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Abstract. We show that under certain symmetry, the images of complete harmonic
embeddings from the complex plane into the hyperbolic plane is completely determined by the
geometric information of the vertical measuredfoliation and is independent of the horizontal
measured foliation of the corresponding Hopf differentials.

In this paper, we find a new explicit relation between the image of harmonic embeddings,
with certain symmetry, from the complex planeC into the hyperbolic planeH2 and the metric
of the associatedR-tree of the corresponding vertical measured foliation of the Hopf differ-
entials. Unlike in the case of compact surfaces, holomorphic quadratic differentials cannot be
determined by the vertical measured foliation only. So it is kind of surprising for us to find
that the image set of the corresponding complete harmonic embedding is completely deter-
mined by the vertical measured foliation and is independent of the geometric information of
the horizontal measured foliation.

The symmetry condition that we consider is as follow. We assume that the harmonic
embeddingu from C into H2 is invariant under the groupZk by rotations and its image is an
ideal polygon with 2k vertices for any integerk ≥ 2. This is the next nontrivial case after
the case ofZ2k symmetry which gives harmonic embeddings with regular polygonal images.
This condition can be regarded asu having half of the symmetry of a regular polygon.

The symmetry assumption implies that the Hopf differentials are of the form[z2m − (a+
ib)zm−1]dz2 for a + ib ∈ C. For a generic holomorphic quadratic differential in this family,
the associatedR-tree hasm + 1 finite edges of equal length given byν = π |b|/(2(m + 1)).
We will show that

THEOREM 1. Let u : C → H2 be the unique (up to equivalence) complete orientation
preserving harmonic embedding associated to a quadratic differential equivalent to [z2m −
(a + ib)zm−1]dz2. Then, up to isometry, the image u(C) is the interior of the ideal polygon
with vertices given by {1, eiα, ω, ωeiα, . . . , ωm,ωmeiα} in the unit disc model of H2, where
ω = e2πi/(m+1),

α = αm(ν) = 2 tan−1
(

sin(π/(m + 1))

cos(π/(m + 1)) + e2ν

)
,

and ν = π |b|/(2(m + 1)) is the common length of the finite edges of the R-tree associated to
the quadratic differential given by Lemma 1.1.
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In this paper, a harmonic embeddingu is called complete if its ∂-energy metric
‖∂u‖2|dz|2 is a complete metric onC, wherez is the standard complex coordinate onC.

The result is related to the work of Shi and Tam [7]. The facts that complete harmonic
embeddings fromC to H2 are parametrized by Hopf differentials [8, 9] and the images are
determined by the asymptotic behaviors of the harmonic embeddings [1, 2, 3], suggest the
following problem as a step toward Schoen’s conjecture [6] on the nonexistence of harmonic
diffeomorphism from the complex plane to the hyperbolic plane: Suppose thatu is a complete
orientation preserving harmonic embedding with polynomial Hopf differentialP(z)dz2, is it
possible to find explicit relation between the coefficients ofP(z) and the vertices ofu(C)? For
this problem, they showed that, up to isometry, the image of a complete orientation preserving
harmonic embedding from the complex plane into the hyperbolic plane is a regular ideal
polygon if its Hopf differential is given by(z2m −azm−1)dz2 for somereal numbera. This is
the first nontrivial example of a family of harmonic maps (for fixedm) with identical images.

It is obvious that our result is a generalization of that of Shi-Tam. However, the method
is quite different. In [7], the authors studied the asymptotic behavior of the image of the har-
monic maps along euclidean rays to infinity. Our approach adopts more geometric properties
of the Hopf differential, especially those related to the metric information of theR-tree as-
sociated to the vertical measured foliation of theHopf differential. The relationship between
the asymptotic behavior of harmonic maps and the associatedR-trees has been studied by
Minsky [5] and Wolf [10, 11, 12], independently. In these works, the asymptotic behavior
of a sequence of harmonic maps on a compact surface with energy (or the norm of the Hopf
differential) going to infinity was studied. In our case, instead of a sequence of maps, we are
interested in the asymptotic behavior of harmonic maps on a complete noncompact surface
as in [3]. In particular, the asymptotic behavior of the length of the image of a horizontal tra-
jectory near infinity was studied. More precisely, it was shown that the image of a horizontal
trajectory is asymptotic to a geodesic; and thedifference between the lengths of this image
and the asymptotic geodesic is actually tending to zero as theΦ-distance is going to infinity.

