in M$ such that $\psi(p) < \varepsilon$ and a subsequence of ϕ_n , (β_n) , such that the sequence (β_n) restricted to $P_2(1-p)(M)$ is relatively weakly compact.

Let φ be a norm-one functional in the predual of a JBW*-triple *W*. By [13, Proposition 2], there exists a unique tripotent $e = e(\varphi) \in W$ such that $\varphi = \varphi P_2(e)$ and $\varphi|_{W_2(e)}$ is a faithful normal state of the JBW*-algebra $W_2(e)$. This unique tripotent $e = e(\varphi)$ is called the *support tripotent* of φ .

We can now state an analogue of [7, Theorem 8] in the setting of JBW*-triples.

THEOREM 2.6. Let W be a JBW*-triple. Let φ be a norm-one element in W_* and (ϕ_n) a norm bounded sequence in W_* . Then, for each $1 > \varepsilon > 0$, there exists a tripotent $e \in W$ such that $||e||_{\varphi} > 1 - \varepsilon$ and a subsequence $(\phi_{\sigma(n)})$ such that $(\phi_{\sigma(n)}|_{W_2(e)})$ is relatively $\sigma((W_2(e))_*, W_2(e))$ -compact in $(W_2(e))_*$.

PROOF. Let $s = s(\varphi)$ be the support tripotent of φ . Let $\varepsilon > 0$. By Proposition 2.5, there exists a projection $p \in W_2(s)$ such that $\varphi(p) < \varepsilon$ and a subsequence $(\phi_{\sigma(n)})$ such that $(\phi_{\sigma(n)})$ restricted to $P_2(s - p)(W)$ is relatively weakly compact. We take e = s - p to obtain the desired statement.

Replacing [7, Theorem 8] by Theorem 2.6 in the proof of [7, Corollaries 9, 10] we obtain the following

COROLLARY 2.7. Let φ be a norm-one functional in the predual of a JBW*-triple W. Let (ϕ_n) be a norm bounded sequence in W_* and let $s = s(\varphi)$ be the support tripotent of φ . Then there exists a sequence of tripotents (e_k) (with $e_k \leq s$ for each $k \in N$) which converges in the strong*-topology to s and a subsequence of (ϕ_n) , $(\phi_{\sigma(n)})$, such that

$$\lim_{n \to +\infty} \phi_{\sigma(n)} P_2(e_k)(x)$$

exists for each $x \in W$.

REFERENCES

- M. D. ACOSTA AND A. M. PERALTA, An alternative Dunford-Pettis property for JB*-triples, Q. J. Math. 52 (2001), 391–401.
- [2] C. A. AKEMANN, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), 286-302.
- [3] C. A. AKEMANN, P. G. DODDS AND J. L. B. GAMLEN, Weak compactness in the dual space of C*-algebra, J. Functional Analysis 10 (1972), 446–450.
- [4] T. BARTON AND Y. FRIEDMAN, Grothendieck's inequality for JB*-triples and applications, J. London Math. Soc. (2) 36 (1987), 513–523.
- [5] T. BARTON AND Y. FRIEDMAN, Bounded derivations of JB*-triples, Quart. J. Math. Oxford Ser. (2) 41 (1990), 255–268.
- [6] T. BARTON AND R. M. TIMONEY, Weak*-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), 177–191.
- [7] J. K. BROOKS, K. Saitô and J. D. M. Wright, A bounded sequence of normal functionals has a subsequence which is nearly weakly convergent, J. Math. Anal. Appl. 276 (2002), 160–167.
- [8] L. J. BUNCE, Norm preserving extensions in JBW*-triple preduals, Q. J. Math. 52 (2001), 133-136.
- [9] C.-H. CHU AND B. IOCHUM, Weakly compact operators on Jordan triples, Math. Ann. 281 (1988), 451–458.
- [10] C.-H. CHU AND P. MELLON, The Dunford-Pettis property in JB*-triples, J. London Math. Soc. (2) 55 (1997), 515–526.
- [11] S. DINEEN, The second dual of a JB*-triple system, Complex analysis, functional analysis and approximation theory (Campinas, 1984), 67–69, North-Holland Math. Stud. 125, North-Holland, Amsterdam, 1986.
- [12] C. M. EDWARDS, On Jordan W*-algebras, Bull. Sci. Math. (2) 104 (1980), 393-403.
- [13] Y. FRIEDMAN AND B. RUSSO, Structure of the predual of a JBW*-triple, J. Reine Angew. Math. 356 (1985), 67–89.
- [14] H. HANCHE-OLSEN AND E. STØRMER, Jordan operator algebras, Monogr. Stud. Math. 21, Pitman, Boston Mass. 1984.
- [15] G. HORN, Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand. 61 (1987), 117– 133.
- [16] B. IOCHUM, Cônes autopolaires et algebres de Jordan, Lecture Notes in Math. 1049, Springer-Verlag, Berlin, 1984.
- [17] H. JARCHOW, Weakly compact operators on C(K) and C*-algebras, Functional analysis and its applications (Nice, 1986), 263–299, ICPAM Lecture Notes, World Sci. Publishing, Singapore, 1988.
- [18] H. JARCHOW, On weakly compact operators on C*-algebras, Math. Ann. 273 (1986), 341–343.
- W. KAUP, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), 503–529.
- [20] O. LOOS, Bounded symmetric domains and Jordan pairs, Math. Lectures, University of California, Irvine (1977).
- [21] A. M. PERALTA AND A. RODRÍGUEZ PALACIOS, Grothendieck's inequalities for real and complex JBW*triples, Proc. London Math. Soc. (3) 83 (2001), 605–625.
- [22] K. SAITÔ, On the preduals of W*-algebras, Tôhoku Math. J. (2) 19 (1967), 324–331.
- [23] S. SAKAI, C*-algebras and W*-algebras, Ergeb. Math. Grenzgeb. 60, Springer-Verlag, New York-Heidelberg, 1971.
- [24] M. TAKESAKI, On the conjugate space of operator algebra, Tôhoku Math. J. (2) 10 (1958), 194–203.
- [25] M. TAKESAKI, Theory of operator algebras I, Springer-Verlag, New York-Heidelberg, 1979.
- [26] J. D. M. WRIGHT, Jordan C*-algebras, Michigan Math. J. 24 (1977), 291–302.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO FACULTAD DE CIENCIAS UNIVERSIDAD DE GRANADA 18071 GRANADA SPAIN

E-mail address: aperalta@ugr.es