
Tohoku Math. J.
57 (2005), 247–260

CONTACT PAIRS
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Abstract. We introduce a new geometric structure on differentiable manifolds. ACon-
tact Pair on a 2h+2k+2-dimensional manifoldM is a pair(α, η) of Pfaffian forms of constant
classes 2k +1 and 2h+1, respectively, whose characteristic foliations are transverse and com-
plementary and such thatα andη restrict to contact forms on the leaves of the characteristic
foliations ofη andα, respectively. Further differential objects are associated to Contact Pairs:
two commuting Reeb vector fields, Legendrian curves onM and two Lie brackets on the set
of differentiable functions onM. We give a local model and several existence theorems on
nilpotent Lie groups, nilmanifolds, bundles over the circle and principal torus bundles.

1. Introduction. The aim of this paper is to study some differential Pfaffian forms
of constant class. This notion was introduced by E. Cartan (cf. [4], [6]). Global problems
relative to constant class forms have been efficiently studied in the case of maximal class:
contact forms, symplectic forms and generalized contact forms (cf. [1]).

In fact, we introduce a new geometric structure calledContact Pair. More precisely, a
Contact Pair (C.P.) of type(h, k) on a(2h + 2k + 2)-dimensional manifoldM is a pair of
Pfaffian forms(α, η) satisfying the following properties:

dαh+1 = 0 , dηk+1 = 0 and

α ∧ dαh ∧ η ∧ dηk is a volume form onM .

The formsα, η have constant classes 2h + 1 and 2k + 1, respectively.
Some differential objects can be naturally associated to such a structure. Thecharacteris-

tic foliations of α andη are transverse and complementary. Their leaves arecontact manifolds
of dimension 2k + 1 and 2h + 1, respectively. We give more general notions of aReeb vector
field andLegendrian curves. We can also associatetwo Lie brackets on the algebraC∞(M).
We show that contact pairs of the same type(h, k) admit a local model, like contact and
symplectic forms.

Given the richness of this geometry, we are interested in the existence of Contact Pairs.
We give several existence theorems for nilpotent Lie groups, nilmanifolds, bundles over the
circle, as well as principal torus bundles which showed their utility in contact geometry ([12],
[13], [8], [9], [1]). In the bundles(M4, B2, T

2), where the total space and the base are closed
orientable manifolds of dimensions 4 and 2, we constructT 2-invariant contact pairs of type
(1, 0).
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All geometric objects in this paper are supposedC∞. A similar structure calledContact-
Symplectic Pair is developed in [2] and [3].

The authors would like to express their gratitude to Y. Eliashberg and N. A’ Campo
for their interest in this work, to M. Bordemann, M. Goze, R. Lutz and M. Zessin for their
valuable comments. They kindly acknowledge R. Caddeo, S. Montaldo and P. Piu who made
it possible for them to meet.

2. Contact Pairs (C.P.). Let M be a(2h + 2k + 2)-dimensional manifold.

DEFINITION 2.1. A pair (α, η) of Pfaffian forms onM is said to be a Contact Pair
(C.P. for short) of type(h, k) if the following conditions are satisfied:

dαh+1 = 0 , dηk+1 = 0

and α ∧ dαh ∧ η ∧ dηk is a volume form onM .

Thus the formsα andη have constant classes 2h+1 and 2k+1, respectively. A manifold
equipped with a C.P. is clearly orientable.

A C.P. of type(0, 0) in a 2-dimensional manifoldM is a pair of closed Pfaffian forms
with non-vanishing product; ifM is closed it follows thatM is diffeomorphic to the 2-torus.
Therefore we will always supposeh ≥ 1 ork ≥ 1.

The simplest example of C.P.s is the following:
“Darboux” C.P.: Ifx1,. . . , x2h+1, y1,. . . , y2k+1 are coordinate functions onR2k+2h+2,

then the forms

α = dx2h+1 +
h∑

i=1

x2i−1dx2i , η = dy2k+1 +
k∑

i=1

y2i−1dy2i ,

(with the convention: ifh = 0 or k = 0 the corresponding sum is zero) determine a C.P. of
type(h, k) on R2k+2h+2.

This example is a local model of C.P.’s of type(h, k) (see §3).
2.1. Reeb vector fields of a C.P. In this section, we naturally generalize the notion of

Reeb vector field classically associated to contact forms.

THEOREM 2.2. Let (α, η) be a C.P.of type (h, k) on M . Then there exists a unique
vector field Xα satisfying

α(Xα) = 1 , i(Xα)(dαh ∧ η ∧ dηk) = 0

and a unique vector field Xη satisfying

η(Xη) = 1 , i(Xη)(α ∧ dαh ∧ dηk) = 0 .