The arrangement of this paper is as follows. In Section 1, we will give a brief description
of harmonic maps, its Hopf differentials and the geometric information of theR-trees asso-
ciated to the Hopf differentials. Then we will study the asymptotic behavior of the image of
horizontal trajectories in Section 2. Finally, we prove our main result in Section 3.

1. Background.
1.1. Harmonic maps between surfaces. LetM andN be oriented surfaces with met-

rics ρ2|dz|2 andσ 2|du|2, wherez andu are local complex coordinates ofM andN , respec-
tively. A C2 mapu from M to N is harmonic if and only ifu satisfies

uzz̄ + 2 (logσ(u))u uzuz̄ = 0 .

The Hopf differentialΦ = φ(z)dz2 of a mapu between these surfaces is defined byφ(z) =
σ 2 (u(z)) uz(z)ūz(z). If u is harmonic, then it is well-known thatΦ is a holomorphic quadratic
differential onM.
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The∂-energy density and∂-energy density of u are defined by

‖∂u‖2 = σ 2(u)

ρ2 |uz|2 and ‖∂u‖2 = σ 2(u)

ρ2 |uz̄|2.

In terms of the∂-energy density and∂-energy density, the energy density and Jacobian ofu

can be written as

e(u) = ‖∂u‖2 + ‖∂u‖2 and J (u) = ‖∂u‖2 − ‖∂u‖2 .

In this paper, we are interested in the case thatM = C, N = H2, and thatu : C → H2

is an orientation preserving open harmonic embedding. In this case, the Jacobian is strictly
positive, i.e.,J (u) > 0, and hence‖∂u‖2 > 0. Therefore, one can consider the∂-energy
metric ‖∂u‖2|dz|2 on the complex planeC. As mentioned in the introduction,u is called
complete if its ∂-energy metric‖∂u‖2|dz|2 is a complete metric onC. As the completeness
is only defined for orientation preservingu, the termcomplete harmonic open embedding
implies implicitly that the harmonic embedding is orientation preserving.

It was shown in [8, 9] that for each holomorphic quadratic differentialΦ = φ(z)dz2

which is not identically zero, there is a complete harmonic open embedding, unique up to
conformal transformations,u : C → H2 such that the Hopf differential ofu is exactlyΦ.

1.2. Trajectory structures and measured foliations of the Hopf differentials. LetΦ

be a holomorphic quadratic differential onC, which is given in local coordinatez asΦ =
φ(z) dz2, whereφ is in general a holomorphic function. For anyz0 ∈ C with φ(z0) �= 0,
there is a choice of a continuous branch of

√
φ(z) in a neighborhoodW of z0. Then for a

given base pointz∗ ∈ W sufficiently close toz0, the mapping

ζ(z) =
∫ z

z∗

√
φ(w)dw

is univalent in possibly a smaller neighborhood ofz0 in W . This defines local charts on
{φ �= 0} and determines two measured foliations onC with singularities at the zeros ofφ. In
particular, the leaves of them are curves given locally by the sets,

Γν = {z ∈ W ; Im(ζ(z)) = ν} , ν ∈ R ,

γµ = {z ∈ W ; Re(ζ(z)) = µ} , µ ∈ R .

