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Abstract. In this paper we study the behavior of trajectories of the Lotka-Volterra com-
petition system with periodic coefficients under telegraph noise. We give sufficient conditions
for the average permanence. Furthermore, we determine theω-limit sets of the system.

1. Introduction. In this paper we study the behavior of trajectories of the Lotka-
Volterra competition system with periodic coefficients under telegraph noise. Until now, many
models have revealed the effect of environmental variability on the population dynamics in
mathematical ecology [10, 14]. In particular, agreat effort has been made to find the possibil-
ity of the coexistence of competing species under the unpredictable or rather predictable (such
as seasonal) environmental fluctuations. It is well recognized that the seasonality has similar
effects to stochastic variation [4, 9], but as Loreau [11] pointed out, the theory of coexistence
in a seasonal environment needs further development to reveal the variety of possibilities that
seasonal fluctuations may cause. Among these, Namba and Takahashi [13] review the results
on Lotka-Volterra competition systems with periodic coefficients, and show the new modes
of the possibilities of stable periodic solutions even when the stable coexistence cannot be
realized in the corresponding classical Lotka-Volterra system with constant coefficients.

Here, we restrict the competition parameters so that there is no possibility of the multi-
ple periodic solutions that [13] shows. Then we consider the situation where the interacting
populations experience pseudo-stochastic environmental fluctuations with unpredictable dis-
continuous change, such as seasonality in a year with ‘a cycle of three cold days and four
warm days’. In a separate paper [6], we analyze the Lotka-Volterra competition system with
constant coefficients under telegraph noises, i.e., environmental variability causes parameter
switching between two systems.

Our focus of attention is on the intermediate case where environments have both pre-
dictable and unpredictable aspects. This case is studied by using a combined system of two
Lotka-Volterra systems with periodic coefficients. In this system, it is assumed that at ev-
ery moment the population dynamics is governed by one of the two Lotka-Volterra systems
with periodic coefficients. That is, the populations usually experience predictable changes of
environments. However, it is also assumed that the population dynamics abruptly becomes
governed by another Lotka-Volterra system. This abrupt switch between two systems occurs
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in an unpredictable manner. More precisely, the waiting time for the occurrence of the switch
follows an exponential distribution. These assumptions, for example, correspond to the situ-
ation where environments change seasonally and there are both warm days and cold days in
each season. The purpose of this paper is to show that under this situation our system exhibits
complex behavior due to the mutual interference between stochastic and periodic dynamics.

The paper is organized as follows. Section 2 is devoted to some fundamental properties
of the competition Lotka-Volterra equation with periodic coefficients under telegraph noise.
In particular, we give sufficient conditions to ensure the average permanence of the equation,
i.e., the coexistence of two species in the sensethat the time averages of the both species are
positive (Theorem 2.3). The two subsequent sections deal with the Lotka-Volterra competi-
tion system composed of two stable subsystems or of one stable and one bistable subsystem,
respectively. In Section 3, it is proved that theω-limit sets of the system include periodic
solutions of the subsystems (Theorem 3.6). Moreover, it is also shown that theω-limit sets in-
clude every orbit starting at a point on the periodic solutions of the subsystems (Theorem 3.8).
In Section 4, it is proved that theω-limit sets of the system include a periodic solution of the
stable subsystem (Theorem 4.7) and that the position of the periodic solution of the stable sub-
system and the ‘neutral curve’ of the bistable subsystem is essential in determining the shape
of theω-limit sets of the system (Theorem 4.9). Biological and mathematical implications are
discussed in the final section.

2. Preliminary discussion. Let (Ω,F , P) be a probability space satisfying the gen-
eral hypotheses [12] and let(ξt )t≥0 be a Markov process, defined on(Ω,F , P) and taking
values in the set of two elements, sayE = {+,−}. Suppose that(ξt ) has the transition in-

tensities+ α→ − and− β→ + with α > 0, β > 0. The process(ξt ) has a unique stationary
distribution

p = lim
t→∞ P{ξt = +} = β

α + β
, q = lim

t→∞ P{ξt = −} = α

α + β
.(2.1)

The trajectory of(ξt ) is a piecewise-constant, cadlag function. Suppose that

0 = τ0 < τ1 < τ2 < · · · < τn < · · ·(2.2)

are its jump times. Put

σ1 = τ1 − τ0 , σ2 = τ2 − τ1, . . . , σn = τn − τn−1, . . . .(2.3)

Thenσ1 = τ1 is the first exile from the initial state,σ2 is the time that the process(ξt ) spends
in the state into which it moves from the first state and so forth. It is known that the random
variablesσk (k = 1, . . . , n) are mutually independent when a sequence(ξτk )

n
k=1 is given

(see [8, vol. 2, p. 217]). Note that ifξ0 is given, thenξτn is constant, since the process(ξt )

takes only two values. Hence,(σk)
∞
n=1 is a sequence of conditionally independent random

variables, valued in[0,∞]. Moreover, if ξ0 = +, thenσ2n+1 has the exponential density
α1[0,∞) exp(−αt) andσ2n has the densityβ1[0,∞) exp(−βt). Conversely, ifξ0 = −, thenσ2n

has the exponential densityα1[0,∞) exp(−αt), andσ2n+1 has the densityβ1[0,∞) exp(−βt)

(see [8, vol. 2, p. 217]). Here 1[0,∞) = 1 for t ≥ 0 (1[0,∞) = 0 for t < 0).
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Let Fn
0 = σ(τk : k ≤ n) andF∞

n = σ(τk − τn : k > n). We see thatFn
0 is independent

of F∞
n for anyn ∈ N under the condition thatξ0 is given.
Let ξ0 have the distributionP{ξ0 = +} = p andP{ξ0 = −} = q. Then(ξt ) is a stationary

process. Therefore, there exists a groupθ t , t ∈ R, of P-measure preserving transformations
θ t : Ω → Ω such thatξt (ω) = ξ0(θ

tω), ω ∈ Ω .
We consider the competition Lotka-Volterra equation

{
ẋ = x(a(ξt , t) − b(ξt , t)x − c(ξt , t)y) ,

ẏ = y(d(ξt , t) − e(ξt , t)x − f (ξt , t)y) ,
(2.4)

whereg : E × R → R+ for g = a, b, c, d, e, f such thatg(i, ·) are continuous and periodic
functions with periodT > 0 for anyi ∈ E. Suppose thatm andM are two positive constants
such that

m ≤ g(i, t) ≤ M , i ∈ E, t ∈ R , for g = a, b, c, d, e, f .

The process(ξt ) interferes in (2.4) as a noise which is well-known as a real noise form
(or multiplicative noise, see [1]). Without the noise(ξt ), i.e., g(ξt , t) = g(t) for any g =
a, b, c, d, e, f , (2.4) is well studied (see [7] for example). In that case, it is proved that under
certain conditions posed on the coefficients, either (2.4) has a unique periodic solution which
attracts all solutions starting in(0,∞)× (0,∞) or every solution of (2.4), except the solution
starting at the neutral curve, has a component tending to 0 (see [2, 3, 6, 7]).

In the case when the noise(ξt ) intervenes virtually into (2.4), it makes a switching be-
tween the deterministic periodic system

{
ẋ+(t) = x+(t)(a(+, t) − b(+, t)x+(t) − c(+, t)y+(t)) ,

ẏ+(t) = y+(t)(d(+, t) − e(+, t)x+(t) − f (+, t)y+(t)) ,
(2.5)

and the deterministic periodic one
{

ẋ−(t) = x−(t)(a(−, t) − b(−, t)x−(t) − c(−, t)y−(t)) ,

ẏ−(t) = y−(t)(d(−, t) − e(−, t)x−(t) − f (−, t)y−(t)) .
(2.6)

Thus, the relationship between these two systems will determine the behavior of trajectories
of (2.4).

As is known, the property of solutions of Lotka-Volterra systems near the boundary is
dependent on two marginal equations. So, first we study the equations

u̇ = u(a(ξt , t) − b(ξt , t)u) , u(0) ∈ R+ ,(2.7)

v̇ = v(d(ξt , t) − f (ξt , t)v) , v(0) ∈ R+ .(2.8)

If u(t) is a solution of (2.7) andv(t) is a solution of (2.8), then(ξt , u(t)) and(ξt , v(t)) are
Markov processes.