PROOF. For the uniqueness, suppose the existence of two vector fieldsXα andYα veri-
fying the first two equations. Then the volume formα ∧ dαh ∧ η ∧ dηk vanishes onXα − Yα .
HenceXα = Yα .

For the existence ofXα , let us consider the formΩ = dαh ∧ η ∧ dηk. Its characteristic
space is 1-dimensional at every point, becauseΩ is a non-vanishing(2k + 2h + 1)-form on
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a (2k + 2h + 2)-dimensional manifold. Consider a tangent vectorup �= 0 at a pointp such
thati(up)Ωp = 0. We set(Xα)p = up/αp(up). This defines a smooth vector fieldXα onM

which satisfies the required conditions. �

For theDarboux C.P., the Reeb vector fields areXα = ∂/∂x2h+1 andXη = ∂/∂y2k+1.
A simple computation shows the following additional properties of Reeb vector fields of

a C.P.

PROPOSITION 2.3. The Reeb vector fields Xα , Xη of a C.P.(α, η) commute and satisfy
the following conditions:

η(Xα) = 0 , i(Xα)dα = i(Xα)dη = 0 ,

α(Xη) = 0 , i(Xη)dα = i(Xη)dη = 0 .

HenceXα (resp.Xη) is tangent to the characteristic foliation ofη (resp.α), and coincides
on every leaf with the Reeb vector field (in the classical sense) of the contact form induced by
α (resp.η) on the leaf.

COROLLARY 2.4. A C.P.is invariant by the flows of its Reeb fields.

The following theorem shows that Reeb fields of C.P. have properties similar to Reeb
fields of contact forms (cf. [14]):

THEOREM 2.5. The Reeb field Xα (resp. Xη) of a C.P.(α, η) of type (h, k) on M with
h � 1(resp. k � 1) does not admit any closed transverse hypersurface.

PROOF. As h � 1, we havedαh ∧ η ∧ dηk = d(α ∧ dαh−1 ∧ η ∧ dηk). If there exists
a closed transverse hypersurfaceS, then the form

i(Xα)(α ∧ dαh ∧ η ∧ ηk) = d(α ∧ dαh−1 ∧ η ∧ dηk)

is an exact volume form onS, which is impossible by Stokes’ Theorem. �

The formsdα anddη are absolute integral invariants ofXα andXη. The formsα andη

are relative integral invariants (cf. [4]).
2.2. Examples of C.P.’s. (1) Let(M2h+1

1 , α) and(M2k+1
2 , η) be two contact mani-

folds andM = M2h+1
1 × M2k+1

2 . The pair(α, η) is a C.P. of type(h, k) on M and it will
be calledProduct C.P. Its Reeb fields are those of the two contact forms considered as vector
fields onM.

For example, letθ1, θ2, θ3, φ be coordinate functions onR4. Then the pairα =
sinθ3dθ1 − cosθ3dθ2, η = dφ is a C.P. of type(1, 0) on the torusT 4 and its Reeb fields
areXα = sinθ3∂/∂θ1 − cosθ3∂/∂θ2, Xη = ∂/∂φ.

(2) LetM2h+2
1 be a manifold with a C.P.(α, η) of type(h, 0) andM2k

2 an open manifold
with a volume form(dθ)k, whereθ is a Pfaffian form. The pair(α, η + θ) is a C.P. of type
(h, k) onM2h+2

1 × M2k
2 .

2.3. Characteristic foliations ofα andη. Let (α, η) be a C.P. of type(h, k) on M.
We can naturally associate to it the distribution of vectors on whichα anddα vanish, and the
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one of vectors on whichη anddη vanish. These distributions are involutive becauseα andη

have constant classes. They determine thecharacteristic foliations ofα andη, notedF and
G, respectively.

The foliationsF andG are of codimension 2h + 1 and 2k + 1, respectively, andtheir
leaves are contact manifolds. This justifies the name of the structure. Moreover,F andG are
transverse and complementary.

3. Local model of contact pairs. To construct a local model for C.P., we use the
existence of characteristic foliations just described. One can easily show the following (see
[2]).

THEOREM 3.1. Let (α, η) be a C.P.of type (h, k) on M, with h � 1. For every point p

of M, there exists an open neighborhood V of p and a coordinate system on V such that the
pair (α, η) can be written:

αV = dx2h+1 +
h∑

i=1

x2i−1dx2i , ηV = dy2k+1 +
k∑

i=1

y2i−1dy2i ,

with the convention: ηV = dy1 if k = 0.