EachΓν andγµ is called ahorizontal trajectory andvertical trajectory, respectively. The
foliations formed by these curves are calledhorizontal foliation andvertical foliation corre-
spondingly. Obviously, the two foliations have orthogonal leaves. Furthermore, ifz0 ∈ C is
a zero of orderm of φ, then there arem + 2 horizontal trajectories, as well as vertical ones,
limiting to z0. Therefore, the horizontal and vertical foliations are in factmeasured foliations
with singularities at the zeros ofΦ with natural measures given by|dImζ | and |dReζ |, re-
spectively. We refer the reader to [11] for the definition of measured foliation on Riemann
surface in the general situation.

1.3. The canonical trees associated to the Hopf differentials. For eachΦ, the leaf
space of the measured foliation given by the vertical trajectories has a special 1-dimensional
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structure calledR-tree [10, 11, 12]. In this article, we shall call it theR-tree associated to Φ

and denote it byTΦ , or simply byT .
A trajectory that tends to a zero ofΦ at least in one direction is called acritical trajectory.

Each connected domain of the complement of all critical vertical trajectories is sometimes
called avertical domain, which is foliated by non-critical vertical trajectories.

In the particular case of a quadratic differentialΦ = P(z)dz2 for a polynomialP of de-
green onC, according to the global structural theorem of meromorphic quadratic differentials
on compact Riemann surfaces [4], there are generically 2n+1 vertical domains. Among these
domains,n + 2 are calledend domains and at mostn − 1 arestrip domains. The definition of
these two types of domains is given as follows.

For each vertical domainΩ , a canonical mappingz �→ ζ(z) sendsΩ one-to-one onto
one of the following domains inC,

(1) a half plane, in such caseΩ is called anend domain;
(2) a vertical strip,{ζ ∈ C; a < Re(ζ ) < b}, a, b ∈ R, in such caseΩ is called astrip

domain.
Note that the distance on theR-treeT can be realized in the following way. Letp, q

be two points onT represented by two leavesγ1 andγ2, respectively. One may construct a
sequence of arcs fromγ1 to γ2 such that each arc lies either in a horizontal trajectory or a
vertical one. The distancedT (p, q) is given by the sum of the lengths of the horizontal arcs.
In particular, if the straight line betweenp andq on theR-tree can be represented by a single
horizontal trajectory in an end domain, thendT (p, q) equals theΦ-length of that horizontal
trajectory.

Consequently, one can see that the associatedR-treeT hasn + 2 infinite edges corre-
sponding to then + 2 end domains, at mostn − 1 finite edges corresponding to the strip
domains, and withn vertices corresponding to the zeros counted with multiplicity.

For the special case thatΦ = (z2m − czm−1)dz2 with genericc ∈ C, we see that there
arem + 1 non-degenerate vertices corresponding to the roots ofzm+1 − c andm − 1 vertices
degenerated to a single vertex corresponding toz = 0 if m ≥ 3. The treeT will degenerate to
a single vertex ifc is real. More precisely, we have

LEMMA 1.1. Let T be the R-tree associated to the quadratic differential Φ = [z2m −
(a + ib)zm−1]dz2, a + ib ∈ C, and m ≥ 1.

(1) If m ≥ 2 and b �= 0, then T has m + 1 non-degenerate vertices each incident
with two infinite edges; and all of these vertices are adjacent to a unique vertex, which is
non-degenerate for m = 2 and degenerate otherwise, by finite edges of equal length given by
π |b|/(2(m + 1)).

(2) If m = 1 and b �= 0, then T has 2 non-degenerate vertices each incident with two
infinite edges; and they are connected by a finite edge of length π |b|/2.

(3) If m ≥ 1 and b = 0, then T has a unique vertex incident with 2m+2 infinite edges.
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REMARK 1.2. In the case (2), if we take the mid-point of the 2 vertices as the center
of theR-tree, then the vertices are in distanceπ |b|/4 to this center. This is exactly the same
value given by the formula in the case (1) withm = 1. An illustration is given in Figure 1.

FIGURE 1. m = 1, 2, 3 from left to right.