A random process(φt ), valued in a measurable space(S,S), is said to beperiodic with
periodT if for any t1, t2, . . . , tn ∈ R, the simultaneous distribution of(φt1+kT , φt2+kT , . . . ,

φtn+kT ) does not depend onk ∈ N. We show that (2.7) has a unique solutionu∗(t) such that
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(ξt , u
∗(t)) is a periodic process. Indeed, put

u∗(t) = exp{A(t)}∫ t

−∞ b(ξs, s) exp{A(s)}ds
,

whereA(t) = ∫ t

0 a(ξs, s)ds. First, we see that

u∗(t + T ,ω) = exp{∫ t+T

0 a(ξs(ω), s)ds}∫ t+T

−∞ b(ξs(ω), s) exp{∫ s

0 a(ξτ (ω), τ )dτ }ds

= exp{∫ t+T

0 a(ξs−T (θT ω), s − T )ds}∫ t+T

−∞ b(ξs−T (θT ω), s − T ) exp{∫ s

0 a(ξτ−T (θT ω), τ − T )dτ }ds

= exp{∫ t

−T a(ξs(θ
T ω), s)ds}

exp{∫ 0
−T

a(ξs(θT ω, s)ds} ∫ t

−∞ b(ξs(θT ω), s) exp{∫ s

0 a(ξτ (θT ω), τ )dτ }ds

= exp{∫ t

0 a(ξs(θ
T ω), s)ds}∫ t

−∞ exp{∫ s

0 a(ξτ (θT ω), τ )dτ }b(ξs(θT ω), s)ds
= u∗(t, θT ω) .

Hence, by virtue of theP-measure preserving property ofθ , for any continuous functionh,
for anyt1 < t2 < · · · < tn and for eachk ∈ N we have

E[h(ξt1+kT , u∗(t1 + kT ), ξt2+kT , u∗(t2 + kT ), . . . , ξtn+kT , u∗(tn + kT ))]
= E[h(ξt1(θ

kT ), u∗(t1, θkT ), ξt2(θ
kT ), u∗(t2, θkT ), . . . , ξtn(θ

kT ), u∗(tn, θkT ))]
= E[h(ξt1(·), u∗(t1, ·), ξt2(·), u∗(t2, ·), . . . , ξtn (·), u∗(tn, ·))] .

This means that(ξt , u
∗(t)) is a periodic process with periodT . Similarly, (2.8) has a unique

solutionv∗(t) given by

v∗(t) = exp{D(t)}∫ t

−∞ f (ξs, s) exp{D(s)}ds
, D(t) =

∫ t

0
d(ξs, s)ds

such that(ξt , v
∗(t)) is a Markov periodic process. The uniqueness follows from the next

lemma.

LEMMA 2.1. For any u0 > 0 (resp. v0 > 0), limt→∞(u(t) − u∗(t)) = 0 a.s. (resp.
limt→∞(v(t)−v∗(t)) = 0 a.s.), where u(t) is the solution of (2.7) satisfying u(0) = u0 (resp.
v(t) is the solution of (2.8) satisfying v(0) = v0).

PROOF. Putz = 1/u − 1/u∗. Then we havėz = −az. Thus, sincez is bounded below
by a positive constant, we obtain the result. �

LEMMA 2.2 (Law of large numbers for periodic processes).For any continuous
bounded function h(t, i, u), periodic in t with period T , we have

lim
t→∞

1

t

∫ t

0
h(s, ξs , u

∗(s))ds = E
[

1

T

∫ T

0
h(s, ξs , u

∗(s))ds

]
.(2.9)
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Similarly,

lim
t→∞

1

t

∫ t

0
h(s, ξs , v

∗(s))ds = E
[

1

T

∫ T

0
h(s, ξs , v

∗(s))ds

]
.

PROOF. Put

Xn =
∫ (n+1)T

nT

h(s, ξs , u
∗(s))ds .

Since(ξt , u
∗(t)) is periodic,(Xn) is a stationary process. By the law of large numbers we

have

lim
n→∞

1

n

n∑
k=0

Xk = E[X0/J ] a.s. ,

whereJ is theσ -algebra of the invariant sets. However,(ξt ) is ergodic andu∗(t) has no
non-trivial invariant set, and hence we see thatJ = {∅,Ω}. This implies that

lim
t→∞

1

t

∫ t

0
h(s, ξs , u

∗(s))ds = lim[t ]→∞
1

T

1

[t/T ]
[t/T ]∑
k=0

Xk = 1

T
E[X0]

= E
[

1

T

∫ T

0
h(s, ξs , u

∗(s))ds

]
.

Here,[x] denotes the integer such that[x] ≤ x < [x] + 1. �

We study conditions that ensure the average permanence of (2.4).

THEOREM 2.3.
(a) If

λ := 1

T
E
[∫ T

0
(a(ξt , t) − c(ξt , t)v

∗(t))dt

]
> 0 ,(2.10)

then for any x > 0, y > 0, lim inft→∞(1/t)
∫ t

0 x(s, x, y)ds > 0 for P-a.s.
(b) If

γ := 1

T
E
[∫ T

0
(d(ξt , t) − e(ξt , t)u

∗(t))dt

]
> 0 ,(2.11)

then for any x > 0, y > 0, lim inft→∞(1/t)
∫ t

0 y(s, x, y)ds > 0 for P-a.s. Here (x(t, x, y),

y(t, x, y)) is a solution of (2.4).

PROOF. (a) From the inequalitẏy = y(d − ex − fy) ≤ y(d − fy) it follows that if
y(0) = v(0), theny(t) ≤ v(t) for anyt > 0 by the comparison principle. On the other hand,
by Lemma 2.1 we have limt→∞(v(t) − v∗(t)) = 0. Therefore, for anyε > 0, there exists
t0 = t0(ω, ε) such thatv∗(t) + ε/M > v(t) for anyt > t0. Hence,

ẋ(t)

x(t)
= a(ξt , t) − b(ξt , t)x(t) − c(ξt , t)y(t)

≥ a(ξt , t) − b(ξt , t)x(t) − c(ξt , t)v
∗(t) − ε , t > t0 ,
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which implies that

1

t

∫ t

t0

b(ξs, s)x(s)ds + ln x(t) − ln x(t0)

t
≥ 1

t

∫ t

t0

(a(ξs, s) − c(ξs, s)v
∗(s))ds − ε

t − t0

t
.

Sincex(t) is bounded, lim supt→∞(ln x(t) − ln x(t0))/t ≤ 0. By lettingt → ∞, we obtain

M lim inf
t→∞

1

t

∫ t

0
x(s)ds ≥ lim inf

t→∞

(
1

t

∫ t

0
b(ξs, s)x(s)ds + ln x(t) − ln x(t0)

t

)

≥ lim inf
t→∞

1

t

∫ t

t0

(a(ξs, s) − c(ξs, s)v
∗(s))ds − ε .

Applying the law of large numbers (Lemma 2.2), we have

lim
t→∞

1

t

∫ t

t0

(a(ξs, s) − c(ξs, s)v
∗(s))ds = 1

T
E

[∫ T

0
(a(ξs, s) − c(ξs, s)v

∗(s))ds

]
.

Sinceε is arbitrary, it follows that

lim inf
t→∞

1

t

∫ t

0
x(s)ds ≥ 1

T M
E
[∫ T

0
a(ξs, s) − c(ξs, s)v

∗(s))ds

]
= λ

M
> 0 .

(b) Similarly,

lim inf
t→∞

1

t

∫ t

0
y(s)ds ≥ γ

M
> 0 . �

REMARK 2.4.
(a) We note that the average permanence implies that lim supt→∞ x(t) > 0 and

lim supt→∞ y(t) > 0.
(b) Conditions (2.10) and (2.11) are easily checked in a similar fashion based on the

law of large numbers.

To get the further properties of the trajectories of the solutions of (2.4), we need addi-
tional hypotheses on the coefficients of (2.5) and (2.6). In Section 3, we assume both systems
are stable. In Section 4, we assume that one of them is stable and the other is bistable.