Thus every C.P. is locally a product C.P. The open setV will be called aDarboux neigh-
borhood.

4. Further differential objects associated to a C.P. Let (α, η) be a C.P. of type
(h, k) on a manifoldM, F andG the characteristic foliations ofα andη, respectively. We can
naturally associate to it the following differential objects:

4.1. Characteristic foliations ofdα anddη. Sincedα anddη have constant classes
2h and 2k, they determine two characteristic foliationsF ′ andG′of codimension 2h and 2k,
respectively.

Each leaf ofF ′ (resp.G′) is a union of leaves ofF (resp.G). Furthermore, it is clear that
the pair induced by(α, η) on a leafF of F ′ (resp.G′) is a C.P. of type(0, k) (resp.(h, 0)) on
F. These foliations also have the following interesting properties:

PROPOSITION 4.1. Suppose that the characteristic foliation F ′ of dα (respectively G′
of dη) has a closed leaf F . Then all the leaves of F (resp. G) lying in F are diffeomorphic,
and F fibers over the circle.

PROOF. The formα induces onF a non-zero closed Pfaffian formαF . Then if F is
closed, it fibers over the circle (cf. [15]) and the characteristic leaves ofαF are diffeomorphic.
But these leaves are exactly those ofF lying in F . �

4.2. Lie brackets onC∞(M) associated to a C.P. Using the contact forms induced
on the leaves ofF andG, the algebraC∞(M) can be endowed with a pair of Lie brackets.
Precisely, to every functionf on M, we can associate two vector fieldsXf,α andXf,η as
follows:
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On each leafG of G, there exists a unique vector fieldX tangent toG such that:

αG(X) = f|G and (LXαG) ∧ αG = 0 ,

whereαG is the contact form induced byα onG (cf. [11]).
The vector field we obtained onM is well defined, smooth and will be notedXf,α . In a

similar way, we constructXf,η. Now we can introduce the two Lie brackets.

DEFINITION 4.2. The Lie bracket off , g ∈ C∞(M) alongα is the function:

{f, g}α = α([Xf,α,Xg,α]) ,

and the Lie bracket alongη is the function

{f, g}η = η([Xf,η,Xg,η]) .

The usual properties of Lie brackets hold.
4.3. Legendrian curves. They are defined as follows:

DEFINITION 4.3. A Legendrian curve of the C.P.(α, η) with respect toα is a piecewise
differentiable curveγα onM such that

α(
.
γ α) = 0 and i(

.
γα)(η ∧ dηk) �= 0 everywhere .

Similarly, we define a Legendrian curve with respect toη. The curves must be tangent
toF (resp.G), but transverse toG (resp.F ). They can join the points as in connected contact
manifolds (see [1]):

PROPOSITION 4.4. Any two points on a connected manifold M equipped with a C.P.
(α, η) can be joined by a Legendrian curve with respect to α and by a Legendrian curve with
respect to η.

5. Topological obstructions. Let (α, η) be a C.P. of type(h, k) on a manifoldM.

PROPOSITION 5.1. If M is a closed manifold, then H 2h+1(M, R) �= 0 and
H 2k+1(M, R) �= 0.

PROOF. If H 2h+1(M, R) = 0 orH 2k+1(M, R) = 0, the volume formα∧dαh ∧η∧dηk

is exact, which is impossible whenM is closed. �

An immediate consequence (which also follows from the existence of a non-vanishing
vector field on a C.P. manifold) is the following:

COROLLARY 5.2. There is no C.P.on even-dimensional spheres.

By using [15], we have the following result:

PROPOSITION 5.3. If M is closed and equipped with a C.P. of type (h, 0), then M

fibers over the circle.

Here are some properties concerning Reeb vector fields:
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PROPOSITION 5.4. The Reeb vector fields of a C.P.determine a locally free action of
R2. Every closed orbit is a 2-torus.

PROOF. As Reeb vector fields commute, they generate a locally free action ofR2. Ev-
ery orbit admits two non-vanishing (Reeb) fields and then its Euler-Poincaré characteristic
vanishes. �

This action will be called theReeb action.

THEOREM 5.5. The Reeb action does not admit a closed transversal submanifold of
codimension 2.

PROOF. If h = k = 0, it is obvious. Supposeh ≥ 1 and letN be a 2-codimensional
closed transversal submanifold. Then

i(Y )i(X)(α ∧ dαh ∧ η ∧ dηk) = dαh ∧ dηk = d(α ∧ dαh−1 ∧ dηk)

induces an exact volume form onN , which is impossible by Stokes’ Theorem. �

REMARK 5.6. If every orbit of the Reeb action is a closed manifold, then we have a
locally free action of the torus. If this action generates a principal fibre bundle, the C.P. (which
is invariant) has an empty singular set (see §8 for details).

