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Abstract. Inthis paper we study the behavior of trajectories of the Lotka-Volterra com-
petition system with periodic coefficients undeleigraph noise. We give sufficient conditions
for the average permanence. Furthermore, we determine-lingit sets of the system.

1. Introduction. In this paper we study the behavior of trajectories of the Lotka-
\olterra competition system with periodic coefficients under telegraph noise. Until now, many
models have revealed the effect of environmental variability on the population dynamics in
mathematical ecology [10, 14]. In particulagieat effort has been made to find the possibil-
ity of the coexistence of competing species under the unpredictable or rather predictable (such
as seasonal) environmental fluctuations. It is well recognized that the seasonality has similar
effects to stochastic variation [4, 9], but asreau [11] pointed out, the theory of coexistence
in a seasonal environment needs further development to reveal the variety of possibilities that
seasonal fluctuations may cause. Among these, Namba and Takahashi [13] review the results
on Lotka-Volterra competition systems with periodic coefficients, and show the new modes
of the possibilities of stable periodic solutions even when the stable coexistence cannot be
realized in the corresponding classical Lotka-Volterra system with constant coefficients.

Here, we restrict the competition parameters so that there is no possibility of the multi-
ple periodic solutions that [13] shows. Then we consider the situation where the interacting
populations experience pseudo-stochastic environmental fluctuations with unpredictable dis-
continuous change, such as seasonality in a year with ‘a cycle of three cold days and four
warm days’. In a separate paper [6], we analyze the Lotka-Volterra competition system with
constant coefficients under telegraph noises, i.e., environmental variability causes parameter
switching between two systems.

Our focus of attention is on the intermediate case where environments have both pre-
dictable and unpredictable aspects. This case is studied by using a combined system of two
Lotka-Volterra systems with periodic coefficients. In this system, it is assumed that at ev-
ery moment the population dynamics is governed by one of the two Lotka-\olterra systems
with periodic coefficients. That is, the populations usually experience predictable changes of
environments. However, it is also assumed that the population dynamics abruptly becomes
governed by another Lotka-Volterra system. This abrupt switch between two systems occurs
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in an unpredictable manner. More precisefy vaiting time for the occurrence of the switch
follows an exponential distribution. These assumptions, for example, correspond to the situ-
ation where environments change seasonally and there are both warm days and cold days in
each season. The purpose of this paper is to show that under this situation our system exhibits
complex behavior due to the mutual interference between stochastic and periodic dynamics.
The paper is organized as follows. Section 2 is devoted to some fundamental properties
of the competition Lotka-Volterra equation with periodic coefficients under telegraph noise.
In particular, we give sufficient conditions to ensure the average permanence of the equation,
i.e., the coexistence of two species in the sahaéthe time averages of the both species are
positive (Theorem 2.3). The two subsequent sections deal with the Lotka-Volterra competi-
tion system composed of two stable subsystems or of one stable and one bistable subsystem,
respectively. In Section 3, it is proved that thdimit sets of the system include periodic
solutions of the subsystems (Theorem 3.6). Moreover, itis also shown thaditmé sets in-
clude every orbit starting at a point on the periodic solutions of the subsystems (Theorem 3.8).
In Section 4, it is proved that the-limit sets of the system include a periodic solution of the
stable subsystem (Theorem 4.7) and that the position of the periodic solution of the stable sub-
system and the ‘neutral curve’ of the bistable subsystem is essential in determining the shape
of thew-limit sets of the system (Theorem 4.9). Biological and mathematical implications are
discussed in the final section.

2. Preliminary discussion. Let (£2, F, P) be a probability space satisfying the gen-
eral hypotheses [12] and I€é};);>0 be a Markov process, defined ¢f2, F, P) and taking

values in the set of two elements, sBy= {+, —}. Suppose that;) has the transition in-

tensities+ — — and— LY + with @ > 0, 8 > 0. The procesgs;) has a unique stationary

distribution

2.1) p=lim Plg =+) = P “

aige 9= ImPlE =)=

The trajectory of&;) is a piecewise-constant, cadlag function. Suppose that

(2.2) O=m<nu<n<: <t <--
are its jump times. Put
(2.3) 0O1=T1—T0, O02=T2—T1, ..., Opn=7Ty— Tn_1,

Thenoy = 11 is the first exile from the initial statey is the time that the proces& ) spends

in the state into which it moves from the first state and so forth. It is known that the random
variablesoy (k = 1,...,n) are mutually independent when a seque(gg);_, is given

(see [8, vol. 2, p. 217]). Note that & is given, ther,, is constant, since the procegs)

takes only two values. Henceégy):2 ; is a sequence of conditionally independent random
variables, valued if0, oco]. Moreover, ifé§g = +, thenoy,;+1 has the exponential density
o1j0,00) EXP(—at) andoy, has the densitgl|o o) exp(—pr). Conversely, iEg = —, thenoy,

has the exponential densigl o, o) €Xp(—a?), andoz,+1 has the densityljg o) exp(—p1)
(see[8, vol. 2, p. 217]). Herggleoy = 1 forz > 0 (Lj0,00) = O forz < 0).
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LetFy = o(w : k <n)andF;° = o (% — 1 : k > n). We see thafy is independent
of F2° for anyn € N under the condition thd is given.

Let&g have the distributioR{&o = +} = p andP{&p = —} = ¢. Then(§;) is a stationary
process. Therefore, there exists a gréty € R, of P-measure preserving transformations
0" : 2 — 2 such that; (w) = £&(O'w), w € 2.

We consider the competition Lotka-Volterra equation

{)'c =x(a(&, 1) —b&, x —c, 1)y),
y=yWdE, 1) —el )x — f&. Dy,
whereg : E x R— Ry forg = a, b, c,d, e, f such thaty(i, -) are continuous and periodic

functions with periodl” > 0 for anyi € E. Suppose that andM are two positive constants
such that

(2.4)

m=<gqg(,t)y<M, i€eE,teR, forg=a,b,cd,e,f.

The processgé;) interferes in (2.4) as a noise which is well-known as a real noise form
(or multiplicative noise, see [1]). Without the noiég), i.e., g(&,t) = ¢(t) foranyg =
a,b,c,d,e, f,(2.4)is well studied (see [7] for example). In that case, it is proved that under
certain conditions posed on the coefficients, either (2.4) has a unigue periodic solution which
attracts all solutions starting ii®, oo) x (0, co) or every solution of (2.4), except the solution
starting at the neutral curve, has a component tending to O (see [2, 3, 6, 7]).

In the case when the noigg ) intervenes virtually into (2.4), it makes a switching be-
tween the deterministic periodic system

{ﬁ(t) =xT ) (a4, 1) = b+, 0)xT (1) —c(+,0)yT (@),
Y@ =yt (Od(+, 1) —e(+,DxT (1) — f(+. Dyt (1),
and the deterministic periodic one
{J’C_(t) =x"()a(=,1) = b(—, )x~ () —c(—, )y (1)),
Yy (O =y (O)d(— 1) —e(—=,D)x" @) — f(—= 1)y ().
Thus, the relationship between these two systems will determine the behavior of trajectories
of (2.4).