REMARK 1.3. If we consider the associated real tree to the leaf space of the measured
foliation given by horizontal trajectories instead of vertical ones, we have anotherR-tree as-
sociated toΦ. One sees that the same is true for this tree except that the common length of the
finite edges becomesπ |a|/(2(m + 1)). This tree will degenerate whenc is pure imaginary.

PROOF. By the argument before the Lemma,T has 2m+2 infinite edges corresponding
to the 2m + 2 end domains and hasm + 1 non-degenerate vertices. Ifm ≥ 2, thenT also has
a vertex with multiplicitym − 1. So we only need to show that each non-degenerate vertex
is incident with two infinite edges and calculate the distance between the non-degenerate
vertices and the vertex with multiplicity.

For anym ≥ 1, let η be a(m + 1)-root of c = a + ib andω be a primitive(m +
1)-root of unity. Then the roots ofzm+1 − c are exactly{η, ωη, . . . , ωmη}. For any fixed
k = 0, 1, . . . ,m, there is a wedge with vertex atz = 0, containing the pathzk(t) = tωkη,
t ∈ (0, 1), but no other zero ofΦ. Therefore, one can find a domainΩk containing the path
zk(t) which is contained in a strip domain ofΦ. Choosing a branch of the natural parameter

ζk(z) =
∫ z √

zm−1(zm+1 − c)dz

onΩk and taking limits ast → 0 andt → 1, one sees that

ζk(ω
kη) − ζk(0) = ±ic

∫ 1

0

√
tm−1(1 − tm+1)dt .

This implies that the horizontalΦ-distance between the rootωkη and 0 is given by
|b| ∫ 1

0

√
tm−1(1 − tm+1)dt = π |b|/(2(m + 1)). This proves that, in theR-tree, the vertices

corresponding to the roots ofzm+1 − c are adjacent to the vertex corresponding toz = 0 by a
finite arc of lengthπ |b|/(2(m + 1)) if m ≥ 2. If m = 1, then the same calculation shows that
the 2 vertices are connected by a finite arc of length 2× π |b|/(2(m + 1)) = π |b|/2.

Therefore, in the case thatm ≥ 2, the vertex corresponding toz = 0 with multiplicity
m − 1 already hasm + 1 finite edges incident with them + 1 non-degenerate vertices, and
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hence it is not incident with any other edges ofT . Since there are 2m + 2 infinite edges,
each of the vertices corresponding to the roots ofzm+1 − c must be incident with 2 infinite
edges. The case thatm = 1 is trivial, sincez = 0 is not even a critical point ofΦ. Finally, by
counting the multiplicity of the vertices and the number of edges, we see that there is no other
edge ofT and the proof is completed.

2. Distance estimates. In [3], it was shown that the image of an horizontal trajectory
far from zeroes is exponentially close to the geodesic connecting the end points in theΦ-
distance of the trajectory. However, this is not enough in our discussion about the image of
the harmonic map. In fact, we need to show thatthe difference between the lengths of the
image and the geodesic is actually tending to zero as theΦ-distance is going to infinity. Note
that we need more than just the ratio tending to 1 as in Proposition 2.2 of [7].

LEMMA 2.1. Let γR, R > 0 be a family of curves in the hyperbolic 2-space such that,
as R → +∞, L(γR) = O(R) and ‖kg‖(γR) = O(e−aR) for some a > 0, where L(γR) is the
length of γR and ‖kg‖(γR) is the supremum of the absolute value of the geodesic curvature of
γR . Then the distance d(R) between the end points of γR satisfies d(R) = L(γR) + o(R) as
R → +∞.