6. C.P.’s on nilpotent Lie groups and nilmanifolds. Nilpotent Lie groups and nil-
manifolds provide further interesting examples of C.P.’s. Below we present some examples
of constructions in dimensions 4 and 6 which can possibly be extended to higher dimensions.
We use the classification of nilpotent Lie algebras of dimensions 4 and 6 in [7].

6.1. C.P.’s on nilpotent Lie groups. In order to describe the Lie algebra of a Lie group,
we give only the non-zero ordered brackets of the fundamental fieldsXi . Their dual forms
will be notedωi .

EXAMPLE 6.1. Consider the 4-dimensional Lie algebran1
4 given by

[X1,X4] = X3 , [X1,X3] = X2 .

The pair(ω2, ω4) determines a C.P. of type(1, 0) on the corresponding Lie group.

EXAMPLE 6.2. On the 6-dimensional Lie algebran12
6 given by

[X1,X6] = X5 , [X1,X5] = X4 , [X2,X3] = X4 ,

the pair(ω4, ω6) determines a C.P. of type(2, 0) on the corresponding Lie group.

EXAMPLE 6.3. On the group corresponding to the 6-dimensional Lie algebran13
6 given

by

[X1,X6] = X5 , [X1,X5] = X4 , [X1,X4] = X3 , [X5,X6] = X2 ,

the pair(ω2, ω3) determines a C.P. of type(1, 1).

6.2. C.P.’s on nilmanifolds. We remark that in the previous examples the Lie algebras
are rational; thus the unique connected and simply connected Lie groups corresponding to
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them admit cocompact discontinuous subgroups (cf. [7]). Then thenilmanifolds, obtained as
quotients by these subgroups, areclosed manifolds equipped with C.P.’s of the same type.

7. Existence theorems of C.P.’s of type (h, 0). As we have seen in §5.3, a closed
manifold equipped with a C.P. of type(h, 0) fibers over the circle. By using Feldbau’s theorem
(cf. [5]), we construct non-product C.P.’s(α, η) of type(h, 0) on manifolds that fiber over the
circle, in such a way that the characteristic foliation ofη coincides with the bundle foliation.
We recall Feldbau’s theorem:

Equivalence classes of differentiable fiber bundles over the circle with closed, connected
fiber M and structural group Diff +(M) are in one-to-one correspondence with π0(Diff +(M)).

If f ∈ Diff +(M), the bundle is obtained as the quotient ofM× ]− ε , 1 + ε[, ε > 0
by the equivalence relation which identifies the points(x, t) ∈ M×]− ε , ε[ with h(x, t) =
(f (x), 1 + t) ∈ M×]1 − ε , 1 + ε[. The total space will be denotedMf andh will be called
thegluing diffeomorphism.

THEOREM 7.1. Let (B2h+1, ω) be a connected, closed contact manifold. If f ∈
Diff +(B2h+1) and f ∗ω = ω , then there exists a C.P. (ω̃, η) of type (h, 0) on (B2h+1)f .
Moreover the pair can be chosen in such a way that every contact leaf of the characteristic
foliation of η is a contact embedding of (B2h+1, ω) .

PROOF. Let (B2h+1, ω) be a connected, closed contact manifold,f ∈ Diff +(B) such
thatf ∗ω = ω. Considerε > 0 andIε =]− ε , 1+ ε[. Let p1, p2 be the projections ofB × Iε

onB andIε, respectively, anddt the canonical volume form ofIε. The pair(p∗
1(ω), p∗

2(dt))

is a product C.P. of type(h, 0) on B × Iε, invariant by thegluing diffeomorphism. Thus it
induces a C.P.(ω̃, η) of type (h, 0) on Bf . Let π : Bf → S1 be the canonical projection,
dθ the form onS1 induced bydt. By construction, we haveη = π∗dθ and its characteristic
foliation coincides with the one defined byπ. Let F = π−1(τ ) be any fiber andt ∈ Iε a
representative modulo 1 ofτ. As a contactomorphism between(B, ω) and(F, ω̃F ), one can
take the one which sends a pointp ∈ B to (p, t) ∈ B × Iε modulo the gluing diffeomorphism
h. �

We shall say that the C.P.(ω̃, η) constructed above isinduced by ω andf . It is a product
C.P. if and only iff is isotopic to the identity map idB .