As is known, the property of solutions of Lotka-Volterra systems near the boundary is
dependent on two marginal equations. So, first we study the equations

(2.5)

(2.6)

(2.7) i =ua&, 1 —b& nu, u@eR,
(2.8) v=v(d&, 1)~ f& nDv), v0eR".

If u(z) is a solution of (2.7) ana(z) is a solution of (2.8), thei,, u(¢)) and (&, v(z)) are
Markov processes.

A random procesgp;), valued in a measurable spack S), is said to beperiodic with
periodT if for any ty, t2, ..., 1, € R, the simultaneous distribution 0@, 4«7, Pry+47, - - - »
¢+, +kr) does not depend adhe N. We show that (2.7) has a unique solutigi(¢) such that
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(&,u*(1)) is a periodic process. Indeed, put

explA (1))
J' b, s) explA(s))ds

whereA(r) = 3 a(&,, s)ds. First, we see that

u*(t) =

expl /o a(g (), s)ds)
fi;T b(&s(w), 5) expl [ a(é (w), T)dT}ds
explfo " alg—7 (07 w), s — T)ds)
N [ b1 (0T w), s — T)explf3 a(ee—7 0T w), T — T)dt)ds
expl’ ; a(E 0T w), s)ds)
N explf°, a(& 0T w, s)ds) [* bEOTw), s) explfy a(: (0T w), T)dr)ds
B explfp a(& (0T ), 5)ds)
S oo BXPUfp a (62 (6T ), T)dTIb(E (67 ), 5)ds

Hence, by virtue of th&-measure preserving property @f for any continuous functioh,
foranyn < < --- < t, and for eaclk € N we have

wt+T,w) =

=u*t,0Tw).

Elh(&yar, u* (1 + kT), Epir, u*(t2 + kT), ..., & a1, u* (ty + kT))]
= E[h(&, 0T, u* (11, 0%T), £, (0%T), u* (12, 6¥T), ..., &, OT), u* (t,, 6F7))]
= E[h(sl‘]_()s u*(tl, ')7 étz(')s u*(t21 ')7 LR ét,l ()7 u*(tns ))] .

This means thatt,, u*(¢)) is a periodic process with peridd. Similarly, (2.8) has a unique
solutionv*(¢) given by
_ exp{D(1)}

[l f &, 9)eXpD(s)}ds

such that(&, v*(¢)) is a Markov periodic process. The unigueness follows from the next
lemma.

t
() D() = / d(&,. 5)ds
0

LEMMA 2.1. For anyug > O (resp. vo > 0), lim;_ oo (u(t) — u*(t)) = 0 a.s. (resp.
liM;_ oo (v(t) —v*(r)) = 0a.s.), whereu(t) isthe solution of (2.7) satisfying u(0) = ug (resp.
v(t) isthe solution of (2.8) satisfying v(0) = vp).

PROOF. Putz = 1/u — 1/u*. Then we havé = —az. Thus, since is bounded below
by a positive constant, we obtain the result. ]

LEMMA 2.2 (Law of large numbers for periodic processedjor any continuous
bounded function A (¢, i, u), periodic in r with period T', we have

(2.9)

li
t—o00 t

1! 1 /T
m —/ h(s, &, u™(s))ds = E[—/ h(s,és,u*(S))dS]
0 T Jo
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Smilarly,
1/ 1 (T
lim —/ h(s, &, v*(s))ds = E[—/ h(s, Es,v*(s))ds].
t—oo t Jg T 0
PROOF. Put

n+1)T
X, = / h(s, &, u*(s))ds .
nT

Since (&, u*(r)) is periodic,(X,) is a stationary process. By the law of large numbers we
have

] 1 n
lim = Zxk = E[Xo/J] as.,
n—-oon
k=0
where 7 is theo-algebra of the invariant sets. Howevéf;) is ergodic and:*(¢) has no
non-trivial invariant set, and hence we see tfiat {¢J, £2}. This implies that

1 [t [t/T] 1
lim = ut = lim =—— X, = =E[X
tm = [t ods = im S > X = FElXo
1 (T N
=E|= [ h(s, &, u*(s))ds|.
T Jo
Here,[x] denotes the integer such tha] < x < [x] + 1. O

We study conditions that ensure the average permanence of (2.4).

THEOREM 2.3.

@ If
1 T
(2.10) A= ?EI:/O (a(&, 1) — c(&, t)v*(t))dti| >0,
thenfor any x > 0,y > 0, liminf,_.o(1/1) fy x(s, x, y)ds > Ofor P-as.
(b) If
1 T
(2.11) y = ?E[/O (d&, 1) — e(&;, t)u*(t))dt] >0,

thenfor any x > 0,y > 0, liminf,_ o (1/¢) fé y(s, x, y)ds > 0for P-a.s. Here (x (¢, x, y),
y(t, x, y)) isasolution of (2.4).

PROOF (a) Fromthe inequality = y(d —ex — fy) < y(d — fy) it follows that if
y(0) = v(0), theny(r) < v(¢) for anyr > 0 by the comparison principle. On the other hand,
by Lemma 2.1 we have lim, » (v(z) — v*(¢)) = 0. Therefore, for ang > 0, there exists
to = to(w, &) such thab™(¢) + /M > v(¢) foranyr > t9. Hence,

x(1)
— . = a(ét! t) - b(éfs t)x(t) - C(Sl‘v f))’(t)
x(1)
> a(&,t) — b, )x@) —cl, Hv* () —e, t>1,
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which implies that

Inx () — Inx(tp) t—1o

t
> 1 / @y, 5) — (s )0 ())ds — 610
t Ji 1

1 rt
;/ b(&s, )x(s)ds +
1

0

Sincex(r) is bounded, limsup, ., (Inx(¢) — Inx(#g))/t < 0. By lettingr — oo, we obtain

t t _
Mliminf}/ x(s)ds zliminf(}/ b(gs,s)x(s)ds+w>
t—o0 t Jo t—o0 \ t Jg P

t
> “zm inf %/ (a(&s, s) — c(&, s)v*(s))ds — .
—00 0

Applying the law of large numbers (Lemma 2.2), we have

t T
jim 2 / @y, 5) — c(&, )™ (5))ds = lE[ / <a<ss,s>—c@s,s)v*(s))ds]
t—o0 t 10 T 0

Sinces is arbitrary, it follows that

imint = [ x(s)ds = ——E ' ) s)ds | = 2 = 0
t—00 ;A X(S) S = m |:/0 a(€57s — C(éS,S)U (S) Sj| — M > 0.
(b) Similarly,

.. 1t y
liminf — y(s)ds > — > 0. O
t—>o0 0 M

REMARK 2.4.