3. Dynamics of the stable subsystems.

HYPOTHESIS 3.1. The coefficients of (2.5) and (2.6) satisfy

sup
0<t<T

a(i, t)

b(i, t)
< inf

0<t<T

d(i, t)

e(i, t)
,(3.1)

inf
0<t<T

a(i, t)

c(i, t)
> sup

0<t<T

d(i, t)

f (i, t)
,(3.2)

inf
0<t<T

b(i, t)

e(i, t)
> sup

0<t<T

c(i, t)

f (i, t)
(3.3)

for any i ∈ E.
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By (3.1) and (3.2), there are constantsk±
1 , k±

2 such that

a(+, t)

b(+, t)
< k+

1 <
d(+, s)

e(+, s)
,

a(+, t)

c(+, t)
> k+

2 >
d(+, s)

f (+, s)
,(3.4)

a(−, t)

b(−, t)
< k−

1 <
d(−, s)

e(−, s)
,

a(−, t)

c(−, t)
> k−

2 >
d(−, s)

f (−, s)
(3.5)

for any t, s ∈ R andi ∈ E. If k+
1 = k−

1 andk+
2 = k−

2 , by virtue of the results in [2, 3, 5, 7]
with a slight modification, we can prove that there exists a unique periodic solution of (2.4)
taking values in(0,∞) × (0,∞). Thus, we consider here only the case where eitherk+

1 �=
k−

1 or k+
2 �= k−

2 . Under these hypotheses, (2.5) (resp. (2.6)) has a unique periodic solution
with period T whose orbit, sayγ + (resp.γ −), attracts any solution starting at a point in
(0,∞) × (0,∞), that is,

lim
t→∞ ρ((x+(t), y+(t)), γ +) = 0 (resp. lim

t→∞ ρ((x−(t), y−(t)), γ −) = 0) ,(3.6)

where we defineρ(x,A) = inf{‖x − z‖ ; z ∈ A}.
From inequalities (3.4) and (3.5), we can chooseε > 0, δ > 0 such that

a(+, t) − b(+, t)ε − c(+, t)k+
2 > δ , d(+, t) − e(+, t)k+

1 − f (+, t)ε > δ ,(3.7)

a(−, t) − b(−, t)ε − c(−, t)k−
2 > δ , d(−, t) − e(−, t)k−

1 − f (−, t)ε > δ(3.8)

for anyt > 0.
Let r1 = max{k+

1 , k−
1 } and r2 = max{k+

2 , k−
2 }. It is easy to see that the rectangle

K0 = (0, r1) × (0, r2) is a forward invariant set of (2.4), which attracts all solutions
(x(t, x, y), y(t, x, y)) of (2.4) with x > 0, y > 0. Therefore, we can suppose that
(x(t, x, y), y(t, x, y)) ∈ K0 for any t ≥ 0. Furthermore, by (3.7) and (3.8), we obtain that
γ + ⊂ Kε andγ − ⊂ Kε, where

Kζ = (ζ, r1) × (ζ, r2) .

LEMMA 3.2. For any small δ1 > 0, δ2 > 0, there exists a T ∗
1 = T ∗

1 (δ1, δ2) > 0
such that (xi(t), yi(t)) ∈ Uδ1(γ

i) for any t ≥ T ∗
1 , provided that (xi(0), yi(0)) ∈ Kδ2. Here,

Uδ1(γ
i) is the δ1-neighborhood of γ i and i ∈ E.

PROOF. It follows from (3.6) that for any(x, y) ∈ Kδ2, there isT (x, y) > 0 such
that (x+(t, x, y), x+(t, x, y)) ∈ Uδ1(γ

+) and(x−(t, x, y), x−(t, x, y)) ∈ Uδ1(γ
−) for any

t > T (x, y). By the continuous dependence of solutions on the initial data, there is a
neighborhood of(x, y), denoted byUx,y , such that(x+(t, x0, y0), y

+(t, x0, y0)) ∈ Uδ1(γ
+)

and (x−(t, x0, y0), y
−(t, x0, y0)) ∈ Uδ1(γ

−) for any t > T (x, y) and (x0, y0) ∈ Ux,y.
The family {Ux,y ; (x, y) ∈ Kδ2} is an open covering ofKδ2. SinceKδ2 is compact, there
is a finite family {Ux1,y1, Ux2,y2, . . . , Uxn,yn} such thatKδ2 ⊂ ⋃n

i=1 Uxi,yi . By choosing
T ∗

1 = max1≤i≤n T (xi, yi), we finish the proof of Lemma 3.2. �

LEMMA 3.3. There is a T ∗
2 > 0 such that xi(t∗) ≤ ki

1 and yi(t∗) ≤ ki
2 for a t∗ ∈

[0, T ∗
2 ], provided (xi(0), yi(0)) ∈ K0. Here i ∈ E.
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PROOF. Since it is assumed that(xi(t, x, y), yi(t, x, y)) ∈ K0 for any t ≥ 0, we con-
sider the casexi(0) ≤ r1 andyi(0) < r2. For i ∈ E, if xi(0) ≤ ki

1, we taket∗ = 0. Suppose
thatxi(0) > ki

1. Wheneverxi(t) > ki
1, we haveẋi = xi(a(i, t) − b(i, t)xi − c(i, t)yi) ≤

xi(a(i, t) − ki
1b(i, t)), which implies that

xi(t) ≤ xi(0) exp

{∫ t

0
(a(i, s) − ki

1b(i, s))ds

}
≤ r1 exp

{∫ t

0
(a(i, s) − ki

1b(i, s))ds

}
.

Similarly, yi(t) ≤ r2 exp{∫ t

0(d(i, s) − ki
2f (i, s))ds}. From (3.4) and (3.5) it follows that∫ ∞

0 (a(i, s) − ki
1b(i, s))ds = −∞ and

∫ ∞
0 (d(i, s) − ki

2f (i, s))ds = −∞. Hence, we can
choose

T ∗
2 = inf

{
t ; exp

{∫ t

0
(a(i, s) − ki

1b(i, s))ds

}
< ki

1/r1 ,

exp

{∫ t

0
(d(i, s) − ki

2f (i, s))ds

}
< ki

2/r2, i ∈ E

}

to get the result. �

COROLLARY 3.4. For any 0 < ε1 < ε and 0 ≤ t1 < t2, there exists an ε2 (ε1 > ε2 >

0) such that for any i ∈ E, the following hold.
(a) If r2 ≥ yi(t1) ≥ ε1 (resp. r1 ≥ xi(t1) ≥ ε1), then r2 ≥ yi(t) ≥ ε2 (resp. r1 ≥

xi(t) ≥ ε2) for any t > t1.
(b) If (xi(t1), y

i(t1)) ∈ [ε, r1) × [0, ε2], then xi(t) ∈ [ε, r1] for any t > t1. Under the
additional condition yi(t2) < ε1 for some t2 > t1, we have supt1<t<t2

yi(t) ≤ ε1. A similar
result holds for the case when (xi(t1), y

i(t1)) ∈ [0, ε2] × [ε, r2).

PROOF. We prove for the casei = + (for i = −, the proof is similar). We note that
y+(t) ↑ whenx+(t) ≤ k+

1 andy+(t) < ε. Further, ifx+(t∗) ≤ k+
1 andy+(t∗) > ε for a

t∗ ≥ 0, thenx+(t) ≤ k+
1 andy+(t) > ε for any t ≥ t∗. Therefore, by choosingT ∗

2 as in
Lemma 3.3, we have

inf
t≥t1

y+(t) ≥ min

{
inf

t1≤t≤t1+T ∗
2

y+(t), ε

}
.

It is obvious that

sup
t2≥t≥t1

y+(t) = max

{
sup

t1≤t≤t1+T ∗
2

y+(t), sup
t1+T ∗

2 ≤t≤t2

y+(t)

}
.

Set

ε2 = ε1 min{exp{−M(r1 + r2)T
∗
2 }, exp{−MT ∗

2 }} .

We haveẏ+ = y+(d(+, t) − e(+, t)x+ − f (+, t)y+) > −y+M(r1 + r2). Then, ify+(t1) ≥
ε1, we have

inf
t1≤t≤t1+T ∗

2

y+(t) > y+(t1) exp{−M(r1 + r2)T
∗
2 } > ε1 exp{−M(r1 + r2)T

∗
2 } ≥ ε2 ,

which implies that inft≥t1 y+(t) > ε2, i.e., we obtain (a).