REMARK 7.2. This theorem gives a method to construct non-product C.P.’s on a bundle
over the circle where the fiberB is endowed with a contact formω and a diffeomorphismf
leavingω invariant. But not all C.P.’s are obtained in this way, as the following example
shows.

Indeed, consider the forms

ω = cosθ3dθ1 + sinθ3dθ2 and η = dθ4 + λdθ1

on T 4, whereλ is an irrational number chosen sufficiently small to ensure the pair(ω, η) to
be a C.P. andη irrational. Therefore, the characteristic leaves ofη are open. Thus they cannot
be the compact fibers of a bundle over the circle with total spaceT 4.
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REMARK 7.3. If the formη is irrational it is close to a rational formβ. Then if(ω, η)

is a C.P. of type(h, 0), so is(ω, β). This shows that any C.P. of type(h, 0) is close to a C.P.
as in the previous theorem.

7.1. Non-product examples. Here are some fundamental examples of pairs(ω, f ) on
a manifoldB2h+1 which give C.P.’s on the associated Feldbau’s bundle(B2h+1)f .

(1) On the torusT 3, for each integern �= 0, we consider the contact formωn =
cos(nθ3)dθ1 + sin(nθ3)dθ2 and the diffeomorphismfn(θ1, θ2, θ3) = (θ2, θ1, (π/2n) − θ3).

(2) We can also consider the contact formω = cosθ3dθ1 + sinθ3dθ2 and the diffeo-
morphismf (θ1, θ2, θ3) = (θ1,−θ2,−θ3) onT 3.

(3) On the torusT 5, we have the contact form (see [13])

ω = sinθ2 cosθ2dθ1 − sinθ1 cosθ1dθ2

+ cosθ1 cosθ2dθ3 + (sinθ1 cosθ3 − sinθ2 sinθ3)dθ4

+ (sinθ1 sinθ3 + sinθ2 cosθ3)dθ5

and the diffeomorphism

f (θ1, θ2, θ3, θ4, θ5) =
(

π − θ1,−θ2,
π

2
− θ3, θ5, θ4

)
.

(4) Let U∗M be the unit cotangent bundle of ann-dimensional Riemannian manifold
(M, g), α the Liouville contact form onU∗M. If f ∈ Diff +(M) has finite orderp, we choose
the isomorphismF of the bundleU∗M defined by

F(x, ηx) = (f (x), (f −1)∗(ηx)/‖(f −1)∗(ηx)‖g )

for eachx ∈ M andηx ∈ U∗
x M. Clearly, its order isp andF ∗α = λα whereλ(x, ηx) =

1/‖(f −1)∗(ηx)‖g . Henceω = ∑p

k=1(F
k)∗α is a contact form onU∗M which satisfies

F ∗ω = ω. The C.P. we obtain in(U∗M)F is of type(n − 1, 0).
The diffeomorphisms considered in (1), (2) and (3) do not induce the identity map on the

first homotopy group of the manifold. Hence, they are not isotopic to id. In (4), iff is chosen
non-isotopic to id, so isF . In this way we obtain non-product C.P.’s.

7.2. Constructions on(M3)f whereM3 is the total space of a principalS1-bundle.
Let B2 be a closed, connected, orientable surface of genusg ≥ 2. First, we construct a family
D(B2) of orientation preserving diffeomorphisms ofB2 which are of finite order and not
isotopic to the identity map idB . Next, we intend to lift these diffeomorphismsf to certain
principal S1-bundlesM3 over B2, as isomorphismsf̃ of the bundle (also of finite order).
Finally, we constructS1-invariant contact formsω onM3 satisfyingf̃ ∗ω = ω. Therefore, we
will have non-product C.P. of type(1, 0) on each bundle(M3)f̃ .

7.2.1. The family D(B2). Let ∆(g) = {2} ∪ {m ∈ N,m ≥ 2,m | (g − 1)} andn ∈
∆(g) . We embedB2 in R3 and give diffeomorphismsϕf,n of ordern which are not isotopic
to idB , as follows:

First case (n | (g − 1 ) with g ≥ 3): Let l = (g − 1)/n. We consider a 2-torusT of
revolution. LetC1 be a meridian circle ofT . By iteratingn times the(2π/n)-rotation around
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the revolution axis, the images ofC1 aren new circlesCi (exceptCn+1 = C1). We gluel

handles on one of then connected componentsTi of T − ⋃
i Ci (after removing 2l disks).