(&) We note that the average permanence implies that limsyp(r) > 0 and
limsup_ o y() > 0.

(b) Conditions (2.10) and (2.11) are easily checked in a similar fashion based on the
law of large numbers.

To get the further properties of the trajectories of the solutions of (2.4), we need addi-
tional hypotheses on the coefficients of (2.5) and (2.6). In Section 3, we assume both systems
are stable. In Section 4, we assume that one of them is stable and the other is bistable.

3. Dynamicsof the stable subsystems.

HypPoOTHESIS 3.1. The coefficients of (2.5) and (2.6) satisfy

(3.1) su a(l.,t) - inf d(l.,t)’
o<t<7 b, 1)  0<t<T e(i,t)
(3.2) inf a(i,t) - su d(i, 1)
' 0<i<T c(i, 1)~ oerer fG 1)
(3.3) inf b(i, 1) . c(i, 1)

s
O0<t<T e(i,t) qgeier f(i,1)
foranyi € E.
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By (3.1) and (3.2), there are constakds k3 such that

a(+a t) =+ d(+7s) a(+a t) =+ d(+a S)
— <k{ < s > Ky > >
b(+,1) e(+,s)  c(+.0) f(+,9)
a(_at) — d(—,S) a(_at) — d(—,S)

<Kk < s >k, >
b(—,1) e(—8) c(=1) f(=.s)
foranys,s e Randi € E. If k{ = ki andk] = k,, by virtue of the results in [2, 3, 5, 7]
with a slight modification, we can prove that there exists a unique periodic solution of (2.4)
taking values in(0, co) x (0, 00). Thus, we consider here only the case where ei’tﬁregé
ki ork;r # k5 . Under these hypotheses, (2.5) (resp. (2.6)) has a unique periodic solution
with period T whose orbit, say ™t (resp.y ™), attracts any solution starting at a point in
(0, 00) x (0, 00), that is,

(36)  lim p((x"(®),y"(®).y") =0 (resp. lmp((x™(1),y™(1).y7)=0),

where we defing (x, A) = inf{||lx — z|| ; z € A}
From inequalities (3.4) and (3.5), we can choese 0, § > 0 such that

(B.7)  a(+.1t) —b(+, e —c(+.Dk) > 8, d(+.1) —e(+, Dk — f(+,0)e > 8,
(3.8) a(—,t) =b(—=, e —c(—,0Dk; >8, d(—,1)—e(—,0Dk] — f(—=, e >$

(3.4)

(3.5)

foranyr > 0.

Let r; = maxk] .k} andr, = maxk] .k, }. Itis easy to see that the rectangle
Ko = (0,r1) x (0,rp) is a forward invariant set of (2.4), which attracts all solutions
(x(t,x,y),y(,x,y)) of (2.4) withx > 0, y > 0. Therefore, we can suppose that
(x(t,x,y),y(, x,y)) € Ko for anyr > 0. Furthermore, by (3.7) and (3.8), we obtain that
yT c K. andy~ c K, where

Ke=(,r) x(¢,r2).

LEMMA 3.2. For any small 61 > 0,62 > O, there exists a 7} = 7;(61,62) > 0
such that (x(¢), y' (1)) € Us, (y") for any ¢+ > T}, provided that (x'(0), y'(0)) € Ks,. Here,
Us, (y") isthe 83-neighborhood of y andi € E.

PROOF. It follows from (3.6) that for any(x, y) € Ks,, there isT(x,y) > 0 such
that (x*(t, x, y), x"(t,x,y)) € Us,(y*) and(x~ (¢, x, ), x (¢, x,y)) € Us,(y™) for any
t > T(x,y). By the continuous dependence of solutions on the initial data, there is a
neighborhood ofx, y), denoted byU, ,, such thaix™(z, xo, yo), y*(z, x0. y0)) € Us, (¥ ")
and (x~ (7, x0, yo), y~ (1, x0, yo)) € Usy(y™) foranys > T(x,y) and (xo, yo) € U.,y.
The family {U, , ; (x, y) € Ks,} is an open covering oks,. SinceCs, is compact, there
is a finite family {Uy, y,, Uxy.yzs - - - Ux,.y,} SUCh thatKCs, € (J'_; Uy,.y,. By choosing
Tf = maxi<i<u T (x;, yi), we finish the proof of Lemma 3.2. O

LEMMA 3.3. Thereisa 7j > Osuchthat x'(+*) < k} and y'(+*) < k}, for at*
[0, 751, provided (x (0), y'(0)) € Ko. Herei € E.
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PROOF. Since it is assumed that! (¢, x, y), ¥ (¢, x, y)) € Ko for anyt > 0, we con-
sider the case’(0) < r1 andy’(0) < rp. Fori € E, if x'(0) < ki, we taker* = 0. Suppose
thatx’(0) > ki. Whenever'(t) > ki, we havex’ = x'(a(i,t) — b(i,)x' — c(i,1)y") <
xi(a(i, 1) — kib(i, 1)), which implies that

t t
x'(1) < x'(0) exp{/ (a(i,s) — kib(i, s))ds} <nr exp{/ (a(i,s) — Kib(i, s))ds} :
0 0

Similarly, y'(r) < r» exp{fé(d(i,s) — kéf(i,s))ds}. From (3.4) and (3.5) it follows that
Jo (a(i,s) — kib(i, s))ds = —oo and [y (d(i,s) — ks f(i, s))ds = —oo. Hence, we can
choose

t
Ty = inf{t : exp{/ (a(i,s) — kib(i, s))ds} <K/,
0

t
exp{/ (d(i,s) — K> £ (i, s))ds} < kb/ra,i € E}
0
to get the result. ]

COROLLARY 3.4. ForanyO<e1 <eand0 <1 < 12, thereexistsan e, (e1 > 2 >
0) such that for any i € E, the following hold.

(@ Ifra > y'(11) = &1 (resp. r1 > x'(11) > e1), thenry > yi(1) > e (resp. ry >
xi(t) > &) for any t > 1.

(b) If (xI(r1), y'(r1)) € [, r1) x [0, e2], then x(r) € [e, r1] for any r > r1. Under the
additional condition y(r2) < &1 for some s, > 11, we have sup, <1<, yi(t) < e1. Asimilar
result holds for the case when (x(r1), ¥ (t1)) € [0, €2] x [&, r2).

PROOF. We prove for the case = + (for i = —, the proof is similar). We note that
yt() + whenx*(r) < ki andy*(t) < e. Further, ifxT(r*) < ki andy*(t*) > ¢ fora
t* > 0, thenxt(t) < ki andy*(t) > ¢ for anyt > r*. Therefore, by choosing, as in
Lemma 3.3, we have

inf y*t() > min{ inf yt(@), s} )

1>t t1§t§t1+T2*
It is obvious that

sup y* () = maX{ sup y*(), sup y*(t)} .
tp>t>11 11§t§t1+T2* 11+T2*§t§t2
Set
g2 = exmin{exp{—M (r1 + r2) T}, exp{(—M T5'}} .