PROOF. For a sufficiently large fixedR > 0, we work in the Fermi coordinates(u, v)

with respect to the geodesicγ ∗
R passing through the end pointsγR(0) andγR(l), wherel =

L(γR) is the length ofγR. That is,γR : [0, l] → H2 is parametrized by arc-length, andγ ∗
R is

given byv ≡ 0.
By Lemma 3.1 in [3], there exists a constantC > 0 such that, for sufficiently small

ε > 0, ‖kg‖(γR) < ε impliesd(γR, γ ∗
R) < Cε. That is,

|v(γR(s))| < Cε for all s ∈ [0, l] .(2.1)

As in [3], we have

u′2 cosh2 v + v′2 ≡ 1 ,(2.2)

and

k2
g = cosh2 v(u′′ + 2u′v′ tanhv)2 + (v′′ − u′2 coshv sinhv)2 .(2.3)

Let

h1 = u′′ coshv + 2u′v′ sinhv , h2 = v′′ − u′2 coshv sinhv .

Thenh2
1 + h2

2 = k2
g . On the other hand, differentiation of (2.2) givesh1u

′ coshv + h2v
′ =

0, i.e., (h1, h2) is orthogonal to(u′ coshv, v′). Therefore, we must have(h1, h2) =
±|kg |(v′,−u′ coshv). Consequently, we have

|h1| ≤ ε|v′| and |h2| ≤ ε|u′| coshv .(2.4)
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We may assume thatu(0) = 0. Thend(R) = u(l). Applying Poincaré inequality tou′(s) −
u(l)/ l andv′(s), we conclude that there is a constantC1 > 0 such that∫ l

0
u′2 ≤ d(R)2

l
+ C1l

2
∫ l

0
(u′′)2(2.5)

and ∫ l

0
v′2 ≤ C1l

2
∫ l

0
(v′′)2 .(2.6)

Therefore, (2.1), (2.2), (2.4) and (2.5) imply∫ l

0
u′2 ≤ d(R)2

l
+ C2l

2ε2
∫ l

0
v′2(2.7)

for some constantC2 > 0. Similarly, we have from (2.1), (2.2), (2.4) and (2.6) that∫ l

0
v′2 ≤ C3l

2ε2
∫ l

0
u′2(2.8)

for some constantC3 > 0. Putting this into (2.7), we have∫ l

0
u′2 ≤ d(R)2

l
+ C2C3l

4ε4
∫ l

0
u′2 .(2.9)

By the assumption on the geodesic curvature‖kg‖, we may chooseε = O(e−aR). Then,
together withl = O(R), one hasC2C3l

4ε4 ≤ ε2 < 1 for sufficiently largeR. Hence, (2.9)
gives ∫ l

0
u′2 ≤ 1

(1 − ε2)

d(R)2

l
= [1 + O(e−2aR)]d(R)2

l
.(2.10)

On the other hand, from (2.1) and (2.2), we have

l =
∫ l

0
u′2 cosh2 v + v′2 ≤ (1 + C2ε2)

∫ l

0
u′2 +

∫ l

0
v′2 .

Together with the estimates (2.8) and (2.10), this gives

l ≤ [1 + O(e−aR)]d(R)2

l
.

Therefore,l = O(R) implies

d(R) ≥ l(1 + O(e−aR))−1 = l − l · O(e−aR) ≥ l − O(e−aR/2) .

As it is trivial thatl ≥ d(R), we have shown thatd(R) = L(γR) + o(R). �

From Lemma 2.1, we have the following corollary on the asymptotic behavior of har-
monic maps.

COROLLARY 2.2. Let ΓR, R > 0, be a family of horizontal trajectories of a holomor-
phic quadratic differential Φ with Φ-length equal to L. If the Φ-distance of ΓR to every zero
of Φ tends to infinity as R → ∞, then the images u(ΓR) of ΓR under the unique harmonic
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embedding u : C → H2 corresponding to Φ approaches a boundary geodesic arc of length
2L of the image set u(C) as R → +∞.

PROOF. Let us writeγR = u(ΓR) and dφ(R) for the minimalΦ-distance ofΓR to
zeroes ofΦ. First of all, the arguments of Lemma 3.2 and 3.4 of [3] imply thatγR approaches
the boundary geodesic ofu(C). So we only need to calculate its length. Lete2w be the∂-
energy density ofu with respect to theΦ-metric in its natural coordinates, i.e.,Φ = dz2 =
(dx + idy)2. Then, by Formula (3.6) of [3], we obtain

L(γR) =
∫

ΓR

√
e2w + e−2w + 2dx =

∫
ΓR

(
2 + 4 sinh

w

2

)
dx .