By each iteration of the same rotation, we will havel new handles glued onT . Let Sg
n be the

surface so obtained andPn = {f : B2 → S
g
n | f is a diffeomorphism}. For eachf ∈ Pn, this

rotation induces a orientation preserving diffeomorphismϕf,n onB2 of ordern.
Second case (n = 2 with g even): Consider the unit sphereS. Let C1 be a circle

containing the poles,l = g/n, andTi the two connected components ofS − C1. We glue
l handles onT1 after removing 2l disks, and by theπ-rotation sendingT1 to T2, we have
l new handles onT2. As in the first case, we obtain a surfaceS

g
2 and we putP2 = {f :

B2 → S
g
2 | f is a diffeomorphism}. The surfaceSg

2 is also invariant by the above symmetry,
which therefore induces for everyf ∈ P2 a diffeomorphismϕf,2 of order 2 onB2. We put
C2 = ϕ2(C1) = C1 whereϕ2 is theπ-rotation.

By construction, for eachf ∈ Pn B2 = f −1(
⋃

i Σi) whereΣi aren 2-dimensional
compact connected submanifolds with boundaryCi ∪Ci+1, and interiorTi with thel handles.
For eachi andf , f −1 ◦ ϕf,n ◦ f (Σi) = Σi+1 andΣn+1 = Σ1.

We setD(B2) = {ϕf,n | n ∈ ∆(g), f ∈ Pn}.
7.2.2. How to lift these diffeomorphisms? In the trivial bundle(B2 × S1, B2, S

1), we
can evidently lift any diffeomorphismf of B2 by f̃ (x, θ) = (f (x), θ). However, it is possible
to find non-trivial principalS1-bundles(M3, B2, S

1) on which the elements ofD(B2) can be
lifted as isomorphisms (of finite order) of the bundle. For example, sinceB2 was considered
as a Riemannian submanifold ofR3, the elementsf of D(B2) are isometries (see 7.2.1). So,
their tangent maps̃f induced on the unit tangent bundleUB2 are isomorphisms. We can
also consider for each integerk �= 0 the bundle(E(k), B2, S

1) associated to(UB2, B2, S
1)

with total spaceE(k) = UB2 ×S1 S1 quotient ofUB2 × S1 by theS1-action(z, (p, z′)) →
(pz, z−kz′) (see [10, p. 54]). This bundle is still a principalS1-bundle. Every elementf ∈
D(B2) can be lifted as follows:̂fk([p, z]) = [f̃ (p), z] for each representative(p, z) ∈ UB2×
S1 of an equivalence class[p, z] in E(k). For eachf ∈ D(B2), the orientation preserving
isomorphismsf̃ andf̂k have the same order asf , and are not isotopic to the identity map.

7.2.3. Construction of contact forms onM3. Let M3(B2, S
1, q) be a principalS1-

bundle where the total spaceM3 is a closed, connected and orientable 3-manifold. Let f be
any element ofD(B2). Assume thatF is a orientation preserving isomorphism of the bundle
with finite order inducingf on the base. Then we have:

THEOREM 7.4. There exists an S1-invariant contact form ω on M3 such that F ∗ω =
ω.

PROOF. In the above notation, letn ∈ ∆(g) andf = ϕn.
First case (n | (g − 1) with g ≥ 3): Let η1 be a germ of anS1-invariant contact form

along the torusq−1(C1). Next, we putη2 = (F−1)∗η1. Then we have a germ of anS1-
invariant contact form along∂(q−1(Σ1)). According to [8, Lemma 1.3 and Theorem 3.3],
this extends to anS1-invariant contact formω1 onq−1(Σ1). Let ω be the form onM3 whose
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restriction to eachq−1(Σi) is ωi=(F−i+1)∗ω1. It is well defined,S1-invariant and satisfies
F ∗ω = ω.

Second case (n = 2 with g even): First, let us construct a germη of anS1-invariant
contact form along the torusq−1(C1) such thatF ∗η = η. There exists a tubular neighborhood
U of this torus isomorphic toV = T 2×] − 1, 1[, such thatF induces the isomorphism
FV : (θ1, θ2, t) → (θ1, π −θ2,−t) of V. TheS1-invariant contact form̃η = dθ1+ tdθ2 onV

satisfiesF ∗
V η̃ = η̃. Hence we haveη. This germ also extends to anS1-invariant contact form

ω1 onq−1(Σ1). Setω2 = (F−1)∗ω1 onq−1(Σ2), to get a global contact form onM3 which
coincides withωi onq−1(Σi) for i = 1, 2. �

Thus(M3)F is endowed with a C.P. of type(1, 0).