EVOLUTION OF PERIODIC POPULATION SYSTEMS 455

Furthermore, if (x+(t1), y
+(t1)) ∈ [ε, r1) × [0, ε2], then from inequalities (3.7)

and (3.8) we obtain thatx+(t) > ε for any t > t1. Moreover, if y+(t2) ≤ ε1, then
supt1+T ∗

2 ≤t≤t2
y+(t) ≤ ε1, and fromẏ+ = y+(d(+, t) − e(+, t)x+ − f (+, t)y+) < y+M

we have supt1+T ∗
2 ≥t≥t1

y+(t) < y+(t1) exp{MT ∗
2 } < ε2 exp{MT ∗

2 } ≤ ε1, i.e., we obtain (b).
The proof of the other cases is similar and hence is omitted. �

LEMMA 3.5. For any i ∈ E, let γ i
[t1,t2] denote the set {(xi(t), yi(t)) ; t1 ≤ t ≤ t2}.

Then, for any δ1 > 0, there is δ2 > 0 such that if (xi(t1), y
i(t1)) ∈ Uδ2(γ

i), we have
γ i
[t1,t1+2T ] ∩ Uδ1(x

∗, y∗) �= ∅ for any (x∗, y∗) ∈ γ i .

PROOF. This lemma follows from the continuous dependence of solutions on the initial
data and the fact thatγ + (resp.γ −) is the orbit of a periodic solution with periodT . �

THEOREM 3.6. Suppose that conditions (2.10), (2.11) and (3.1)–(3.3) hold. Let
ω(x, y) be the ω-limit set of the solution (x(t, x, y), y(t, x, y)) of (2.4) with x > 0, y > 0.
Then, γ + and γ − are two subsets of ω(x, y). (See Figure 1.)

PROOF. For the sake of convenience, we suppose thatξ0 = +. Putε1 = min{ε, λ/(2M),
γ /(2M)}. From Corollary 3.4, suppose thatε2 = ε2(ε1) for (2.6) andε3 = ε3(ε2) for (2.5)
are chosen. Setε4 = min{ε2, ε3}. Put

xn = x(τn, x, y) and yn = y(τn, x, y) .(3.9)

We know that(xn, yn) is Fn
0 -measurable for anyn, since(xn, yn) is completely determined

by the sequenceτ1, τ2, . . . , τn. With the convention that inf{∅} = ∞ and the assumption
ξ0 = +, we construct a sequence

η1 = inf{2k + 1 ; (x2k+1 ≥ ε ∧ y2k+1 ≥ ε4) or (x2k+1 ≥ ε4 ∧ y2k+1 ≥ ε)} ,

η2 = inf{2k + 1 > η1 ; (x2k+1 ≥ ε ∧ y2k+1 ≥ ε4) or (x2k+1 ≥ ε4 ∧ y2k+1 ≥ ε)} ,
...

ηn = inf{2k + 1 > ηn−1 ; (x2k+1 ≥ ε ∧ y2k+1 ≥ ε4) or (x2k+1 ≥ ε4 ∧ y2k+1 ≥ ε)} .

The random variablesη1 < η2 < · · · < ηk < · · · form a sequence ofFn
0 -stopping times (see

[12]). Moreover,{ηk = n} ∈ Fn
0 for anyk, n. Thus, the event{ηk = n} is independent of

F∞
n .

We show thatηn < ∞ a.s. for anyn. Indeed, suppose to the contrary that there ism ∈ N
such that the setΓ = {ω ; ηm = ∞ andηm−1 < ∞} has a positive probability. Since for any
k, eitherx2k+1 ≥ ε or y2k+1 ≥ ε, if ω ∈ Γ , then either(x2k+1(ω) ≥ ε ∧ y2k+1(ω) < ε4) or
(x2k+1(ω) < ε4 ∧ y2k+1(ω) ≥ ε) for any 2k + 1 > ηm−1(ω). Let 2k + 1 > ηm−1. Suppose
thatx2k+1 ≥ ε andy2k+1 < ε4. By virtue of Corollary 3.4,x2k+2 ≥ ε. If y2k+2 > ε2, then by
Corollary 3.4,x2k+3 ≥ ε2 andy2k+3 > ε3 ≥ ε4, which is impossible (since eitherx2k+3 < ε4

or y2k+3 < ε4). Therefore,x2k+2 ≥ ε andy2k+2 ≤ ε2. Using Corollary 3.4 again, we see
thatx2k+3 ≥ ε, which implies thaty2k+3 < ε4. Hence, ifx2k+1 ≥ ε andy2k+1 < ε4, then
xn ≥ ε andyn < ε2 for anyn > 2k + 1. By Corollary 3.4 we get supt>ηN−1

y(t) ≤ ε1. This
contradicts lim supt→∞ y(t) ≥ 2ε1 > ε1.
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FIGURE 1. Thex-y phase planes. (a) The periodic solutions (γ + andγ −) of systems (2.5) and (2.6) with
the following parameters are plotted:a(+, t) = 10,b(+, t) = 0.1 sin(t) + 2.2, c(+, t) = 1,
d(+, t) = 5,e(+, t) = 1,f (+, t) = sin(t+π/2)+3,a(−, t) = 5,b(−, t) = sin(t+π/2)+3,
c(−, t) = 1, d(−, t) = 10, e(−, t) = 1, f (−, t) = 0.1 sin(t) + 2.2. (b) The solution of
system (2.4) switching between the above systems (2.5) and (2.6) with the initial condition
(x(0), y(0)) = (4, 0.2) is plotted fort ∈ [700, 1000]. The transition intensities areα = 1 and
β = 1.

Let Uδ1(γ
−) be an arbitrary neighborhood ofγ −. We chooseδ2 to be as in Lemma 3.5

andT ∗
1 = T ∗

1 (δ2, ε4) as in Lemma 3.2. DenoteAk = {σηk+1 ≥ T ∗
1 + 2T }. We have

P(Ak) = P{σηk+1 < T ∗
1 + 2T }

=
∞∑

n=0

P{σηk+1 < T ∗
1 + 2T | ηk = 2n + 1}P{ηk = 2n + 1}

=
∞∑

n=0

P{σ2n+2 < T ∗
1 + 2T | ηk = 2n + 1}P{ηk = 2n + 1}
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=
∞∑

n=0

P{σ2n+2 < T ∗
1 + 2T }P{ηk = 2n + 1}

=
∞∑

n=0

P{σ2 < T ∗
1 + 2T }P{ηk = 2n + 1}

= P{σ2 < T ∗
1 + 2T } < 1 .

Similarly, we have

P(Ak ∩ Ak+1)

= P{σηk+1 < T ∗
1 + 2T , σηk+1+1 < T ∗

1 + 2T }
=

∑
0≤l<n<∞

P{σηk+1 < T ∗
1 + 2T , σηk+1+1 < T ∗

1 + 2T | ηk = 2l + 1, ηk+1 = 2n + 1}

× P{ηk = 2l + 1, ηk+1 = 2n + 1}
=

∑
0≤l<n<∞

P{σ2l+2 < T ∗
1 + 2T , σ2n+2 < T ∗

1 + 2T | ηk = 2l + 1, ηk+1 = 2n + 1}

× P{ηk = 2l + 1, ηk+1 = 2n + 1}
=

∑
0≤l<n<∞

P{σ2n+2 < T ∗
1 + 2T }P{σ2l+2 < T ∗

1 + 2T | ηk = 2l + 1, ηk+1 = 2n + 1}

× P{ηk = 2l + 1, ηk+1 = 2n + 1}
=

∑
0≤l<n<∞

P{σ2 < T ∗
1 + 2T }P{σ2l+2 < T ∗

1 + 2T | ηk = 2l + 1, ηk+1 = 2n + 1}

× P{ηk = 2l + 1, ηk+1 = 2n + 1}
= P{σ2 < T ∗

1 + 2T }
∑

0≤l<n<∞
P{σ2l+2 < T ∗

1 + 2T | ηk = 2l + 1, ηk+1 = 2n + 1}

× P{ηk = 2l + 1, ηk+1 = 2n + 1}

= P{σ2 < T ∗
1 + 2T }

∞∑
l=0

P{σ2l+2 < T ∗
1 + 2T | ηk = 2l + 1}P{ηk = 2l + 1}

= (P{σ2 < T ∗
1 + 2T })2 .