The exponential decay estimate of [2] then implies that

L(γR) = 2L + O(e−a1dΦ(R))

for some constanta1 > 0. On the other hand, the estimate as in the proof of Lemma 3.2 in [3]
shows that

‖kg‖(γR) = O(e−a2dΦ(R))

for some constanta2 > 0. Therefore, by Lemma 2.1, we conclude that the distance between
the end points ofγR is equal to 2L + o(R) asR → ∞. Therefore, by lettingR → ∞, we
have the desired result. �

3. Image of harmonic maps. In this section, we prove our main result on the explicit
determination of the image of the harmonic embedding with suitable symmetry. We are inter-
ested in a harmonic embeddingu from C into H2 such thatu is equivariant under the groupZk

by rotations and its image is an ideal polygon with 2k vertices for any integerk ≥ 2. In some
sense,u has half of the symmetry of a regular polygon. Note that our symmetry requirement
is not just on the image set but on the mapu.

According to this requirement, the Hopf differentials of these harmonic embeddings are
equivariant under the actionz �→ ωz for any kth-root of unity ω and their coefficients are
polynomials of degree 2k − 2. This immediately implies that the Hopf differentials are of the
form [z2m − (a + ib)zm−1]dz2, wherea + ib ∈ C. For these type of harmonic embeddings,
we have the following

THEOREM 3.1. Let u : C → H2 be the unique (up to equivalence) harmonic embed-
ding associated to a quadratic differential equivalent to [z2m − (a + ib)zm−1]dz2. Then, up
to isometry, the image u(C) is the interior of the ideal polygon with vertices given by

{1, eiα, ω, ωeiα, . . . , ωm,ωmeiα}
in the unit disc model of H2, where ω = e2πi/(m+1),

α = αm(ν) = 2 tan−1
(

sin(π/(m + 1))

cos(π/(m + 1)) + e2ν

)
,

and ν = π |b|/(2(m + 1)) is the common length of the finite edges of the R-tree associated to
the quadratic differential given by Lemma 1.1.
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PROOF. As a harmonic map from a surface is invariant under conformal change of
metrics on the surface, we may assume that the Hopf differential ofu is in fact given by
Φ = [z2m − (a + ib)zm−1]dz2. Then, by the symmetry of the quadratic differentialΦ and the
uniqueness property of the corresponding complete orientation preserving harmonic embed-
ding, after a composition with an isometry onH2, the harmonic embedding satisfiesu(0) = 0
and the imageu(C) is an ideal polygon with vertices given by

{1, eiα, ω, ωeiα, . . . , ωm,ωmeiα}
for someα ∈ (0, 2π/(m + 1)). What we need to do is to determineα. We also note that,
by the rotation of an angle−α, this polygon is equivalent to{1, eiβ, ω, ωeiβ , . . . , ωm,ωmeiβ}
with β = 2π/(m + 1) − α. Therefore, we may assume thatα ∈ (0, π/(m + 1)).

Let 0 ∈ (T , dT ) be the vertex on the associatedR-tree not incident with any infinite
edge form ≥ 2 or the mid-point of the unique pair of vertices form = 1 as described in
Lemma 1.1. For sufficiently largeL > 0, the set{q ∈ T ; dT (q, 0) = L} has exactly 2m + 2
points {q0, . . . , q2m+1} ⊂ T such that each infinite edge contains exactly oneqi . As the
treeT is coming from the trajectories structure ofΦ on the plane, there is a natural induced
cyclic order of the set of infinite edges. Assume thatqi are labelled in the same cyclic order,
for i ∈ Z2m+2. Then for each pair of consecutive pointsqi, qi+1, we can findzi andz′

i+1
in C both contained in a common horizontal trajectoryΓi of distanceR to zeroes in an end
domain, denoted byEi , of Φ such that eachzi andz′

i+1 belongs to the vertical trajectories
representingqi andqi+1, respectively. Note that from our choice,zi andz′

i belong to the same
vertical trajectoryγi representingqi . An illustration is given in Figure 2.