We havey ™ = yt(d(+, 1) —e(+, )xt — f(+,0)y"T) > —yTM(r1+r2). Then, ify* (1) >
e1, we have

inf  y*(t) > yt() expl—M(r1 + r2) TS} > e1exp(—M (r1 + r2) T3} > &2,
n=t=n+73

which implies that inf-,, y*(r) > 2, i.e., we obtain (a).
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Furthermore, if(x*(f1), yT(t1)) € [e,r1) x [0, 2], then from inequalities (3.7)
and (3.8) we obtain that*(r) > & for anyt > 1. Moreover, if y*(r;) < &1, then
SUR, 475 <i<, Y (1) < 1, and fromyt = yF(d(+,1) —e(+,0)x" — f(+,0)yT) < y*M
we have sup, 7+->, yt() < yt(11) expMT}} < e2exp{MT}} < €1, i.e., we obtain (b).

The proof of the other cases is similar and hence is omitted. O

LEMMA 3.5. Foranyi € E, let y/, ., denotethe set {(x'(1), y (1)) ;11 < 1 < 12}.
Then, for any 81 > O, there is 82 > 0 such that if (x'(t1), y'(11)) € Us,(y"), we have
Viror) N Usi (X7, y%) # @ for any (x*, y*) € y".

PrRooF This lemma follows from the continuous dependence of solutions on the initial
data and the fact that™ (resp.y ™) is the orbit of a periodic solution with perid. O

THEOREM 3.6. Suppose that conditions (2.10), (2.11) and (3.1)—«(3.3) hold. Let
w(x, y) bethe w-limit set of the solution (x (¢, x, y), y(z, x, y)) of (2.4) withx > 0,y > O.
Then, y+ and y ~ aretwo subsets of w (x, y). (See Figure 1.)

PrROOF. Forthe sake of convenience, we supposedfat +. Pute; = min{e, A/ (2M),
y/(2M)}. From Corollary 3.4, suppose that = ¢2(e1) for (2.6) andez = e3(g2) for (2.5)
are chosen. Set; = min{eo, ¢3}. Put

(3.9) Xp =x(Tp, x,y) and y, = y(tp, X, y).

We know that(x,, y,) is F-measurable for any, since(x,, y,) is completely determined
by the sequencey, 1o, ..., 7,. With the convention that i)} = oo and the assumption
& = +, we construct a sequence

N1 =inf{2k + 1; (x2k+1 > € A yor41 > €4) OF (X2411 > €4 A Yor41 = €)},

n2 =inf{2k + 1> n1; (X241 > € A Y2r41 > €4) OF (X2k41 = €4 A y2r41 =€)},

Np =iINH{2k + 1> ny—1 5 (X2k41 = € A yokg1 = €4) OF (X241 > €4 A Yokt1 = €)}.

The random variableg; < n2 < --- < n¢ < --- form a sequence dfj-stopping times (see
[12]). Moreover,{n; = n} € F{ for anyk, n. Thus, the eventn, = n} is independent of
Fre.

We show that),, < oo a.s. for any:. Indeed, suppose to the contrary that there is N
such that the sef = {w ; n,, = oo andn,,—1 < oo} has a positive probability. Since for any
k, eitherxgr11 > e or yory1 > ¢, if € I', then eithef(xg+1(w) > € A yary1(w) < €4) OF
(x2%4+1(w) < €4 A yopr1(w) > ¢) forany Z + 1 > n,-1(w). Let 2k + 1 > n,,—1. Suppose
thatxoxy1 > € andyz11 < 4. By virtue of Corollary 3.4x2¢+2 > €. If yo12 > €2, then by
Corollary 3.4 x2;4+3 > €2 andyz13 > €3 > g4, Which is impossible (since eithes; 3 < ¢4
or yoxt+3 < &4). Thereforexg12 > ¢ andyy 2 < 2. Using Corollary 3.4 again, we see
thatxgr3 > ¢, which implies thatyz,+3 < 4. Hence, ifxg11 > € andygy 1 < &4, then
xp, > ¢ andy, < ez foranyn > 2k + 1. By Corollary 3.4 we getsyp,  , y(t) < e1. This
contradicts limsup, ., y(t) > 2e1 > &1.



456 N. DU, R. KON, K. SATO AND Y. TAKEUCHI

@ 6
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FIGURE 1. Thex-y phase planes. (a) The periodic solutiopd (andy ~) of systems (2.5) and (2.6) with
the following parameters are plotted(+, 1) = 10,b(+, 1) = 0.1sin(t) + 2.2, c(+,1) = 1,
d(+,t) =5,e(+,0) =1, f(+,1) =sin(t+x/2)+3,a(—, t) = 5,b(—, ) = sin(t+7/2)+3,
c(—, 1) =1,d(—,t) = 10,e(—,t) = 1, f(—,t) = 0.1sin(r) + 2.2. (b) The solution of
system (2.4) switching between the above systems (2.5) and (2.6) with the initial condition
(x(0), y(0)) = (4, 0.2) is plotted fors € [700, 1000. The transition intensities ate= 1 and
B=1.

Let Us, (y ~) be an arbitrary neighborhood ef . We choosé> to be as in Lemma 3.5
andT;" = T;*(82, e4) as in Lemma 3.2. Denoté; = {0,411 > T, + 2T}. We have

P(Ax) = Ploy,4+1 < Tf + 2T}

[e¢)
= Ployt1 < Tf +2T [ = 20+ 1P{mx = 20 + 1)
n=0

o
=Y Ploay2 < T + 2T | ;e = 20 + UP{ = 20 + 1)
n=0
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o
= Z Plogni2 < Tf + 2T}P{nx = 2n 4 1)

n=0

M

Ploo < Tf + 2T}P{mk = 2n + 1)

3
I
o

=Ploa < Ty +2T} < 1.
Similarly, we have

P(Ax N A1)
=Ploy41 < Ty + 2T, 0y 41 < Tf + 2T}
= Y Plogu<Ti+2T. 05,1 <T7 +2T | =2+ Ly =2n+1)

O<l<n<oo

x Plng =21+ 1, g1 =2n + 1}
= Z Ploaio < Tf + 2T, 00042 < Tf + 2T | e = 20 + 1, g1 = 2n + 1}

O<l<n<oo

xPlm=2+Lmp=2n+1)
= Z Ploongz < Tf + 2T}P{oo142 < Ty + 2T | e =2 + 1, kg1 = 2n + 1}

O<l<n<oo

x Plgp =21+ 1, k1 =2n + 1}
= Z Ploa < Tj + 2T }P{oa1s2 < T + 2T | i = 20 + 1, iy = 2n + 1}

O<l<n<oo

xPlm=2+Lmua=2n+1)
=Ploa<T{ +2T} Y Ploaya<Tf+2T ;=241 mp1=2n+1}

O<l<n<oo

XPmpr =2+ 1 g1 =2n+1}

oo

=Plox < T} + 2T} Z Plogiyo < TS + 2T | np = 20 + BJP{nx = 21 4+ 1}
=0

= (P{og < T +2T})%.