By induction we obtain

P
( n⋂

i=k

Ai

)
= (P{σ2 < T ∗

1 + 2T })n−k+1 for n > k > 0 .

Hence,

P
( ∞⋂

k=1

∞⋃
i=k

Ai

)
= P{ω ; σηn+1 ≥ T ∗

1 + 2T i.o.} = 1 ,(3.10)

where ‘i.o.’ denotes ‘infinitely often’.
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Therefore, there are infinitely manyn such that either(x2n+1 ≥ ε ∧ y2n+1 ≥ ε4) or
(x2n+1 ≥ ε4 ∧ y2n+1 ≥ ε) with σ2n+2 ≥ T ∗

1 + 2T . Hence, by using Lemma 3.2, we
have(x(τ2n+1 + T ∗

1 ), y(τ2n+1 + T ∗
1 )) = (x−(T ∗

1 , x2n+1, y2n+1), y
−(T ∗

1 , x2n+1, y2n+1)) ∈
Uδ2(γ

−). Therefore, by Lemma 3.5, the solution(x(t, x, y), x(t, x, y)) enters the neigh-
borhoodUδ1(x

∗, y∗) at a time in(τ2n+1 + T ∗
1 , τ2n+1 + T ∗

1 + 2T ). Thus, we conclude that
γ − ⊂ ω(x, y). The proof of the inclusionγ + ⊂ ω(x, y) is quite similar. �

LEMMA 3.7. Let (x∗, y∗) ∈ γ − and δ1 > 0. Then we have for (xn, yn) defined by
(3.9)

P{(xn, yn) ∈ Uδ1(x
∗, y∗) i.o. n} = 1 .(3.11)

There is a similar result for the orbit γ +.

PROOF. Givenξ0 = +, let δ1 > 0 be arbitrary and letε1, ε2, ε3, ε4 be as in the proof
of Theorem 3.6. For any(u, v) ∈ Kε4 we denote byT (u, v) the first entrance time of the
solution(x−(t, u, v), y−(t, u, v)) into Uδ1/2(x

∗, y∗), i.e.,

T (u, v) = inf{t ; (x−(t, u, v), y−(t, u, v)) ∈ Uδ1/2(x
∗, y∗)} .

From Lemmas 3.2 and 3.5 we see thatT (u, v) < T ∗
1 (δ2, ε4) + 2T with δ2 = δ2(δ1/2) as

mentioned in Lemma 3.5. Since the left-hand sides of (2.6) are bounded, there ist1 > 0 such
that(x−(t, u, v), y−(t, u, v)) ∈ Uδ1(x

∗, y∗) for anyt ∈ (T (u, v), T (u, v) + t1).
Suppose that(ηn) is a sequence defined as in the proof of Theorem 3.6. SetAk =

{σηk+1 ∈ (T (xηk , yηk ), T (xηk , yηk ) + t1)}. We then have

P(Ak) = P{σηk+1 /∈ (T (xηk , yηk ), T (xηk , yηk ) + t1)}

=
∞∑

n=0

∫
Kε4

P{σηk+1 /∈(T (xηk , yηk ), T (xηk , yηk ) + t1) | ηk =2n + 1, xηk =u, yηk = v}

× P{ηk = 2n + 1, xηk ∈ du, yηk ∈ dv}

=
∫
Kε4

∞∑
n=0

P{σ2n+2 /∈ (T (u, v), T (u, v) + t1) | ηk = 2n + 1, x2n+1 = u, y2n+1 = v}

× P{ηk = 2n + 1, x2n+1 ∈ du, y2n+1 ∈ dv} .

Since(x2n+1, y2n+1) and{ηk = 2n + 1} is F2n+1
0 -measurable,

∞∑
n=0

∫
Kε4

P{σ2n+2 /∈ (T (u, v), T (u, v) + t1) | ηk = 2n + 1, x2n+1 = u, y2n+1 = v}

× P{ηk = 2n + 1, x2n+1 ∈ du, y2n+1 ∈ dv}

=
∞∑

n=0

∫
Kε4

P{σ2 /∈ (T (u, v), T (u, v) + t1)}P{ηk =2n + 1, x2n+1∈du, y2n+1 ∈ dv}
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=
∞∑

n=0

∫
Kε4

(1 − P{σ2 ∈ (T (u, v), T (u, v) + t1)})

× P{ηk = 2n + 1, x2n+1 ∈ du, y2n+1 ∈ dv}

≤
∞∑

n=0

∫
Kε4

(1 − P{σ2 ∈ (T ∗
1 + 2T , T ∗

1 + 2T + t1)})

× P{ηk = 2n + 1, x2n+1 ∈ du, y2n+1 ∈ dv}
= 1 − P{σ2 ∈ (T ∗

1 + 2T , T ∗
1 + 2T + t1)} := ϕ < 1 .

Similarly, we can estimate the probabilityP(Ak ∩ Ak+1). For the sake of simplicity
we denoteB = Kε4 × Kε4, C(l, n, u, v, u1, v1) = {ηk = 2l + 1, ηk+1 = 2n + 1, xηk =
u, yηk = v, xηk+1 = u1, yηk+1 = v1} andC(l, n, du, dv, du1, dv1) = {ηk = 2l + 1, ηk+1 =
2n + 1, xηk ∈ du, yηk ∈ dv, xηk+1 ∈ du1, yηk+1 ∈ dv1}. We have
P(Ak ∩ Ak+1)

= P{σηk+1 /∈ (T (xηk , yηk ), T (xηk , yηk ) + t1) ,

σηk+1+1 /∈ (T (xηk+1, yηk+1), T (xηk+1, yηk+1) + t1)}
=

∑
0≤l<n<∞

∫
B

P{σηk+1 /∈ (T (xηk , yηk ), T (xηk , yηk ) + t1),

σηk+1+1 /∈ (T (xηk+1, yηk+1), T (xηk+1, yηk+1) + t1)

| ηk = 2l + 1, ηk+1 = 2n + 1, xηk = u, yηk = v, xηk+1 = u1, yηk+1 = v1}
× P{ηk = 2l + 1, ηk+1 = 2n + 1, xηk ∈ du, yηk ∈ dv, xηk+1 ∈ du1, yηk+1 ∈ dv1}

=
∑

0≤l<n<∞

∫
B

P{σ2l+2 /∈ (T (u, v), T (u, v) + t1), σ2n+2 /∈ (T (u1, v1), T (u1, v1) + t1)

| C(l, n, u, v, u1, v1)}P{C(l, n, du, dv, du1, dv1)}
=

∑
0≤l<n<∞

∫
B

P{σ2n+2 /∈ (T (u1, v1), T (u1, v1) + t1)}P{σ2l+2 /∈ (T (u, v), T (u, v) + t1)

| C(l, n, u, v, u1, v1)}P{C(l, n, du, dv, du1, dv1)}
=

∑
0≤l<n<∞

∫
B

P{σ2 /∈ (T (u1, v1), T (u1, v1) + t1)}P{σ2l+2 /∈ (T (u, v), T (u, v) + t1)

| C(l, n, u, v, u1, v1)}P{C(l, n, du, dv, du1, dv1)}
≤ (1 − P{σ2 ∈ (T ∗

1 + 2T , T ∗
1 + 2T + t1)})

∑
0≤l<n<∞

∫
B

P{σ2l+2 /∈ (T (u, v), T (u, v) + t1)

| C(l, n, u, v, u1, v1)}P{C(l, n, du, dv, du1, dv1)}

= (1 − P{σ2 ∈ (T ∗
1 + 2T , T ∗

1 + 2T + t1)})
∞∑
l=0

∫
Kε2

P{σ2l+2 /∈ (T (u, v), T (u, v) + t1)

| ηk = 2l + 1, x2l+1 = u, y2l+1 = v}P{ηk = 2l + 1, x2l+1 ∈ du, y2l+1 ∈ dv}
≤ (1 − P{σ2 ∈ (T ∗

1 + 2T , T ∗
1 + 2T + t1)})2 = ϕ2 .
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Thus, by induction we obtain

P
( n⋂

i=k

Ai

)
≤ (1 − P{σ2 ∈ (T ∗

1 + 2T , T ∗
1 + 2T + t1)})n−k+1 = ϕn−k+1

for anyn > k > 0. Hence,

P
( ∞⋂

k=1

∞⋃
i=k

Ai

)
= P{ω ; σηn+1 ∈ (T (xηn, yηn), T (xηn, yηn) + t1) i.o. n} = 1.(3.12)

Therefore, there are infinitely manyn such thatσ2n+2 ∈ (T (x2n+1, y2n+1), T (x2n+1, y2n+1)+
t1), which implies that

(x2n+2, y2n+2) = ((x−(σ2n+2, x2n+1, y2n+1), y
−(σ2n+2, x2n+1, y2n+1)) ∈ Uδ1(x

∗, y∗) .