FIGURE 2.

Up to isometry, we may assume that the image curve of the vertical trajectory represent-
ing q0 approaches the ideal boundary to the point 1 in the unit disc model ofH2 asL → +∞.
Correspondingly, the image pointsu(z0) andu(z′

0) of z0 both tend to 1. Then, by the symme-
try of u and our assumption, for eachk = 0, . . . ,m, the image curve of the vertical trajectory
representingq2k approaches the ideal boundary pointωk = e2πki/(m+1), and the image curve
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of the vertical trajectory representingq2k+1 approaches the ideal boundary pointωkeiα, re-
spectively, in the unit disc model ofH2. In accordance with this, the image pointsu(z2k) and
u(z′

2k) tend toωk, while u(z2k+1) andu(z′
2k+1) tend toωkeiα.

To determine theΦ-length of eachΓi , we observe from Lemma 1.1, which concerns the
tree structure ofR-treeT associated toΦ, thatdT (qi, qi+1) = 2L or 2(L − ν), with the value
taken alternatingly ini, whereν = π |b|/(2(m + 1)) is the common length of those finite
edges ofT . We first assume that

dT (q2k, q2k+1) = 2(L − ν) and dT (q2k+1, q2k+2) = 2L .

An illustration is given in Figure 3.

FIGURE 3.

As Γi is a horizontal trajectory with end points representingqi andqi+1, theΦ-length of
Γi is exactly equal todT (qi, qi+1). Therefore, fork = 0, . . . ,m,

LΦ(Γ2k) = 2(L − ν) and LΦ(Γ2k+1) = 2L .

On the other hand, the vertical trajectoryγi representingqi is mapped to a curve of finite
length inH2. Indeed, using natural coordinates ofΦ in an end domain containingγi with
respect to the vertical trajectories system, the length of the image curve is given by

li = LH 2(u(γi)) =
∫ +∞

−∞

√
e2w + e−2w − 2dy =

∫ +∞

−∞
2 sinhwdy ,

wherew as in the proof of Corollary 2.2. Asγi is at least aΦ-distance ofL − ν away from
zeroes, the exponential decay estimate ofw implies that for somey0 anda > 0,

li ≤ C

[∫ y0

−y0

e−aLdy +
(∫ −y0

−∞
+

∫ +∞

y0

)
e−a(L+|y|)/√2dy

]

≤ O(e−aL/
√

2) .

Therefore,li are finite and tends to zero asL → +∞.
Let ζ2k be a point on the intersection ofu(γ2k) and the ray from 0 toωk in the Poincaré

disc. Similarly, letζ2k+1 be a point on the intersection ofu(γ2k+1) and the ray from 0 toωkeiα .
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Now consider the polygon inH2 with vertices 0, ζ0, ζ1, andζ2. Note that, sinceli → 0 as
L → +∞, the distance betweenζi andu(zi) or u(z′

i ) also tends to zero. An illustration is
given in Figure 4.

FIGURE 4.

On the other hand, by lettingR → +∞, Corollary 2.2 implies that the imageu(Γi)

of the horizontal arcΓi connectingzi andz′
i approaches a boundary geodesic arc of length

2(L − ν) and 2L, alternatingly ini. All together, we conclude that, asL → +∞,

dH 2(ζ0, ζ1) = 4(L − ν) + o(L) and dH2(ζ1, ζ2) = 4L + o(L) .