8. Existence of C.P.’s of type (1, 0) on principal torus bundles (M4, B2, T
2). Sev-

eral existence problems for contact forms have been solved using an additional invariance con-
dition under which the space carries geometrically useful structures (see [12], [13], [8], [9],
[1]). We proceed along the same lines. Let us consider principal torus bundles(M4, B2, T

2, π)

where the base and the total space are connected, closed and orientable.
Let θ = ∑2

i=1 θ i ⊗ ei be a connection form,Ω = ∑2
i=1 Ωi ⊗ ei its curvature form and

X1, X2 the fundamental vector fields generated bye1, e2.
Let (α, η) be a pair of Pfaffian forms onM4. These forms areT 2-invariant if and only if

they can be written as follows:

α = π∗(β) + π∗(f1)θ
1 + π∗(f2)θ

2 ,

η = π∗(γ ) + π∗(g1)θ
1 + π∗(g2)θ

2 ,

whereβ andγ are Pfaffian forms andfi , gi functions on the base space.
The pair(α, η) is an invariant C.P. of type(1, 0) if and only if the following three condi-

tions are satisfied onB2:

CONDITION 8.1.

β ∧ (g2df1 − g1df2) + (g2f1 − g1f2) · (dβ + f1Ω
1 + f2Ω

2)

+(f2df1 − f1df2) ∧ γ �= 0 everywhere onB2 ,

CONDITION 8.2.

df1 ∧ df2 = 0 .

CONDITION 8.3.

dg1 = dg2 = 0 (thusg1 andg2 are constants) ,

and dγ + g1Ω
1 + g2Ω

2 = 0 .

We call the singular set of(α, η) the setS on which the function

(α ∧ η)(X1,X2) = π∗(g2f1 − g1f2)
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vanishes or equivalentlyS = π−1(Σ), whereΣ is the set of zeros of the functionh =
g2f1 − g1f2. Geometrically,S is the set of points ofM4 where the formsα andη induced on
the fibersT 2 are proportional.

8.1. Nature of the singular set. IfΣ is not empty and does not coincide withB2, one
of the constantsg1, g2 is not zero. We supposeg2 �= 0, and by the condition 8.1, we have

(g2β − f2γ ) ∧ dh + g2h · (dβ + f1Ω
1 + f2Ω

2 − df2 ∧ γ ) �= 0 .

Whereh vanishes, we have(g2β − f2γ ) ∧ dh �= 0, which implies thatΣ is a closed
orientable embedded submanifold of B2 of codimension 1, and therefore a finite disjoint union
of circles.

The setΣ, whenΣ �= ∅ andΣ �= B2, verifies the following obvious property:

CONDITION 8.4. To every connected component ofB2 − Σ we can attach a sign+
or − (the sign of the functionh), in such a way that two adjacent components have opposite
signs.

If S = π−1(Σ) is the singular set of an invariant C.P.,Σ satisfies necessarily one of the
three following properties:

(1) Σ coincides withB2,
(2) Σ is empty,
(3) Σ is a 1-codimensional closed orientable embedded submanifold ofB2 satisfying

the condition 8.4.

We shall see in the next paragraph that each of these cases is possible.
8.2. Existence theorems on(M4, B2, T

2). We shall show that for every setΣ in each
one of the three cases of the previous paragraph there exists an invariant C.P.(α, η) having
π−1(Σ) as singular set.

8.2.1. The case Σ = B2. The base space is necessarily the 2-torus. In fact:

THEOREM 8.5. Let (M4, B2, T
2) be a principal torus bundle where total and base

space are closed, connected and orientable. There exists an invariant C.P.of type (1, 0) with
singular set M4 if and only if B2 is the 2-torus.

PROOF. Suppose the existence of such a C.P. onM4. Then we haveβ, γ , fi , gi onB2

satisfying the conditions 8.1, 8.2, 8.3 andh ≡ 0. These conditions become
(1) (f2df1 − f1df2) ∧ γ �= 0,
(2) df1 ∧ df2 = 0,
(3) g1 = g2 = 0 anddγ = 0.
This implies thatγ is a non-singular closed Pfaffian form. ThusB2 is a torus.
Conversely, if the base space is a torus with “pseudo-coordinates”θ1 andθ2, we can

chooseγ = dθ1, f1 = sinθ2, f2 = cosθ2 to get an invariant C.P. with singular setM4. �

8.2.2. The case Σ empty. There is a constraint on the bundle. In fact:
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THEOREM 8.6. Let (M4, B2, T
2) be a principal torus bundle with total and base space

closed, connected and orientable. There exists an invariant C.P. of type (1, 0) with empty
singular set if and only if the characteristic classes of the bundle do not vanish simultaneously.