The proof for the case(x∗, y∗) ∈ γ + is similar. �

THEOREM 3.8. Any forward orbit of (2.5), starting at a point on γ −, is a subset of
ω(x, y) with x > 0,y > 0. Similarly, any forward orbit of (2.6), starting at a point on γ +, is
a subset of ω(x, y). (See Figure 1.)

PROOF. Suppose thatγ +(x∗, y∗) is the orbit of a solution(x+(t, x∗, y∗), y+(t, x∗, y∗))
of (2.5), starting at the point(x∗, y∗) ∈ γ −. Let (u, v) ∈ γ +(x∗, y∗). Then there ist∗ > 0
such that(x+(t∗, x∗, y∗), y+(t∗, x∗, y∗)) = (u, v). By the continuous dependence of solu-
tions on the initial data, for any neighborhoodVδ1 of (u, v), there aret1 < t∗ < t2 andδ2 > 0
such that if(x∗

1, y∗
1) ∈ Uδ2(x

∗, y∗), then(x+(t, x∗
1, y∗

1), y+(t, x∗
1, y∗

1)) ∈ Vδ1(u, v) for any
t1 < t < t2. Let

ζ1 = inf{2k ; (x2k, y2k) ∈ Uδ2(x
∗, y∗)} ,

ζ2 = inf{2k > η1 ; (x2k, y2k) ∈ Uδ2(x
∗, y∗)} ,

...
ζn = inf{2k > ηn−1 ; (x2k, y2k) ∈ Uδ2(x

∗, y∗)} .

By the proof of Lemma 3.7, we see that there are infinitely many even numbers 2n such that
(x2n, y2n) ∈ Uδ2(x

∗, y∗). Hence,ζk < ∞ and limk→∞ ζk = ∞ a.s. On the other hand,
{ζk = n} ∈ Fn

0 and hence{ζk = n} is independent ofF∞
n . Therefore,

P{σζk+1 ∈ (t1, t2)} =
∞∑

n=0

P{σζk+1 ∈ (t1, t2) | ζk = 2n}P{ζk = 2n}

=
∞∑

n=0

P{σ2n+1 ∈ (t1, t2) | ζk = 2n}P{ζk = 2n}

=
∞∑

n=0

P{σ2n+1 ∈ (t1, t2)}P{ζk = 2n}

=
∞∑

n=0

P{σ1 ∈ (t1, t2)}P{ζk = 2n} = P{σ1 ∈ (t1, t2)} .
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Similarly, we have

P{σζk+1 ∈ (t1, t2), σζk+1+1 ∈ (t1, t2)} = P{σ1 ∈ (t1, t2)}2 ,

which implies that

P{ω ; σζk+1 ∈ (t1, t2) i.o. k} = 1 .

Since(xζk , yζk ) ∈ Uδ2(x
∗, y∗) andσζk+1 ∈ (t1, t2),

(xζk+1, yζk+1) = (x+(σζk+1, xζk , yζk ), y
+(σζk+1, xζk , yζk )) ∈ Vδ1(u, v)

for infinitely manyk. This means that(u, v) ∈ ω(x, y).
In exactly the same way, we can prove that the orbitγ +(x∗, y∗) of any solution(x∗(t, x∗,

y∗), y∗(t, x∗, y∗)) of (2.6) with initial value(x∗, y∗) ∈ γ + is contained inω(x, y). �

4. Dynamics of the bistable subsystems. In this section, we keep hypotheses (3.1)–
(3.3) for i = +. Thus, (2.5) has a unique periodic orbitγ + as in Section 3. For (2.6) we
suppose the following.

HYPOTHESIS 4.1.

inf
0<t<T

a(−, t)

b(−, t)
> sup

0<t<T

d(−, t)

e(−, t)
, sup

0<t<T

a(−, t)

c(−, t)
< inf

0<t<T

d(−, t)

f (−, t)
,(4.1)

sup
0<t<T

b(−, t)

e(−, t)
< inf

0<t<T

c(−, t)

f (−, t)
.(4.2)

By virtue of condition (4.1), we can choose constantsk−
1 andk−

2 satisfying

a(−, t)

b(−, t)
> k−

1 >
d(−, s)

e(−, s)
,

d(−, t)

f (−, t)
> k−

2 >
a(−, s)

c(−, s)
(4.3)

for anys, t ∈ R. Further, there is a unique periodic orbit, sayγ −
U , of the marginal equation

u̇− = u−(a(−, t) − b(−, t)u−) ,

and a unique periodic orbit, sayγ −
V , of the marginal equation

v̇− = v−(d(−, t) − f (−, t)v−) .

Moreover, it is easy to see thatγ −
U ⊂ [k−

1 ,∞) and it attracts any solutionu−(t) with
u−(0) > 0. Similarly, γ −

V ⊂ [k−
2 ,∞) and it attracts any solutionv−(t) with v−(0) > 0

(see Lemma 2.1). We now come to the investigation of some properties of the solution of
(2.6).

LEMMA 4.2. Under conditions (4.1) and (4.2), there exists a function ϕ : [0, a∗) →
R+ such that if y < ϕ(x), then limt→∞ y−(t, x, y) = 0and limt→∞(x−(t, x, y)−u−(t, x)) =
0. Conversely, if y > ϕ(x), then limt→∞ x−(t, x, y)=0and limt→∞(y−(t, x, y)−v−(t, y))=
0. Thus, there is a ‘neutral’ curve, say �, such that if (x0,y0)∈�, then the solution (x−(t,x0,y0),

y−(t,x0,y0)) is bounded above and below by positive constants. Furthermore, there is a
unique periodic orbit contained in �, say γ −, which is visited by any solution starting at a
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point on �, i.e., for any δ > 0, (x∗, y∗) ∈ γ −, there is a t > 0 such that (x−(t, x0, y0),

y−(t, x0, y0)) ∈ Uδ(x
∗, y∗) for any (x0, y0) ∈ �.

PROOF. See [6, Proposition 2.10]. We prove the last assertion on the existence of a
periodic orbit. If(x, y) ∈ �, then(x−(t, x, y), y−(t, x, y)) ∈ � for any t > 0. We consider
the map(x, y) �→ (x−(T , x, y), y−(T , x, y)) from � into �. It is easy to prove that this map
has a fixed point by Brouwer’s fixed point theorem. Therefore, there is a periodic orbit, say
γ −. This orbit is unique because there is only one solution bounded above and below by
positive constants. Finally, the visitation of any point onγ − follows from the uniqueness of
γ − and the periodicity of coefficients. �

Note that we havex(t) ↑ andy(t) ↑ (resp.x(t) ↓ andy(t) ↓) wheneverx(t) andy(t) of
the solution of (2.4) are both small (resp. whenever at least one ofx(t) andy(t) is large). Thus,
for sufficiently smallε chosen in (3.7), we can findt0 ≥ 0 such thatx(t) < M/m, y(t) <

M/m and eitherx(t) ≥ ε or y(t) ≥ ε for any t ≥ t0. Therefore, without loss of generality,
we may suppose thatx(t) < M/m, y(t) < M/m and eitherx(t) ≥ ε or y(t) ≥ ε for any
t ≥ 0.