Let x1 = x1(L) = dH 2(ζ0, 0) andx2 = x2(L) = dH 2(ζ1, 0). Then, by symmetry,dH 2(ζ2, 0)

is also equal tox1. Hence from the cosine rule of the hyperbolic plane, we have

cosh(4(L − ν) + o(L)) = coshx1 coshx2 − sinhx1 sinhx2 cosα

and

cosh(4L + o(L)) = coshx1 coshx2 − sinhx1 sinhx2 cos(2π/(m + 1) − α) .

It is easy to see from these identities that limL→+∞(e−4L sinhx1 sinhx2) exists and is non-
zero. Let us denote

A = [4 lim
L→+∞(e−4L sinhx1 sinhx2)]−1 .

Then multiplying by(sinhx1 sinhx2)
−1 to the above equations and lettingL → +∞, one

concludes that √
Ae−2ν = sin

α

2
and

√
A = sin

(
π

m + 1
− α

2

)
.

It is easy to solve the above and obtain

tan
α

2
= sin(π/(m + 1))

cos(π/(m + 1)) + e2ν
,

which is the desired result.
In the case that

dT (q2k, q2k+1) = 2L and dT (q2k+1, q2k+2) = 2(L − ν) ,
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the same calculation shows that the angle is given by

tan
α

2
= sin(π/(m + 1))

cos(π/(m + 1)) + e−2ν
.

The angle obtained in this formula belongs to[π/(m + 1), 2π/(m + 1)), which is equivalent
to the one in previous formula by the transformationα �→ 2π/(m + 1) − α. �

In [7], a harmonic map was constructed with image equal to a regular ideal polygon of
4 vertices and Hopf differential is given by(z2 + ib)dz2 for some real numberb ∈ R. From
our theorem, one in fact has

COROLLARY 3.2. The harmonic diffeomorphism constructed in Proposition 1.6of [7]
is a unique, up to equivalence, complete orientation preserving harmonic embedding with
Hopf differential z2dz2.

PROOF. Whenm = 1, the theorem implies that the image of the harmonic map is
equivalent to{1, eiα,−1,−eiα} with α = 2 tan−1(e−2ν). Soα = π/2 if and only if ν = 0.
Sinceν = 2π |b|/(m + 1), we conclude thatb = 0. �

Finally, let us finish the paper by a couple of remarks.

REMARK 3.3. The fact that the image ideal polygon depends only on|b| but notb
can be easily seen from the fact that[z2m − (a + ib)zm−1]dz2 is equivalent to[z2m + (a +
ib)zm−1]dz2.

REMARK 3.4. LetPα be the equivalence class of the ideal polygon

{1, eiα, ω, ωeiα, . . . , ωm,ωmeiα} .

Then the mappingα �→ Pα from (0, 2π/(m + 1)) to all such equivalence classes is two-to-
one except atα = π/(m + 1), which maps to the regular ideal polygon. Therefore from the
proof, one may define, for eachΦ = [z2m − (a + ib)zm−1]dz2, the angle function by

α(b) = 2 tan−1
(

sin(π/(m + 1))

cos(π/(m + 1)) + ebπ/(m+1)

)
,

that is, by the same formula without taking absolute value ofb as inν = π |b|/(2(m + 1)).
This angle functionα is a bijection fromR to (0, 2π/(m + 1)). Thus, the mappingb �→ Pα(b)

behaves similarly. This gives a 2-fold covering exceptb = 0 for each fixeda and is consistent
with the previous remark.

Note that if we let the angleα run through the whole interval(0, 2π/(m + 1)), the ideal
polygon{1, eiα, ω, ωeiα, . . . , ωm,ωmeiα} runs over the set of all possible equivalence classes
of polygons except the regular polygon twice and once at the regular idea polygon. Then for
each fixeda, α : R → (0, 2π/(m + 1)) is a bijection and the corresponding ideal polygon
with vertices{1, eiα, ω, ωeiα, . . . , ωm,ωmeiα} runs through the set of all possible equivalent
classes of ideal polygons except the regular idea polygon twice and once at the regular idea
polygon asb run throughR once.
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