Hence in the trivial bundle(T 2 × T 2, T 2, T 2), there is no such C.P.

PROOF. Suppose that there exists an invariant C.P.(α, β) with empty singular set. In
the notation above, at least one ofg1, g2 is not zero. Ifg2 �= 0, we havef1 = (g1f2 + h)/g2.
Condition 8.1 becomes

g2h
2d(β/h) + g2h · (f1Ω

1 + f2Ω
2) + (f2dh − hdf2) ∧ γ �= 0 ,

which gives

g2h · d(β/h) − h · d((f2/h) · γ ) + g2 · (f1Ω
1 + f2Ω

2) + f2dγ �= 0 .

Sincedγ = −g1Ω
1 − g2Ω

2, we have

d(g2β/h) − d((f2/h) · γ ) + Ω1 �= 0 everywhere .

This condition implies that
∫

Ω1 �= 0 and thus[Ω1] �= 0.
Conversely, suppose that there is a non-vanishing characteristic class (for example[Ω1] �=

0) and consider the pair

α = π∗(β) + π∗(g2)θ
1 + π∗(−g1)θ

2 ,

η = π∗(γ ) + π∗(g1)θ
1 + π∗(g2)θ

2 ,

whereg1, g2 are constants andβ, γ Pfaffian forms onB2. This determines a C.P. of type (1,0)
with empty singular set if and only if

dγ + g1Ω
1 + g2Ω

2 = 0 and

(g2
2 + g2

1) · (dβ + g2Ω
1 − g1Ω

2) �= 0 everywhere .

As
∫

Ω1 �= 0 we can find(g1, g2) �= (0, 0) such thatg1
∫

Ω1 + g2
∫

Ω2 = 0. Thusl =
g2

∫
Ω1 − g1

∫
Ω2 �= 0, and there exists a formγ satisfyingdγ + g1Ω

1 + g2Ω
2 = 0. Now

choose a volume formΦ whose integral is 1. Then we have
∫

lΦ = g2
∫

Ω1 − g1
∫

Ω2,

which implies the existence of someβ satisfyingdβ + g2Ω
1 − g1Ω

2 �= 0 everywhere. �

8.2.3. Σ is a submanifold of codimension 1. There is no obstruction on the bundle
and we have:

THEOREM 8.7. Consider a principal torus bundle (M4, B2, T
2, π) with closed, con-

nected, orientable total and base space. Let Σ be a closed orientable 1-codimensional imbed-
ded submanifold of B2, satisfying the condition 8.4. There exists an invariant C.P.(α, η) of
type (1, 0) on M4 having π−1(Σ) as the singular set.

An example is given in Remark 7.2 where the singular set is the union of two 3-tori.
Before proving the theorem, we give a technical lemma which will be useful in the

following constructions (see [12, p. 5] for a proof).
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LEMMA 8.8. Le B be a closed orientable 2-dimensional manifold and Σ a 1-co-
dimensional compact orientable embedded submanifold satisfying the condition 8.4. Then
there exists a function h and a Pfaffian form β on B such that Σ = h−1(0) and the form
h · dβ + β ∧ dh is a volume form on B.

PROOF. (of Theorem 8.7) We have to findβ, γ , fi , gi such that the conditions 8.1, 8.2
and 8.3 are satisfied.

First step: By Lemma 8.8, there existh andβ0 such that

β0 ∧ dh + h · dβ0 �= 0 , h−1(0) = Σ .

Second step: We construct constantsgi and a formγ satisfying the condition 8.3. If
the characteristic classes[Ωi] vanish, thenΩ1 = dγ1, Ω2 = dγ2. We take(g1, g2) �= (0, 0)

arbitrarily andγ = −(g1γ1 + g2γ2).
If there is a non-vanishing characteristic class, we can always find(g1, g2) �= (0, 0) such

that:g1
∫

Ω1+g2
∫

Ω2 = 0. This implies that there existsγ satisfyingdγ +g1Ω
1+g2Ω

2 =
0.

Third step: We construct the functionsfi . We set:

f = h/(k1g2 − k2g1) , f1 = k1f , f2 = k2f ,

whereki are constants such thatk1g2 − k2g1 �= 0. Then the condition 8.2 is satisfied.
Last step: We setβ = rβ0 wherer is a real number sufficiently large such that the

condition 8.1 is satisfied. �

REMARK 8.9. By Remark 7.2, if in the previous three theoremsη is irrational then the
C.P.(α, η) cannot be obtained as in Theorem 7.1.
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