Put

A = {(x, y) ; y < ϕ(x), x > 0}, B = {(x, y) ; y > ϕ(x), x > 0}
with the conventionϕ(x) = ∞ if x ≥ a∗.

LEMMA 4.3. For any compact set K ⊂ A (resp. K ⊂ B) and any δ3-neighborhood
Uδ3(γ

−
U × {0}) of γ −

U × {0} (resp. δ3-neighborhood Vδ3({0} × γ −
V ) of {0} × γ −

V ), there is a
T ∗

3 = T ∗
3 (δ3,K) > 0 such that (x−(t, x, y), y−(t, x, y)) ∈ Uδ3(γ

−
U × {0}) for any t > T ∗

3
(resp. (x−(t, x, y), y−(t, x, y)) ∈ Vδ3({0} × γ −

V ) for any t > T ∗
3 ) and for any (x, y) ∈ K .

PROOF. Let K ⊂ A and (x, y) ∈ K. Then by Lemma 4.2, there is aT = T (x, y)

such that(x−(t, x, y), y−(t, x, y)) ∈ Uδ3 for all t ≥ T (x, y). By the continuous depen-
dence of solutions on the initial data, there exists an open neighborhoodUx,y of (x, y) such
that (x−(t, u, v), y−(t, u, v)) ∈ Uδ3 for all t ≥ T (x, y) and (u, v) ∈ Ux,y . The family
(Ux,y)(x,y)∈K is an open covering ofK. SinceK is compact, there areUxi,yi , i = 1, . . . , n,
such thatK ⊂ ⋃n

i=1 Uxi,yi . PuttingT ∗
3 = max1≤i≤n T (xi, yi), we have the result. The case

K ⊂ B is treated in a similar way. �

LEMMA 4.4. Let (x−(t, x, y), y−(t, x, y)) be the solution of (2.6). For any ε1 > 0
with [ε,∞)×[0, ε1] ⊂ A, we can find ε3 > 0 such that if (x−(t1), y

−(t1)) ∈ [ε,∞)×[0, ε3],
then x−(t) ≥ ε for any t ≥ t1 and supt>t1

y−(t) ≤ ε1. A similar result holds for the case of
(x−(t1), y

−(t1)) ∈ [0, ε1] × [ε,∞).

PROOF. In a manner similar to that in the proof of Lemma 4.3, we can findT ∗
3 =

T ∗
3 (ε1/2, {[ε,M/m] × [0, ε1]}) such that(x−(t, x, y), y−(t, x, y)) ∈ Uε1/2(γ

−
U × {0}) for

any t > T ∗
3 . Hence, by choosingε3 = ε1e

−MT ∗
3 , we haveẏ− = y−(d(−, t) − e(−, t)x− −

f (−, t)y−) < y−M, which implies that

y−(t) < max{y−(t1)e
MT ∗

3 , ε1/2} ≤ max{ε3e
MT ∗

3 , ε1/2} = ε1 . �
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LEMMA 4.5. There is S1>0 such that if ε≤y(t) (resp. ε≤x(t)), then inf0<s<S1 y(t +
s) ≥ ε/2 (resp. inf0<s<S1 x(t + s) ≥ ε/2) for any t ≥ 0.

PROOF. On the set(0,M/m] × (0,M/m], ẏ/y is bounded below by a constant, sayγ ,
and hencey(t + s) ≥ y(t)eγ s . We can choose 0< S1 < |ln 2/γ |. �

LEMMA 4.6. The image of the periodic solution u∗(t) of (2.7) is the smallest interval,
denoted by Γx , containing γ +

U and γ −
U . Similarly, the image of the periodic solution v∗(t)

of (2.8) is the smallest interval, denoted by Γy , containing γ +
V and γ −

V . Here, γ +
U , γ +

V are
two periodic orbits of u̇+ = u+(a(+, t) − b(+, t)u+) and v̇+ = v+(d(+, t) − f (+, t)v+),
respectively.

PROOF. The functiont �→ u∗(t) is continuous and it is easy to show that theω-limit
set ofu∗(t) containsγ +

U , γ −
U with probability one. Therefore, its image is a connected set in

R+. Thus it must be an interval. Hence, by Lemma 2.1, this image is the smallest interval
containingγ +

U , γ −
U . The argument is similar for the solutionv∗(t). �

THEOREM 4.7. Suppose that conditions (2.10) and (2.11) hold. Let ω(x, y) be the
ω-limit set of the solution (x(t, x, y), y(t, x, y)) of (2.4) with x > 0, y > 0. Then, γ + ⊂
ω(x, y), where γ + is a unique periodic solution of (2.5).

PROOF. The proof is somewhat similar to that of Theorem 3.6. For the convenience of
the proof, we supposeξ0 = +. Let

ε1 = min

{
ε,

λ

2M
,

γ

2M

}
, ε4 = min{ε2, ε3} ,

whereε2 as mentioned in Corollary 3.4 is chosen so thatε2 < ε1 andε3 is given by Lemma 4.4.
We construct a sequence

η1 = inf{2k + 1 ; (x2k+1 ≥ ε ∧ y2k+1 ≥ ε4) or (x2k+1 ≥ ε4 ∧ y2k+1 ≥ ε)} ,

η2 = inf{2k + 1 > η1 ; (x2k+1 ≥ ε ∧ y2k+1 ≥ ε4) or (x2k+1 ≥ ε4 ∧ y2k+1 ≥ ε)} ,
...

ηn = inf{2k + 1 > ηn−1 ; (x2k+1 ≥ ε ∧ y2k+1 ≥ ε4) or (x2k+1 ≥ ε4 ∧ y2k+1 ≥ ε)} .

Put An = {ω ; σηn+1 < s andσηn+2 > t}. By the same trick as used in the proof of
Theorem 3.6 we can show that

P
( ∞⋂

k=1

∞⋃
i=k

Ai

)
= P{ω ; σηn+1 < s andσηn+2 > t i.o. n} = 1 .(4.4)

Suppose thatδ1 > 0 is arbitrary andUδ2(γ
+) is a neighborhood ofγ + as in Lemma 3.5.

We chooseS1 as in Lemma 4.5 andT ∗
1 = T ∗

1 (δ2, ε4/2) as in Lemma 3.2. By choosing
s = S1 and t = T ∗

1 + 2T in (4.4), we see that there are infinitely manyn such that
either (x2n+1 ≥ ε ∧ y2n+1 ≥ ε4) or (x2n+1 ≥ ε4 ∧ y2n+1 ≥ ε) with σ2n+2 < S1 and
σ2n+3 > T ∗

1 + 2T . Using Lemma 4.5, we obtain(x2n+2, y2n+2) ∈ Kε4/2, which implies that
(x(τ2n+2 +T ∗

3 , x, y), y(τ2n+2 +T ∗
3 , x, y)) = (x+(T ∗

3 , x2n+2, y2n+2), y
+(T ∗

3 , x2n+2, y2n+2))

∈ Uδ2(γ
+) by Lemma 3.2. Thus, from Lemma 3.5, for any(x∗, y∗) ∈ γ +, the trajectory
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of (x(t, x, y), y(t, x, y)) passes through the neighborhoodUδ1(x
∗, y∗) on the interval

(τ2n+2, τ2n+3). This means thatγ + ⊂ ω(x, y). �

LEMMA 4.8. If (x∗, y∗) ∈ γ +, then for any δ1 > 0 we have

P{(xn, yn) ∈ Uδ1(x
∗, y∗) i.o. n} = 1 .(4.5)

PROOF. The proof is quite similar to that of Lemma 3.7, so we omit it. �

THEOREM 4.9. Suppose that conditions (2.10) and (2.11) hold. Let ω(x, y) be the
ω-limit set of the solution (x(t, x, y), y(t, x, y)) with x > 0, y > 0.

(a) Every orbit γ −(x∗, y∗) of the solution of (2.6) starting at any point of γ + is a
subset of ω(x, y).

(b) If γ + ∩ A �= ∅, then Γx × {0} ⊂ ω(x, y).
(c) If γ + ∩ B �= ∅, then {0} × Γy ⊂ ω(x, y).
(d) If C := γ + ∩ � �= ∅, then the smallest connected part of � containing γ − (a unique

periodic orbit contained in �, see Lemma 4.2) and C is contained in ω(x, y).