By induction we obtain
n
P(ﬂ A_,») = (Plog < T} +2T)" "1 forn >k > 0.
i=k
Hence,

oo o0
(3.10) P(ﬂ U A,-) =P{w;op11>TF +2Ti0} =1,
k=1i=k

where ‘i.0.” denotes ‘infinitely often’.
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Therefore, there are infinitely mamysuch that eithefxz,11 > € A yo,41 > €4) OF
(X241 = €4 A yaup1 > &) With 02,42 > T + 2T. Hence, by using Lemma 3.2, we
have (x(t2n+1 + T7), y(tont+1 + T1)) = (x 7 (T7, x2041, Yon+1), ¥~ (T7', X241, You+1)) €
Us,(y ™). Therefore, by Lemma 3.5, the solutign(z, x, y), x(¢, x, y)) enters the neigh-
borhoodUs, (x*, y*) at a time in(t2,+1 + Ty, 2441 + T + 2T). Thus, we conclude that
y~ C w(x, y). The proof of the inclusiop* C w(x, y) is quite similar. ]

LEMMA 3.7. Let (x* y*) € y~ and 81 > 0. Then we have for (x,, y,) defined by
(3.9

(3.11) P{(xn, yn) € U5, (x*, y*)i.0.n} = 1.
Thereisasimilar result for the orbit y .

PROOF. Givené&y = +, lets; > 0 be arbitrary and let1, 2, 3, €4 be as in the proof
of Theorem 3.6. For anyu, v) € K., we denote byl («, v) the first entrance time of the
solution(x (¢, u, v), y~ (¢, u, v)) into Us, j2(x*, y%), i.e.,

T(u,v) =inf{t; (x™ (1, u,v), y (1, u,v)) € Usyj2(x™, y")}.

From Lemmas 3.2 and 3.5 we see tlidl, v) < Ty (82, 4) + 2T with 62 = 62(51/2) as
mentioned in Lemma 3.5. Since the left-hand sides of (2.6) are bounded, there Gssuch
that(x~(z, u, v), y~(t, u, v)) € Us, (x*, y*) foranyt € (T (u, v), T (u, v) + t1).

Suppose thatn,) is a sequence defined as in the proof of Theorem 3.6.A%et
{oni+1 € (T (xp, yno)s T (xyy, yi) + 11)}. We then have

P(AW) = Ploy+t & (T (e yp)s T G yp) + 10))
(e.¢]
= Z/IC Plom+1¢ (T (e, yi)s T (s yni) + 1) | me=2n + 1, xy, =u, yy, = v}
n=0 €4
x Plne =2n 41, xy, € du, yy, € dv}

oo
= / D Plozui2 & (T, v), T, v) +11) | mk = 20+ 1, X241 = 1, y2u41 = v}
€4 n=0

X P{ng = 2n 4+ 1, x2,41 € du, yo,+1 € dv}.

Since(x2,+1, y2u+1) and{ng = 2n + 1} is ]-‘g”*l-measurable,
o0
S [ Plomiz# (TG0 T + ) =20+ Loxansa = y2uia = )
n=0 Kes
X P{nx =2n + 1, x2,41 € du, yo,+1 € dv}

o0
= Z/K P{o2¢ (T (u, v), T (u, v) + t1)}P{nk =2n + 1, xon4+1 €du, yon+1 € dv}
n=0 €4
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=Y | @-Ploze T Tl v+ )
n=0 ’C54

X P{nx =2n + 1, xo441 € du, y2,+1 € dv}

o
< Z/ (1—Plo2 e (T7 + 2T, T{ + 2T +11)})
K
n=0" "4

X P{nx =2n 4+ 1, x2,41 € du, yop+1 € dv}
=1-Plope (I + 2T, T + 2T + 1)} :=¢ < 1.

Similarly, we can estimate the probabiliB(A; N Ax,1). For the sake of simplicity
we denoteB = K¢, x K¢, CU,n,u,v,u1,v1) = e = 2+ 1L pe1 = 2n+ 1 xp, =
Uy Y = U, Xy = U1, Yy = V11 andC(l, n,du,dv,duy,dvy) = {ny = 20 + 1, ng+1 =
2n + 1, xy, € du, yy, €dv, xy,,, €dui, y,,, €dvi}. We have

P(Ax N Ak+1)
= Plop+1 ¢ (T (epes Yn)» T Gogges yp) +11)
Ony1+1 ¢ (T(xﬂk-u’ y’?k+1)’ T(xﬂk+1’ y’?k+1) + 1)}

= Z L P{Unk+1 ¢ (T(xl’]ka yl’]k)a T(xr]k7 ynk) + tl)a

O<l<n<oo

O+l & (T Comigs Vo) T O gs Ymgyn) +12)

Ime =20+ 1 my1=2n+ 1 xp =u, yp = v, Xy g = U1, Yy ;3 = 1}
x Plmk =21+ 1, mpy1 =2n+ 1, xy, € du, yy, € dv, xy,, € dua, yy,,, € dvi}

= ) / Ploai2 ¢ (T(u,v), T (u,v) +11), 02042 ¢ (T (w1, v1), T (u1, v1) +11)
B

O<l<n<oo

| CU,n,u,v,u1,v)}P{CU, n,du,dv,dus, dvi)}

= ) / Ploznt2 ¢ (T (u1, v1), T'(u1, v1) + 1) }P{oar2 ¢ (T'(w, v), T'(u, v) 4 11)
B

O<l<n<oo

| CU,n,u,v,u1,v1)}P{CU, n,du,dv,dus, dvi)}

B Z ./1; Plo2 ¢ (T (u1, v), T (u1, v1) + 11)}Plo242 ¢ (T(u, v), T (u, v) +11)

O<l<n<oo

| CU,n,u,v,u1,v1)}P{CU, n,du,dv,dus, dvi)}

IA

(1—Plo2 € (T7 + 2T, T{ + 2T +11)}) Z / Ploaiy2 ¢ (T (u, v), T (u, v) + 1)
B

O<l<n<oo

| CU,n,u,v,u1,v)}P{CU, n,du,dv,dus, dvi)}

=(1—-Pfloo e (T]ik + 27T, Tf + 2T + t1)}) Z,/]; P{o2i42 ¢ (T (u, v), T (u, v) + 1)
=0 £2

[ ne =20+ 1, x4+1 = u, ya+1 = v}P{nk = 20 + 1, x2141 € du, y2r+1 € dv}
< (1—Ploz € (T{ 42T, Tf + 2T + 1)})? = ¢2.
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Thus, by induction we obtain
P(ﬁ A_,~> < (1= Plog € (I{ + 2T, T + 2T + 1)})"FF1 = p7F+1
=k
foranyn > kl> 0. Hence,

oo o0
(3.12) P(ﬂ U A,») = P{w; oy, 41 € (T (Xyps Ynu)s T (s ¥p) +12) 0.1} = 1.
k=li=k

Therefore, there are infinitely manysuch thato, 12 € (T (x24+1, Y2u+1)s T (X2041, Y2n+1)+
t1), which implies that

(X2042, yont2) = (X7 (02042, X20+1, Yon+1), ¥~ (02042, X2n4+1, Yout+1)) € Us, (x*, ¥™).
The proof for the caséc*, y*) € y T is similar. O

THEOREM 3.8. Any forward orbit of (2.5), starting at a point on y—, is a subset of
w(x,y)withx > 0,y > 0. Smilarly, any forward orbit of (2.6), starting at a pointon y ¥, is
asubset of w(x, y). (SeeFigure 1.)

PROOF. Suppose that™(x*, y*) is the orbit of a solutiox * (¢, x*, y*), yT (£, x*, y¥))
of (2.5), starting at the point*, y*) € y~. Let (1, v) € yT(x*, y*). Then there is* > 0
such that(x*(t*, x*, y¥), yT(¢*, x*, y*)) = (u, v). By the continuous dependence of solu-
tions on the initial data, for any neighborhowg of (u, v), there are; < t* <, ands, > 0
such that if(xj, y7) € Us,(x*, y*), then (x*(t, X3, Y1), yt(, X3, y1)) € Vs, (u,v) for any
11 <t <t Let

¢1 = inf(2k ; (x2, yax) € Us,(x™, ¥y},
{2 =inf{2k > n1; (xor, yk) € Us,(x™, y")},

Cn = Inf{2k > np_1 5 (x2k, yor) € Us,(x™, y5)}.

By the proof of Lemma 3.7, we see that there are infinitely many even numbeisch that
(x2n, y2u) € Us,(x*, y*). Hence, iy < oo and limy—« & = oo a.s. On the other hand,
{¢&x = n} € 7§ and hencég, = n} is independent of °. Therefore,

Plog+1 € (11, 12)} = Z Plog+1 € (11, 12) | &k = 2n}P{5x = 2n}
n=0

= Plozui1 € (1. 12) | & = 2n}P{gx = 2n)
n=0

= Ploas1 € (1. 12)}P{t = 2n}
n=0

=Y Plo1 € (11, 22)}P{& = 2n) = Plo1 € (11, 12)} .
n=0
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Similarly, we have
Plog+1 € (11, 12), 04141 € (11, 12)} = Plo € (11, 12)},
which implies that
Plw;og41 € (f1,12) 1.0k} = 1.
Since(xg,, yg) € Us,(x*, y*) andog, 41 € (11, 12),

(g1, Yoer1) = (0 (0441, Xg0 ¥ ), YT (041, X i) € Vg (1, v)
for infinitely manyk. This means thai, v) € w(x, y).

In exactly the same way, we can prove that the qrbitx*, y*) of any solution(x* (¢, x*,
y*), ¥*(t, x*, y*)) of (2.6) with initial value(x*, y*) € y* is contained inv(x, y). O

4. Dynamicsof the bistable subsystems. In this section, we keep hypotheses (3.1)—
(3.3) fori = +. Thus, (2.5) has a unique periodic orpit as in Section 3. For (2.6) we
suppose the following.

HYPOTHESIS 4.1.
O<t<T b(_’t) O<t<T e(_’t)

(4.1)

bl

< 9
0<t<T ¢(—,1)  O0<t<T f(—,1)
4.2) sup b0 < inf M
0<t<T €(—,1)  0<t<T f(—,1)

By virtue of condition (4.1), we can choose constaitsandk, satisfying

a(_st) — d(_ss) d(_vt) — a(_ss)

>k > , > ky >
b(—,1) e(—=,s)  f(=1) c(—,s)

foranys, t € R. Further, there is a unique periodic orbit, 3gy, of the marginal equation

(4.3)

u =u (a(—,t) —b(—,Hu"),
and a unique periodic orbit, say; , of the marginal equation

v =v (d(—,t)— f(—, 7).
Moreover, it is easy to see thgf, C [k;,00) and it attracts any solution™(r) with
u—(0) > 0. Similarly, y,, C [k;,00) and it attracts any solution™ (¢) with v=(0) > 0

(see Lemma 2.1). We now come to the investigation of some properties of the solution of
(2.6).

LEMMA 4.2. Under conditions (4.1) and (4.2), there exists a function ¢ : [0, a*) —
RT suchthatif y < ¢(x),thenlim; o vy~ (¢, x, ¥) = 0andlim; oo (x ~(t, x, y)—u~(t, x)) =
0. Conversdly, if y > ¢(x), thenlim;_ o x~ (¢, x, y)=0andlim;_ .o (y (¢, x, y)—v ™ (t, y)) =
0. Thus, thereisa‘neutral’ curve, say ¢, suchthat if (xo, yo) € ¢, thenthesolution (x ~ (z,x0, yo0),
vy~ (t,x0,y0)) is bounded above and below by positive constants. Furthermore, there is a
unique periodic orbit contained in ¢, say y—, which is visited by any solution starting at a
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point on ¢, i.e, for any § > O, (x*, y*) € y—, thereisat > 0 such that (x~(z, xo, yo),
Y~ (¢, x0, yo)) € Us(x*, y*) for any (xo, yo) € £.

PROOF. See [6, Proposition 2.10]. We prove the last assertion on the existence of a
periodic orbit. If (x, y) € ¢, then(x~ (¢, x, y), y~ (¢, x, y)) € £ for anyt > 0. We consider
the map(x, y) = (x~ (T, x,y), y (T, x,y)) from £ into £. It is easy to prove that this map
has a fixed point by Brouwer’s fixed point theorem. Therefore, there is a periodic orbit, say
y~. This orbit is unique because there is only one solution bounded above and below by
positive constants. Finally, the visitation of any pointjon follows from the uniqueness of
y~ and the periodicity of coefficients. ]

Note that we have(¢) 1 andy(z) 1 (respx(z) | andy(¢) |) whenever (r) andy(z) of
the solution of (2.4) are both small (resp. whenever at least ang oéndy (¢) is large). Thus,
for sufficiently smalle chosen in (3.7), we can fing > 0 such thatc(r) < M/m, y(t) <
M /m and eitherx(r) > ¢ or y(tr) > ¢ for anyr > t9. Therefore, without loss of generality,
we may suppose that(r) < M/m, y(t) < M/m and eitherx(t) > ¢ or y(¢t) > ¢ for any
t > 0.

Put

A={(x,y):y <ox),x >0}, B={(x,y):y>epkx),x >0}
with the conventiorp(x) = oo if x > a*.