PROOF. (a) We obtain the assertion by replacing Lemma 3.7 with Lemma 4.8 in the
proof of Theorem 3.8.

(b) Suppose that(x∗, y∗) ∈ γ + ∩ A. From (a) we see thatγ −(x∗, y∗) ⊂ ω(x, y).
Since(x∗, y∗) ∈ A, by Lemmas 2.1 and 4.2 we see thatγ −

U × {0} ⊂ γ −(x∗, y∗). Thus,
γ −
U × {0} ⊂ ω(x, y).

Let x∗
1 ∈ γ +

U andδ1 > 0 be arbitrary. It is easy to see thatγ +
U ⊂ [ε, k+

1 ] and there is
T ∗

4 > 0 such thatγ +
U ⊂ u+

[t1,t1+T ∗
4 ](·, u0) for anyM/m > u0 > ε, whereu+

[t1,t1+T4](·, u0) =
{u+(t, u0) ; t1 ≤ t ≤ t1+T4}. Hence, by the continuous dependence of solutions on the initial
data, we can findδ2 > 0 such that if(u, v) ∈ Uδ2(γ

−
U × {0}), we have

{(x+(t, u, v), y+(t, u, v) ; t ∈ [t1, t1 + T ∗
4 ]} ∩ Uδ1(x

∗
1, 0) �= ∅.(4.6)

Givenξ0 = +, we set

ζ1 = inf{2k ; (x2k, y2k) ∈ Uδ2(γ
−
U × {0})} ,

ζ2 = inf{2k > ζ1 ; (x2k, y2k) ∈ Uδ2(γ
−
U × {0})} ,

...
ζn = inf{2k > ζn−1 ; (x2k, y2k) ∈ Uδ2(γ

−
U × {0})} .

Sinceγ −
U × {0} ⊂ ω(x, y), ζk < ∞ for any k and limk→∞ ζk = ∞ a.s. Moreover,

{ζk = n} is independent ofF∞
n . Therefore, by the same argument as above

P{ω ; σζk+1 ≥ T ∗
4 i.o. k} = 1 .

Thus, there are infinitely manyn such that(x2n, y2n) ∈ Uδ2(γ
−
U × {0}) andσ2n+1 ≥ T ∗

4 .
Hence, from (4.6) we have{(x(t, x, y), y(t, x, y)) ; t ∈ [τ2n, τ2n + T ∗

4 ]} ∩ Uδ1(x
∗
1, 0) �= ∅,

which means that(x∗
1, 0) ∈ ω(x, y).

(c) The proof is similar.
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(d) First, we prove thatγ − ⊂ ω(x, y). Let δ > 0 be arbitrary,(x∗, y∗) ∈ γ − and
(x∗

1, y∗
1) ∈ C. Since any point ofγ − is visited, there ist∗ > 0 such that(x−(t∗, x∗

1, y∗
1),

y−(t∗, x∗
1, y∗

1)) ∈ Uδ(x
∗, y∗). By the continuous dependence of solutions on the initial data,

there aret1 < t∗ < t2 and δ1 > 0 such that(x−(t, u, v), y−(t, u, v)) ∈ Uδ(x
∗, y∗) for

any t ∈ (t1, t2) and (u, v) ∈ Uδ1(x
∗
1, y∗

1). On the other hand, in the same way as above
and by virtue of Lemma 4.8, it follows that there are infinitely many odd numbersn such
that (xn, yn) ∈ Uδ1(x

∗
1, y∗

1) andσn+1 ∈ (t1, t2) with probability 1. Hence,(xn+1, yn+1) =
(x−(σn+1, xn, yn), y

−(σn+1, xn, yn)) ∈ Uδ(x
∗, y∗) with probability 1, i.e.,(x∗, y∗) ∈ ω(x, y).

It is obvious thatC ∩ � ⊂ ω(x, y). Then, by noting that(x(t, x, y), y(t, x, y)) is contin-
uous, we see that the smallest part containingC andγ − is included inω(x, y) with probabil-
ity 1. �

We illustrate the above-mentioned model by the following numerical examples.

EXAMPLE I. Figure 2 illustrates an example of the system satisfyingγ + ∩A = ∅ and
γ + ∩ B �= ∅ (see Theorems 4.7 and 4.9(a) and (c)).

EXAMPLE II. Figure 3 illustrates an example of the system satisfyingγ + ∩ A �= ∅
andγ + ∩ B �= ∅ (see Theorems 4.7 and 4.9(a)–(d)).

5. Discussion. To conclude this paper, we consider an ecology system of two com-
peting species. Suppose that the evolution of each species depends on the quantity of rainfall
for every period. If the rainfall is sufficient, their competition potential is equal and they de-
velop periodically. Whenever the rainfall issmall, the second species becomes very weak and
its amount gets smaller with the increase of time although the influence of the other environ-
mental elements is still seasonal (periodical). However, in the case when the rainfall is in a
stationary regime, the quantity of each species oscillates between the good situation and the
bad situation. Neither of the species disappears.

There are some questions here. In the proof of Theorem 3.6 we suppose that conditions
(2.10) and (2.11) hold. However, if we use the Liapunov functionV + = myγ andV − = nyγ

with m,n, γ chosen appropriately, we can prove that if 0< y(0) < ε and 0< x(0) < r1

with a positive probability, then(x(t), y(t)) has to get out from the domain 0< y ≤ ε,
i.e., there existt∗ > 0 such thaty(t∗) > ε, with a positive probability. However, we need
that (x(t), y(t)) gets out from the domain 0< y ≤ ε with probability 1. Thus, we use the
assumptions (2.10) and (2.11) perhaps only for technical reasons. As suggested by Figure 1,
we conjecture that Theorem 3.6 is still true without these assumptions. Moreover, whether
there is or is not a Markov periodic solution with periodT that attracts all the solutions of
(2.4) with initial data inR+ × R+ under conditions (3.1)–(3.3) is an open question.

Also, Figure 1 suggests that the system composed of two stable subsystems is permanent
under conditions (2.10) and (2.11). Note that Theorem 2.3 implies only that the system is
average permanent. We intend to study this problem in the future.
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FIGURE 2. The x-y phase planes. (a) The peri-
odic solutions (γ +, γ +

U
andγ +

V
) of sys-

tem (2.5) with the following parameters
are plotted:a(+, t) = 10, b(+, t) =
sin(t) + 4, c(+, t) = 1, d(+, t) = 10,
e(+, t) = 1, f (+, t) = sin(t + π/2) +
4. For system (2.6) with the follow-
ing parameters, null-clines (dot-dashed
lines), equilibrium points (solid dots)
and a neutral curve� (a broken line) are
shown: a(−, t) = 2, b(−, t) = 0.2,
c(−, t) = 0.4, d(−, t) = 2, e(−, t) =
0.4, f (−, t) = 0.2. (b) The solution
of system (2.4) switching between the
above systems (2.5) and (2.6) with the
initial condition(x(0), y(0)) = (4, 0.2)

is plotted fort ∈ [800, 1000]. The tran-
sition intensities areα = 1 andβ = 1.

FIGURE 3. The x-y phase planes. (a) The peri-
odic solutions (γ +, γ +

U
andγ +

V
) of sys-

tem (2.5) with the following parameters
are plotted:a(+, t) = 30, b(+, t) =
0.5(sin(t) + 4), c(+, t) = 1, d(+, t) =
30, e(+, t) = 1, f (+, t) = 0.5(sin(t +
π/2) + 4). For system (2.6) with the
following parameters, null-clines (dot-
dashed lines), equilibrium points (solid
dots) and a neutral curve� (a broken
line) are shown:a(−, t) = 6,b(−, t) =
0.6, c(−, t) = 1.2, d(−, t) = 6,
e(−, t) = 1.2, f (−, t) = 0.6. (b) The
solution of system (2.4) switching be-
tween the above systems (2.5) and (2.6)
with the initial condition(x(0), y(0)) =
(4, 0.2) is plotted fort ∈ [1300, 2000].
The transition intensities areα = 1 and
β = 1.
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