LEMMA 4.3. For any compact set K C A (resp. K C B) and any §3-neighborhood
Us; (v x {0}) of v, x {0} (resp. d3-neighborhood Vi, ({0} x yy,) of {0} x yy,), thereisa
Ty = T3 (83, K) > Osuchthat (x™ (¢, x,y), y~(t,x,y)) € Usg(y;, x {0} foranyt > T3
(resp. (x~(t,x,y), y~(t,x,y)) € Vs3({0} x yy,) for anyr > T5) and for any (x, y) € K.

PROOF. LetK C Aand(x,y) € K. Then by Lemma 4.2, there isa = T(x,y)
such that(x~(z, x, y), y"(t,x,y)) € Us, forallz > T(x,y). By the continuous depen-
dence of solutions on the initial data, there exists an open neighbothgef (x, y) such
that (x=(z,u,v), y~(t,u,v)) € Us; forall r > T(x,y) and (u,v) € Uy,y. The family
(Ux,y)(x,y)ek IS @an open covering of. Sincek is compact, there arl®,, ,,,i = 1,...,n,
such thatk C |J'_; Uy,.y,- Putting73 = maxi<ij<, T (x;, y;), we have the result. The case
K C Bis treated in a similar way. ]

LEMMA 4.4. Let (x—(¢,x,y), y (¢, x, y)) bethe solution of (2.6). For any ¢ > 0
with [g, 00) x [0, e1] C A, wecanfind ez > Osuchthat if (x~ (1), y~(11)) € [&, o0) X [0, &3],
thenx™(#) > e forany ¢ > 1 and sup.,, ¥y~ (r) < e1. Asimilar result holds for the case of
(x7(11), y~ (11)) € [0, e1] x [e, 00).

PROOF. In a manner similar to that in the proof of Lemma 4.3, we can fifd=
T3 (e1/2, {le, M/m] x [0, e1]}) such that(x~(z, x, y), y~(t, x,¥)) € Ug2(y;, x {0}) for
anyt > T3. Hence, by choosings = e1e MT3 we havey™ = y~(d(—,1) — e(—, )x~ —
f(—,t)y™) <y~ M, which implies that

Yy (1) < maxy” (t1)eM’3, e1/2) < maxeseM s, e1/2) = e1. O
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LEMMA 4.5. Thereis Sy >0suchthatife <y(r) (resp. e <x(r)), theninfos<s, y(t +
§) > ¢g/2 (resp. infocs<s, x(t +5) > ¢/2) for any t > 0.

ProOOF. Onthe set0, M/m] x (0, M/m], y/y is bounded below by a constant, say
and hence (r +s) > y(t)e?*. We can choose & S1 < |In2/y]. O

LEMMA 4.6. Theimage of the periodic solution u*(r) of (2.7) isthe smallest interval,
denoted by I, containing yJ and y,, . Smilarly, the image of the periodic solution v*(¢)
of (2.8) is the smallest interval, denoted by I'y, containing y,f and y,, . Here, y;/, v, are
two periodic orbitsof it = uT(a(+,1) — b(+, H)u™) and v = v (d(+, 1) — f(+, HvT),
respectively.

ProoOF. The functions — u*(¢t) is continuous and it is easy to show that thdimit
set ofu™ () containSyJ, ¥y With probability one. Therefore, its image is a connected set in
R*™. Thus it must be an interval. Hence, by Lemma 2.1, this image is the smallest interval
containingyJ, Yy - The argument is similar for the solutiari(z). O

THEOREM 4.7. Suppose that conditions (2.10) and (2.11) hold. Let w(x, y) be the
w-limit set of the solution (x(z, x, y), y(t, x, y)) of (2.4) withx > 0,y > 0. Then, y* C
w(x, y), where y T isa unique periodic solution of (2.5).

PrROOF The proof is somewhat similar to that of Theorem 3.6. For the convenience of
the proof, we supposg = +. Let

Aoy

"2M’ 2M
wheres; as mentioned in Corollary 3.4 is chosen so that ¢1 andez is given by Lemma 4.4.
We construct a sequence

&1 = min {8 } , &4 =min{ey, £3},

N1 =inf{2k + 1; (x2k+1 > € A yor41 > €4) OF (X2k11 > €4 A Yor41 = €)},

n2 =inf{2k + 1> n1; (X241 > € A Y2r41 > €4) OF (X2k41 = €4 A y2r41 =€)},

Np =iINf{2k + 1> np—1 5 (X2k41 = € A yokg1 = €4) OF (X241 > €4 A Yokt1 = €)}.

PutA, = {w;0y,+1 < s ando,,+2 > t}. By the same trick as used in the proof of
Theorem 3.6 we can show that

oo o0
(4.4 P(ﬂ U Ai) =P{w;0y,+1 <sando,,12 > ti.o.n} =1.
k=1i=k
Suppose that; > 0 is arbitrary andJs,(y ) is a neighborhood of * as in Lemma 3.5.
We chooseS; as in Lemma 4.5 andj = T} (62, €4/2) as in Lemma 3.2. By choosing
s = Sy andt = T + 2T in (4.4), we see that there are infinitely manysuch that
either (x2,11 > & A yaup1 > €4) OF (X2041 > €4 A Y2p41 > €) With 02,12 < S1 and
o243 > 1) 4 2T. Using Lemma 4.5, we obtaix2,+2, y2.+2) € K¢, 2, which implies that
(X (t2n42+ T3, x, ), y(t2ng2+ 15, x, y)) = (xH(T§, x2012, y2ni2), YT (TS, X2042, Y2n+2))
€ Us,(y™) by Lemma 3.2. Thus, from Lemma 3.5, for aty*, y*) € y*, the trajectory
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of (x(z,x,y),y(t,x,y)) passes through the neighborhodd, (x*, y*) on the interval
(tons2, T2n43). This means thatt C w(x, y). O

LEMMA 4.8. If (x*, y*) € yT, thenfor any §; > 0 we have

(4.5) P{(xy, yn) € Us,(x*, y*)i.0.n} = 1.
PROOF. The proof is quite similar to that of Lemma 3.7, so we omit it. o

THEOREM 4.9. Suppose that conditions (2.10) and (2.11) hold. Let w(x, y) be the
w-limit set of the solution (x (¢, x, y), y(¢, x, y)) withx > 0,y > 0.

(a) Every orbit y~(x*, y*) of the solution of (2.6) starting at any point of y ™ is a
subset of w(x, y).

(b) IfytNA£P thenTy x {0} C w(x,y).

(c) IfyTnB#¢, then{0} x Iy C w(x,y).

(d) IfC :=yT Nt # Y, thenthe smallest connected part of ¢ containing  ~ (a unique
periodic orbit contained in ¢, see Lemma 4.2) and C iscontained in w(x, y).

PROOF (a) We obtain the assertion by replacing Lemma 3.7 with Lemma 4.8 in the
proof of Theorem 3.8.

(b) Suppose thatx*, y*) € y+ N .A. From (a) we see that~(x*, y*) C w(x,y).
Since(x*, y*) € A, by Lemmas 2.1 and 4.2 we see that x {0} C y~(x*, y*). Thus,
vy X {0} C w(x,y).

Letx} € y,/ andé1 > O be arbitrary. It is easy to see that C [e, k] and there is
T; > 0 such that,} uf;LtlJrTﬂ(-, uo) foranyM/m > ug > ¢, whereufgl’tﬁm(-, ug) =
{ut(t,uo) ; 11 <t < t1+1T4}. Hence, by the continuous dependence of solutions on the initial
data, we can findz > 0 such that if(u, v) € Us,(y;, x {0}), we have

(4.6) (@ u,v), yT(t,u,v) 5t €[t1, 11+ TN Us, (x5, 0) # 9.
Givenéy = +, we set

¢1 = Inf{2k 5 (x2k, yx) € Us, (v x (0D},
G2 = inf{2k > ¢1; (xk, yax) € Us, (v x {OD},

G = INF(2k > 1 : (vaks y21) € Usy (v % {01}

Sincey; x {0} C w(x,y), & < oo foranyk and lim,_.o {x = oo a.s. Moreover,
{¢k = n} is independent of >°. Therefore, by the same argument as above

Plw;og41 > T, 1.0k} =1.

Thus, there are infinitely many such that(xz,, y2,) € Us,(y;, x {0}) andoz, 41 > Tj.
Hence, from (4.6) we havx(z, x, y), y(t,x,y)) ; t € [t2n, T2n + T} 1} N Us, (x5, 0) # 0,
which means thatx}, 0) € w(x, y).

(c) The proofis similar.
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(d) First, we prove thay~ C w(x,y). Leté > 0 be arbitrary,(x*, y*) € y~ and
(x1,¥7) € C. Since any point of/~ is visited, there is* > 0 such that(x~(t*, xJ, y7),
y~(t*, x7, y1)) € Us(x*, y*). By the continuous dependence of solutions on the initial data,
there arer; < t* < rp anddy > 0 such that(x (¢, u, v), y~(t,u,v)) € Us(x*, y*) for
anyt e (t1,t2) and(u,v) € Us (x7,y7). On the other hand, in the same way as above
and by virtue of Lemma 4.8, it follows that there are infinitely many odd numhessch
that (x,, yo) € Us, (x7, y7) andoy,11 € (1, t2) with probability 1. Hence(x,+1, yn+1) =
(X7 (On+1, Xn, Yn)s ¥~ (On+1, Xn, yn)) € Us(x™, y*) with probability 1, i.e.(x*, y*) € w(x, y).

Itis obvious thatC N¢ C w(x, y). Then, by noting thatx (¢, x, y), y(¢, x, y)) is contin-
uous, we see that the smallest part contair@irgndy ~ is included inw (x, y) with probabil-
ity 1. O

We illustrate the above-mentioned model by the following numerical examples.

EXAMPLE |. Figure 2 illustrates an example of the system satisfyingh A = ¢ and
yT N B # ¥ (see Theorems 4.7 and 4.9(a) and (c)).

EXAMPLE Il. Figure 3 illustrates an example of the system satisfyiign A # @
andy™ N B # ¥ (see Theorems 4.7 and 4.9(a)—(d)).

5. Discussion. To conclude this paper, we consider an ecology system of two com-
peting species. Suppose that the evolution of each species depends on the quantity of rainfall
for every period. If the rainfall is sufficient, their competition potential is equal and they de-
velop periodically. Whenever the rainfallssnall, the second species becomes very weak and
its amount gets smaller with the increase of time although the influence of the other environ-
mental elements is still seasonal (periodical). However, in the case when the rainfall is in a
stationary regime, the quantity of each specieasliates between the good situation and the
bad situation. Neither of the species disappears.

There are some questions here. In the proof of Theorem 3.6 we suppose that conditions
(2.10) and (2.11) hold. However, if we use the Liapunov function= my” andV~ = ny”
with m, n, y chosen appropriately, we can prove that ikOy(0) < ¢ and 0< x(0) < r1
with a positive probability, therx(¢), y(¢)) has to get out from the domain @ y < ¢,

i.e., there exist* > 0 such thaty(r*) > &, with a positive probability. However, we need

that (x(¢), y(¢)) gets out from the domain & y < & with probability 1. Thus, we use the
assumptions (2.10) and (2.11) perhaps only for technical reasons. As suggested by Figure 1,
we conjecture that Theorem 3.6 is still truéthout these assumptions. Moreover, whether
there is or is not a Markov periodic solution with periddthat attracts all the solutions of

(2.4) with initial data inR x Ry under conditions (3.1)—(3.3) is an open question.

Also, Figure 1 suggests that the system composed of two stable subsystems is permanent
under conditions (2.10) and (2.11). Note that Theorem 2.3 implies only that the system is
average permanent. We intend to study this problem in the future.
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FIGURE 2.

odic solutions ¢, y;7 andy;f) of sys-
tem (2.5) with the following parameters
are plotted:a(+, ) = 10, b(+,t) =
sin(t) + 4, c(+,t) = 1,d(+,t) = 10,
e(+,0) =1, f(+,1) =sin(t + 7/2) +
4. For system (2.6) with the follow-

(a)

ing parameters, null-clines (dot-dashed

lines), equilibrium points (solid dots)
and a neutral curvé (a broken line) are
shown: a(—,1) = 2, b(—,1) = 0.2,
c(—, 1) =04,d(—t) = 2,e(—,t) =
04, f(—,t) = 0.2. (b) The solution

of system (2.4) switching between the
above systems (2.5) and (2.6) with the

initial condition (x(0), y(0)) = (4,0.2)
is plotted fors € [800, 100Q. The tran-
sition intensities are = 1 andg = 1.

30

5 10 15 20 25 30

The x-y phase planes. (a) The peri-FIGURE 3. The x-y phase planes. (a) The peri-

odic solutions ¢, y;7 andy;f) of sys-
tem (2.5) with the following parameters
are plotted:a(+, 1) = 30, b(+,t) =
0.5(sin(t) +4), c(+,t) =1,d(+,t) =
30,e(+,1) =1, f(+, 1) = 0.5(sin(r +
7/2) + 4). For system (2.6) with the
following parameters, null-clines (dot-
dashed lines), equilibrium points (solid
dots) and a neutral curvé (a broken
line) are showna(—, 1) = 6,b(—,t) =
0.6, ¢(—,t) = 12, d(—,t) = 6,
e(—, 1) =12, f(—,t) = 0.6. (b) The
solution of system (2.4) switching be-
tween the above systems (2.5) and (2.6)
with the initial condition(x (0), y(0)) =
(4,0.2) is plotted fors € [130Q 2000Q.
The transition intensities are = 1 and

g =1
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